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Abstract—Mobile devices such as drones and autonomous
vehicles increasingly rely on object detection (OD) through deep
neural networks (DNNs) to perform critical tasks such as navi-
gation, target-tracking and surveillance, just to name a few. Due
to their high complexity, the execution of these DNNs requires
excessive time and energy. Low-complexity object tracking (OT)
is thus used along with OD, where the latter is periodically
applied to generate “fresh” references for tracking. However,
the frames processed with OD incur large delays, which does
not comply with real-time applications requirements. Offloading
OD to edge servers can mitigate this issue, but existing work
focuses on the optimization of the offloading process in systems
where the wireless channel has a very large capacity. Herein, we
consider systems with constrained and erratic channel capacity,
and establish parallel OT (at the mobile device) and OD (at the
edge server) processes that are resilient to large OD latency. We
propose Katch-Up, a novel tracking mechanism that improves
the system resilience to excessive OD delay. We show that this
technique greatly improves the quality of the reference available
to tracking, and boosts performance up to 33%. However, while
Katch-Up significantly improves performance, it also increases
the computing load of the mobile device. Hence, we design
SmartDet, a low-complexity controller based on deep reinforce-
ment learning (DRL) that learns to achieve the right trade-off
between resource utilization and OD performance. SmartDet
takes as input highly-heterogeneous context-related information
related to the current video content and the current network
conditions to optimize frequency and type of OD offloading, as
well as Katch-Up utilization. We extensively evaluate SmartDet
on a real-world testbed composed by a JetSon Nano as mobile
device and a GTX 980 Ti as edge server, connected through
a Wi-Fi link, to collect several network-related traces, as well
as energy measurements. We consider a state-of-the-art video
dataset (ILSVRC 2015 - VID) and state-of-the-art OD models (Ef-
ficientDet 0, 2 and 4). Experimental results show that SmartDet
achieves an optimal balance between tracking performance –
mean Average Recall (mAR) and resource usage. With respect
to a baseline with full Katch-Up usage and maximum channel
usage, we still increase mAR by 4% while using 50% less of the
channel and 30% power resources associated with Katch-Up.
With respect to a fixed strategy using minimal resources, we
increase mAR by 20% while using Katch-Up on 1/3 of the
frames.

I. INTRODUCTION

Real-time object detection (OD) is a critical component of

a wide array of current and future applications and systems,

including autonomous vehicles [1] and city-monitoring [2]. In

a nutshell, OD aims at the precise identification and positioning

of objects contained in an image or a sequence of images. The

This work was supported by the Intel Corporation and the NSF grant
MLWiNS-2003237 and CNS-2134567.

outcome is a set of bounding boxes (see Fig. 2 for a graphical

example) and associated labels describing the objects.

The majority of existing frameworks leverages deep neural

networks (DNNs) to perform OD [3, 4]. However, state-of-the-

art DNNs have very large complexity and cannot be entirely

executed on mobile devices [5]. While lower-complexity

algorithms exist [6, 7], they achieve poor performance – e.g.,
measured as accuracy, recall, or precision (see Section III-A

for a definition of the metrics) – compared to state-of-the-art

models. For instance, Yolo-Lite [8] achieves a frame rate of

22 frames per second on embedded devices, but has a mean

average precision (mAP) of 12.36% on the COCO dataset

[9]. EfficientDet 0-7 [10] is a family of state-of-the-art OD

models that offer increasing performance at the price of an

increasing complexity. EfficientDet 7 achieves mean Average

Precision (mAP) of 55.1%, but leverages 52M parameters. Even

EfficientDet 0, the simplest model in the family, which achieves

33% on the COCO dataset, is 2x times more complex than

SSD-MobileNet v2: a lower-performance DNN specifically

designed for mobile platforms, which achieves mAP of 20%,

and in our experiments can provide up 6 frames per second

(fps), while significantly increasing power consumption. We

remark that pruning and quantization, two techniques widely

used to make DNN simpler, greatly degrade OD performance.

Fig. 1: Overview of SmartDet main components.

There are two main strategies to address this issue: (1) Edge
Computing: [11] the mobile device offloads the OD stream to

edge servers - compute capable devices located at the wireless

network’s edge; (2) Object Tracking: using a lower complexity

object tracker in conjunction with a high(er) complexity object
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detector. Prior work considers these two strategies in isolation,

and we contend that such approach fails to provide acceptable

performance in many settings of great relevance (see discussion

below). Our paper presents SmartDet: the first framework

to propose the use of object detection and tracking in an

edge computing setting. Notably, the composition of the two

strategies presents both unique challenges and opportunities,

which we are the first to explore in this paper.

Before introducing SmartDet, we first discuss the two

strategies mentioned above.

