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1 Introduction

The heat-release rate (HRR) of a burning item is key to under-
standing the thermal effects of a fire on its surroundings [1]. HRR
is the rate of exothermic energy release from the fire and drives
the hazardous consequences of the fire. The HRR can be used in
conjunction with a numerical model to predict quantities of inter-
est such as the damage caused by the fire and the tenability condi-
tions in a building.

The HRR is usually measured with one of many calorimetry
methods. Bench scale calorimeters that take milligram size sam-
ples such as the bomb calorimeter, differential scanning calorime-
ter, and microscale combustion calorimeter are used to determine
the heat of combustion and/or heat of gasification of a material
which can then be used to calculate the HRR given a mass burning
rate [2-4]. At the bench scale for items weighing of the order of a
several grams, the oxygen consumption (cone) calorimeter is
commonly used to determine the HRR [5]. The cone calorimeter
relies on oxygen consumption measurement wherein all of the
products of combustion are collected and the HRR is calculated
based on the concentration of oxygen in the exhaust gases [6,7].
At the room scale, oxygen consumption calorimetry can be cost-
prohibitive for large volumetric flow rates as the gas collection
process requires a large hood, duct work, blower, and gas analysis
equipment. Measuring HRR under the well-ventilated conditions
of an oxygen consumption calorimeter does not necessarily reflect
the HRR for burning scenarios in compartments for which radia-
tive feedback and/or ventilation limits the burning rates. A typical
gram scale sample of polyurethane burns with a peak HRR of
about 200 W/g, and the oxygen consumption calorimeter fume
hood requires an air flow of 0.035 m?/s [8]. For a furniture item
like a sofa, the peak HRR could be as large as 3MW with a
required airflow of 3.5m?/s [9,10].

Several studies have sought to estimate the HRR of a fire in a
compartment without gas measurements by using inverse model-
ing techniques. Each of the following studies estimated the HRR
that best matched the observed data using a fire model to reduce
data. For these problems, a so-called “zone” model was used
which simplifies the description of a compartment in to a hot
upper zone and cooler lower zone with uniform temperature and
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properties. Richards et al. sought to determine the HRR and loca-
tion of a fire using temperature data from ceiling mounted sensors
to develop a system for automatic detection of growing fires
[11,12]. Neviackas assessed the size of a steady fire in a compart-
ment to aid firefighting operations using upper gas layer (UGL)
temperatures as the observed data source [13]. Price et al. contin-
ued the work of Neviackas by using gas temperature and smoke
layer height to predict the HRR of steady fires [14]. This work
succeeded in providing reasonable predictions with simple models
and sparse data but tended to overshoot the peak HRR. Using gas
temperature measurements to estimate the hot gas layer tempera-
ture, Overholt and Ezekoye employed a fire size correlation and
zone model in a predictor/corrector scheme to estimate the tran-
sient HRR of a fire in a compartment [15]. This method captured
the magnitude of the HRR but struggled with response time and
overshoot, even for steady cases.

In this work, we propose an inversion algorithm that utilizes the
transient heat flux (as opposed to temperature) from an array of
sensors and two distinct forward models to predict the transient
HRR of a fire in a burn chamber that is approximately the size of
a common residential compartment. We seek to build upon the
HRR inversion techniques found in the literature by providing the
framework for reconstructing HRR profiles that are comparable to
those from oxygen consumption calorimetry, while using heat
flux sensors and a higher fidelity forward model. We compare the
performance of a zone model and a coarsely resolved
computational-fluid-dynamics (CFD) model, when used as for-
ward models in the inversion scheme, both in accuracy of the
reconstructed HRR and computational cost. First, synthetic
observed heat flux data are generated from a CFD model, fire
dynamics simulator (FDS), for two HRR profiles with varying
peak HRRs to test the performance of the inversion framework.
Experimental data are collected from three sets of experiments
each containing three replicates with a different HRR profile for
each set. In the reminder of this paper, we will present the experi-
mental system, measurements and procedures, fire evolution mod-
els, and HRR inversion model which will be used on synthetic
and experimental data.

d'LOELS0 SO Z¥L /8005 1.59/L0ELS0/G/Z Y LAAPd-aonle/1ejsuejeay/Bio-awse  uolos|oojeybipawse;//:sdpy woly pepy

UBY0) BSEI P!

2 Experimental System, Conditions and
Measurements

2.1 Experimental System. The experimental structure is a
room measuring 5.7 x 4.6 m with a ceiling height of 2.17m. In
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this work, the two windows in the structure were always closed
while the door was always open. The door is located on the west
wall in the southwest corner and measures 0.91 m wide by 2.0m
tall. All interior walls and the ceiling were lined with 1.6 cm thick
gypsum board and the floor is constructed from 2.54 cm thick con-
crete pavers over a sand and wood support structure.

The fires in the experiments and models were produced by two
propane burners with horizontal dimensions of 0.32m by 0.32m
and a height of 0.4 m. Three HRR profiles were used in the experi-
ments, each with a duration of 5min: a 200kW steady HRR, a
400kW steady HRR, and a “triangular” HRR profile. The final
profile began at 40 kW, increased linearly to 400kW by 90s, and
decreased linearly to 40kW by 5min before being shut off. The
experimental HRR was estimated as the mass flowrate measured
by the flow controller multiplied by the heat of combustion of pro-
pane assuming complete combustion. The fire location was held
constant at 1.5 m from the north wall and 3.0 m from the west wall
to the center of the first burner. When the second burner was
added for the 400 kW tests, the first burner was not moved.

