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A Modified Directional Flame
Thermometer: Development,
Calibration, and Uncertainty

Quantification

The directional flame thermometer (DFT) is a robust device used to measure heat fluxes
in harsh environments such as fire scenarios but is large when compared to other stand-
ard heat flux measurement devices. To better understand the uncertainties associated
with heat flux measurements in these environments, a Bayesian framework is utilized to
propagate uncertainties of both known and unknown parameters describing the thermal
model of a modified, smaller DFT. Construction of the modified DFT is described
along with a derivation of the thermal model used to predict the incident heat flux to its
sensing surface. Parameters of the model are calibrated to data collected using a
Schmidt—Boelter (SB) gauge with an accuracy of 3% at incident heat fluxes of 5 kWim?,
10 kW/m? ,and 15 kWin®. Markov Chain Monte Carlo simulations were used to obtain
posterior distributions for the free parameters of the thermal model as well as the model-
ing uncertainty. The parameter calibration process produced values for the free parame-
ters that were similar to those presented in the literature with relative uncertainties at
5kWin?, 10 kWin?, and 15 kWim? of 17%, 9%, and 7%, respectively. The derived model
produced root-mean-squared errors between the prediction and SB gauge output of 0.37,
0.77, and 1.13 KWin? for the 5, 10, and 15 KWin? cases, respectively, compared to 0.53,
1.12, and 1.66 kWim? for the energy storage method (ESM) described in ASTM E3057.

[DOI: 10.1115/1.4046657]

1 Introduction

Measuring the heat flux is often important to the experimental-
ist seeking to characterize thermal-physical systems. To the fire
scientist, doing so accurately is a difficult task because most sen-
sors either do not take into account all the relevant physical effects
or are not robust enough to withstand the severe environments of
compartment fires. There are commercially available sensors that
can be used to measure heat fluxes such as Gardon and
Schmidt-Boelter (SB) gauges. These sensors require liquid cool-
ing that can cause condensation on the sensor surface, are gener-
ally calibrated with radiative heat transfer thus creating large
errors when other modes of heat transfer are important, are gener-
ally quite expensive, and also not suitable to the environments a
fire scientist is interested in where high heat fluxes or soot deposi-
tion can either damage or foul the sensor.

Development of robust heat flux sensors for the fire environ-
ment has been a long sought after goal with early mentions of
such devices being developed in the United Kingdom [1]. Sandia
National Laboratories (SNL) has also developed a ruggedized
heat flux gauge (HFG) consisting of an insulation packed, hollow
cylinder with sensing plates at either ends. Blanchet et al. describe
the construction, modeling considerations, and develop an uncer-
tainty model given a step response to the sensor [2]. The model
that is developed for the device uses finite difference methods to
determine the temperature distributions within the sensing plates
and insulation, and it is compared against measurements taken
with a Gardon gauge. They note that the uncertainty can be a
function of many components including the flux level, rate of
change of flux level, time, and heating history. Victor Figueroa
and cowokers also conduct an uncertainty analysis for the same
device, using an inverse heat transfer code [3]. They report
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uncertainties of between 15% and 19% at high heat fluxes noting
that the model is most sensitive to uncertainties in temperature
histories, plate thicknesses, and the volumetric heat capacity of
the sensing plates.

Blanchat and Hanks contrast multiple heat flux gauges (Gardon,
Schmidt-Boelter, directional flame thermometer (DFT), and a
high temperature heat flux sensor) exposed to a stair step exposure
using a six-panel cylindrical array of high-temperature tungsten
lamps [4]. They note overall good agreement between the sensors
for flux conditions ranging between 100 kW/m? and 1000 kW/m?.
Bryant et al. present the uncertainty analysis of an SB gauge
exposed to a radiative flux noting uncertainties as low as 6% for
fluxes near flashover conditions [5]. Lam and Weckman expose
four heat flux sensors (Gardon, SB, DFT, and HFG) to differing
radiative and convective conditions using the heating element
from an ASTM E1354 cone calorimeter and the hot flow from a
heat gun [6]. They note comparable performance of the DFT to
the SB and Gardon gauges to within 12% with the highest differ-
ences occurring during forced convective conditions.

Nakos performs an analysis of heat fluxes measured from a
hydrocarbon fuel fire using three heat flux measurement techni-
ques reporting large uncertainties in the measurements due to the
mixed heat transfer mechanisms taking place [7]. Erikson et al.
use finite difference methods and computational fluid dynamics to
analyze uncertainties in a typical DFT and HFG with a heat source
provided by aluminized solid propellant [8]. They note high
uncertainties when using a compuational fluid dynamics code to
model the heat transfer to the sensors.

ASTM E3057, Standard Test Method for Measuring Heat Flux
Using Directional Flame Thermometers with Advanced Data
Analysis Techniques has recently been introduced outlining the
construction and data analysis of a typical DFT, reiterating much
of the uncertainty results presented above [9]. Accurately quanti-
fying the uncertainty for DFTs is a difficult task that is heavily
dependent on the experimental conditions and modeling assump-
tions for the heat transfer coefficient. Propagation of uncertainty is
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an important aspect when the sensor measurements are used to
inform fire models.

In the literature presented, standard statistical methods are used
to propagate uncertainties of known parameters through the mod-
els describing the DFT. They also generally rely on reported val-
ues for the physical parameters to make approximations to the
heat fluxes measured. Because the models are rigidly defined, it is
not possible for DFT measurements to approach the predictive
power of the more accurate gauges. The typical DFT also only
provides an approximation to the local incident heat flux. Because
of its size, the DFT measures a spatially averaged heat flux over
its surface, increasing the uncertainty in the measurement.