(1) Joint Detection and Tracking: To address the excessive

computational overhead associated with OD, object tracking

(OT) is often used in mobile computing contexts [12]. Trackers

assume temporal correlation in the sequence of images, and use

a previously computed reference to analyze a new image [13].

The idea behind OT is fairly simple; given a video, OD is

performed periodically, and its outcome serves as reference for

OT on the remaining frames. Since OT is less computationally

expensive than OD, energy consumption and computing load

are reduced [14]. However, due to constraints in the computing

power of mobile devices, the execution of OD may take

a large amount of time. We show in Section V-B that an

outdated OD reference can degrade mean Average Recall

(mAR) performance by up to 25% on the average due to

these effects, which are exacerbated in videos with highly

dynamic objects.

(2) Edge Computing: prior work considered approaches

where all the frames are processed using OD, and mobile

devices offload the streams of OD tasks to edge servers. This

partially addresses the issue of high computational complexity,

as edge servers has considerably more computing power and

energy resources compared to mobile devices. However, an

approach purely based on offloading OD has the following

drawbacks: (a) wireless channels usually have a constrained and

erratic capacity, especially in applications such as autonomous

vehicles where mobile devices are often moving. This leads

to high communication latency and large latency variations

[5, 15]; (b) frequent transfer of images consumes a large

amount of channel capacity – e.g., up to 20% of available Wi-Fi

bandwidth in our experiments – possibly resulting in channel

congestion [16]; (c) as all frames are transferred to the edge

server for analysis, each mobile device imposes a considerable

processing load to the edge server. Existing work focuses on

scenarios where the wireless link capacity is extremely large

and substantially steady (e.g., 350Mbps, and the edge servers

have – individually or collectively – high computing power

(e.g., see [17]).

In contrast with existing work, in this paper we address

the challenging scenarios where the capacity of the wireless
channel is limited and erratic, and the edge servers have
limited computing power. We propose to establish two parallel

processes: the mobile device executes OT on all frames, and

only some of the frames are sent to the edge server for OD.

This approach assigns to the mobile device a lightweight

analysis process, thus reducing the requirements on available

resources and takes advantage of the greater computing power

of edge servers, while imposing a moderate communication

and computing load. However, in order to maximize the

performance of such system there are several challenges that

need to be addressed: (1) variations in the capacity of the

channel may still result in some of the OD references to refer

to outdated frames, which may harm tracking performance;

(2) the tracking performance is greatly influenced not only by

reference delay, but by other parameters such as OD period

and accuracy – which in turn determine channel and server

load. To address the above key issues, this paper makes the

following novel contributions:

‚ We introduce a new tracking strategy, which we refer to as

Katch-Up (Section IV-A), to make the edge-mobile system

resilient to OD delay. In Katch-Up, when an object detection

outcome is received, we re-track the sequence of images starting

from the time at which the frame was generated. This technique

greatly improves the quality of the reference available to

tracking against OD delay, thus boosting performance. Fig. 2

shows two examples of pictures where Katch-Up was and

was not applied to the tracking process - the better quality of

the bounding boxes is apparent;

Fig. 2: Examples of bounding boxes produced by tracking with

and without Katch-Up (400ms object detection delay).

‚ While Katch-Up increases performance, it also increases

the computing load of the mobile device. Thus, we define

a dynamic control problem based on Deep Reinforcement

Learning (DRL) (Section IV-B), where the controller takes

as input contextual and historical information and determines

(i) Katch-Up activation, (ii) which frames are submitted

for object detection and (iii) which object detection model

is used. This formulation enables tight control of the de-

lay/energy/accuracy trade-off based on contextual information.

The use of DRL is motivated by (i) the fast temporal variations

of the system do not allow for long-term static optimization

and require tight dynamic control; (ii) the future statistics of

the system state and performance depend on past controllable

parameters (i.e., actions of the DRL agent in our framework),

so that the optimization needs to be formulated as a correlated

control sequence controlling the system’s state trajectory, rather

than a one-shot optimization of the system parameters. We
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demonstrate in Section V that performance is a function not

only of “system” variables such as delay, but also of measurable

“content” variables such as the dynamics of the objects, and

“algorithm” parameters (e.g., the object detection model).

‚ We refer to the resulting framework, illustrated in Fig. 1, as

SmartDet. We train and evaluate SmartDet on a real-world

experimental platform. Our results demonstrate that by adapting

the strategy to the context, SmartDet achieves superior

tracking performance (4% improvement) using considerably

less power (60% reduction in Katch-Up activation) and

channel and edge server resources (50% reduction) compared

to any non-adaptive strategy. With respect to a fixed strategy

without Katch-Up, SmartDet improves mAR by 20%.