Heat flux and temperature measurements were taken during
each experiment with typical profiles for sensors located approxi-
mately 2m from a 200kW steady fire shown in Fig. 1. In this
figure, thermocouple 01 is located near the ceiling and the remain-
ing thermocouples are spaced evenly in the vertical direction
showing the transition from the hot upper gas layer to cooler
lower layer. For thermocouples closer to the fire and for larger
400 kW fires, peak temperatures were of the order of 400-500 °C.
The heat fluxes in Fig. 1 are taken from the front side of two direc-
tional flame thermometers (DFTs), where the front side refers to
the side facing down toward the fire. Typical peak heat fluxes
were less than 10kW/m?, with the exception of DFTs that saw
flame impingement where heat fluxes could reach 25 kW/m?. Pre-
vious work on this DFT configuration estimated experimental
uncertainties between 9% and 13% for the range of heat fluxes
observed in this experiment [16].

2.2 Heat Flux and Temperature Measurements. In the
experimental structure, heat flux data were collected with DFTs
constructed following the methods outlined by Kokel et al. [17].
DFTs are composed of ceramic fiber insulation sandwiched
between two square steel plates measuring 11.43cm wide by
0.1905 cm thick. This insulation was initially 2.54 cm thick and it
has been compressed to 2.22cm by four bolts and spacers. A
K-type thermocouple is fixed in the center of the plate between
the plate and insulation with a thin square of steel shim stock. The
net heat flux at each DFT is calculated by solving the 1D transient
heat conduction equation in the insulation and steel plates
approximating the plate temperatures as the thermocouple
temperatures.

250

Temperature (°C)

There are a total of 28 DFTs in the structure and they are
divided between wall and ceiling stands as shown in Fig. 2. There
are eight ceiling stands with a total of 16 horizontally mounted
DFTs forming an approximately 1 m grid on the ceiling. Each
stand contains four thermocouples spaced evenly along the sup-
porting vertical bar with the top thermocouple located at the ceil-
ing. The two wall stands each contain six vertically mounted
DFTs arranged in two rows of three DFTs at heights 0.96 and
1.9m with 0.45m between the DFTs on each row. One thermo-
couple is located above the center DFT on each row.

3 Fire Models and Data Reduction Modeling

3.1 Forward Models. This work employs two forward mod-
els to issue predictions for the transient heat flux data: consoli-
dated model of fire and smoke transport version 7 (CFAST) and
fire dynamics simulator version 6. CFAST is a two-zone fire
model primarily used for simulating the behavior of compartment
fires where the zones are a simplified representation of the hot
upper gas layer and cooler lower gas layer in a compartment. It
relies on a combination of physics and correlations to predict the
bulk mass and energy transport processes that occur in a compart-
ment or series of connected compartments (Fig. 3).

Fire dynamics simulator is a computational fluid dynamics code
that uses large eddy simulation models to numerically solve the
Navier—Stokes equations [18]. We employ FDS as a forward
model for the inversion scheme with a cell size of 20cm. FDS,
even in these coarse simulations predicts the flow field in the com-
partment whereas CFAST only models the flow at the compart-
ment openings and fire plume.

To determine the maximum acceptable grid size, a scaling
study would need to be conducted to find the smallest cell size
beyond which the solution does not change within an acceptable
tolerance. We choose a relatively coarse mesh to gain speed at the
expense of accuracy as the forward model is called of the order of
hundreds of times to reconstruct the HRR curve. In FDS at this
mesh resolution, 15 s of simulation time takes approximately 60 s
of wall clock time for a 1000kW fire, whereas CFAST requires
less than 2 s of wall clock time for 300 s of simulation time for the
same fire.

A finely resolved FDS model was used to generate the synthetic
data for which the inversion methodology was tested and refined
prior to being used on experimental data. To generate synthetic
observations of the heat flux at each sensor, FDS was run with a
mesh size of 5cm. In the synthetic data sets, virtual net heat flux
sensors were spaced at a 1.0m grid (excluding the windows)
along the west, north, and east walls and ceiling of the main com-
partment resulting in a total of 36 sensors. The virtual net heat

6 ,
— OLF
5p -- 02_F|[]
—_— 47
N
g 3r ""'l"\’ll h
; [ '\ e,
X 2L *
x
21
[T
w0
()
T _,l
—21
-3

0 100 200 300 400 500 600 700 800
Time (s)

(b)

Fig.1 Typical temperatures (a) and heat fluxes (b) for a 200 kW steady fire at sensors approximately 2 m from the fire

051301-2 / Vol. 142, MAY 2020

Transactions of the ASME

d'LOELGO GO ¢¥l /8005 1LS9/L0ELSGO/S/ZY L AApd-aonIe/18)suBL}jEay/Bi0 awsE  uola)|0o|e)BIpaLSE//:SdRy WoI) PapeojumoC

UBY0) BSEI P!

)Z0Z dUNp L0 UO Jasn upsny 3y sexa | Jo Aysienun Aq DwL-UsiiXdzzoiayLPIADg NIXI TrZXIUNSIVOAOBMbYSIMYAry-IX~ FIASAAY HMOLYYYYYAZIXOM-WAND:



(b)

Fig. 2 Layout of experimental sensor locations in the structure (a). Dots represent heat flux sensor locations where
an increase in darkness indicates a decrease in elevation. Picture of the experimental structure taken from the

door (b).

flux sensors were placed on the surfaces of the gypsum boards in
the simulated compartment.

