Fire Technology, 57, 2859-2885, 2021
© 2020 Springer Science + Business Media, LLC, part of Springer Nature m
Manufactured in The United States Check for
https://doi.org/10.1007/s10694-020-01037-2 updates

Deep-Learning Emulators of Transient
Compartment Fire Simulations for Inverse
Problems and Room-Scale Calorimetry

Tyler Buffington® and Jan-Michael Cabrera, Department of Mechanical
Engineering, The University of Texas at Austin, Austin, TX 78712, USA

Andrew Kurzawski, Sandia National Laboratories, Albuquerque, NM 87185,
Us4

Ofodike A. Ezekoye, Department of Mechanical Engineering, The University of
Texas at Austin, Austin, TX 78712, USA

Received: 5 June 2020/Accepted: 20 August 2020/Published online: 10 September 2020

Abstract. This work describes a deep learning methodology for “‘emulating” temper-
ature outputs produced by the Fire Dynamics Simulator (FDS), a CFD software. An
array of artificial neural networks (ANNSs) is trained to predict transient temperatures
at specified locations for a transient heat release rate (HRR) input. These locations
correspond to the locations of thermocouples used in an experimental burn structure.
In order to build the training set, A Gaussian process (GP) framework is used to
develop a generative model that produces random viable HRR ramps. Although this
procedure may require thousands of FDS runs to build a sufficient training set, the
application of transfer learning can reduce the required number of runs by nearly an
order of magnitude. This refers to the process of initially training an ANN to predict
the output of the Consolidated Model of Fire and Smoke Transport (CFAST) and
then transferring its knowledge to an ANN that learns to predict FDS outputs.
CFAST is a much faster model than FDS, so a large training set can be generated
quickly. The final state of the ANN trained to emulate CFAST is used as the initial
state of an ANN that learns to emulate FDS. The result is a model that produces
FDS temperature predictions with a mean absolute error (MAE) of less than 2°C and
runs over five orders of magnitude faster than FDS. The emulators are also capable
of learning inverse mappings; i.e. for a given temperature output, they can predict the
HRR ramp that would cause FDS to produce the temperature response. This ability
to invert for the HRR profile is exercised on data collected from eight fire experi-
ments with peak HRRs up to 200 kW, including four propane burner fires, two
methanol pool fires, and two n-Hexane pool fires. The model inverts for the experi-
mental HRR with a MAE of 5.8 kW-15.4 kW (11.3%-16.7%) for the burner tests
and 5.0 kW-25.5 kW (12.1%-28.6%) for the pool fire tests, with a tendency to
underestimate the HRR of the pool fires. Finally, the computational speed of the
emulators allows for the incorporation of CFD physics in Bayesian parameter inver-
sion. As an example, this is demonstrated to infer the radiative fraction from experi-
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mental and synthetic data in conjunction with reported uncertainties from the FDS
Validation Guide.

1. Introduction

Compartment fire models are useful for many applications. For one, accurate pre-
dictions of potential fire scenarios help quantify the risk of adverse consequences
such as property damage and loss of life. They also can provide insight in foren-
sics problems by identifying credible fire scenarios in light of observed evidence.
The value of accurate models is also augmented by the fact that compartment fire
experiments are difficult and expensive to perform.

The computational expense of fire simulation tools varies significantly. For
instance, “zone” models typically run at super-real-time speeds because of their
relatively simple physics. These models are useful for probabilistic assessments [1,
2] and other applications that require results from many simulations. Zone models
typically divide a compartment into two homogeneous zones- an upper gas layer
of hot combustion products, and a cooler lower layer. Examples of commonly
used zone models include the Consolidated Model of Fire and Smoke Transport
(CFAST) [3] and BRANZFIRE [4]. Conversely, computational fluid dynamics
(CFD) models are significantly more computationally expensive, but are generally
more accurate. These models are also capable of making predictions for specific
locations in the compartment, rather than for large spatially averaged zones.

There have been various efforts to combine the advantages of CFD and zone
models. Hostikka et al. [5] proposed a two-model Monte Carlo approach that
uses a relatively small number of FDS runs to correct the results from a larger
number of CFAST runs to produce a probabilistic output. Outside of compart-
ment fire modeling, there are many studies that have explored the coupling of
zone models with CFD models for various applications [6—11].

The recent advances in machine learning have allowed for novel methods of
producing models that combine the accuracy of CFD models with the computa-
tional speed of zone models. Hodges et al. [12] and Lattimer et al. [13] have pro-
posed using transpose convolutional neural networks (TCNNs) for producing
spatially resolved temperature and velocity fields for compartment fires. Although
the present work is similar to these studies in the sense that deep learning is lever-
aged to develop “emulators” of FDS, there are several key differences. First, the
emulators in the previously mentioned works are primarily designed to capture
spatial variations of temperatures and velocities rather than temporal variations.
Conversely, the emulators described in the present work are designed for the pur-
pose of inferring transient quantities using a specific experimental setup.

Another key difference is the role of zone models in the methodology. Rather
than using zone model results as inputs to the deep learning models, they are used
for transfer learning [14]. This is a concept heavily used in Natural Language Pro-
cessing (NLP) [15] and computer vision [16] applications. The idea is that an
agent can learn a new task more efficiently if it has already been trained to per-
form a similar task. In the present study, an artificial neural network (ANN) is
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first trained to produce outputs from CFAST, with which a large training set can
be obtained easily. The parameters of this ANN are then used as the initial state
of an ANN that learns to produce outputs from FDS. In a similar fashion, the
knowledge of the first ANN that learns to emulate FDS is transferred to all other
ANNSs that learn to emulate FDS. The result is that the ANNs can learn to pro-
duce accurate FDS results with much fewer FDS runs if they are initialized in this
manner rather than from a random state. An advantage of this approach is that
when the model makes predictions for a new case, the zone model does not need
to be run again, which would be a speed-limiting step.

This paper also explores the utility of using FDS emulators for inverse prob-
lems. These problems involve using observations to infer the causal factors that
produced them. This essentially involves running FDS in reverse; from a set of
simulation outputs, the goal is to determine the simulation inputs that produced
them. This cannot be done directly in FDS, so iterative techniques requiring many
runs for a single scenario are often required, which is especially computationally
expensive. Deep learning can aid this process not only by reducing the time it
takes to produce FDS results, but also by obviating the need for iteration alto-
gether. This is because ANNs can be trained to map FDS outputs to FDS inputs
directly, which makes the inversion process even faster.