In this work, we describe the construction of a smaller DFT,
and derive a thermal model similar to those presented in Blanchet
et al. and the energy storage method (ESM) presented in ASTM
E3057 [2,9]. We allow some parameters within the model to vary
and calibrate these parameters to measurements made using an SB
gauge in a controlled environment to improve the predictive
power of the model. Recently, there has been a resurgence in
Bayesian methods for uncertainty quantification due to the
increase in computational power that makes performing Markov
chain Monte Carlo (MCMC) simulations tractable. We use this
Bayesian framework to quantify the uncertainty of the SB gauge
as well as to propagate uncertainties of known and unknown
parameters through the model.

2 The Modified Directional Flame Thermometer

The typical DFT is constructed using two oxidized Inconel or
stainless steel plates each instrumented with thermocouples. The
plates sandwich, usually compressing slightly, ceramic fiber insu-
lation at a known, fixed distance using stainless steel fasteners and
spacers.

Our first attempts to modify the DFT consisted merely of reduc-
ing the size approximately 40% from the usual 120.65 mm
x 120.65mm (475 in.x4.75 in.) square plates to
76.2mm x 76.2mm (3.0 in. X 3.0 in.), leaving the spacers and fas-
teners the same as a typical DFT. It was noticed, however, that
conduction losses from the top plate through the bolts were
greater than anticipated necessitating the use of smaller fasteners
and low conductivity spacers. The resultant DFT is thus con-
structed of 76.2mm X 76.2mm X 1.6 mm thick (3.0 in.x 3.0
in. X 0.0625 in. thick), instrumented and coated stainless steel
plates, sandwiching ceramic fiber insulation, and held together
with 19 mm (0.75 in.) tall rigid ceramic fiber spacers and stainless
steel fasteners. The emissivity of the coating used varied less than
5% between room temperature and 600 K when tested using a
FLIR E40 IR camera [10].

3 Forward Model

It is relatively easy to calibrate and obtain measurements from
heat flux gauges such as the Gardon gauge and SB gauge whose
voltage response is linear with incident heat flux. Directional
flame thermometers, while robust and simple in construction,
require a much more in-depth analysis of the recorded data. This
is a result of attempting to infer the heat flux to the device given
the time—temperature history of the two metal plates using a
thermo-physical model. Section 3.1 describes derivation of this
model in detail.

3.1 Thermo-Physical Model. When the DFT is placed with
one of its two metal plates facing a heat source, that plate will
increase in temperature and heat transfer through the device will
ensue. Analysis of this heat transfer process is what allows one to
determine the incident heat flux to the device. The analysis is fun-
damentally determined by the models used for heat transfer to the
device, heat transfer within the device, and the thermo-physical
parameters of these models.
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Fig.1 Energy balance on a typical DFT

3.1.1 Heat Transfer Mechanisms. Figure 1 shows a typical
DFT and its corresponding control volume exposed to some inci-
dent heat flux as well as the associated losses from the DFT.
Applying an energy balance with no energy generation to the con-
trol volume, we obtain for the total rate of energy stored per unit
area within the system?

gsttot = Ginc,r — qrefl — qcmit,f - qconvf — {emith — Gconv,b (1)

where ¢y, is the incident radiative heat flux on the front plate,
Greq 18 the component of the incident heat flux that is reflected
from the front plate of the DFT, gemity and Gemir, are the emitted
heat fluxes by the front and back plates of the DFT as it increases
in temperature and exchanges energy with its surroundings. The
convective losses (natural or forced) from the front and back
plates to the surrounding fluid are denoted by Gconv,s and geony.s-
respectively. The reflected heat flux, g..q can be written as

refl = (1 - O()qinc,r 2)

where o is the absorptivity of the plate surface.

Simple models are employed for the radiative and convective
heat transfer mechanisms from the front and back surfaces of the
DFT. The emitted fluxes are thus

Gemity = e0(T} = Th);  Gemivs = ¢0(Ty —Thy)  (3)
where Ty, T, and Ty, are the front plate temperature, back plate
temperature, and temperature of the surroundings far from the
DFT, respectively. The emissivity of the plates are denoted by &
and ¢ is the Stefan—Boltzmann constant. Similarly, the convective
losses from the front and back surfaces of the DFT are modeled
using Newton’s law of cooling

Gconv,f = hf(Tf - Too)7 qconv.h = hh(Tb - Toc) (4)
with Ty, Tj, and T, being the front plate temperature, back plate
temperature, and temperature of the fluid far from the DFT,
respectively. The heat transfer coefficients for the front and back
plates are A and A, respectively, and for natural convection are
parameterized by

:Nu'kair; Nu = C - Ra"; Ra:MT"C)Lgh
L Vair Lair

h

(&)

Combining Egs. (2)—(4) with Eq. (1), and solving for the inci-
dent heat flux assuming « = ¢ as is done in ASTM E3057 [9], one
obtains

’Here we have chosen to drop the conventional use of the double prime to
indicate a flux value.
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Giner = (@stror/€) + U(Tﬁ - T?ur) + O'(Tﬁ - Tjur) (6)

+hy/e(Tr — Too) + hp/e(Tp — Tao)

ASTM E3057 describes a number of methods with which to

model the energy stored gy o [9]. We will be utilizing and cali-

brating our own heat transfer model and later compare the results
to the ESM described in ASTM E3057.