3.2 Directional Flame Thermometer Modeling. To use the
DFTs in an inversion scheme for compartment fire cases, they
must be represented in the two forward models: CFAST and FDS.
The DFT itself also requires a model to invert for the net heat flux
from the temperature data collected at each plate. The net heat
flux at each DFT is calculated by solving the 1D transient heat
conduction equation in the insulation by approximating the plate
temperatures as the measured thermocouple temperatures and
inverting for the net heat flux at the outside face of each plate.
The DFTs constructed for these experiments followed the work of
Kokel et al. with a few revisions to the plate width and thickness
as well as the insulation thickness [17]. A full description of the
1D transient conduction code can be found in Kokel’s thesis [19]

3.2.1 Consolidated Model of Fire and Smoke Transport Direc-
tional Flame Thermometer Model. Consolidated model of fire and
smoke transport does not allow for sensors made of multiple mate-
rials to be included in the simulation or have temperature depend-
ent thermal properties, so the 1D transient conduction code was
coupled with the boundary conditions from surrogate sensors in
CFAST. The energy balance for the thermally lumped steel
plates is

dr
lppc'"E =g, — €T + h(Tig — T) — Qeond M

where [, p, ¢, o, €, and T are the thickness, density, specific heat,
absorptivity, emissivity, and temperature of the steel plate, respec-
tively. The incident radiant heat flux per unit area from the sur-
roundings and conduction to the insulation are ¢/ . and ¢l .
respectively, and Tj is the surrounding gas temperature. The final
parameters, & and o, are the heat transfer coefficient at the plate
and Stefan-Boltzmann constant. From the surrogate sensor in
CFAST we take the incident radiant heat flux, surrounding gas
temperature, and heat transfer coefficient to define the boundary
condition at the front side of each DFT. CFAST does not provide
back side conditions, so these are approximated to be purely
convective with the same heat transfer coefficient and gas
temperature.

These boundary conditions were applied in two ways in this
work: entirely from CFAST and as hybrid of CFAST, experi-
ments, and the Alpert correlation [20]. The hybrid method takes
the incident radiant heat flux from CFAST, the surrounding gas
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temperature from the nearest thermocouple in the experiments,
and the heat transfer coefficient from the Alpert correlation for a
given HRR.

3.2.2 Fire Dynamics Simulator Directional Flame Thermome-
ter Model. Fire dynamics simulator contains a 1D transient con-
duction solver with the ability to specify multiple layers of
materials with temperature dependent properties. A virtual DFT
was constructed in FDS by specifying material properties for the
steel plates and cerablanket with the thermal property versus tem-
perature tables from Kokel [19]. There are two notable differences
between the FDS DFT model and 1D transient conduction model
from Kokel: the steel plate is lumped in the Kokel model while in
FDS the plate is discretized within the FDS conduction model,
and the thermal properties in the Kokel model are calculated from
a curve fit to the table values while FDS interpolates properties
from the tables.

Preliminary comparisons between FDS with known HRRs and
experiments showed that FDS was consistently under-predicting
the net heat flux at the ceiling sensors by a factor of one half
(Fig. 4). The heat transfer coefficients at the ceiling DFTs ranged
from 7 to 15 W/m2/K which is indicative of natural convection
[21]. However, heat transfer at the ceiling is driven by the fire
plume impinging on the ceiling and spreading out into what is
called a ceiling jet. The well known Alpert ceiling jet correlation
predicts heat transfer coefficients ranging from 17 to 111 W/m*/K
for these same sensors for HRRs ranging from 200 to 400 kW
[20]. This correlation calculates the heat transfer to a ceiling as a
function of the fire size in compartment geometry. We also note

Upper Layer
T,
| =

E Vent
T, <« m,

Lower Layer

Fig. 3 A zone model approximates the gases in a compartment
as a hot upper layer at T, and cold lower layer at T, The fire (Q)
is modeled as a bulk energy flow in to the room. Mass flows ()
are modeled with simplified physics and correlations.
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Fig. 4 Measured (Exp.) versus predicted (FDS) heat flux at the front side of DFTs 01 and 02 for the 200 kW steady
fire using the default FDS heat transfer coefficient (a) and Alpert correlation heat transfer coefficient (b)

that this correlation was derived for unconfined ceilings where a
hot gas layer does not develop. When the heat transfer coefficient
predicted by the Alpert correlation as a function of HRR is applied
directly in FDS, the heat flux predictions improve as seen in
Fig. 4. However, the magnitude of the heat flux leaving the DFTs
after the fire has extinguish is over-predicted as the correlation
was not designed for a no-fire scenario.

The Alpert correlation will not work with the inversion
algorithm as FDS does not allow a user specified heat transfer
coefficient to vary as a function of heat release rate. Fortunately,
FDS allows the user to supply their own correlation for the
Nusselt number (Nu)

_hL

N
YT

(€5

where L is the convective length scale defined by the user (default
1 m) and £k is the thermal conductivity of the fluid. The Nusselt
number correlation in FDS follows the form:

Nu = C; + C,Re"Pr” 3)

were Cy, C», n, and m are correlation constants, Re is the Reynolds
number, and Pr is the Prandtl number. The default parameters are
from the correlation for turbulent flow over an isothermal flat
plate from Incropera and De-Witt [21]. The values for this correla-
tionare C; =0, C, = 0.037,n = 4/5,m = 1/3,and Pr = 0.7.