The specific inversion problem explored in this paper is to determine a fire’s
transient heat release rate (HRR) from a series of transient thermocouple mea-
surements. The HRR has been described as the most important variable in fire
hazard assessment [17]. It describes the amount of energy that is released from the
combustion reactions of a fire, and it is a predictor of adverse fire consequences
such as flashover [18] and secondary ignition [19]. Many methods exist to measure
HRR at various scales. Perhaps the most common calorimetry apparatus at the
bench scale is the cone calorimeter [20] developed by Babrauskas at NIST. This
approach is based on measuring the oxygen consumed during the fire. Because the
heat of combustion per unit of oxygen consumed is approximately constant across
most fuels encountered in fires [21], the oxygen consumption measurements can be
easily converted to estimates of the heat release rate. Another apparatus is the
OSU calorimeter [22]. Unlike oxygen consumption calorimeters, this apparatus
measures temperatures at various locations that allow for the HRR to be esti-
mated by a simple energy balance.

Full scale calorimetry measurements are more difficult to obtain. Open burning
calorimeters have been developed to measure the HRR of furniture items [23].
However, a limitation of these approaches is that the burning conditions do not
necessarily resemble those of an actual compartment fire. To account for room
effects, oxygen depletion calorimetry has been applied to room-scale fire tests [24].
These measurements are often expensive and difficult to set up, which has led to
an effort to develop more cost effective full scale HRR inversion frameworks.
Most of these approaches rely on using correlations or two-zone models to invert
for the HRR. Richards et al. [25] used temperature data from ceiling sensors to
estimate the HRR using LAVENT, a two-zone model. Overholt and Ezekoye [26]
developed an inversion framework that uses measurements of the upper gas layer
temperature with the zone-model CFAST. Kurzawski and Ezekoye also developed
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a methodology using heat flux measurements from Directional Flame Thermome-
ters (DFTs) with FDS as the forward model. The present work is a natural exten-
sion of these studies in that it utilizes temperature measurements with the physics
of FDS for HRR inversion.

2. Experimental Setup

An experimental compartment measuring 5.7 m by 4.6 m by 2.17 m previously
utilized for various room scale fire experiments including positive pressure ventila-
tion [27], wildfire fuel bed characterization [28], and HRR inversion [29] was used
to conduct further testing for HRR inversion experiments. All interior walls are
lined with 1.6 cm gypsum wallboard and the floor is 2.54 cm thick and made of
concrete. For the burner experiments, one sand burner 0.3 m by 0.3 m square
with a height of 0.4 m constructed in accordance with the standard NFPA 286
was electronically controlled using an Alicat Scientific MCR-series 250 SLPM PID
mass flow controllers to follow specified HRRs [30]. The sand burner was placed
in the center of the compartment and its peak HRR is typically set to be 200 kW.
A National Instruments data acquisition system was used to send setpoint signals
to the Alicat mass flow controllers to control the flow of propane to the burner
within the compartment. The data rate for all experiments was set to 1 Hz. Four
burner experiments were conducted, each with a different prespecified HRR ramp.
These included two triangle fires- one with a 300 second time to peak and one
with a 100 second time to peak, a symmetric t-squared fire, and an arbitrary ramp
that was chosen to resemble the potential behavior of an actual burning item
whose HRR may grow and diminish unpredictably throughout an experiment.
The four HRR ramps are shown in Figure 1.

In addition to the propane burner experiments, four pool fire experiments were
conducted. These include two n-Hexane fires conducted in an aluminum pan with
a 12-inch diameter and two methanol fires conducted in an aluminum pan with a
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Figure 1. The four specified HRR ramps for the burner experiments.
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(a) Propane burner fire (b) N-hexane pool fire (¢) Methanol pool fire

Figure 2. Photos from each of the three types of fire experiments
conducted for this work.

22-inch diameter. The pans were placed on a load cell, which measured the mass
of the pan and the fuel during the tests with a sampling rate of 1 Hz. The HRR
was determined by smoothing the mass loss data with a kernel smoother using a
bandwidth of 60 seconds before computing a first-order numerical difference. This
difference was then multiplied by the effective heat of combustion, which was
assumed to be 44.7 kJ/g for n-Hexane and 20 kJ/g for methanol (taken from
Table 26.21 in [31]). Example photos of the tests used in this work are shown in
Fig. 2.

Temperatures were collected from 17 thermocouples arranged according to
Fig. 3 in the experimental chamber. There are 8 stands with 2 thermocouples each
located at heights of 1.6 m and 2.11 m. The stands are arranged in a 4 by 2 grid
with 1 m between stands in the x-direction and 2.2 m between stands in the y-di-
rection. The final 2 thermocouples (16 and 17) are located along the west and east
walls at a height of 1.97 m and 0.95 m from the north wall. A single thermocou-
ple (marked with an X in Fig. 3) failed during testing and was omitted from the
present work.

3. Computational Models

Two computational models of the experimental setup were used in this study- one
in CFAST and one in FDS. The CFAST model serves only for pretraining the
ANNSs that eventually learn to emulate FDS.

3.1. Consolidated Model of Fire and Smoke Transport (CFAST)

Because the CFAST model is only used for transfer learning, it is a relatively sim-
ple description of the experimental setup. It consists of a single 6 m by 5 m by
2.4 m compartment with all surfaces specified as gypsum. The door is modeled as
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Figure 3. A diagram of the experimental burn structure and the
thermocouple locations.

a 1 m by 2 m vent. The burner is specified as a fire with an area of 0.1 m and a
height of 0.4 m. When making the training set of CFAST runs, the HRR is speci-
fied according to the same procedure as that used for making the training set of
FDS runs.

