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Abstract—The COVID-19 pandemic has devastated the world
in an unprecedented way, causing enormous loss of life. Time
and again, public health authorities have urged people to
become vaccinated to protect themselves and mitigate the
spread of the disease. However, vaccine hesitancy has stalled
vaccination levels in the United States. This study explores
the effect of vaccine hesitancy on the spread of disease by
introducing an SIRS-V,. model, with compartments of suscep-
tible (S), infected (I), recovered (R), and vaccinated (V). We
leverage the concept of carrying capacity to account for vaccine
hesitancy by defining a vaccine confidence level x, which is the
maximum number of people that will become vaccinated during
the course of a disease. The inverse of vaccine confidence is
vaccine hesitance, (--). We explore the equilibria of the SIRS-

1
V.. model and their sntability, and illustrate the impact of vaccine
hesitance on epidemic spread analytically and via simulations.

I. INTRODUCTION

The origins of epidemiological modeling extend as far
back as the 18th century [1], with Bernoulli’s 1760 treatise on
smallpox considered one of its foundational documents [2].
In the 20th century, the field experienced significant growth,
including the introduction of approaches that employed dy-
namic systems theory [1]. In particular, Kermack and McK-
endrick’s 1932 Contributions to the Mathematical Theory
of Epidemics introduced compartmental models, which are
heavily used to this day [3], [4]. With this method, members
of the population are compartmentalized based on their
current state of health. The most common models are the
SIS, SIR, and SEIR models, in which people are grouped
as: susceptible (S), exposed (E), infected (I), or recovered
(R) [4]. Expansions of the aforementioned models have
also been developed. For instance, in light of the COVID-
19 pandemic, Giordano et al. constructed a SIDARTHE-V
model that subdivides the infected population according to
the detection and severity of their symptoms and includes
vaccination levels [5].

We include a vaccinated compartment in our model be-
cause vaccines are a powerful tool in mitigating epidemic
spread and saving lives [1]. The modern practice of vacci-
nation is rooted in Edward Jenner’s 1796 experiments on
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smallpox [6], [7]. Since then, incredible breakthroughs have
been made in vaccinations, including the use of vaccines
to eradicate smallpox [8]. Today, vaccines are widely used
around the world as early as infancy to prevent infections [9].
Due to the power of vaccines, the drastic death rates caused
by the spread of the novel SARS-CoV-2 virus have spurred
worldwide vaccination efforts to combat the virus [10], [11].
In the U.S., three vaccines are currently available: Pfizer-
BioNTech, Moderna, and Johnson & Johnson’s Janssen [12].

Nevertheless, vaccine hesitancy remains a growing con-
cern for public health [13]. An individual’s vaccine hesitancy
is affected by context, interpersonal experiences, and disease-
specific metrics [14]. In the United States, vaccine hesitancy
is especially apparent regarding the reception of the COVID-
19 vaccine. As of September 11, 2021, 53% of Americans
have been fully vaccinated against COVID-19, with an
additional 9.2% partially vaccinated [11]. However, these
levels are lower than those predicted by a February 2021
survey by Pew Research Center. According to the survey,
69% of Americans reported they would probably, definitely,
or had already been at least partially vaccinated [15]. In fact,
the number of vaccines administered daily in the U.S. in
September 2021 is less than half of those administered daily
in mid-April 2021 [11].

There have been dozens of studies on COVID-19 vaccine
hesitance around the world [16]-[18]. There are also studies
on how vaccination levels affect the dynamics of disease
spread. Pires and Crokidakis explore the effect of vaccine
opinions in the spread of a disease [19]. Similarly, [20] con-
siders the dynamics when opinions are continuous. However,
to the best of the authors’ knowledge, the correlation between
a maximum vaccination capacity x and the equilibria of
system dynamics [21] has not yet been established. This work
analytically illustrates the effect of x on the dynamics of
COVID-19 spread. Specifically, « is shown to determine the
endemic and disease-free equilibria of the SIRS-V,; system.

II. SIRS-V,, MODEL

In this paper, we take an SIRS model and add a vaccinated
compartment with a vaccine confidence « as the upper-bound
of vaccination level. The result is an SIRS-V,, model: suscep-
tible (S), infected (1), recovered (R), vaccinated (V). Figure 1
gives a graphical representation of the compartmental flow.