For this work, a correlation was derived with data from experi-
ments and simulations of the 200kW and 400kW steady HRR
fires to fit this form. The Prandtl number and exponent, m, are
assumed to be constant at 0.7 and 0.33, respectively. The constant
C, remains set to zero. The characteristic length scale of the
Reynolds number and Nusselt number was set to be the distance
from the fire in the horizontal plane. We fit log(C>) and n from
Eq. (3) using least squares regression by using a mixture of exper-
imental and FDS data to calculate the Reynolds and Nusselt
numbers.

To calculate the Reynolds and Nusselt number at each DFT, the
following properties must be evaluated: gas velocity, heat transfer
coefficient, film temperature, and the thermal conductivity, spe-
cific heat, density, and viscosity of the gas at the film temperature.
As the gas velocity was not measured, the velocity from the 20 cm
grid FDS simulations at the front side of the virtual DFTs was
used. This fit was designed around the 20 cm case to facilitate its
use as a forward model in future inversion algorithms. All thermal
properties are evaluated at the average film temperature that was
estimated from the experiments by using the DFT surface

051301-4 / Vol. 142, MAY 2020

temperature and the closest thermocouple to each DFT during the
second half of the test from 2.5 min after ignition to 30 s before
extinction (2 min total). Additionally, DFT 3 was left out of the fit
due to its proximity to the fire in relation to the location of the
closest thermocouple.

To calculate the experimental Nusselt number, we require an
estimate of the heat transfer coefficient at each DFT for both
HRRs. We approximate the convective heat flux at each DFT
(q7,.) by taking the net heat flux from the experiments and sub-
tracting the net radiative flux from FDS

"o 7
Qeonv ~ Qnel,exp - qradfds @

The heat transfer coefficient can then be estimated at each DFT as
follows:

1
qCOHV

h=—Tdeonv
Tgas - TDFT

(&)

The Nusselt number was calculated using the average heat transfer
coefficients from the 400 kW and 200 kW experiments. The values
for C and n from the least squares regression are 1.017 and 0.665,
respectively. The resulting Nusselt number fit is 67 times larger
than default correlation for the range of Reynolds numbers in this

T T T T T T

FDS 01_F
FDS 02_F ||
Exp 01_F
Exp 02_F

Heat Flux (kW/m?2)

0 100 200 300 400 500 600 700 800

Fig. 5 Measured (Exp.) versus predicted (FDS) heat flux at the
front side of DFTs 01 and 02 for the 200 kW steady fire using the
new Nusselt number correlation
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scenario. With the new fit, the same DFTs from Fig. 4 are shown
in Fig. 5. This fit shows good prediction of the heat fluxes during
the fire as well as after the fire has extinguished. This adaptability
will be beneficial when the model is used to invert for fires with
time-varying HRRs.

The estimated experimental Nusselt number fit was applied to
the FDS input files and run for the 5 cm and 20 cm grid resolutions
and the 200kW and 400 kW steady fires. The 12 error between the
simulation and experiment from 10s after ignition to 10s before
extinction for only the ceiling DFTs is summarized in Table 1. In
each case where both the default FDS and Nusselt number fit sim-
ulations were run, the error in the heat flux predictions decreased
by approximately a factor of two. These results indicate that it
will be feasible to use the 20 cm simulation as a forward model to
invert for HRRs between 200 kW and 400 kW.

While comparisons to experimental data showed good agree-
ment between the simulated FDS DFTs and the experiments at the
ceiling DFTs, FDS with a grid resolution of 20cm did not
adequately predict the experimental heat flux at the DFTs
mounted on the wall stand. It was found that the radiant heat flux
predicted by FDS at the midlevel wall DFTs closely followed the
net heat flux measured in the experiments indicating that the con-
vective heat flux was being predicted incorrectly. In this work, the
midlevel wall DFTs were brought into the cost function in
the form of experimental net heat flux and FDS radiant heat flux.
The implications of this choice will be explored in Sec. 4.

3.3 Data Processing Model. Two methods of postprocessing
the observed data were used in this work, a floating average
smoother and a median filter. The floating average smoother com-
putes the floating average within a specified window around the
current point. The median filter sorts the points within a specified
window and assigns the median to the current point which has the
advantage of preserving the effects of relatively quick transient
events such as the ignition of a fire while still smoothing turbulent
fluctuations like the floating average smoother.

Both the synthetic sensors in FDS and the experimental DFTs
were set to record data at a sampling rate of 1 Hz. The filter win-
dows were manually set to 9s and 61s for the floating average
smoother and median filter, respectively, in an attempt to preserve
the balance between detecting ignition events and smoothing out
turbulent fluctuations. The two data processing methods are
shown in Fig. 6 on data measured by a ceiling mounted DFT
located approximately 1 m from a fire with a steady HRR of
200 kW burning for 300s. The window smoother decreases the
slope of the heat flux measured at the ignition event and tracks the
measured heat flux during larger fluctuations while the median fil-
ter preserves the slope of the heat flux after ignition and tracks the
slowly decreasing trend of the measured heat flux. If the window
of the floating average was increased to be the same as the median
filter, the small fluctuations during the experiment would be
smoothed out but the sharp increase in heat flux after ignition
would not be preserved.