3.2. Fire Dynamics Simulator (FDS)

The FDS model consisted of a 6 m by 5 m by 2.6 m structure with 0.2 m walls on
all sides. This makes it so that the fluid domain inside the structure is 5.6 m by
4.6 m by 2.2 m which is consistent with the dimensions of 3 within the length of
one grid cell (0.2 m). The door was modeled as a hole in the west wall, and the
wall thickness of 0.2 m was specified so that the door would be one cell thick. It
is important to note that FDS allows for the specification of different thicknesses
for calculating heat transfer between the walls and surrounding air. The four exte-
rior walls and the ceiling were modeled as gypsum boards with thermal thick-
nesses of 0.016 m. The thermal properties were specified according to Bruns and
Prasad [32] and Kukuck [33]. The floor was modeled as concrete with a thermal
thickness of 0.04 m. The thermocouples were specified according to the properties
described by Kurzawski [34]. The computational domain extended outside the
structure 1 m in the negative-Y direction to allow FDS to resolve the flow outside
the door. A mesh size of 0.2 m was used because of the large number of runs
required for the present work. Although this is a fairly coarse mesh, most of the
temperature predictions did not exhibit significant grid size sensitivity. This was
evaluated by running FDS simulations of the t-squared fire ramp shown in Fig. 1
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Figure 4. Comparison of FDS results using a 20 ¢cm grid and a 10 cm
grid for the t-squared fire ramp shown in Fig. 1. The resuvlts are
pooled across all 17 thermocouples at all times in the simulation.

using both a 20 cm grid and a 10 cm grid. The results are shown in Fig. 4 The
predicted temperatures from the 10 cm simulations (7,.) are plotted against the
predicted temperatures from the 20 cm simulations at each timestep (7,qs) for all
17 thermocouples. The fact that the the data generally lie along the diagonal
denoting equality shows that the results are not very sensitive to the grid size.

It is important to note that the grid sensitivity depends heavily on the geometry
of the experimental structure being modeled. If grid sensitivity is an issue, it is
expected that the transfer learning procedure described in this paper could offset
the computational expense of running many fine-mesh FDS runs. The emulators
could first train on coarse-mesh FDS runs, with which it is easier to build a large
training set. Then, if the parameters of these trained ANNs are used to initialize
ANNSs that learn to emulate the fine-mesh cases, it is expected that the required
size of the fine-mesh case training set would be relatively small.

4. Emulators of FDS with ANNs

4.1. Building the Training Set

A key step developing the emulators is developing a viable strategy for building
the training set. One approach might be to specify the functional form of the
HRR curve (e.g., t-squared or triangle ramps) and randomly draw the corre-
sponding parameters. This approach is limiting because the ANNs then would
likely only be able to produce reliable results for these parametric HRR curves. It
would be preferable to create randomly generated HRR curves with properties
that encompass the true variability in actual burn tests. To do this involves creat-
ing a non-parametric description of the HRR curves. For this study, non-paramet-
ric means that the HRR curve is drawn without a-priori specifying a functional
form. There are also potential issues with this approach; if one draws independent
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random values at different times to construct the HRR curve, then that could pro-
duce unphyisically “noisy” HRR curves.

The Gaussian process formalism allows for the development of a generative
model that circumvents these issues. A Gaussian process is a stochastic process in
which any finite collection of random variables has a joint multivariate normal
distribution [35]. This concept can be a bit abstruse for those unfamiliar with this
type of statistical modeling, so a more in-depth explanation is provided here. The
overall goal is to describe a probability distribution of reasonably smooth func-
tions. If this distribution exists, then one could draw a random sample of N func-
tions, i.e. f,(¢),n € {1,2,..,N}, where each f,(¢) is a randomly drawn function
defined over 7. At any specified time, ¢, one could evaluate every drawn function
at ¢/. This would result in a sample of size N of scalar function evaluations, f,(#).
According to the definition of a Gaussian process, f,(¢f') is normally distributed
for any . Now, one could imagine evaluating each of the functions at swo points,
t1 and £, resulting in two scalar function evaluations for each f,(¢). Again, if the
distribution of functions is a Gaussian process, then the stochastic vectors

[f,(11), fu(£2)]" will have a bivariate normal distribution. Similarly, for any size k

vector of times, t € R, f(¢) is k-variate normally distributed. The general equa-
tion for a multivariate normal distribution is shown in equation 1.

p< f(t)> — (2n)det[5] %exp< — 2 [tte) "= () - ,4) 1)

Just as a univariate normal distribution is uniquely characterized by a scalar mean
and a scalar variance, a multivariate normal distribution is uniquely characterized
by a mean vector, p and a covariance matrix, X, which must be symmetric and
positive semi-definite. The entries of X are described in equation 2.

%, =E ([xi — )l — u,-]) (2)

where E is the expectation operator, E(x) = [~ xp(x)dx. The diagonal terms of X
describe the variance of the corresponding function evaluations. The off-diagonal
terms describe the correlation between two function evaluations. To make this
more clear, the bi-variate example is revisited. If ¢ = [tl,tz]T , and f; = fp, then
obviously f,(t1) = f.(t2) for any randomly drawn continuous function, f,(¢). Said
differently, f,(#/) and f,(#) are perfectly correlated. If instead, #, = ¢, + A¢, then
there is no guarantee that f,(7) = f,(z2), but it is reasonable to expect that f,(¢)
and f,(t) are correlated if A¢ is small. If Az is large, then one would expect that
Jfa(t1) and f,(t,) are uncorrelated. Figure 5 provides an illustration of the idea of
covariance between function evaluations. Figure 5a shows 10 randomly drawn
functions from an arbitrary Gaussian process. Figure 5b is a scatterplot of the
function evaluations at 400 seconds versus those at 200 seconds. Because the func-
tions are somewhat smooth, the scatterplot shows a positive correlation, which
would increase as the difference between the two times is reduced. The defining
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Figure 5. 5(a) shows 10 randomly drawn functions from an arbitrary
Gaussian process. Each randomly drawn function is evaluated at

t = 200 seconds and at f = 400 seconds. A scatterplot of these func-
tion evaluations is shown in 5(b). Note that the function evaluations
at the two dierent times are correlated. The contours in 5(b) indicate
the bivariate normal probability density function of the points.

characteristic of a Gaussian process is that these quantities must be normally dis-
tributed, so the contours of the bivariate normal probability density function are
also shown. If this process were repeated for many more randomly drawn func-
tions, the contours would indicate the density of the points.