Importantly, the SmartDet DRL agent uses significantly

different control strategies for different parameters of the system

(link quality) and video (target mobility), thus confirming the

need for context-aware control.

II. RELATED WORK

Thanks to its relevance in many critical real-world ap-

plications, real-time video analytics has recently attracted

significant attention. Prior work has proposed techniques

to reduce the computation burden and latency of image

analysis algorithms to match the resources and constraints

of mobile applications, including model pruning [7], advanced

compression [6] and split DNNs [18]. For the same purpose,

some recent contributions apply a joint OD and OT strategy on

video streams [13, 19]. Among others, the recent ApproxDet

framework [19] is one of the closest to our work. However,

the latter focuses on a purely local computing scenario, where

the mobile device executes both OD and OT. In this context,

ApproxDet selects which frames are processed using OD

and which using OT, as well as some computing parameters.

However, this methodology suffers from a critical issue –

frames analyzed using OD incur a large delay. As a result:

(a) the bounding boxes for those frames would become

available after an excessive amount of time to support real-

time applications; (b) during OD processing, a non-negligible

number of frames would be completely disregarded; and (c) in a

real-world setting, where the captured scene evolves during OD

analysis, the reference provided by OD would become obsolete,

and tracking performance would significantly degrade unless

slowly-changing videos were considered, as demonstrated by

our results in Section V. Noticeably, ApproxDet only considers

a subset of slowly varying videos from ILSVRC 2015 - VID
with large subjects, and only shows 95 percentile latency. In

this paper, we propose an edge computing-based solution where

OD and OT are executed in parallel on different machines.

Although this approach provides firm guarantees on bounding

boxes delay, it makes control more challenging (e.g., due to

the erratic behavior of the wireless channel), which we address

by developing a context-aware DRL controller. Furthermore,

we introduce Katch-Up to increase resiliency to OD delay.

In the class of OD-only solutions based on edge computing,

to decrease OD latency image segmentation has been explored

by recent some frameworks, including ELF [17]. The core

idea is to adapt computing based on previous OD outcomes to

optimize analysis over multiple edge servers. Specifically, ELF

produces a region proposal prediction, based on LSTM with

attention networks, that predicts the new bounding boxes given

the previous ones. Next, the frame is fragmented to distribute

the load to the different edge servers based on their load.

Thus, ELF focuses on remote OD only, while we propose the

use of dual and parallel OD-OT, which provides firm latency

guarantees. Moreover, the scenario considered in ELF centers

on load distribution across multiple edge servers over a high-

capacity channel. Conversely, the key innovation of SmartDet
is to increase resiliency to erratic and limited channel capacity,

as well as to latency variations, to support OT based on the

current video content and networking contexts.

III. REAL-TIME DISTRIBUTED VIDEO ANALYSIS

In this Section, we provide an overview of the distributed

video analysis scenario considered in this paper.

A. Background and System Model

Figure 3 depicts the edge-based object detection process

under investigation. Specifically, we consider a mobile device

capturing a sequence of images1 f1, . . . fNi , at a fixed rate

of r images per second. The general objective of the system

is to analyze the images to detect objects. Specifically, each

image fi is associated with a vector of object descriptors

Oi“pb1, l1, . . . , bNi
, lNi

qi, where bj and lj are respectively the

bounding boxes enclosing the j-th object in the image and its

label. The bounding box is defined as the minimum rectangle

enclosing all the pixels of an object, and the label is an integer

corresponding to a class describing the nature of the object

in a finite set. We note that the number of objects Ni in the

image fi is a function of the image itself.

Fig. 3: Object detection (OD) in edge-based systems.

We denote as Oi the vector containing the reference ground

truth. The system extracts an approximation Ôi of Oi using the

object detection function φp¨q, i.e., Ôi“φpfiq. The quality of

the approximation is defined by metrics such as mean Average

Precision (mAP) or mean Average Recall (mAR). These metrics

evaluate the quality of the bounding boxes generated by the

algorithm, as well as their classification. Henceforth, we will

use mAR to measure the ability of our approach to recognize

targets. This metric is based on recall, that is, the normalized

number of targets correctly labeled in a single frame with an

1 In this paper, we will use the words image and frame interchangeably.
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intersection over union (defined as the intersection area of the

ground truth and predicted bounding boxes divided by their

union area) larger than 0.5. To compute mAR, the recall is

averaged over a whole video or a portion of it.

We consider deep neural networks (DNNs) for object

detection (OD), which are the de-facto new standard to

perform object detection in real-world applications. Many

of these networks are categorized in families of networks:

CenterNet Hourglass [20], SSD Resnet [21], Faster RCNN

Resnet, Yolo [8], just to name a few. A significant number

of these architectures are scalable, which creates a number

of DNNs that have performance proportional to their size.