3.1.2  One-Dimensional Conduction. For the model presented
here, the rate of total energy per unit area stored within the DFT is
the sum of the rate of energy stored in the front plate, g, the
back plate, gy, and the insulation, g ins

gsttot = gstf + gstb + Gstins 7

With an effective radiative heat transfer coefficient of the order
10 W/m? K (h, = &(T + Traa)(T? + T?,)) typical of environments
where a DFT would be deployed, a characteristic plate thickness
of order 10~ m and representative thermal conductivity of order
10 W/m K, the Biot number can be shown to be much less than
one. The energy storage terms for the front and back plates assum-
ing they are thermally lumped are then

dTy dT,

) st.h = )slsi 8
dt ) q.l.,h psC[‘ dt ( )

qstf = Pst,slx
where p; and ¢, are the density and specific heat of the plates,
respectively. The rate of energy stored per unit area in the front
and back plates of the DFT can be solved for given the
time—temperature history for each plate.
The one-dimensional (1D), transient heat conduction equation
with constant thermal conductivity is used to solve the tempera-
ture distribution within the insulation

0 Tins 62 Tins

o T

©

where o, is the thermal diffusivity of the insulation. The bound-
ary conditions for the insulation are T(x =0,7) =T; and
T(x = L,t) = Tp, and the initial condition is T(x, = 0) = T.

With the spatial-temporal temperature distribution within the
insulation calculated, the energy flows into and out of the insula-
tion are solved for using Fourier’s law of conduction

dTins dTins
{in ins = _kins—“_15 5 Youtjins = _kinsi (10)
dx x=0 dx x=L

Applying energy conservation to only the insulation one can
obtain the rate of energy stored per unit area as the energy flowing
into the insulation minus that leaving it

stins = {in,ins — Gout,ins (11)

3.1.3  Energy Storage Method. The ESM described in ASTM
E3057 aims to solve a simplified form of the energy equation
derived in Sec. 3.1.2. The net heat flux is claimed to be the energy
stored in the front plate of the DFT, the energy stored in the insu-
lation, and the energy lost through the insulation to the back plate

dT Ty - T,
Gnetesm = (psCP»SlS %) + <kin5 fLinS b)

dTin&,esm
dt

(12)

-+ pinscp,insLins

The first term on the right-hand-side of Eq. (12) is the energy
stored within the front plate with Tpgr = T;. The second term cor-
responds to the energy conducted through the insulation. The last
term approximates the energy stored within the insulation with
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Tins.csm ~ (T,» + Tp)/2. The steel density, specific heat, and thick-
ness are p,, Cp, and I, respectively. The insulation density, spe-
cific heat, and thickness are pins, Cpins,» and Liys, respectively.
Given the time—temperature history of the front and back plates,
Eq. (12) is readily solved for.

3.2 Thermo-Physical Properties. It is necessary to define
thermo-physical parameters to bring closure to the models pre-
sented in Secs. 3.1.2 and 3.1.3. Many of the properties are easily
measured such as the plate and insulation thicknesses, and others
yet are commonly available in the literature (i.e., thermal conduc-
tivity, density, etc.). For calibration purposes, however, it is
required that some subset of the parameters that define the model
be free to vary. We choose to vary parameters that are both uncer-
tain and that which the model is sensitive to. To perform this anal-
ysis, the first-order sensitivity coefficients of the model are
estimated. The total variance of heat flux measurement associated
with the model parameters assuming only first-order interactions
where each W, is estimated as a first-order Taylor-series expansion
is

J 2
aqincr >
w=>"Ww; W= ( ’ 50, (13)
- J J 8®j J

where © = {¢, kins, pCps,ls,L,C,n}. The first-order sensitivity
coefficients are then

S =2 (14)

Table 1 shows the partial derivatives of the 1D conduction
model in relation to components of the model, the variance for
calculating the sensitivity coefficients [1], and the average sensi-
tivity coefficient for a typical response evaluated at nominal
parameter values. Perturbation was used to approximate the deriv-
atives of parameters whose partial derivatives were analytically
intractable.

A correlation for the volumetric heat capacity p,c,, of the
plates was derived from data taken from Frank et al. [11]. Simi-
larly, correlations were developed for the volumetric heat capacity
and the thermal conductivity of the insulation with data taken
from Keltner et al. [12], presented in Table 2. The plate thick-
nesses and insulation thickness were measured, and the standard
deviation was estimated. Conservative estimates were imposed on

Table 1 Model parameter sensitivity coefficients

OQinc,r B
8G)j (38/ S i
incr - & 10% 0.659

(1078 = —¢ Z[qnel + QConv] ¢
8qinc,/' _ L [ . ] kins . 25% 0.062
akins - kinsg Gst,ins
aqinc.r o 1 [C[ ] PsCpst * 5% 0.104
- st.
Opgcjz,sf EPCp st W
Oine, 1 lges] PsCpsp - 3% 0.008
- St
8p.ycp‘sh SP.\-Cp.sb ’
ine,r _ 1 ls - 5% 0.117
ol = J [%t,/‘ + qst,h]
s s
8qinc,r ~ net (L) — et (L + (3L) L- 5% 0.001
oL~ oL
ine,r _ 1 C-10% 0.050
9C = E [qconv]
Oine,r 1 N n-10% 0.000
on - {IRaf Gconv f {IRab Gconv,b
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Table 2 Curve fits to various thermo-physical properties

Property

Equation

Steel volumetric

Heat capacity (J/m* K)
Ceramic fiber volumetric
Heat capacity (J/m® K)
Ceramic fiber thermal
Conductivity (W/m K)

PyCps = 5.54 x 10797 — 2.67 x 107°T* +4.98 x 107273 ...
—44.7T% +2.04 x 10T +5.13 x 10°
PinsCpins = —9.58 x 1078T% +3.31 x 10773 — 4.39 x 107'72. ..
+3.21 x 10*T + 8.15 x 10*
kins = 7.36 x 1077775 —3.02 x 107137%4.87 x 1071973 . ..
—235x 1077T? +1.43 x 107*T +3.11 x 1073

the uncertainty of C and n with nominal values taken as 0.54 and
0.25, respectively [11].