Just as a multivariate normal distribution is uniquely characterized by a mean
vector and a covariance matrix, a Gaussian process is uniquely characterized by a
mean function, m(t), and a covariance function, K(t;,t;). Then for any vector of
times, ¢, the resulting multivariate normal distribution can be characterized com-
puting the mean vector m(¢) and the covariance matrix K(#,¢). Based on the intu-
ition that the degree of correlation between f,(#;) and f,(z;) should depend on the
magnitude of At =t —t;, the squared exponential kernel is a common choice for
a covariance function. Its form is shown in equation 3,

K(t,t) = ‘Ezexp< - %) (3)

where 72 is a hyperparameter that describes the magnitude of the function draws,
and b, known as the bandwidth, relates to the time scale over which function eval-
uations are correlated. Intuitively, b defines how smooth the function draws will
be, with a larger bandwidth giving smoother functions. This covariance function
has a “bell” shape; it reaches a maximum as ¢; — ¢; approaches zero and asymptot-
ically approaches zero as ¢; — t; goes to positive infinity or negative infinity.

For generating the training set of the FDS emulators, an initial Gaussian pro-

cess is specified for the transient HRR, ie. O(7) ~g77<mo(t),Ko(t,-,tj)), with

mp(t) = 150 kW, meaning at at any time, the function evaluations will be centered
around 150 kW. The covariance function, Ky(#;,¢;) is specified according to equa-
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tion 3. The hyperparameter, 7> is chosen to be 8,100 kW2, meaning that the stan-
dard deviation of any individual function evaluation is v/8100 = 90 kW, produc-
ing a reasonable variation of HRR values centered around 150 kW. This is
somewhat arbitrary, but it produces HRR curves that are generally consistent
with the sand burner peak HRR of 200 kW. Two bandwidth values, b, were used.
In about half of the draws, the bandwidth is set to 30 seconds and in the other
half, the bandwidth is set to 60 seconds. This was done so that the training set
would contain both smooth and more rapidly changing HRR curves.

In order to draw HRR curves for the ANN training set, a time vector "N =
[0,10,.. .,9OO]T is specified. This vector contains 91 evenly spaced points between
0 and 900 seconds (inclusive). 900 seconds (15 minutes) was chosen because it is
the maximum simulation duration for the cases of interest in this paper. For other
applications, this vector could be specified differently to allow longer simulations.
Evaluations of randomly generated functions can then be drawn by specifying a
multivariate normal distribution with mean my(fNN) and covariance Ko(tNN, NN).
The Python package Scipy [36] was used for performing the random multivariate
normal draws.

A few additional restrictions are imposed in the generative model to make the
HRR draws more physically viable. The HRR should be zero at the point of igni-

tion, i.e. Q(O) = 0. Also, at the end of the fire, the HRR should return to zero, i.c.

O(teng) = 0, where t,,4 is the duration of the fire. It is desired that the emulators
can produce FDS outputs of simulations with varying #.,,;. As a result, #,,; iS uni-
formly drawn between 150 and 900 seconds for each case in the training set. For-
tunately these constraints can be easily imposed into the mean vector and

covariance matrix. Let £ = [0 f,4 }T be a vector of times at which Q(f) is zero,
ie. O(f*™) = 0. If one truncates the original multivariate distribution to include
only draws that satisfy the constraints, the result is another multivariate normal
distribution whose form is shown in equation 4.

O(™N) ~ N (m, C) (4)

where

m= mg(tNN) 4 Ko(tNN, tZC[‘O) |:K(tzer0’ tzerO)] m(tzem)
and
-1
C = K()(tNN, tNN) _ KO (tNN7 tzem) [KO (tzero, tzerO)] Ko(tzero, tNN)

The derivation of equation 4 is not given here, but it is based on the procedure of
calculating posterior distributions in Gaussian process regression [37]. Two post-
processing steps are performed on each draw from the distribution described in

equation 4. First, the absolute value of O(#NN) is taken to ensure that the HRR
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curve does not contain negative values. One could use a cutoff other than zero
given that it is unlikely that a fire would become fully extinguished and then
reignite during an experiment. Nevertheless the use of this cutoff appears to result
in a sufficiently trained model. Second, the HRR curve is forced to zero for times
after #,,4. This is done so that the HRR does not ramp back up after the specified
end of the fire. Examples of the randomly generated HRR curves used to build
the training set are shown in Fig. 6. Figure 6a shows that the drawn functions are
smoother when using a bandwidth of 60 seconds compared to those shown in
Fig. 6b when using a bandwidth of 30 seconds. The emulators train on functions
drawn from both distributions. Note that the HRR curves also have a varying
duration so that the emulators can learn to produce the results from FDS simula-
tions with arbitrary duration up to 900 seconds.

A Python script was used to draw random HRR ramps, write them into FDS
or CFAST input files, and then run the respective simulations.

4.2. Forward FDS Emulators

In this section, the design of the forward emulators of FDS is described. For each
thermocouple, an ANN is trained to map the time series vector Q(tNN) to the
corresponding temperature time series vector from a FDS simulation, T;(¢tNN),
where the index i denotes the itk thermocouple. Recall that tNN = [0, 10, ...,900}T.
Note that FDS does not necessarily output a prediction at the times in ¢NN, so
linear interpolation is used. For each ANN, the input layer and output layer both
contain 91 nodes, which is equal to the length of #NN. There are four hidden lay-
ers, each with 128 perceptrons. These are nodes that compute a weighted sum of
their inputs and a bias, and then pass this sum through an activation function.
The rectified linear activation function (ReLU) is used as the activation function.
This function simply returns its input if the input is positive and returns zero
otherwise.The neural networks are fully connected, meaning that each output of a
given layer is an input to every perceptron in the next layer. The architecture of

400 400
300 300
s s \
=200 = 200
,Q} AQ) ‘
100 X/ 100 \ \
0 200 400 600 800 ) 200 400 600 800
Time (s) Time (s)
(a) b= 60 sec. (b) b= 30 sec.