3.4 Inversion Algorithm. The inversion algorithm seeks to
find the HRR of a burning item at n equally spaced points in the
time-line of the experiment by sequentially minimizing a cost
function (C,) at each point. Brent’s method (as implemented in

Table 1 P error in the heat flux at all ceiling DFTs for the
default heat transfer coefficient and new fit

HRR Resolution (cm) Default FDS error C, n fit error
200 kW 20 417 169

5 368 193
400 kW 20 640 284

5 N/A 329

Journal of Heat Transfer

Scipy) is used to minimize the cost function composed of the
squared I error in the transient heat flux profile (d) at specified
points on or adjacent to the solid surfaces [22]. This method is an
improvement on the golden section search wherein the first three
iterations of Brent’s method are identical to a golden section
search. After the first three iterations, inverse parabolic interpola-
tion is used to propose the next iteration and the cost function is
evaluated at the proposed point if it is within the search bounds
and less than one half the distance of the second to last step.
Otherwise, the golden section search is used for the next point.
The second criteria is needed to prevent the parabolic steps from
oscillating around the minimum. In this particular inverse frame-
work, Brent’s method shaves 3—4 iterations off of the optimization
step when compared to the golden section search alone which
takes 15-16 iterations for each point in the reconstructed transient
HRR.
The cost function is specified as

N,
Cn - (1 - ﬁ)ZHdobs,w.,i - dpre,w,i”%
i=1
Ne
+BZ||dobs,c,j - dpr&(\j”% (6)
j=1

where N,, and N, are the number of wall and ceiling sensors,
respectively. The heat flux data (d) are divided between sensors
located on or adjacent to the walls and ceiling, subscripts w and c,
respectively, and between observed and predicted values denoted
by subscripts obs and pre where the observed data are either the
synthetic or experimental data and the predicted data are from
the forward models. The hyper-parameter f3 is used to weight the
influence of the ceiling and wall sensors where ff can be set
between zero and one such that a value approaching one weights
the ceiling sensors higher in the cost function (Eq. (6)).

‘The inversion algorithm begins at time n = 0 where the HRR
(Q) is set to zero kW. Brent’s method is used to optimize for the
HRR at time n + 1 by iteratively calculating a new point (Q,,, ),
running the forward model, and evaluating the cost function. The
total simulation/experimental time is discretized in to 7., points
where the HRR will be reconstructed.

The following convergence criterion as implemented in the
optimization toolbox in Scipy version 0.19.0 is checked after each
cost function evaluation [23]:
(a+b) (b—a)
2

'Q”f 'grfo.s )
where Q/ is the most recent proposal for Qn 11> @ and b are the
moving lower and upper bounds, respectively, of the search
bracket, and 7 is given by

1=2(210| + 0,0/3) ®)

In this case, the stopping tolerance, Qtol, is set to 1 kW and € is set
to 2.2 x 107'° [23]. Once the convergence criterion is met, the
algorithm saves the best HRR and proceeds to the next point in
time keeping all previous HRR values fixed. This process is
repeated until the full HRR has been reconstructed up to the time-
Step 1 = Neng.

4 Results and Discussion

The inverse reconstructions are judged on three error categories
when compared to the true HRR: the & error, the mean absolute
error, and the mean /' error as a percentage of the peak HRR. This
section details the results of the inverse HRR reconstruction algo-
rithm on synthetic and experimental transient heat flux data using
both CFAST and FDS as the forward model in the algorithm. We
limit the exploration of the inversion algorithm to two HRR
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profiles: a steady fire and a triangular fire. The steady HRR profile
begins at 0kW and increases to the specified HRR within 1s of
ignition and burns with a duration of 300s. The triangular HRR
fire is a simplified approximation of a real fuel such as a chair or
bag of combustible material parameterized by a peak HRR, time
to peak HRR, and total burning duration. The triangular fire
begins and ends at a fixed value, increases linearly to the peak
HRR at the specified time to peak, and then decreases linearly to
the ending HRR at the total burning time.

The HRR solution was reconstructed with CFAST as the for-
ward model with a reconstruction interval of 15s for slowly
changing HRRs (the triangle HRR) and 5s for HRRs with
relatively fast changes (approximately greater than 100kW per
second) to minimize overshoot in the solution. However, it was
found that using FDS as the forward model produced an oscilla-
tory solution at reconstruction intervals of 15s and 5s. This issue
was mostly alleviated by fixing the reconstruction interval at 5s
and running the simulation 4 s beyond the end of the reconstruc-
tion interval. The HRR was projected during the extra 4 s based
on the slope of the HRR curve from the previous reconstruction
time-step following Eq. (9). Additional data were generated for
At,, — 1 seconds so as not to generate a new “restart” file in FDS
which occurs every At,, seconds

SN Q Qn

0" =0+ = = (M= 1) ©)

The projected HRR (Q”) is a function of the proposed HRR at
time n + 1 (Q ), the HRR saved at the last reconstruction time
(Q,), and the reconstruction interval (At,). While including the
projected net heat flux data in the cost function increased the com-
putational time required to complete the inversion algorithm, the
final reconstructed solution is greatly improved by the projection
method.

4.1 Synthetic Data. Synthetic net heat flux data were gener-
ated by FDS with a 5 cm grid for two triangular HRR profiles with
peak HRRs of 200kW and 1000 kW. Each triangular fire began
and ended at 0 kW with a time to peak HRR of 90 s and total burn-
ing time of 300s. In these synthetic examples, the data from all
ceiling and wall mounted sensors were used in computing the cost
function with a weighting of f§ following Eq. (6), and the optimal
p was found via a grid search with a resolution of 0.05 by mini-
mizing the /> error between the reconstructed HRR and “true”
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synthetic HRR. A summary of these errors for the best values of f§
can be found in Table 2.