Of the model parameters presented in Table 1, it makes the
most physical sense to allow ¢, C, and/or n to vary as calibration
parameters. The sensitivity analysis showed that the model is
most sensitive to the emissivity, ¢ and correlation constant, C of
the three parameters. We therefore use these parameters as candi-
dates for the parameter calibration process. Section 4 outlines the
experimental procedure used to calibrate the model with these
parameters.

4 Experimental Setup

The DFTs were calibrated against a Schmidt—Boelter gauge
that is accurate to within £3% of the reading as specified by the
manufacturer provided calibration certificate. The radiant element
in an ASTM E1354 cone calorimeter was used to produce the nec-
essary incident heat flux on both the SB gauge and the DFT [13].
A temporary fixture was installed on the side of the cone calorim-
eter to hold the DFT beneath the heating element. The stand that
is normally used to measure the mass loss of specimens being
tested to ASTM E1354 was temporarily removed to minimize the
effects of reflected radiative heat transfer from surrounding
objects. Figure 2 shows the DFT beneath the heating element.

Nakos and Engerer show that adjusting the sampling time of
the DFT such that the Fourier number is greater than 0.5 will
reduce the likelihood of noise being introduced into the data when
using the ESM [1]. This threshold was used to determine a data
sampling period of 0.5s for all tests. To test the SB gauge it was
placed with its top surface 25 mm from the bottom of the heating
element. Tests were completed at three incident heat fluxes: 5 kW/
m?, 10kW/m?, and 15 kW/m?. For each set-point the heating ele-
ment was allowed to stabilize for a minimum of 15 min. Each test
with the SB gauge consisted of 1 min of pretest data with the SB
gauge unexposed to the heating element, 5min exposed to the

Fig. 2 DFT being tested using an ASTM E1354 cone calorime-
ter heating element
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incident heat flux, and another minute unexposed to the heat flux.
Three tests were completed at each of the set points with data
taken using a Graphtec GL840 midi logger sampled at a period of
0.5s.

Data recorded for the DFTs followed a similar procedure to that
of the SB gauge. A total of 20 DFTs were tested at the same three
incident heat fluxes: SkW/m”, 10kW/m’, and 15kW/m’. The SB
gauge was used to determine the set point of the heating element
and was allowed to stabilize for 15min after which it was
removed to allow testing of the DFTs. The temperature data col-
lected for each DFT followed the same procedure as above: 1 min
of pretest, 5min exposed to the incident heat flux, and 1 min of
post-test sampled at a period of 0.5 s with a Graphtec GL840 midi
logger.

With the calibration and DFT data, the thermo-physical model
could be calibrated. Section 5 introduces the statistical framework
used to process the data and to calibrate the parameters of interest
for the model.

5 Statistical Framework

There are a number of ways to analyze observed data and cali-
brate models. Quantifying the uncertainty between model predic-
tions and the observed data is also an important part of the
calibration process. This is especially true for models that are
intended to measure the environmental conditions that will further
inform more complicated models.

Recently there has been a shift from orthodox, frequentist sta-
tistical methods to utilizing a Bayesian framework for inference
and parameter calibration. The Bayesian framework is derived
from a set of axioms, the Cox axioms, that consist of a simple set
of consistency rules [14].

We choose to use this Bayesian framework to analyze the sta-
tistical models outlined in Secs. 5.1 and 5.2 to quantify the uncer-
tainty in the calibration standard, calibrate the parameters of
the model, and subsequently to quantify the total uncertainty of
the calibration process. This framework most accurately repre-
sents the uncertainty in our parameters of interest; providing the
best estimate for distributions on our parameters of interest (poste-
rior probabilities) given our observations (likelihood) and prior
information (prior probabilities). Bayes’ rule can be summarized
as

P(0|D) = P(0)

15s)

where the posterior, P(0|D) is the informed or “updated” distribu-
tion of the prior, P(0), given observations, P(D|0). The term in
the denominator is known as the marginal likelihood, P(D) and is
usually ignored since it is required that the posterior probability
be a proper probability distribution whose integral is unity across
its support.

To close Eq. (15) prior distribution for P(0) needs to be defined.
This closure problem is a common one in Bayesian statistics with
attempts made to create a completely objective way to perform
inference. Here we choose to use Berger’s method of objective
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Bayes whose roots extend from efforts by Laplace, Jeffreys, and
Jaynes [15-18]. This involves using proper priors where applica-
ble and using conjugate improper, uninformative priors where we
lack information to make the math tractable. Throughout, we use
conventions described in Joint Committee for Guides in Metrol-
ogy (JCGM) 100:2008 Evaluation of measurement data—Guide
to the expression of uncertainty in measurement to describe ran-
dom uncertainty as type A, and calibration uncertainties as type B
[19].