However, the complexity of most of these models is beyond the

capabilities of current mobile devices. Even relatively powerful

embedded computers such as the NVIDIA Jetson Nano we use

in this paper cannot execute even medium size DNN models for

object detection due to memory constraints. Other models are

supported, but their execution requires an excessive time and

significantly increases power consumption. We report specific

values in Section V Table 1.

We then take a joint OD and object tracking (OT) approach,

and define two distinct functions for the estimation of Ôi.

Formally, in addition to the OD function Ôi“σodpfiq, we

define the OT function as Ôi“σotpÔi´1, fiq. Thus, σot takes

as input the current image as well as the estimated object

descriptors associated with the previous image to leverage

temporal correlation in the image stream. Different types of

OT algorithms have been proposed. Some of these methods

are based on features extraction algorithms [22] (such as

Histogram of Oriented Gradients) or deep architectures (using

for example siamese networks, resulting in algorithms such as

GOTURN [23]). Other algorithms are based on optical flow,

using classical techniques such as the Lucas-Kanade point

tracking. Among these, MedianFlow [24] takes the median of

flow vectors generated to predict where the new location of

the bounding box. In this paper, we use MedianFlow due to

its low-complexity, which satisfies the latency and resource

constraints which characterize real-time applications.

Critically, OT algorithms rely not only on a good estimate of

the object descriptors associated with the previous image, but
also on a limited change in the image. Due to the nature of these

algorithms, their performance is inversely proportional to the

rate with which the video changes. Expanding the neighboring

region where to look for a matching set of features (extracted

with DNNs or HOGs or macro-blocks of pixels) to follow fast

moving objects results in higher uncertainty and consequently

poorer tracking performance. Furthermore, error accumulation

and consequent target instability have been well documented

[19, 25]. For these reasons, OD is periodically executed to

“reset” the bounding boxes by providing a new and independent

reference, which is then sequentially updated using OT as new

images are acquired [14]. The OT algorithm we adopted is

orders of magnitude less complex compared to OD [14]. On

the other hand, OD-designated frames still incur a large latency.

As a result, in traditional approaches such as ApproxDet [19],

where the mobile device executes both OD and OT, tracking is

halted while waiting for the outcome of object detection. Thus,

either the incoming frames during this time are discarded, or

they are buffered and processed with a larger accumulated

delay. We note that in both cases the correlation between the

OD reference and the images processed with OT decreases

due to the time lag.

B. Edge Offloading of Object Detection

Our core idea is to divide the video analysis into two

parallel yet intermingled processes: object tracking executed

locally at the mobile device on all frames, and object detection
executed remotely at the edge server on a subset of frames

EĎt0, 1, . . .u. The key advantages of this strategy are the

following: (i) the edge server has a larger computing power

compared to the mobile device, so that the execution time of

object detection is reduced, (ii) the two processes can be fully

executed in parallel without sharing resources, and (iii) the

overall energy consumption at the mobile device is reduced.

However, offloading the execution of object detection to the

edge server requires the transportation of the image to be

analyzed over a wireless link. In many real-world settings, the

channel capacity is constrained and erratic (e.g., autonomous

vehicles, millimeter wave communications, etc.). Moreover,

offloading may result in channel congestion, thus increasing

delay and amplifying data rate instability. Thus, it becomes

necessary to parsimoniously send frames to the edge server.

Let us denote with Δod
i , iPE , the total time from the capture

of the image i to the reception of the vector Ôod
i when the frame

is sent to the edge server. Δod
i is the sum of communication

time and computing time. The former is a function of the

perceived data rate and the number of bytes used to represent

the image. The latter is a function of the OD DNN model

used at the edge server and its computing power. Both delay

components are time-varying as they depend on channel and

system parameters. We denote as Δot
i the time from the

generation of the frame i to the availability of the vector

Ôot
i . Due to the low complexity of the OT algorithm we adopt,

we assume that the time Δot
i is fixed and smaller than the

inter-frame generation 1{r. We note that as object tracking is

applied to all the images, an estimate of the bounding boxes

for all the frames is readily available to the mobile device.