The window smoother was used for processing the synthetic
data before inverting with both CFAST and FDS as forward mod-
els. Figure 7 shows the inversion results for a 200kW triangular
fire using CFAST and FDS with 15 and 5's reconstruction inter-
vals, respectively. The CFAST solution is stable and tracks the
synthetic observed HRR up until about 180 s after which it begins
to over-predict the HRR. A f value of 0.75 was found to yield the
CFAST solution with the lowest /* error of 38.4kW. The inverse
FDS reconstruction over-predicts the HRR in the growth E)erlod
but tracks the synthetic HRR better after the peak with an [/~ error
of 108.4kW.

In the case of the 1000 kW triangular fire, CFAST significantly
over-predicts the HRR above approximately 500 kW (Fig. 8). This
is a result of the plume temperature correlation used by CFAST
having an upper limit of AT = 900 K, where this is the tempera-
ture difference between the temperature at the point where the
plume impinges on the ceiling and the ambient temperature. At
about 60's of simulation time, the plume temperature reaches this
threshold which in turn propagates to the ceiling jet temperature
through the Alpert correlation which drives the convective heat
transfer to the ceiling sensors. As the ceiling jet temperature is
effectively constant at HRRs above approximately S00kW, the
only hope for the inversion algorithm to increase heat transfer to
the ceiling is via radiation from the upper gas layer and surfaces
of the compartment. Therefore the HRR that minimizes the cost
function becomes increasingly higher than the true synthetic HRR
that generated the data.

Fire dynamics simulator performs better than CFAST on the
1000kW triangular HRR fire with an optimal f value of 0.15
(Fig. 8(b)). Similar to the 200 kW triangular HRR case, the inver-
sion algorithm with FDS over-predicts during most of the growth
period, however it under-predicts the HRR during the decay
period. FDS was expected to perform better than CFAST as a
more finely resolved FDS simulation was used to generate the
synthetic data, but the performance of CFAST in the 200kW tri-
angular HRR case was surprising.

The results of using the inverse HRR reconstruction algorithm
on synthetic data represent a lower limit on the potential error of
the current algorithm when used on experimental data. The per-
formance of the inversion algorithm can be compared across dif-
ferent fire scenarios by taking the mean absolute error as a
percentage of the mean HRR. Based on Table 2, we aspire to
reach a mean absolute error on experimental data of 6.61% and
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Fig. 6 Example DFT heat flux profile from 200 kW steady fire experiment before and after smoothing with the win-

dow smoother (a) and median filter (b)
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Table 2 Errors in the HRR reconstructions of synthetic triangular fires for the best values of

Peak HRR Forward model p P2 error (kW) Mean absolute error (KW) Percent of mean HRR (%)
200 kW CFAST 0.75 38.4 6.61 6.61
FDS 0.2 108 9.54 9.54
1000 kW CFAST 0.5 957 159 31.8
FDS 0.15 331 35.4 7.08
350 350
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Fig. 7 Inversion for a 200 kW triangular fire on synthetic data using CFAST (a) and FDS (b)

9.54% of the peak HRR using CFAST and FDS, respectively, for
HRRs of the order of 200kW. We expect CFAST will not work
for peak HRRs of 500kW and larger, while using FDS as the for-
ward model can potentially produce results with errors as low as
7.08% of the mean HRR.

4.2 Experimental Directional Flame Thermometer Data.
The inverse HRR reconstruction algorithm was tested on net heat
flux data gathered by DFTs from three sets of experiments: a
200kW steady HRR, a 400kW steady HRR, and a triangular fire
with a starting and ending HRR of 40kW and a peak HRR of
400kW at 90 s (each test burned for a duration of 300 s). Initially,
only data from the ceiling DFTs were used (f=1.0) with
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Consolidated model of fire and smoke transport and FDS, as sig-
nificant effort was put in to understanding the heat transfer at the
ceiling. The midlevel wall stand DFTs were only brought in to the
cost function with FDS as the forward model as CFAST did not
adequately predict the heat flux at these DFTs.

The median filter was used on the experimental data as its use
results in smoother HRR reconstructions with CFAST as the for-
ward model. Using the median filter versus the window smoother
has little effect on FDS HRR reconstructions as the projection to
future time steps effectively stabilizes the resulting HRR profile.
The CFAST inversion process takes around 30 min of wall clock
time on a single processor core for most of the fires in this study.
Inverse HRR reconstruction with FDS generally requires 40 the
computational time of CFAST. However, FDS is parallelizable
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Inversion for a 1000 kW triangular fire on synthetic data using CFAST (a) and FDS (b)
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Fig. 9 Inversion for a 400 kW steady fire on experimental data using only ceiling DFTs with CFAST providing all DFT
boundary inputs (a) and the hybrid approach where CFAST provides radiation only (b)

and each simulation has been setup to use four cores resulting in
approximately 300min of wall clock time per inverse FDS
reconstruction.

4.2.1 Consolidated Model of Fire and Smoke Transport
Inversion. Using only the ceiling DFTs, CFAST over-predicts
consistently in both the 200kW and 400kW steady fire cases
(with the 400kW case shown in Fig. 9(a)). The driving mecha-
nism behind this trend is the over-prediction of the gas tempera-
ture near the DFT while the heat transfer coefficient is greatly
under-predicted resulting in CFAST under-predicting the net heat
flux at most of the ceiling sensors.