Definition II.1 (Vaccine Hesitance). We define the vaccine
hesitance as k=1, where k is the vaccine confidence.
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Fig. 1: SIRS-V,, Compartments.

Each compartment in the grouped SIRS-V, model is a
scalar between 0 and 1 modeling the fraction of the popula-
tion in each epidemic compartment at time ¢. The following
are the equations describing the flow from one compartment
to another in the group SIRS-V, model:

Sz—ﬂSI—p(l—Z)S—HuR (1a)
I=pBSI—~I (1b)
R'waRp<1Z)R (1¢)
Vp(l:) (S +R). (1d)

The parameters are defined as follows:

e [ is the frequency-dependent transmission rate
e 7y is the recovery rate

e p is the rate of vaccination roll-out

e K is the vaccine confidence of the population
e w is the rate of waning natural immunity.

All of the above parameters are defined in the range of
(0, 00).

Assumption 1 (Frequency dependent and population pre-
serving system). We assume S(to),I(to), R(to) € [0,1],
V(to) € [0, k], where r := min{1,x}, and S(to) + I(to) +
R(to)+V (to) = 1. Furthermore, all parameters of the system
are strictly positive.

Lemma II.1 (Permissible range of V). Let Assumption I
hold, then 0 <V (t) < k Vit > t.

Proof. Suppose Assumption 1 holds, we first note that
V(to) = p(S(to) + R(ty)) > 0 when V(t;) = 0. Fur-
thermore, limy (4,) ;0 V(to) = p(S(to) + R(to)) > 0. Then,
consider the upper bound of V (t), V(to) = 0 when V (t5) =
. Moreover, for any V(tg) < k, limy ) V(to) > 0.
Therefore, v(t) € [0,k] ¥Vt > to for all permissible initial
values in Assumption 1. H

The following lemma shows that the bounds on the initial
state apply to all states for all ¢ > t.

Lemma II.2 (Admissible range of states values). Let As-
sumption 1 hold. Then S(t),I(t), R(t),V(t) € [0,1] and
St)+1It)+R(E)+V(t)=1

Proof. We first observe that S(t) 4+ I(t) + R(t) + V(t) = 0
Vvt > 0 by summing over (la)-(1d). By integrating, we have:

/t S(1)+I(1) + R(r) + V(r)dr =0

to

St)+It)+Rt)+V(#t)=1 Vt>0

since the initial condition is assumed to be S(tg) + I(to) +
R(ty) + V(o) = 1.

To show that S(t),I(t),R(t),V(t) € [0,1] ¥t > 0, we
rewrite the state vector as z(t) € R*, then we note that
for any j € {1,...,4}, 2; = —z;f;j(2k2;) + gj(2) where
fi(zr25),9i(2) > 0 Vz > 0, also zi»; is the state vector
z without its j*" entry. This applies to Z; = V also, as we
have demonstrated in Lemma II.1. Then, we observe that
lim, o 2;(t) = gj(2) > 0 Vz > 0. Therefore, z(t) > 0 when
z(top) > 0. Then z;(t) < 1 follows directly from z;(t) > 0
and S(t) + I(t) + R +V(t)=1. m

We denote the set of admissible states of (1) by S
{(S(),1(t), R(t), V(1)) = S(t) + I(t) + R(t) + V()
1 and S(t),1(t),R(t) € [0,1] and V (t) € [0,K] VE > to}.

III. STABILITY ANALYSIS

This section preview the existence and uniqueness of the
two equilibria of the SIRS-V, model and their stability
conditions. We denote an equilibrium of the SIRS-V,, model
as (S*, I*, R*,V*) where S*, I*, R*, and V* are the steady-
state values of (1) as t — oo.

Definition IIL.1 (Disease-Free Equilibrium). A disease-free
equilibrium (DFE) is an equilibrium with the steady-state
infected level I'D = 0, where 54 = [(4) = R(d) = y(d) =
0.