Figure 6. Example draws from the Gaussian process generative
model used to build the ANN emulator training set.
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Figure 7. 7a shows a simplified diagram of the neural network
architecture used for each thermocouple response. In reality, the
input layer and output layers each have 91 nodes as opposed to four,
and each of the hidden layers has 128 perceptrons as opposed to six.
7b is a diagram showing the operation of an individual perceptron.

the ANNs is shown in Fig. 7a and the diagram of an individual perceptron is
shown in Fig. 7b

Each perceptron in the first hidden layer has 92 parameters to learn (91 weights
plus one bias) and all other perceptrons have 129 parameters to learn (128 weights
plus one bias). This totals to 73,051 trainable parameters. The ANNs are con-
structed using the sequential method in the Python package Keras [38], which is
built on top of TensorFlow. The parameters are trained using the Adam method
[39], which is a stochastic optimization method. The batch size is set to 31, and
the validation split is 20% of the data. Also, the authors found that the perfor-

mance improved by dividing O(¢) by 200 kW and 7(¢) by 200 °C, which roughly
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Figure 8. A flow chart summarizing the transfer learning approach
used during training. The circles represent outputs from compartment
fire simulations. The rectangles represent emulator ANNs. The black
arrows represent direct training and the blue arrows represent
knowledge transfers. For example, the first emulator trains on
examples of the transient CFAST UGL whose weights and biases are
randomly initialized. The learned weights and biases from CFAST are
passed to the first FDS emulator, which trains on the respective
thermocouple in FDS. These new, updated weights and biases trained
using FDS are then used as initial states for the remaining FDS
thermocouples.

b

corresponds to the peak temperature associated with a peak HRR of 200 kW (see
Fig. 10b).

This normalization makes it so that the inputs and outputs will generally vary
on the order of one, which can lead to improved training [40].

The training process also leverages transfer learning, which is based on the idea
that an agent can learn a task more efficiently if it has already been trained to
perform a similar task. If transfer learning is not used, the weights and biases of
the emulator ANNSs are initialized with random values at the start of training.
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Figure 9. A plot demonstrating the effect of pretraining an FDS
emvulator with the CFAST training set. The red points denote the MAE
vs. training set size for a ANN initialized from a random state and the
blue points denote the MAE vs. training set size for an ANN initialized
from the state of an ANN that has been trained to emulate CFAST.
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Figure 10. A comparison of the predictions of the forward ANN
emvulators to the FDS simulations. Figure 10(a) is an example of the
emulator predictions alongside the corresponding FDS outputs.
Figure 10(b) is a scatterplot of the FDS simulation results against the
emulator results for all times, across all four HRR ramps shown in
Fig. 1 and all 17 thermocouples.

Instead, an ANN was first trained to predict the transient upper gas layer (UGL)
temperature in CFAST. A training set of 20,000 randomly generated CFAST
cases was used for this initial training step. The weights and biases from this
trained ANN are then used as the initial state for the ANN that is trained to pre-
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dict the first FDS thermocouple. This process essentially transfers the knowledge
of the simplified zone model physics of CFAST to the ANNSs that learn the more
complicated physics of FDS. Once the first FDS emulator is trained, its weights
and biases are used to initialize each of the 16 remaining emulators. The transfer
learning approach is depicted in the flow chart, Fig. 8.

In order to evaluate the effect of the this transfer learning procedure on training
efficiency, 100 randomly generated FDS runs were set aside as a ‘“‘test set.” The
HRR curves for these runs are not present in either the FDS training sets or the
CFAST training set. An ANN emulator (for a single thermocouple) was then
trained using a variable number of FDS cases ranging from 100 to 1900 cases.
Once trained, the emulator made predictions on the 100 cases in the test set and
the mean absolute error was calculated. This process was done twice- once with a
“cold start” ANN (with randomly initialized parameters) and again with an ANN
that was initialized with the parameters from the trained CFAST ANN. Figure 9
shows the effect of this initialization. It appears that the use of this transfer learn-
ing procedure dramatically reduces the required size of the FDS training set. If
the FDS emulator is initialized with the weights and biases from a well trained
CFAST UGL emulator, it can achieve lower error with a training set of 300 FDS
runs than a “cold start” emulator can with a training set of 1900 FDS runs. It is
important to note that the impact of transfer learning may depend on the geome-
try under consideration. In the present study, the compartment geometry is rela-
tively simple and so the CFAST and FDS outputs may be more similar than
would be the case for complex geometries.

For the results described in the rest of the paper, a training set of 1000 FDS
cases is used. Once trained, the emulators made predictions on the four HRR
ramps that were used in the burner experiments shown in Fig. 1. Note that none
of these ramps are in the randomly generated training set.

Figure 10a shows a typical output from the ANN emulators compared to an
actual FDS simulation. The emulator predictions are typically smoother than the
FDS outputs. This is likely due to the fact that the fluctuations in the FDS out-
puts are due to random turbulent effects, which are very difficult for the ANNs to
learn. Figure 10b shows a scatterplot of the FDS simulation results vs. the emula-
tor predictions for all four HRR ramps shown in Fig. 1 and all 17 thermocouples.
Overall the mean absolute error (MAE) of the emulator predictions compared to
FDS is 1.6° C or 2.5% of the average temperature rise, indicating that they can
accurately produce FDS outputs for new HRR curves. The emulators typically
issue a full set of predictions (all 17 temperature time series) at a speed of about
0.01 seconds. On the same computer, it takes about 25 minutes to achieve the
respective results from an FDS simulation, which equates to a speedup of over
five orders of magnitude.

4.3. Inverse FDS Emulators

Another advantage of using ANN emulators to produce FDS outputs is that they
can learn inverse mappings directly. The same ANN archeticure shown in Fig. 7a
is used to produce 17 inverse emulators, except the quantities of the input and
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Figure 11. Predictions of the inverse FDS emulators compared to the
actual HRR inputs. 11(a) is an example of the 17 predicted ramps
(blue lines) generated by the emulators relative to the HRR input to
FDS (black line). 11(b) is a scatterplot of the true FDS HRR input vs.
the predicted input for all times, all 17 thermocouples, and all four
ramps shown in Fig. 1.

output layers are switched. Each inverse emulator takes a temperature time series
as an input and predicts the HRR ramp that would make FDS produce such an
output for its respective thermocouple. This model can be especially useful
because FDS does not natively have this functionality and iterative techniques are
usually required. As before, the ANNs are first trained using the CFAST pre-
dicted upper gas layer. Using the FDS outputs for the four HRR curves shown in
Fig. 1, the inverse emulators each predicted the HRR ramp input that would
cause FDS to produce the outputted transient temperature results. The results are
shown in Fig. 11. In Fig. 11a, the dashed black line is the HRR input ramp for
an FDS simulation. For each of the 17 thermocouple locations, an inverse ANN
emulator uses the corresponding simulated temperature time series to predict the
HRR ramp that would cause FDS to produce such an output. The 17 blue lines
show the predicted HRR curves for the 17 different ANNs. Figure 11b shows the
actual HRR input compared to the predicted input for all 17 thermocouple loca-
tions, all times, and all four HRR ramps shown in Fig. 1.