The Bayesian framework is first used to quantify the uncer-
tainty associated with the SB gauge measurements that will
inform the model. Subsequently, the framework is used to consoli-
date the temperature data into a generative model that also has the
consequence of smoothing fluctuations in the temperature data.
Further, the framework is utilized to obtain posterior distributions
for the quantities of interest, C and ¢, as well as to quantify the
uncertainty in the DFT measurements.

Throughout, index i refers to a single data point from a test set
containing / = 840 total data points (7 min of data sampled at a
period of 0.55s). Index / refers to a particular test campaign: 5, 10,
15kW/m? with a total of L = 3 campaigns. Index k refers to a
particular replicate within a test campaign. For the SB gauge tests
K = 3. For the DFT tests K = 20.

5.1 Data Reduction. Section 5.1.1 outlines the statistical
framework used to summarize the data sets for the SB gauge and
the DFTs. Simple Gaussian error models are used and MCMC
techniques are used to obtain the relevant posterior distributions
for parameters where applicable.

5.1.1 Schmidt—Boelter Gauge. It is assumed that any one data
point, ¢'°") is independent and identically distributed for the SB

gauge. Given this, the statistical model is

(inc,r) _(inc,r)

aw =ay"" +e e~N(0,03,,) (16)
This suggests that for any replicate k, the true value is generated

by some unknown heat flux qg;nc,l') plus mean zero Gaussian noise
with variance 0'2b 4~ The dataset across replicates for a single test

campaign can be denoted by D = {ql}','“7 ..,qf}?f"‘)} where

K =3 for the SB gauge data. With these data, the likelihood is

inc,r) 2
( il |q Gsb,A)

K/2
_ 1 / exp | — 1 XK:< (inc,/‘) _ 7(inC,l‘)>2 (17)
—ZﬂﬁfbﬁA P 2a§b4A - ikt qii

Bayes’ rule is used to find the posterior for q,(}“”)

likelihood

given the

PGy |Dy, 0% ) o< P(@)" " \P(Dalg " 0% ) (18)

where the marginal likelihood, P(D;;) is ignored. The conjugate
improper, uninformative prior (Jeffrey’s prior) for a location

parameter is P(71"") o 1. The resulting posterior distribution

P(q<mC "|Dit, 03, 4) is Gaussian

K H -
mcr |Dir, 0® ~ N <qul(;;c,r)7 Gfb,A) (19)

k=1

This distribution states that at any time point i for campaign / the
heat flux can be estimated as the arithmetic mean of the heat flux
measurements taken across the K = 3 replicates.

Given the statistical model in Eq. (16), inference for the scaling
parameter, ofb_ 4 Tequires the use of all the data across all replicates
and campaigns. The resulting likelihood takes the form of
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(D‘ mcr7 gb‘A>
IKL/2
— (5 / exp|— 1 Z( (ine,r) _ _(inc,r))Z (20)
27-w'fb.A p 20-52'b,A ikl qdi

ikl

where the triple product/sum is left implicit for brevity. Bayes’
rule for the scaling parameter takes the form

P03 alD.4"") o P(63, )POy" " 0% )  @D)
The Jeffrey’s prior for a scaling parameter takes the form
P(03,4) o 1/0}, 4 resulting in the inverse-Gamma posterior dis-
tribution for a7, , given the data

(inc,r IKL 1 inc,r _(inc,r 2
NN ') ~1G 3 (qz(kl ) - qu ' >) (22)
ikl

A Gibb’s sampler as described in many modern statistics texts
is used to reconstruct the conditional posterior distributions given
by Egs. (19) and (22) [20]. The resultant estimator for the scaling
parameter is the mean of this distribution, presented here as the
standard deviation: og 4 = 0.12 kW/m>. This result, however
does not take into account type B (calibration) uncertainty. It has
been shown that the total effect including this uncertainty for the
heat flux measurement is [21]

2 _ 2 2
Gsb,lm - asb,A + GsbA,B (23)

where o, g is the type B uncertainty. We use oy, 5 = =3% of the
measured value as stated by the manufacturer for this uncertainty.

5.1.2 Directional Flame Thermometer Temperatures. We
seek to smooth the noisy temperature measurements generated by
the data acquisition process when calibrating the 1D conduction
model. Simply using the mean of the temperature samples will
underestimate the true noise and therefore uncertainty present in
the system. However, experience with the data acquisition system
shows that periodically unrealistic jumps in the gradients of the
temperatures taken will occur. Parametric, such as polynomial
curve fitting and nonparametric regression such as Gaussian Pro-
cess regression to the temperatures measured can have negative
effects on the temporal gradients (a bias-variance tradeoff),
greatly exaggerating the time response of the DFT [22]. As an
alternative, a generative statistical model is developed that is
informed by the data taken.

Let T}, be a vector of temperature measurements from either the
front or back surface of the DFT with length / from campaign /. It is
assumed that the data generating process takes the following form:

T]d = T] + e e~ ]WV]V(O7 21) (24)

where T is some unknown mean temperature for campaign / pro-
ducing the observed data. Because the temperatures within a sin-
gle measurement, 7,;, are highly correlated, the error term e, is
assumed to be a mean zero multivariate normal distribution in R’
with covariance X,. While temperatures within a single dataset are
assumed to be highly correlated, temperatures across data sets are
assumed to be independent and identically distributed. Letting
D; = {Ty,...,Tg}, the likelihood for a single campaign for the
front or back temperatures on the DFT becomes

1 K/2
P(DI|T;, %)) = <m)

K
xexp[ S (T =T Ty —T))| (25)
k:
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where K=20 for the DFT experimental runs for a single
campaign.