Similarly, we define the endemic equilibrium as follows:

Definition III.2 (Endemic Equilibrium Point). An endemic
equilibrium point (EEP) is an equilibrium with the steady-
state infected level 1(®) > 0, where S(©) = [(¢) = R(¢) =
Ve =,

Lemma III.1 (Strictly Positive EEP). If there exists an
endemic equilibrium (S(®), 1(¢) R(©) V() then it is strictly
greater than 0, i.e. 2(¢) > 0Vz € {S, I, R, V'}. Furthermore,
Ve =g

Proof. Assume, by way of contradiction, that S(¢) = 0, then
Sle) = —~I # 0, which contradicts the definition of the
EEP. Therefore, S(¢) > 0. A similar argument can be made
by substituting R(¢) = 0 into (1c) to get R(¢) > 0. Therefore,
from (1d), we have

©
0=p (1 - VH ) (89 + R) 2)
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and the only way for the R.H.S. to equal zero is if V(¢) = .
Notice that (2) cannot be satisfied when « > 1, and therefore,
the EEP only exists when x < 1, concluding the proof. W

Lastly, we reiterate the definition of the basic reproduction
number through the next generation matrix method [22], [23]:

Definition II1.3 (Basic and Effective Reproduction Number).
Let z; = fi(2) — gi(z) be the differential equation of
the i'" infected compartment, where fi(z) is the function
governing the rate of appearance, ¢;(z) is the function
governing the rate of transferring into other compartments,

and i € {1,...,m} for m infected compartments out of n
total compartments. Let F' = [%} and G = [dgé’iiz_‘”} be
J J

the Jacobians of [ f;] and [g;], Vj € {1,...,m}, then FG™' is
the next generation matrix, and its spectral radius o(FG™1)
is the basic reproduction number R of the system. z is
the initial condition where full susceptibility of population is

assumed (S(to) = 1). The effective reproduction number is
defined as R := S(t)Ro.

The 4" entry of FG~! is the expected number of
secondary cases in the i*" compartment produced by an
infected individual in the jth compartment [24]. In the
case of a single infected compartment, it is simply the
average number of secondary infected cases introduced by

one infected individual.

Proposition 1. The basic reproduction number Ry of (1)

is g and the effective reproduction number R, is upper

bounded by (1 — V(t))%

Proof. From (1b), f(I) = 8SI, g(I; = ~I. By computing
the Jacobians, we get F' = aﬁ‘sjdll(t" = BS(tp) and G =
9 — . Therefore, Ry = o(FG™!) = g since Ro is
defined for S(to) ~ 1. Further, R, = S(t)2 = (1 -V (t) —

R)2 < (1-V(H)2. m

Notice that we use the word uniqueness in the following
text not to refer to the uniqueness of the set of all equilibria
of (1) but of a particular class of equilibria, i.e. the DSF and
EEP are sets of cardinality at most one. As we will see in
the following, the EEP could be an empty set under certain
conditions.

Proposition 2 (Existence and uniqueness of the DFE).
There always exists a unique disease-free equilibrium

(8@ 1 R@ V() = (1-k,0,0,k).

Proof. By the definition of a disease-free equilibrium and
from (1b), we know the ;" DFE is characterized by I(%) =
0, and S(%) = J(4) = R(4) = V() = 0 Vj € R. Equa-
tion (1c) can be evaluated as 0 = (w +p (1 — #)) R(d3)
by substitution, which implies either:

Vi) — g (1 + w) or
p

3)

R42) = . 4)

In the first case (3), we can substitute V(1) into (1d) and
solve for S(?) + R(41) = (. By Assumption 1 and Lemma

1.2, S(@) = R(4) = 0 is the only solution to the equation.
Together with the presumptions V(%) = x (1 —|—% and

I(d) = 0, we realize that S(41) 4 [(d1) 4 R(d1) L y/(d) £ 7
which is not in the permissible domain of states by Assump-
tion 1 and Lemma IL.2. Therefore, DFE (d;) is not a feasible
equilibrium.