The MAE for the inverse predictions on the four ramps is 5.2 kW, or 6% of
the average HRR. Not surprisingly, the error as a percentage is greater for the
inverse ANN emulators than for the forward ANN emulators. This may in part
be due to the fact that the problem is ill-posed, in the sense that there is no guar-
antee that a temperature output implies a unique HRR input. Nevertheless, the
emulators generally reconstruct the HRR inputs accurately. It appears that they
produce the most error when the slope of the HRR curve rapidly changes signs.
This may be an artifact of the bandwidth selections in the Gaussian process gener-
ative model. Also, the emulators struggle to tell when the HRR goes to zero at
the end of the ramp. This is likely due to the fact that the temperatures remain
elevated for quite some time, even after the fire is extinguished. In experimental
applications, this issue may be mitigated by the fact that it is often visually clear
when a fire is extinguished from video footage.
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5. Experimental Applications

This section explores the application of the ANN emulators of FDS for two
experimental efforts- estimating the transient heat release rate of a burning item
and inferring the radiative fraction of a burning fuel. Both of these efforts depend
heavily on the accuracy of the FDS model.

5.1. Heat Release Rate Inversion

The simplest approach for using the emulators to estimate a transient HRR is to
pass the transient thermocouple measurements at the times in tNN to the respec-
tive inverse ANN emulators. The FDS Validation Guide [41] indicates that FDS
tends to overpredict both hot gas layer and ceiling jet temperature rises by a bias
factor, J, of 1.03. All measured temperature rises are multiplied by this factor
before being passed to the emulators. This results in 17 different predicted HRR
curves (one for each thermocouple). In the absence of additional information, it is
not clear whether any of these predictions is more credible than any of the others.
As a result, an average of all 17 predictions is taken for each timestep.

The results of this procedure using the thermocouple data from the burner
experiments is shown in Fig. 12. The procedure was repeated for the pool fire
experiments, shown in Fig. 13. For each experiment, the measurements from each
thermocouple are passed into the respective ANN emulator. The emulator pre-
dicts the HRR ramp that would cause FDS to output the same temperature time
series. Each emulator performs this task, resulting in the 17 blue curves. The pur-
ple curve is the average of all the individual emulator predictions.

The results in Figs. 12 and 13 indicate that the inversion framework is generally
more accurate for the burner experiments than the pool fire experiments. In gen-
eral, the model predicts that the HRR from the pool fires is lower than that mea-
sured from the mass loss data. A summary of the results shown in Figs. 12 and 13
is shown in Table 1. Also shown is the standard deviation of the emulator predic-
tions at the peak HRR for each of the eight experiments.

5.2. Bayesian Inference of the Radiative Fraction

Another potential application of the FDS emulators is Bayesian inference. This is
a statistical framework for updating prior beliefs in light of observed data and
models. It is commonly used for inferring kinetic parameters [42] and testing fire
scenario hypotheses [43]. The general idea is that one is interested in learning
about some arbitrary parameter, 6. Before observing any data, prior beliefs about
the possible values of 6 are quantified using a probability distribution. Then, if
data are observed, and one has a model for the data that takes 0 as an input, the
prior distribution can be updated to produce a posterior distribution that gener-
ally is more confident. Intuitively, this is because some values of 0 that were origi-
nally believed to be credible produce model outputs that do not align with
observed data. This approach is useful because it outputs probabilistic estimates
that convey uncertainty rather than point estimates, but it can be computationally
prohibitive because it relies on Markov chain Monte Carlo (MCMC) samplers,



2876 Fire Technology 2021
300 300
Pred. HRRs Pred. HRRs
= Avg. pred. HRR = Avg. pred. HRR
== Exp. HRR == Exp. HRR

) 100 200 300

(a) 100 sec. triangle
MAE: 11.4 kW (11.3% of average exp. HRR)

0 200 400 600 800
Time (s)

(b) 300 sec. triangle
MAE: 14.9 kW (14.9% of average exp. HRR)

300 300
Pred. HRRs Pred. HRRs
= Avg. pred. HRR = Avg. pred. HRR
200 A == Exp. HRR 200 A == Exp. HRR
=
=
< 100
0~ ()t .
0 100 200 300 400 500 0 200 400 600
Time (s) Time (s)

(c) t-squared
MAE: 15.4 kW (16.7% of average exp. HRR)

(d) Arbitrary curve
MAE: 5.8 kW (13.6% of average exp. HRR)

Figure 12. HRR inversion resulis for all four burner experiments. The
blue lines show the HRR curves generated by the individual
emvulators, the purple line shows the average of these curves, and the
dashed black line shows the experimental HRR ramp.

which can require tens of thousands of model evaluations performed in series. As
a result, MCMC techniques have mostly been limited to simplified models that
can be run quickly. However, the ability to produce CFD results quickly with
deep learning makes it more practical to incorporate high fidelity physics into
Bayesian inference techniques. Even if training the ANN emulators requires the
same number of model evaluations as an MCMC simulation, the ability to paral-
lelize the runs can still greatly reduce the time required to achieve MCMC results.

As an illustrative example, the Bayesian inference procedure is demonstrated to
infer the radiatve fraction, y, of a burning fuel using a combination of synthetic
and experimental data. This quantity refers to the fraction of energy that is
released as radiation for a burning item. In principle, the measurement of the
radiative heat flux ¢ at a specified distance Ry from the burning item can be used
to infer the radiative HRR, Q. As presented in [44], assuming isotropic radiation,

Ok = 4nR{q; (5)
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Figure 13. HRR inversion resulis for all four pool fire experiments.
The blue lines show the HRR curves generated by the individval
emvulators, the purple line shows the average of these curves, and the
dashed black line shows the experimental HRR ramp determined from
mass loss data.

then, the emulators described in this work give an estimate of Q, which allows for

the estimation of y, by the relation y, = % As this is an illustrative example, it is

assumed that QR is known using this approach; this is the only use of synthetic
data in this section. In reality, there would be uncertainty due to the measurement
error of ¢ as well as the modeling error of equation 5. The 300 second triangle
ramp (Fig. 1) is used for the demonstration because it is the burner test that
exhibited the most error in the previous section. The radiative fraction, yj is speci-
fied to be 0.30 for propane [45], which is used to calculate Q(f"V) (the radiative
fraction at the times in tNN). For the illustrative example, it is assumed that
QR(tNN) is the only known quantity, which could have been inferred from heat
flux measurements. The Bayesian inference model attempts to learn y, (and by
extension, Q) from the observed experimental data and the FDS emulators.