The joint posterior distribution for inferring 7; and X, given the
likelihood in Eq. (25) by Bayes’ rule is defined as

P(T1,21|D[) 0.8 P(T;,Z/)P(D{‘T],Z[) (26)

where again the marginal likelihood, D, is dropped. Sun and
Berger summarize the objective Bayesian methodology as applied
to multivariate normal distributions [23]. We choose to use the
Geisser and Cornfield improper, uninformative conjugate prior
because it is frequentist matching for all means and variances [24]

P(T,%) x |Z] 27

The posterior distribution for the mean, temperature, and the
covariance for a given campaign then take the forms of a multi-
variate normal distribution and an inverse-Wishart distribution

_ 1 &
/Dy, %) ~ MVN (K;m,z,) (28)
— K — — T
D, T~ W+ K2 (Ty = T)(Tu — T (29)
k=1

where a Gibbs sampler was used to sample from the inverse-
Wishart posterior. Figure 3 shows temperature measurements for
the front and back plates of the DFTs at 5 kW/mz, 10 kW/m2 and
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15kW/m? in the left hand column for the 20 DFTs, and samples
from the multivariate normal distributions parameterized by Eq.
(28) in the right column. Solid lines and dashed lines represent the
mean front and back plate temperatures for a test campaign,
respectively.

Qualitatively, samples from the multivariate normal distribu-
tions appear to capture the temperature evolution well. Figure
3(d) also shows tempering of the temperature fluctuations as eval-
uated using the model while preserving average fluctuation ampli-
tude. These sampled temperatures are what will be used to
calibrate the model using the Bayesian approach outlined in
Sec. 5.2.2.

5.2 Parameter Calibration. Calibration of the thermo-
physical model begins with finding the maximum likelihood
estimate for our parameters of interest, § where § = {C, &}. This
estimate is then used to inform the starting location for MCMC
chains used to reconstruct the full probability distribution for of
the parameters.

5.2.1 Maximum Likelihood. As before, we begin by defining
the statistical model that generates the observed heat fluxes

_(inc,r) 2(inc,r)

G =4y g eq~N(0,0ppr4) (30)

where ngnc‘r) is the mean heat flux measured by the SB gauge at

some time index, i for campaign /. The heat flux predicted by the

1D conduction model using the mean front and back temperatures,

T, and T;;, and with the parameters of interest, 0 is ésnc’r). The

400

350

(°C)
N w
g 8

—— Sampled MVN Temperat
—— Mean Front Temperature
== Mean Back Temperature

N
o
]

Temperature
S a
o o

|

o

0 100 200 300 400
Time (s)
(b)

20.0

175

15.0
&
E 125
z
x 10.0 —— Sampled Heat Flux
§ = Mean Heat Flux
T 75
s
3 50
T

25

0.0

-25

0 100 200 300 400
Time (s)
(d)

Fig. 3 Measured temperatures from 20 DFTs subjected to 15 kW/m? (a). Sampled temperatures from multivariate nor-
mal distributions given by Eq. (28) for 15 kW/m? (b). The solid and dashed lines represent the sample means for each
case for the front and back temperatures, respectively. The gray lines indicate individual test runs for the 20 DFTs or
samples from the multivariate normal distributions. (¢) and (d) show the measured and sampled temperatures evaluated
using the 1D conduction model. Gray lines represent 20 individual measured or sampled temperatures evaluated using
the model. Solid black lines represent the mean temperatures evaluated using the model.
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resultant likelihood for the set of / independent observations for L
testing campaigns is then

2
P(D|0, UDFT.A)

1 L2 1 E (inc,r) ~(inc,r) 2
_ exp | — <qilnc,) _ q,' b )
210Ber A 20D : :

il
(€2Y)

The maximum likelihood estimator for the parameters of interest
is then defined as

0 = argmax{P(D|0, 6351 )} (32)
0eR? ’

The maximum likelihood estimators for C and & cannot be found
analytically because of the nature of the 1D conduction model.
Instead, the parameters are found using Nelder—-Mead optimiza-
tion via the SciPy optimization function in the programming lan-
guage Python [25].

5.2.2 Bayesian Parameter Calibration. The statistical model
used for the Bayesian case is similar to that presented for the max-
imum likelihood estimate, Eq. (30). The important difference is
that temperatures sampled from the multivariate normal distribu-
tion, Eq. (28), is used as model predictors instead of just the mean
temperatures

g (inc,r) _ (inc,r)

il =Gy t+eg eg~N(O, 0_2DFF4,A) (33)

where c}f,i{‘;c"') is the predicted heat flux for front and back tempera-
tures, T s, T given the parameters of interest 0. The modeling
error term is represented by ‘721)171, 4~ The full likelihood is then rep-

resented by

P(D\o, o%FT,A)

1 IKL/2 . 5
_ _(inc,r) A (inc,r)
= (znG%FT.A) €xXp {_ p Z (‘Iﬂ — 4 ) }

2 IZDFTA ikl
(34)
where the triple product/sum has been omitted for brevity. The

conditional distribution for our parameters of interest given
Bayes’ rule is then

P(0ID, oy ) o P(0)P(DI0, 0y ) (35)
The conditional distribution for the modeling uncertainty term is
P(JZDFT,A D, 0) o P(UZDFT,A )P (D0, G%)FT,A) (36)