Now, by (4), we can substitute R(@2) = ( into (1a), then we
have 0 = p (1 — @) S5(d2) which leads to two subcases:

{ Sld21) — g o (4a)
V) = g, (4b)

In the first subcase (4a), since (%) = 0 by the def-
inition of the DFE and R(%1) = 0 by (4), we have
(§(d=1) J(d21)  R(d21) y/(d21)) — (0,0,0,1), which is true
when £ > 1 by recalling Lemma II.1 and that x = min{1, x}.
The second subcase (4b), combined with I (d22) — (), @),
and Lemma I1.2, gives (S(%22), [(d22) R(dz2) y7(d22)y — (1 —
k,0,0, k) which is true when x € (0,1]. DFE (do1) and
(da2) can be combined as (1 — k,0,0,k) to be applicable
to the whole range of x € (0,00). Since (1 — k,0,0,k) is
the only DFE satisfying Definition III.1 and (1), it is unique
under Assumption 1. Since (1 — k,0,0,x) is a valid state
under Assumption 1 for all admissible values of x, the DFE
always exists. W

Remark. Note that k ceases to act as an upper bound on
the vaccination state while still affecting the effective rate of
vaccination p (1 — %) when k is greater than 1. Moreover,

p( —%)—>paSK—>oo.

Proposition 3 (Uniqueness of EEP). The endemic equilib-
rium point of (1):

(5.1, ROV = (1 l—k—9/B 1-k—~/B H)
o ’ B 1+v/w 7 14w/y

is unique. Moreover,

1(® w
FChEs
Proof. If an endemic equilibrium exists, by Definition III.2,

I(©) > 0. Applying this fact and setting (1b) to zero gives
O % Therefore, the result from Lemma III.1, implies

V() = k. By substituting V(¢ = £ into (Ic), we will

have {%((z)) = £. To solve for I (©) and R(®), by the global
preservation of population result in Lemma II.2, we have
I £ R =1 -k — % We can combine this equation
with gg = %, then solving for the system of two equations

with two unknowns gives us the desired result. Therefore,
we have shown the uniqueness of the permissible EEP under
Assumption 1. H

Notice that since I* can either be 0 or (0, 1], the DFE and
the EEP are the only two possible admissible equilibria of
(1) under Assumption 1.

Lemma III.2 (Necessary and sufficient condition for exis-
tence of the EEP). The endemic equilibrium exists in (1) if
and only if kK <1 — %, which is equivalent to (1 — n)% > 1.
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Proof. From Assumption 1 and Lemma II.2, the EEP in
Proposition 3 exists if and only if the range of parameters
satisfy the four inequality:

0<%<1

1-rk—v/B
0< gEAf <1
O0< k<1

The first and forth constraints are absorbed by Assumption 1
and the second constraint. The second and third constraints
can be reduced to 0 < 1 — xk — /3, which is equivalent to
k<1l—~/B or (1—/<;)g>1. [ |

Fig. 2 illustrates the set of states S, which is a 3-
dimensional simplex with six vertices (S,I,R,D,F,G)
with coordinates (1,0,0,0), (0,1,0,0), (0,0,1,0), (1 —
k,1,0,k), (0,1 — k,0,k), and (0,0,1 — «, k), respectively.
The larger simplex is a tetrahedron because of Lemma II.2,
which states that S(¢t) + I(t) + R(t) + V(¢t) = 1 and
(S(t),I(t), R(t),V(t)) € [0,1]*. To see this clearly, consider
an SIR compartmental model with three states, (S,I, R).
If S+ 1+ R =1, then (5,1, R) lie only on the surface
of the unit circle defined by the 1-norm. Furthermore, if
(S,I,R) € [0,1]3, then (S, I, R) lies only on the surface
belonging to the first quadrant of the 3-dimensional space,
where S, I, R are non-negative. Notice that the surface is
an equilateral triangle with its three vertices S = (1,0,0),
I =(0,1,0), and R = (0,0, 1). Generalizing this notion to
the 4-dimensional case gives us Fig. 2.

Theorem 1 (DFE GAS Conditions). The DFE of (1) is glob-
ally asymptotically stable (GAS) if and only if (1 — n)g <L

Proof. Our goal is to show by exhaustion of cases that all the
states in S are either the DFE or will approach the DFE as
t — oo under the condition (1 — fe)g < 1. Fig. 2 visualizes
the simplex of states, i.e. the range of admissible states S,
of which we want to show GAS around the DFE.