Consider a frame i P E , which is both processed locally

using OT and sent to the edge server for OD. In a short amount

of time, Ôot
i becomes available as OT is executed using one of

the available vectors Ôi´1. Then, Ôot
i can be used as reference

for the successive frame and so on. When Ôod
i from OD is

received, the bounding boxes and labels are used as reference

for the OT function σotp¨q applied to frame i`rΔod
i ˆrs. Since

the OT reference is outdated, the tracking performance may

degrade. While it is possible to continue using the reference

obtained from object tracking on the previous frame, due to

error accumulation in object tracking, a periodic refresh is

needed. In Section V, we characterize this degradation as a

function of key video and system parameters.
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IV. THE SMARTDET FRAMEWORK

Let us now present the two key contributions of this paper:

(i) Katch-Up: a methodology to make the distributed video

analysis system less sensitive to object detection delay, and (ii)
SmartDet, a real-time control engine to optimize the tradeoff

between performance and resource usage. The schematics of

SmartDet are depicted in Fig. 4. The core of SmartDet
is a Deep Reinforcement Learning (DRL) agent that controls

which images are sent to the edge server for OD and which

model is used to analyze them, as well as whether Katch-Up
is used or not. To support these decisions, images are internally

routed to the main modules: object tracker, Katch-Up (and

Katch-Up buffer) and the transmission interface. The edge

server receives the frames, and analyze them using the OD

model indicated by the DRL controller, then returning the

estimated bounding boxes and labels to the mobile device. A

critical module of SmartDet is the state extractor, that builds

state features from variables, parameters and data received by

the other modules.

DRL

Ch. Quality 

Tgt Mob.

…

Latency

Frame 
Acquisition

Object 
TrackingKatch-UP

Object 
Detection

TX 
Interface

TX 
Interface

Buffer

Mobile Device

Edge Server

Wireless 
Channel

Features Actions

Fig. 4: Main components of SmartDet. At the mobile device,

the DRL module (state extraction and controller) determines

which frames are sent for OD and what model is used for

their analysis, and the activation of Katch-Up. To support

these actions, frames are internally routed to the different

modules (object tracker, Katch-Up and Katch-Up buffer

and TX interface) to support these functions. The edge server

performs object detection on the received frames using the

model indicated by the DRL controller.

A. The Katch-Up Smart Tracking Algorithm

As mentioned earlier, one of the main issues of OD edge

offloading is the feeding of outdated references to the OT

due to the communication and computing delay. As a result,

applying OT algorithms to frames that might substantially

differ will entail large errors due to the high uncertainty of

the transposing vectors [24]. To mitigate the effect described

above, we propose Katch-Up. Our intuition is simple yet

effective: when a vector Ôod
i from OD applied to frame i

is received, the mobile device re-executes the tracker on the

frames starting i ` 1 until the process “catches up” with the

primary tracking process. To make an example (represented

in Fig. 5), assume frame i is sent to the edge server and the

corresponding reference Ôod
i is received right before frame

i ` n is acquired. During this time, OT is applied to frames

from i to i ` n ´ 1 based on the reference available at the

time (i.e., the outcome of tracking applied to the previous

frame based on a chain of tracking started from an older object

detection reference). In Katch-Up, when Ôod
i is received the

tracking process is duplicated. Process 1 continues to analyze

incoming frames i ` n, i ` n ` 1, i ` n ` 2, . . . using the

reference vector Ôot
j´1 to perform tracking on frame j. Process

2 restarts the tracking of frames i ` 1, i ` 2, . . . taking Ôod
i as

a starting point to build the sequence Ôot
i`1, Ô

ot
i`2, . . .. Process

2 is executed as the maximum possible speed, meaning that

tracking is continuous, rather than based on the frame arrival

timing. Thus, Process 2 proceeds faster than Process 1, and

eventually catches up with the latter one. Meaning, Process 2

and Process 1 generate a bounding box vector with the same

index. At that point, Process 2 is terminated, and Process 1

continues using as reference the latest outcome of Process 2.

OD
(a) No Katch-UP

i i+n

Tracking with outdated 
OD reference

Tracking with OD 
reference from frame i 

(n frame old) 

(b) Katch-UP

Process 1

Re-tracking of frames i to i+n-1 
using OD reference from frame i

Tracking with OD 
reference from frame i 

“retracked”

Process 2

OD

i i+n

Process 1

Fig. 5: Tracking process with and without Katch-Up referring

to the explanation in Section IV-A.

The key advantage of Katch-Up is that the sequence

Ôot
i`1, Ô

ot
i`2, . . . generated by Process 2 is more accurate

compared to that generated by Process 1, as the former is

based on a more recent reference from object detection. Thus,

Katch-Up boosts tracking performance (as demonstrated in

Section V), but also increases the computing load at the mobile

device, as well as memory usage as some already processed

frames need to be buffered.
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B. Real-Time DRL-Based Control in SmartDet

Motivation. The system performance in terms of la-

tency/accuracy/energy is determined by several factors and

parameters, including: (i) whether or not to activate Katch-Up,

(ii) how many and which frames are to be sent to the edge

server for object detection, and (iii) which object detection

model to use. For example, if Katch-Up is active, the quality

of tracking improves, but energy consumption at the mobile

device increases. If more frames are sent to the edge server,

then tracking has more frequent references, but channel load –

and thus possibly communication latency – increases as well

as server load – and thus possibly computing latency. If a more

complex model is used, then the reference quality for tracking

improves, but so does the latency to receive the bounding

boxes. Intuitively, the optimal point is determined by several

variables. For instance, if the channel has a large capacity, then

transmitting more frames will not significantly affect overall

delay, while possibly improving tracking. Moreover, if the

communication delay is small, then the use of a more complex

model, with a larger execution time, may be advantageous.