An informative prior distribution was defined for the emissivity
of the DFTs using measurements taken using the FLIR E40 IR
camera [10]. A mean and standard deviation for the emissivity
were measured to be 0.95 and 0.01, respectively. These values
were moment matched to the parameters defining a Beta distribu-
tion whose support is ¢ € [0, 1]

o 2
Table 3 Posterior means for C, ¢, and g1 4

Parameter Posterior mean 95% HPD region
C 0.650 0.642-0.659
€ 0.938 0.936-0.941
G'%FT‘A (kW/m?) 0.995 0.983-1.007
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u= (12“—1)u2; ﬁ:a(i—l) 37
2 u u

A vague uniform prior was used for C and a vague half normal
prior was used for the modeling uncertainty term

¢ ~ Beta(450.3,23.7) (33)
C~U(0,1) (39)
her.a ~ HalfNorm(0, 100) (40)

Again, given the nature of the 1D conduction model, an analyti-
cal, closed form for the posterior distributions cannot be defined.
A metropolis random walk, MCMC algorithm was implemented
using PyMC3 to sample posterior distributions given the priors in
Eq. (38) and the likelihood in Eq. (34). The chains for C and ¢
were instantiated at their maximum likelihood estimate, C and &.
The other chains were instantiated at their respective means. Tun-
ing of variance in the proposal distributions was carried out such
that the acceptance ratio approaches between 0.234 and 0.45 [26].
An optimal acceptance ratio of 0.45 pertains to one-dimensional
problems with the optimal acceptance ratio asymptotically
approaching 0.234 for higher dimensional problems. Tuning sam-
ples were discarded and the subsequent samples were used to
inform the posterior distributions. Results of the calibration pro-
cess are presented in Sec. 6.

6 Results

6.1 Parameter Calibration. The maximum likelihood esti-
mators for C and ¢ found using Nelder-Mead had values of 0.63
and 0.93, respectively. A summary of the statistics for the poste-
rior distributions and traces for the priors outlined in Eq. (38) are
presented in Table 3.

The maximum likelihood estimate and posterior mean for C
agree well with each other, but a typical value of C of 0.54 can be
found in Frank et al. for natural convection on the surface of a hot
plate [11].

Model predictions at the maximum likelihood estimators, and
posterior means for the Bayesian parameter calibration are shown
in Fig. 4(a) using mean temperatures along with the SB gauge
response at 15kW/m? (the 5kW/m? and 10kW/m? results have
been omitted for brevity). The results of the calibration process
show good agreement for both the maximum likelihood estimator
and the posterior means.

An estimate for the total uncertainty given the uncertainty from
the SB gauge and the modeling uncertainty is given by

2 _ 2 2
ODFT ot = ODFT.A T Tsbjot (41)

where a;‘_’bm is from Eq. (23) and represents the total uncertainty
from the SB gauge. Figure 4(b) shows model predictions given
the posterior means along with the 95% Bayesian credible region.
The uncertainty presented is dominated by the modeling uncer-
tainty term which accounts for about 82% of the total uncertainty
at an incident heat flux of 15kW/m? 16.8% of the total uncer-
tainty is attributed to the type B uncertainty reported by the manu-
facturer for the SB gauge, and the remainder is attributed by the
type A uncertainty of the SB gauge. This translates to about a 7%
uncertainty on the measurement for the DFT at an incident heat
flux of 15kW/m?. Note that because the influence of the calibra-
tion uncertainty reported by the manufacturer diminishes at lower
heat fluxes, the overall uncertainty becomes more and more domi-
nated by the modeling uncertainty term. At 5kW/m? the uncer-
tainty on the measurement for the DFT is about 20%. The total
uncertainty as a function of incident heat flux can be summarized
by

MARCH 2020, Vol. 5 / 011003-7

0202 dunf 10 UO Jasn unsny 1y sexa Jo Aysieaun Aq Jpd €001 L0~ L0~ GO0 bNAAFZZ0ZS9/E001 LO/L/G/APA-O[01E/UONEOIBA/BIO"BWSE UOND8||00|e)BIPaWISE//:SA)Y WO} PapEOjUMOQ



20.0 20.0
17.5 17.5
15.0 T 15.0
& &
E 125 E 125
S S
< 10.0 ——- SBGauge < 10.0 ——- SB Gauge
» - MLE » ~—— 95% Credible Interval
= —— McMC = — mcMC
i 75 i 75
S 50 3 50
I I
25 25
o) \
0.0 eyt \ 0.0
-25 -25
0 100 200 300 400 0 100 200 300 400
Time (s) Time (s)

(a) (b)

Fig. 4 Predictions of heat fluxes from the calibrated models at 15 kW/m?2. The dashed lines, the solid black, and the
solid gray lines represent the mean heat flux measured by the SB gauge, the model predictions using the MLE, and the
mean model prediction using MCMC, respectively (a). In (b) the dashed lines represent the heat fluxes measured using
the SB gauge, the solid black line represents the predicted fluxes from the mean of the posterior values, and the gray
lines represent the 95% Bayesian credible interval.
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Fig. 5 Comparison of the temperatures (a) and predicted heat fluxes (b) between the typical, legacy DFT, the modified
DFT with legacy fasteners, and the modified DFT with new fasteners, at 5 kW/m?. The black lines represent the front tem-
peratures and gray lines represent the back temperatures in (a). The solid lines are for the legacy DFT, the
dashed—dotted lines represent the modified DFT with legacy fasteners, and the dashed lines represent the modified
DFT with new fasteners. The dashed line in (b) represents the SB gauge measured flux and the black, dark gray, and
light gray lines represent the predicted flux at 5 kW/m? for the legacy and modified DFTs, respectively, using the 1D con-

duction model.