Formally, the objective is to produce the posterior distribution, p(XR\D), which
is the probability distribution for y, given observed data, D. Bayes theorem then
gives equation 6:
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Figure 14. An illustration of the Bayesian inference process for ),
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the purple uniform distribution is the prior. After performing the
MCMC sampling, the blue distribution is the posterior. 14b shows the
HRR curve credible interval that is implied by the posterior of ;.

D|yx)p(7z)
p(D)

p(

p(zID) = (6)

where the /likelihood, p(D‘XR), quantifies how likely the observed data are given an
assumed value of y,. This is where the FDS model is used, but it will be explained
in more detail below. The marginal likelihood, p(D) generally does not need to be
addressed explicitly because it is determined from the constraint that p(xR|D) must
integrate to one. Finally the prior, p(yz) quantifies prior beliefs about the value of
«r- Fleury [46] notes that y, varies from approximately 0.15 to 0.60. Therefore, a
uniform prior is used, yz ~ Uniform(0.15,0.60).

Next, the construction of the likelihood, p(D| ;(R) is described. Specifically, the
observed data D is an array of 17 measured temperature rises T(¢tNN) at each of
the times in ¢tNN. For a given y,, predicted temperature rises, T (tNN , Q(tNN)),
can be produced by passing the ANN emulators the HRR ramp,

QO(tNN) = M Because O (tNN) is given, the predictions of the forward FDS

R
emulators will hereafter be written as a function of y, for simplicity, i.e.

T(tNN,Q(tNN)) = T(tNN, zz). Because a given value of y; produces a specific
emulator output, the likelihood can be viewed as the probability of the observed
temperatures given a set of emulator predictions, i.e.

p(D|7z) = p(T(tNN)‘ T(tNN, m)) (7)

It is assumed that the difference between the forward emulator outputs and the
actual FDS simulation outputs is negligible. Therefore, equation 7 is essentially
the uncertainty associated with the FDS predictions. In other words, if FDS pre-
dicts a set of temperatures for a given scenario, what is the probability distribu-
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Table 1
Summary of Experimental HRR Inversion Results

Experiment MAE (% of mean HRR) SD at peak HRR

100 sec. triangle
300 sec. triangle
t-squared

Arbitrary curve
N-hexane test 1
N-hexane test 2
Methanol test 1
Methanol test 2

11.4 kW (11.3%)
14.9 kW (14.9%)
15.4 kW (16.7%)
5.8 kW (13.6%)

25.5 kW (24.6%)
21.1 kW (28.6%)
5.0 kW (12.1%)

10.4 kW (18.8%)

31.3 kW (15.6%)
343 kW (17.1 %)
35.7 kW (17.8 %)
36.4 kW (18.2 %)
22.6 kW (12.0 %)
22.5 kW (14.7 %)
11.4 kW (12.0 %)
8.3 kW (9.1 %)

tion for the corresponding temperatures in the real fire scenario? Answering ques-
tions such as these is a central aim of the FDS Validation Guide [41], which
serves as the primary resource for constructing this likelihood distribution. How-
ever, several steps are required before equation 7 can be written in terms of the
uncertainties reported in the validation guide. First, the validation guide typically
condenses time series measurements into scalar quantities. For temperatures, this
is done by evaluating the peak temperature rise for both the experimental data
and the FDS output. As such, the maximum temperature rise is calculated for
each thermocouple across all of tNN and similarly for each emulator output. This
results in two vectors each of length 17, T,,,, which contains the maximum tem-

perature rise measured by each thermocouple and i‘max(;(R), which contains the

maximum predicted temperature rise for each ANN emulator for a given yy. This
further reduces the likelihood to

p(Dl1x) = p(Tmax fmx(xR)> (8)

Based on equation 4.23 of the FDS Validation Guide, the PDF of the peak tem-
perature rise measured by thermocouple i is normally distributed, shown in equa-
tion 9'

S fi.max X
Ti,max|Ti.,max(XR) ~N <(R) ) 612> (9)

where

2
(Bt

' The experimental uncertainty is added here because 7} 4, is a measured quantity. In equation 4.23 of
the Validation Guide, 0 denotes the “true” quantity.
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where J is a bias term. As previously noted, it is reported in the Validation Guide
as 1.03 for both the naturally ventilated hot gas layer (HGL) and ceiling jet simu-
lations, which were determined to be the most similar quantities to those used in
this paper. The relative modeling uncertainty, a,, is reported as 0.11 for naturally
ventilated HGL predictions and 0.12 for ceiling jet predictions, and the value of
0.12 is used in the present study. The experimental uncertainty &, is reported as
0.07 for both of the relevant quantities in the Validation Guide. The magnitude of
the temperature rise is similar across all 17 thermocouples, so a simplifying

assumption is that the o7 is the same across all thermocouples. Also, fi,max(;{R)

should be of similar magnitude to 7; .. As a result, the following approximation
is used:

Toa max 2 ~ ~
ot (Pt ) () = (10)

where Tyiopaimar 15 the maximum peak temperature of the 17 thermocouples. This
approximation makes it so that the variance is the same across all thermocouples,
and does not need to be recalculated for each iteration of the MCMC sampler.
Now that the likelihood for a single thermocouple has been specified, the next
step is to compute the full likelihood for the full array of thermocouples.

If the measured values of T;,. are independently distributed around T%ml
then the resulting likelihood is equation 11.