Suppose (1 — m)g < 1. If S(t) + R(t) = 0, which is
equivalent to S(t) = R(t) = 0, then either (S(¢) = R(t) =
I(t) =0AV(t) = 1), which is a special case of DFE when
k>1,0r (S(t)=R(t)=0AI(t) >0). If (S(t) = R(t) =
0AI(t) > 0), then by (lc):

R(t) = ~I(t) > 0.

Hence, every admissible state in (1) which satisfies S(¢) +
R(t) = 0 will have R(t) > 0, hence evolving to another
state such that S(t) + R(t) # 0. In other words, states on
the IV edge in Fig. 2 are not stable and will move toward
vertex R as time unfolds. The only state on IV which violates
this tendency of evolving towards R is the vertex V, which
is already the DFE if it lies within S. For every state that
satisfies (S(t) + R(t) > 0A V(1) < k),

xdw:p(l_vsv(aw+3@»>o

$(1,0,0,0)

v (0,0,0,1)

E (:—?,.,.,x)

1(0,1,0,0) R(0,0,1,0)

Fig. 2: Admissible range of state values of (1) when EEP
exists. D is the DFE, and E is the EEP. The plane ABC
represents all states with S(t) = 7, and the plane DFG
represents all states with V' (¢) = x. The ratio between the
segments IEQI _ w

IPEN = -

by substituting S(t) + R(t) > 0 into (1d). Therefore, every
state with V(t) < k will satisfy V(¢) = k as t — oo or it is
already the DFE.

If (I(t) = R(t) = 0AV(t) = k), then S(t) = 1— &
by Assumption 1 and Lemma II.2, which state that S(¢) +
I(t)+R(t)+V(t) = 1Vt > tg, which is the DFE. Otherwise,
(V(t) = kAI(t)+R(t) > 0). Thus, by substituting V (¢) = k
into S(t) + I(t) + R(t) + V(t) = 1, we have

S(t) =1k —I(t) — R(t)

g%—uw—mu ©)
Y
< =, @)
B
where (6) holds because the condition (1 —K)g < 1 is equiv-
alent to 4 > 1— « and (7) holds because I(t) + R(t) > 0.

Therefore, from (1b) and (7), we have

i) = ﬁ%l(t) —~I(t)

where equality holds only if I(¢) > 0. Therefore, every state
which satisfies V(t) = x will satisfy (V(¢t) = k A I(t) = 0)
as t — oo or it is already the DFE.

Lastly, for any state that satisfies (V(¢) =
0 A R(t) > 0), from (Ic), we have

R(t) = —wR(t) < 0.

Thus, every state that satisfies (V (¢t) = k AI(t) = 0AR(t) >
0) will satisfy (V(t) = k AI(t) = 0A R(t) =0) as t —
oo or it is already the DFE. Therefore, the DFE is GAS if
(1— /ﬁ:)g <1.If (1- /{)% > 1, then there exists an EEP
in § by Lemma II1.2, which concludes the other direction of
the proof. W

kANI(t) =

Referring to the points in Fig. 2, (1 — n)% < 1 is achieved
when the plane ABD slides up or DF'G slides back, such
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Fig. 3: The impact of varying x on V(t).

that the segment P() vanishes. One can show that all states
above the ABC' plane have I > 1 and below I < 1. An
intuitive way to interpret Theorem 1 is that when ABC' is
strictly above DF'G, all states are pushed away from I and
pulled toward V, until they reach the DFE.

Remark. Notice that the necessary and sufficient GAS con-
dition of the disease-free equilibrium is not Ry < 1 for
the SIRS-V,, model because the basic reproduction number
only guarantees sufficient local asymptotic stability when it
is less than one. Therefore, it might at times over estimate
the threshold condition of the spreading process.