ODFT ot = \/ (0.12)* + (0.03 - gine)” + (0.995)°  (42)

A comparison of the modified DFT with legacy fasteners, the
modified DFT with smaller fasteners, and the legacy (i.e., typical)
DFT evaluated using the 1D conduction model is shown in Fig. 5
at 5kW/m?. As was stated earlier, use of the legacy fasteners with
the smaller DFT plates resulted in significant conduction losses
through the fasteners as can be seen by the lower temperature of
the front plate in Fig. 5(a) (the dashed-dot red line). The result is a
significant under-prediction of the heat flux at later times illus-
trated by the dark gray line in Fig. 5(b). The temperatures and pre-
dictions of the modified DFT with smaller fasteners show good
agreement with the typical DFT adding weight to the design con-
siderations for the modified DFT.

6.2 Model Components. Components of the predicted inci-
dent heat flux evaluated at the posterior means given by Eq. (6) are
shown in Fig. 6 along with the SB gauge response at 15 kW/m?. The
figure shows the total incident heat flux, ginc ., the broken down
energy components stored in the DFT, as well as the radiation and
convective components; graq/€ and geony /€, respectively.

011003-8 / Vol. 5, MARCH 2020

6.3 Model Comparison. The 1D conduction model evaluated
at the posterior means is compared to the ESM and it performs
better than the ESM model for the three cases tested with the 15
kW/m? case presented in Fig. 7. The root-mean-squared error for
the model predictions is shown in Table 4 and is defined as
RMSE, = \/((1/1) S (G — Gy)?) where G, is the prediction
with either the 1D conduction model or the ESM and g; is SB
gauge measurement.

The RMSE for the 1D conduction model is 70% smaller than
the RMSE for the ESM for all three cases presented. The ESM

performs poorly because of the approximations made to the
energy storage and the conduction in the insulation material (see

Eq. (12)).

7 Conclusions

This work has shown the implementation of a modified DFT as
well as the introduction of a new thermal model for predicting the
incident heat flux to the device. Calibration of the DFT in a con-
trolled environment using the radiant element from an ASTM
E1354 cone calorimeter with measurements made by an SB gauge
as the ground truth was also presented.
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Fig. 6 Components of the heat transfer mechanisms given the
calibrated model at 15 kW/m?. The dashed black line represents
measurements from the SB gauge, the solid black line repre-
sents the total incident radiation, gincr, the solid dark gray line
represents the energy stored in the front plate, g, the solid
light gray line represents the energy stored in the back plate,
gst b, the dash-dotted black line represents the energy stored in
the insulation, gsins, the dash-dotted dark gray line represents
the radiative losses, gemit, and the dash-dotted light gray line
represents the convective losses, gconv-
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Fig. 7 A comparison of the 1D conduction model versus the
ESM model at 15 kW/m2. The dashed lines represent measure-
ments from the SB gauge, the black line represents predicted
heat fluxes from the 1D conduction model, and the gray line
represents predicted heat fluxes using the ESM.

A Bayesian statistical framework was used throughout to infer
parameters of interest and quantify uncertainties. Uncertainty
quantification of the SB Gauge showed that type A uncertainties
of 0.12kW/m?* would dominate at lower heat fluxes, whereas, the
type B uncertainty of =3% of the measured value begins to domi-
nate the uncertainty in heat flux measurements at higher incident
heat fluxes. A methodology was introduced to smooth noise gen-
erated during the acquisition of DFT temperatures in the data col-
lection process by approximating the data generation process by
multivariate normal distributions with parameters inferred from
the data.

The maximum likelihood estimate and Bayesian parameter cali-
bration framework were presented for calibrating C and ¢ of the
1D conduction model. The maximum likelihood estimator and the
Bayesian parameter calibration framework over-predicted C by
18% compared to values in the literature. The Bayesian parameter
calibration Erocess also estimated the modeling error to be
0.995kW/m~. The relative error, which is a combination of the
SB gauge type A uncertainty, the SB gauge type B uncertainty,
and the modeling error, was about 20% at an incident heat flux of
5 kW/m2 and 7% at an incident heat flux of 15 kW/mz.

Journal of Verification, Validation and Uncertainty Quantification

Table 4 Root-mean-squared error for the 1D conduction model
and the ESM as compared to the SB gauge measurements

Test set 1D conduction RMSE (kW/m?) ESM RMSE (kW/m?)
5kW/m? 0.37 0.53
10 kW/m? 0.77 1.12
15kW/m? 1.13 1.66

A comparison between the 1D conduction model and the
ASTM E3057 ESM was also presented. The 1D conduction model
had root-mean-squared errors between the prediction and SB
gauge output of 0.37, 0.77, and 1.13kW/m? for the 5, 10, and
15kW/m? cases, respectively. These values were nearly 70%
lower than the ESM whose root-mean-squared errors at 5, 10, and
15kW/m? were 0.53, 1.12, and 1.66 kW/m>.

In the future it will be necessary to ensure the modeling
assumptions presented hold up at higher heat fluxes and longer
durations for the 1D conduction model. An interesting analysis
would also be performing a scaling analysis on the DFT plate size
and fastener diameter to determine the limit of the 1D approxima-
tion to conduction through the DFT.
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