Conversely, if the channel capacity is small, then using a less

complex model may result in a tolerable overall latency. Notice

that different object detection models take as input images of

different size, and may be more or less sensitive to compression.

In other words, there might be a dependency between Δod
i and

the model used and desired accuracy. Importantly, these trade-

offs are greatly influenced by the parameters of the video itself.

Moreover, the mobility of the targets in the video influences

the optimal parameter choice, where fast changes may require

low-latency, more frequent, object detection These tradeoffs

are detailed in Section V. The decisions in (i)–(iii) will become

the knobs used by SmartDet to control the tradeoff between

performance and resource usage.

Why DRL? We formulate our decision making process as a

dynamic control problem, where a controller selects real-time

actions at a fine temporal granularity based on the perceived

state of the system and context. This approach is motivated

by the time-varying nature of the system we consider, as well

as by the correlation between current decisions and future

states of the system. For instance, the period determines the

sampling instants of the state, as well as how outdated the

reference from OD is when applying OT to future frames.

Thus, a reinforcement learning approach is the most suitable to

solve our problem. Moreover, we observe that the state space

is extensive, and the features are heterogeneous in nature,

where some of them are continuous. A traditional “tabular”

Q-Learning approach in practice would require the quantization

of all features to generate a discrete space. The resulting state

space would be either too large to handle using direct recursive

estimation, or poorly representative. Therefore, a Deep Q-

Learning approach is the natural choice for our problem.

DRL Algorithm. In DRL, the controller selects an action

uPU based on the current state sPS, where U and S are the

action and state space, respectively. We synchronize the state

update and action selection with the generation of images that

are sent to the edge server for object detection. We index these

instants with t“1, 2, . . ., and denote the state and action at time

t as st and ut, respectively. We adopt a Q-Learning formulation

and define the function ωp¨q as Qput`1, st`1q“ωpstq, where

Qput`1, st`1q “ Est`1|st,ut

“
Ert`1|st`1,ut,st rrt`1|st`1, ut, st|s

‰

` γmax
u1

Est`1|st,ut

“
Qpst`1, u

1q‰
, (1)

and rt is the reward accrued at time t. Thus, the Q-value

Qps, uq captures the long-term – discounted – reward associated

with taking action u in state s. We refer the reader to [26, 27]

for a comprehensive discussion on DRL.

In the following, we define the action space, state space,

cost function and network architecture of the DRL agent. We

remark that the time granularity of state update and decision

making is not the same as that of frame generation, as decisions

are made only when a frame is sent for object detection. This

also reduces the computation burden to the mobile device.

1) Action Space: We define the action uptq as the vector

pkptq, pptq,mptqq, where (a) kptqPt0, 1u determines whether

Katch-Up will be used when the outcome Ôod
it

is received; (b)

pptq P t1, . . . , P u is a variable controlling the object detection

period, that is, the number of frames until the next frame is

sent to the edge server for object detection; (c) the variable

mptqPt0, . . . ,Mu determines which model is used for object

detection of the next frame sent.

2) Reward Function: We define the reward as function of

the state and action, and not of the temporal index t. Rewards

refer to sequences of frames in between OD. Next, we define the

reward function Rps, uq as the composition of the following

metrics: (i) mAR (R1ps, uq): counts the percentage of the

targets we correctly track with respect to the total number

of targets; (ii) KU usage (R2ps, uq): is the fraction of frames

processed using Katch-Up, (iii) Period (R3ps, uq): is the

number of frames until the next scheduled OD (normalized

to the maximum period). An exhaustive description is not

provided due to space constraints. Note that we do not include

OD latency directly in the reward function as it is not a

direct application metric. Indeed, the latency perceived by

the application is that of OT. However, OD latency influences

tracking performance, and thus mAR. We then define Rps, uq
as the weighted sum

Rps, uq “ α1R1ps, uq ` α2R2ps, uq ` α3R3ps, uq. (2)

3) State Space: The state sPS is designed to provide

information to the controller to make decisions on the action

to be selected. At a high level, to estimate the Q function, the

controller needs to predict some characteristics of the video

and surrounding system, and connect them to a reward given

the action. To this purpose, the DNN ω embedded in the

controller implicitly builds a model for the temporal evolution

of parameters such as video characteristics and channel. Next,

we include in the state a set of features over a window of

N past decision instants. That is, at a decision instant t, we

include these features computed at t´N`1, t´N`2, . . . , t.
We can group these features as follows:
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(a) Contextual: this includes image size and the center-to-center

distance between targets as a proxy on how quickly objects

are moving in the frame;

(b) Self-awareness: the latency incurred by the frames sent for

object detection, KU usage (same as in the reward computation),

and the selected action vector;

(c) Self-evaluation: Intersection over Union (IoU) between the

running tracking and the received detection.