Modifying the DFT boundary conditions to include the experi-
mentally measured gas temperatures and the heat transfer coeffi-
cient from the Alpert correlation as detailed in Sec. 3.2.1 results
in a reconstruction that under-predicts the experimental HRR
(Fig. 9(b)). Again, the same trend was observed in both the
200kW and 400kW steady fire cases. Based on the results of
Sec. 3.2.1, the inversion algorithm was not able to recover from
CFAST over and under-predicting the net heat flux at different
sensors during the first 2 min of the fire. The errors for CFAST on
steady HRR experiments are reported in Table 3, and the mean
absolute error as a percentage of the mean HRR is around 20%
which is significantly worse than the synthetic data cases.

4.2.2 Fire Dynamics Simulator Inversion. Investigation of the
performance of FDS as the forward model began with only includ-
ing the ceiling DFTs in the cost function. Figure 10 shows the
inverse reconstruction on the 200kW and 400kW steady HRR
fires with only the ceiling DFTs (i.e., f = 1.0). The reconstructed
HRR is within 25% of the experimental values for most of the
duration of the fire, however the reconstructed HRR initially
under-predicts the experimental HRR and increases over time by

around 100kW in each case. The result is an over-prediction of
the experimental HRR in the 200 kW steady fire case for the final
150's of the experiment while the 400 kW steady solution appears
to fluctuate around the experimental HRR in the final 150s.

Based on investigation of the heat flux at the wall DFTs, the net
heat fluxes at these DFTs are not predicted correctly by FDS at a
20 cm grid resolution. It was determined that the incorrect predic-
tions were the result of incorrect convective heat transfer at the
walls, and when the components of the net heat flux are broken
down as in Fig. 11 it can be seen that the radiative component of
the net heat flux from FDS provides a good approximation to the
net experimental heat flux. We also note that height of the hot
UGL is under-predicted in the 20cm FDS simulations such that
the midlevel DFTs are predicted to be in the UGL when they are
below the UGL in the experiment, resulting in over-prediction of
the convective heat flux.

The six midlevel wall DFTs were included in the cost function
and a value of f that minimized the /* error was found with a par-
tial grid search that had a resolution of 0.05 for the 200 kW and
400kW steady HRR fires as well as the 400 kW triangular HRR
fire. In each case, there is a significant valley in the /* error near
the best f values which are either 0.05 or 0.1. We note that as
there are 16 ceiling DFTs and 6 wall DFTs included in the cost
function, and equal weighting corresponds to a f value of 0.25.

The /> and mean absolute errors are reported in Table 4 at the
best f# value for each experimental HRR profile as these values
will be referenced in the proceeding discussion. The mean abso-
lute error as a percentage of the mean HRR will be used for com-
paring the errors of fires with different profiles and maximum
HRRs. When using the inversion code for calorimetry of an item
with an unknown HRR, this method of finding f# will not be appli-
cable. However, as will be shown in the triangle fire case, the
value of f§ for an unsteady fire falls within the range of values for

Table 3 Errors in the HRR reconstructions of experimental fires with CFAST and = 1.0

Peak HRR Boundary condition P error (kW) Mean absolute error (kW) Percent of mean HRR (%)
200 kW steady CFAST 532 67.6 33.8
Hybrid 452 53.9 27.0
400 kW steady CFAST 562 69.0 17.3
Hybrid 906 101 25.3
400kW triangular CFAST 445 51.9 23.6
Hybrid 960 112 50.9
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the net heat flux from FDS versus the net experimental heat flux
measured by the midlevel DFTs on stand | for the 400 kW steady
fire

steady fires of similar HRR magnitude. This suggests that a range
of steady calibration cases can be run to determine a f} versus
HRR curve that can be used for calorimetry of an unknown HRR.

The best FDS solution for the 200 kW steady fire (f = 0.1) still
increases over time but to a lesser extent as when only the ceiling
DFTs were used in the cost function (Fig. 12). The mean absolute
error for this reconstruction is 13.3kW or 6.65% of the mean
experimental HRR which is a great improvement over inverting
with CFAST and is of the order of the low error limit established
by the synthetic inversion.

The inverse algorithm reconstructed the 400 kW steady experi-
mental HRR with a similar level of accuracy to the 200 kW case
(6.6% of the mean experimental HRR) as seen in Fig. 13. We note
that there is a bias toward over-prediction at the 200 kW HRR and

under-prediction at the 400 kW HRR. Yeager conducted a study
on the uncertainty in HRR measurements using room-scale oxy-
gen consumption calorimetry and methane with a known flowrate
[24]. Four test fires were run that burned at steady HRRs for 3 min
intervals and a sampling rate of one sample every 5s, the same
rate as the inverse reconstruction in this work. Two of Yeager’s
tests contained intervals of steady burning at 400kW for 3 min
separated by 3 min intervals of steady burning at approximately
57kW. Three of the measured HRR profiles compared to the
expected HRR from the supplied methane flowrate are presented
in Fig. 13.