IV. SIMULATIONS

In this section, we investigate the impact of the vac-
cine confidence x on the behavior of the SIRS-V, model.
Fig. 3 compares the trajectories of the vaccination level
V(t) with different values of s, ranging from 0.1 to oco.
Note that, consistent with the analysis results, x slows the
rate of convergence and, if k < 1, can lower the limit
of V(t). Fig. 3 and Fig. 4 were plotted with initial con-
dition (S(to),I(to), R(to),V(to)) = (0.54,0.41,0.05,0).
Fig. 5 and Fig. 6 were plotted with initial condition
(S(to), I(to), R(to), V(o)) = (0.99,0.01,0,0), and the ini-
tial condition of Fig. 7 is (S(to),I(t0), R(t0),V(to)) =
(0.7,0.3,0,0). All plots use the parameter set: (5 = 1.6,y =
0.8,p=10.12,k = 0.8,w = 0.2) except for Fig. 3 and Fig. 4
we have used w = 3.

Fig. 4 illustrates how varying « affects the infection I(t).
Since 2 = 2 in this case, k = (0.5 barely satisfies the condi-
tion for GAS in Theorem 1 to reach the DFE as time goes to
infinity. We also notice that x slows the rate of convergence
of I(t) when comparing the cases x = (0.5,0.6,1.2, c0).

Fig. 5 compares I(t) and R(t) between the SIRS, SIRSV,
and SIRS-V, models, which are respectively the variants
of SIR, SIRV, and SIR-V,, models with waning immunity.
Notice that the key difference between the three models is
that SIRSV and SIRS-V,, has p > 0 while SIRS has p =0,
and SIRSV, has kK = 0.8 < oo while SIRSV assumes
K — o0. In this particular setup, both the SIRSV and SIRSV
models reach the DFE before ¢ = 40, while the SIRS model

o 50 100 150 200 250 300
Time it}

Fig. 4: The impact of varying « on I(t).
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Fig. 5: Comparing SIRS, SIRSYV, and SIRS-V,,.

settles at the EEP. Furthermore, we observe a higher infection
peak with slower peak time in the SIRS-Vk model.

To investigate how the vaccine confidence affects the max-
imum peak infection value and time, we plot the maximum
peak infection value and time versus « in Fig. 6. Note that
the maximum peak infection value decreases monotonically
with . On the other hand, the peak infection time reaches
its maximum when x = 0.2 before decaying, which is not
expected and requires further investigation.

Fig. 7 plots the earliest time when I(t) < 0.001 with
respect to different (1 — /{)% through varying «. We use the

Maximum Infection |

0.08

0.0 02 04 06 08 10
K

Fig. 6: Maximum Infection value and peak time versus k.
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condition I(¢) < 0.001 as a way to investigate the asymptotic
behavior of the system under different parameter settings. The
infected population fails to converge to below the threshold
I(t) < 0.001 before t = 100. The divergence of eradication
time at (1 — Ii)g ~ 1 aligns with our finding in Lemma IIL.2
and Theorem 1 that the DFE ceases to be GAS when (1 fn)g
is larger than 1. More investigation is required to firmly

conclude these findings analytically.

100

Eradication Time(t)

0.0 02 04 06 0.8 10
-k

Fig. 7: Eradication time(t) with respect to (1 — k)

2@

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an SIRS-V, model,
where k is the vaccine confidence level. We have proved
the existence of unique endemic and disease-free states,
both of which depend on k. Furthermore, s acts as an
important component in determining the necessary and suf-
ficient condition of the global asymptotic stability, namely
(1 - Kj)g < 1, of the disease-free equilibrium. From the
perspective of control, manipulating the transmission rate 3,
recovery rate <, and the vaccine confidence x are equally
viable ways of mitigating epidemic spread. From the disease
modeling perspective, we have shown through analytical and
numerical methods that ignoring vaccine confidence in the
model will introduce significant biases when determining the
system’s stability condition, maximum peak infection time,
and its threshold behaviors. The dependence of COVID-19
prevalence on vaccine hesitance should encourage Americans
to become vaccinated if they have not done so already.

For future work, we are interested in extending our findings
from the scalar case to the networked case to further inspect
the impact of varying vaccine confidence across different ge-
ographic/demographic populations. Moreover, we also would
like to provide analysis on the region of convergence of the
EEP and DFE when (1 — /@)g > 1, and the effect of vaccine
confidence on the maximum peaking time of I(t).
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