Examples of “correlations” that the agent will need to learn

by experience include the temporal correlation of video change

rate and OD latency. Note that the latter depends not only on

the time varying channel capacity and server load, but also on

the model used for OD, so that the agent needs to implicitly
learn model-to-model latency maps. The agent also needs to

learn the non-trivial relationship between OD, Katch-Up, the
(future) latency and video parameters and mAR.

Fig. 6: Deep Q Neural network with replay buffer architecture.

4) Implementation details: We use a network composed of

5 layers of 64, fully connected, ReLu activated nodes. The

low-complexity of the network easily fits the constraints of

mobile devices. In the platform we consider, the network can be

executed at up to 10Hz increasing the power consumption by

only ă 1%. We adopt a double Deep-Q Learning structure (see

Fig. 6) to train the network [28], where the Q-value network

learns the relationship between the input state and the output

Q-values (one for each action) by using the target network for

the Qpst`1, uq value, and Eq. 1 to combine it with the reward.

To balance exploration-exploitation, we use the, effective and

stable, ε-greedy scheme [26].

V. EXPERIMENTAL RESULTS

We describe our experimental setup and dataset generation

process in Section V-A. Then, we discuss our experimental

trade-off analysis in Section V-B. Finally, we evaluate and

compare SmartDet against baselines in Section V-C.

A. Experimental Setup and Data Collection

All the experiments were performed indoor in a campus

setting. As mobile device, we use an NVIDIA Jetson Nano,

quad-core ARM 1.9GHz CPU and mounting a 128-core GPU

operating at 0.95GHz, with performance comparable to current

generation mobile phones and small autonomous vehicles [29].

As edge server, we use a ThinkPad P72 with hexa-core CPU

Model/Server type Laptop [s] Server [s] Avg. Image Size [kB]
D0 0.12 0.089 52.15
D1 0.215 0.11 69.8
D2 0.33 0.16 93.3
D3 0.59 0.255 116.3
D4 1.08 0.4 138.8

TABLE I: Execution time and image size for the various

EfficientDet models. Processing units available at Laptop:

Quadro P600; and at Server: GTX 980 Ti.

operating up to 4.3GHz, 32GB of memory and NVIDIA GPU

Quadro P600 that has 384 cores operating at 1.45GHz, and a

custom server, mounting 6 core CPU running up to 4.00 GHz,

32 GB of RAM, GPU GTX 980 Ti with 2816 cores at 1.4GHz.

We set up the laptop in hotspot mode, using its Wireless-AC

9560 card, to which the mobile device connects using Realtek

WiFi dongle supporting IEEE 802.11n.

Fig. 7: Representation of the experimental environment. Mobile

device: NVidia Jetson Nano; Server: ThinkPad P72 and Server

with GTX 980Ti GPU.

We perform our evaluation on ILSVRC2015-VID dataset,

which we send over the network in order to collect the network

latency in different link quality conditions, and resizing images

corresponding to the optimal input of each object detection.

Fig. 7 shows the topologies used in the experiments. We load

the EfficientDet 0, 2, 4 models at the server, and associate

them with control actions. We adopt MedianFlow as the object

tracking algorithm to allow the mobile device to execute

tracking in real time. In our preliminary evaluation, the DNN-

based tracker GOTURN and CSRT (a common alternative)

would achieve a frame rate below 2fps and 3fps, respectively.
Table I reports the execution time of the various EfficientDet

models on the laptop and server, and their input image size. We

can see a progressive increase of execution time as the model’s

complexity increases. On the Laptop, EfficientDet 0 takes 0.12s,

whereas EfficientDet 4 takes almost 10 times as much (1.08s).

In the server, besides the lower execution times, we observe a

less steep progression, where the execution of EfficientDet 4

takes about 4 times longer than that of EfficientDet 0.
We evaluated the instantaneous power consumption (on

the Jetson Nano) of the OT algorithm when the Katch-Up
is off and on. In the former case, the power consump-

tion is 3512 ˘ 242mW , whereas in the latter increases to
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Fig. 8: mAR as a function of OD latency for different periods (0.5, 1, 1.5s) for different OD models. Katch-Up OFF.
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Fig. 9: mAR as a function of OD latency for different periods (0.5, 1, 1.5s) for different OD models. Katch-Up ON.