17

Tmax(xR)) = Hp<Ti,max!f“i,max(xR)> (11)

i=1

p<Tmax

Although this is a common approach, there is reason to expect that the measure-
ments are not distributed independently around the predicted values from FDS.
Instead, spatial correlation is likely. For example, if FDS underpredicts the tem-
perature measured at a location in the compartment, it probably underpredicts
nearby temperatures as well. Treating correlated observations as independent can
lead to biased parameter estimates and overconfident inferences due to an under-
estimation of the variance [47]. To circumvent these issues, the correlations of
errors between FDS predictions is modeled explicitly. First, recognize that equa-
tion 11 in conjunction with equation 9 is actually a special case of the multivariate
normal distribution,

Tmax

Toe12) ~N<W,2> (12)

where T is a covariance matrix. Equation 11 is equivalent to setting X = /g2,
where I denotes the identity matrix. In other words, the FDS Validation guide
implies that the diagonal terms of X are each 72, but it is unclear what the off-di-
agonal terms, which describe correlations, should be. It is expected that the corre-
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lation between the errors in model outputs between two thermocouples should be
a function of the distance between them. If they are very close to each other, the
error associated with the FDS model will likely be similar for both of them. As
the distance between them increases, the modeling errors are likely to become
more uncorrelated. The intuition here is very similar to that described in the
development of the Gaussian process generative model, in which function evalua-
tions that are close in time are assumed to be correlated. In fact, the squared
exponential covariance function (equation 3) is used again here to model the
covariance matrix. This model is often used to capture correlation effects in the
geostatistical modeling [48]. This results in the following model for the covariance
matrix:

d?.
Zid-:azexp<—2gjz> (13)

where d;; is the euclidean distance between the ith and jth thermocouples. It is not
obvious what the value for the bandwidths, b, is most appropriate. As a result a
uniform prior is also placed over it ranging from 0 to 10 m. Because of the intro-
duction of this extra parameter, the MCMC sampler actually samples the joint
distribution, p(yg,b | Tmex). The final distribution of interest is obtained by
marginalizing out b, which is described by equation 14.

oo

(x| Toas) = / 0D | To)db (14)

—00

The Python package PyMC [49] was used for the MCMC sampler. The results are
shown in Fig. 14. It takes about 60 seconds to run a chain consisting of 10,000
iterations. It was found that modeling the spatial correlation between measure-
ments resulted in a 95% credible interval that was about 19% wider than that
obtained assuming independence.

6. Conclusions and Future Work

This work presents a methodology for training ANNs to produce FDS outputs
for a specified experimental setup. To build a training set, a Gaussian process gen-
erative model provides randomly generated viable HRR curves that do not have a
specified form, i.e. t-squared or triangle. Although the approach described in this
paper appears to be effective in the sense that the model is able to emulate FDS
results for new HRR curves in the range of interest, the approach is not opti-
mized. Future work may focus on exploring the impact of different covariance
functions on training efficiency. The present work also indicates that transfer
learning is an effective way to reduce the number of required runs in the training
set. Specifically, it was found that when an ANN is initialized with the weights
and biases of an ANN that has learned to emulate CFAST outputs, the emulator
exhibits lower error with a training set of 300 FDS runs than it does with a train-
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ing set of 1900 FDS runs when it starts from a “cold start” random state. A
potentially interesting topic for future work is the effect of the compartment
geometry on the impact of transfer learning. Given that the present work uses a
fairly simple single-compartment geometry, the outputs of CFAST and FDS may
be more similar than they would be for more complex geometries. As the outputs
from the two models becomes more dissimilar, the impact of transfer learning
would likely diminish. However, there may be other computationally fast models
besides CFAST that could be used in the transfer learning procedure for these
applications.

When running the emulators on the four ramps shown in Fig. 1, the tempera-
ture predictions from the emulators align with those from FDS with a mean abso-
lute error of 1.6° C or 2.5% of the average temperature, which is typically a
negligible error compared to experimental uncertainties. It is interesting that this
error is smaller than that observed when running the emulators on HRR curves
from the generative model that were not in the training set (Fig. 9). This may be
due to the fact that the experimental ramps are generally smoother than those
produced by the generative model, which may make their respective results easier
to emulate. The model produces its results in about 0.01 seconds which is a
speedup of over five orders of magnitude relative to running FDS. This speedup is
expected to be much greater if a finer mesh is used, but this also makes it more
computationally expensive to build the training set. Another potential avenue for
future work is to explore the idea of transfer learning for mesh refinement. For
example, if ANNSs first train on a large training set of coarse FDS runs, how
many fine mesh FDS runs are required before the emulators can reliably produce
the fine-mesh results? Transfer learning could also mitigate a another major limi-
tation of this work, which is that it assumes a specific geometric configuration.
For example, if others wanted to produce FDS results for a new compartment
that has different dimensions or ventilation configurations, perhaps initializing the
ANNSs with the parameters of the ANNs used in this work would allow for faster
training.

The experimental application of the emulators demonstrates their utility for
heat release rate inversion using relatively inexpensive measurements. However,
the HRR inversion framework appears to be much more accurate for burner fires
than pool fires (ranging from 5.8 kW-15.4 kW (11.3%-16.7 %) for the burner
tests and 5.0 kW-25.5 kW (12.1%-28.6%) for the pool fire tests). This is likely due
to the fact that the FDS model is based on a burner fire. Future work should
explore an FDS model of a pool fire and examine how different the predictions
are. One potential difference between the difference in the results is that the bur-
ner imparts upward momentum to the fire, whereas the pool fires are entirely
buoyancy driven. It is also possible that the pool fire error is due to uncertainty
surrounding the effective heat of combustion of the fuels used. The fact that the
error is more significant for the n-Hexane pool fires than for the methanol pool
fires may support this hypothesis.

Finally, the ability to package FDS physics into fast deep learning models
allows for the incorporation of higher fidelity physics into Bayesian inference tech-
niques. As an example, this is demonstrated for inferring the radiative fraction of
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a fuel. This methodology assumes that the radiative HRR is given from measure-
ments that are not reported in this work. Additional future work may involve
using heat flux measurements to estimate the radiative component of the HRR
and then using the Bayesian inference procedure to infer the total HRR. The
Bayesian inference methodology used in this work is based on uncertainties repor-
ted in the FDS Validation guide. It also models spatial correlations between ther-
mocouple measurements, which results in a 95% credible interval that is about
19% wider than that obtained assuming independence between measurements.

All of the efforts described in this work will benefit from the continued develop-
ment of compartment fire models and artificial intelligence. The utility of transfer
learning also motivates the continued development of computationally inexpensive
“reduced order” models that can serve as stepping stones for artificial intelligence
models before they learn more sophisticated, computationally expensive models.
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