The mean absolute errors as a percentage of the peak HRR are
6.2%, 7.0%, and 10.2% for test 2 part A, test 2 part B, and test 3
part A, respectively. These errors are comparable to the 6.6%
error in the 400kW steady HRR reconstructed solution using
FDS. The main difference between the inverse reconstructions
and room-scale oxygen consumption calorimetry is the response
time. Yeager reports a response time of 30s to reach 95% of the
target HRR while the inverse reconstruction reaches 400 kW
within 10s after ignition. After the reconstructed and calorimetry
HRR profiles reach 400kW, both solutions fluctuate *=50kW
from the true solution. This indicates that the inverse HRR recon-
struction framework could be a viable alternative to the more
expensive room-scale oxygen consumption calorimetry.

For the 400 kW triangular fire, the FDS reconstruction under-
predicts the experimental HRR the greatest during initial 50 s, but
otherwise tracks the experimental HRR closely as seen in Fig. 14
with under-prediction occurring to a lesser extent during the
remainder of the fire. The mean absolute error is 14.1kW or
6.41% of the mean experimental HRR and the best f is the same
as the 400kW steady HRR case at 0.05. Additionally, we note
that the 400 kW triangle fire data were not used in the calibration
of the Nusselt number fit for the ceiling DFTs. This indicates flex-
ibility of the correlation to be applied to transient HRR profiles
within the range of calibrated steady profiles (i.e., 200—400kW in
this case). Future use of this methodology could entail a series of
steady calibration experiments with known HRRs over the range

Table 4 Errors in the HRR reconstructions of experimental fires with FDS

Peak HRR Best f§ 12 error (kW) Mean absolute error (kW) Percent of mean HRR (%)
200kW steady 0.10 126 13.3 6.65
400kW steady 0.05 296 26.4 6.60
400kW triangular 0.05 150 14.1 6.41
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Fig. 12 Inversion for a 200 kW steady fire on experimental data
using FDS with = 0.1

of interest where both the Nusselt number and f§ versus HRR func-
tions could be calibrated before testing items of interest.

The mean absolute error as a percentage of the mean HRR is on
the same order as the best error achieved when inverting on syn-
thetic data. We note that the synthetic data source is net heat flux
on gypsum wall and ceiling panels while DFTs were used in the
experiments. The steel plates of the DFTs respond faster to
changes in the thermal environment than gypsum as the thermal
diffusivity of steel is approximately 2.5x that of gypsum. The
increased sensitivity of the DFTs to changes in gas temperature
and incident radiation might yield improved accuracy over using
gypsum as a heat flux sensor. The bias in the inverse reconstruc-
tions with FDS might be further alleviated by expanding the HRR
range of the experiments used to generate the heat transfer coeffi-
cient at the ceiling and including a larger number of midlevel wall
DFTs in the experiments.

5 Conclusions

An algorithm was built that inverted for the HRR of burning
items in a compartment with the option of using two forward
models, and the limits of employing each model in the inversion
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Fig. 14 Inversion for a 400 kW triangular fire on experimental
data using FDS with = 0.05

framework were explored. The models were initially tested on
synthetic net heat flux data before moving to experimental net
heat flux data measured by DFTs.

Generally, using FDS as the forward model resulted in a lower
error at the expense of 40x the computational cost of inversion
with CFAST. The only case where a lower error in the recon-
structed HRR was achieved using CFAST was for a triangular fire
with a peak HRR of 200kW and synthetically generated data. A
joint inversion model that switches between prediction with
CFAST and FDS based on the HRR should be explored. Not sur-
prisingly, the inversion process is less accurate when there are
errors in the forward models, necessitating a calibration process
for the space spanning the cases of interest. The Nusselt number
correlation at the ceiling in FDS was calibrated to alleviate under-
prediction of the heat transfer coefficient by the default model.
Inverse problems typically require the specification of some set of
hyper-parameters. In this case, the primary hyper-parameter
investigated was the relative weighting of the heat flux data from
the wall and ceiling sensors (f3) in the cost function.

Comparison to room-scale oxygen consumption calorimetry
data for a 400kW steady fire showed that errors in the inverse
reconstructed solution were on the same order as the calorimetry
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Fig. 13 Inversion for a 400 kW steady fire on experimental data using FDS with g = 0.05 (a) and room-scale oxygen
consumption HRR measurements for a 400 kW steady fire from Yeager (b)
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errors. These results indicate that with continued improvement to
the characterization of the room and DFTs, the inverse HRR algo-
rithm can produce comparable results to the oxygen consumption
calorimeter. Inversion with FDS using data from a 400 kW triangu-
lar fire resulted in a mean absolute error of 3.53% of the peak HRR
which is on the same order as the lowest error achieved by the
inverse reconstruction framework on synthetic data. We note that
the best value of f§ for the triangle case was the same as the steady
case with the same HRR magnitude (400kW), and the triangle fire
data were not used in constructing the Nusselt number correlation.
Future applications of this inversion framework will focus on more
complex fires (e.g., burning liquid pools and real fuels) by leverag-
ing steady calibration fires to construct the Nusselt number correla-
tion and f§ versus HRR function for a range of HRRs.
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Nomenclature

¢ = ceiling
¢, = specific heat
CFAST = consolidated model of fire and smoke transport
DFT = directional flame thermometer
FDS = fire dynamics simulator
HRR = heat-release rate
k = thermal conductivity
L = convective length scale
L, = plate thickness
N, = number of ceiling sensors
N,, = number of wall sensors
Nu = Nusselt number
obs = observed value
pre = predicted value
Pr = Prandtl number
= heat-release rate
Re = Reynolds number
T = temperature
= wall
o = absorptivity
[ = sensor weighting parameter
At = reconstruction interval
€ = emissivity
p = density
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