3939 ˘ 459mW . Thus, the mAR improvement granted by

the Katch-Up technique comes at the price of an increase

of power consumption of about 11%. It is then critical to

activate the Katch-Up only when necessary. We standardize

the three components of the reward function so that all changes

in the actions’ outcome across the reward metrics are similarly

reflected in the feedback signal (as defined in Eq. 2).

B. Tradeoff and Trends Analysis

We first analyze the major trends in the system. The objective

is to illustrate the key tradeoffs that will drive the controller

actions. Fig. 8 shows the mAR as a function of the OD latency

when the Katch-Up is inactive. The different lines correspond

to various EfficientDet models (0, 2 and 4) and the ground

truth. Here, the latency is abstracted from channel and system

parameters. The different plots correspond to different OD

periods (0.5, 1 and 1.5 seconds). The degradation of mAR

as the latency increases is apparent: in the system without

Katch-Up, even when the ground truth is available for a

large number of frames (1 every 5), the mAR rapidly goes

from 8.5 to 6.5 (23% decrease) as the latency goes from 250ms

to 1500ms. A similar decrease is observed when EfficientDet

models are used, and for different periods. Note that executing

EfficientDet 2, a medium complexity model in the considered

set, takes 0.33 and 0.16s on the laptop and server, respectively,

so that a very small latency is not expected even in ideal channel

conditions. We notice that in general a larger period – that is,

fewer frames are sent to the edge server for object detection –

results in a less pronounced, performance degradation.
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(b) Katch-Up ON

Fig. 10: mAR as a function of object detection latency for

different video motion speeds. Period: 1500ms, EffDet: 2,

mAR is normalized to object detection only performance.

Fig. 9 shows the same trends when Katch-Up is ON.

Notably, besides increasing mAR in general, the Katch-Up
makes the mAR much less sensitive to latency. When the

latency is above 0.5 seconds, the superior performance of

Katch-Up is apparent. For a latency of 1500ms and period

0.5, the mAR goes from 0.5 to 0.7 when EfficientDet 0 or

2 is used, from 0.5 to 0.77 when EfficientDet 4 is used, and

from 0.6 to 0.8 when using the ground truth. Thus, as the

latency of object detection increases, the controller can resort

to Katch-Up to maintain a high mAR. We note that while

the difference between the various models is minimal when

the Katch-Up is off, the activation of Katch-Up makes the

difference between EfficientDet 0/2 and 4 perceivable, and

the controller may leverage this difference when selecting the

video analysis configuration.

We now analyze the effect of video parameters on mAR.

Fig. 10 shows the mAR as a function of the OD latency for
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Fig. 11: mAR as a function of the model for different WiFi

quality (Low=20, High=44), Katch-Up (ON, OFF), and Server

(Laptop and Server).

different video change rate, which we measure as the change

in position of the targets, when the Katch-Up is off (a) and

on (b). In the figure, EfficientDet 2 is used, and the period is

set to 1500ms. Here, we classify videos as slow, fast, fastest
corresponding to change of position of ă 5% ă 20% or more

than 20% of the frame width. The impact of motion parameters

on mAR is perceivable. For Katch-Up off, at 0.5s latency

the three classes have mAR of 0.92, 0.6 and 0.5, respectively.

The difference increases with the latency. We can observe

how Katch-Up increases the performance and makes it less

sensitive to latency for all the classes. These results demonstrate

how control needs to take into account video parameters to

balance energy expense and performance.

We now analyze the trends using real-world hardware and

channel capacity configurations. Fig. 11 depicts the mAR

as a function of the EfficienDet Model for low and high

channel index of the WiFi link connecting the mobile device

to the edge server and Katch-Up on and off. In (a) and

(b), we use the laptop and the server as edge server. We can

see how that as the complexity of the model, and thus its

execution time, increases, the configuration with Katch-Up
off suffers a degradation of mAR despite the improved quality

of detection. This is due to the sensitivity of the system to

latency. Conversely, when Katch-Up is on, the performance

increases when the transitioning from EfficienDet 0 to 2, and

then slightly decreases from 2 to 4. Notably, we see that

Katch-Up makes the performance less sensitive to channel

quality. When the server is used instead of the laptop, the

smaller execution time makes the use of larger models more

advantageous in both cases. However, we see how very large

models (EfficientDet 3 and 4) still suffer a performance loss

when the Katch-Up is off, while they maximize performance

when the Katch-Up is on. These results further demonstrate

how this selection needs to be based on features of the system

in addition to characteristics of the video itself.

C. SmartDet Evaluation

We now show the performance and policy structure of the

DRL agent we designed and trained. In the plots, we set α “
rα1, α2, α3s “ r0.1, 0.2, 0.7s. Fig. 12a depicts mAR, index

of channel/edge utilization (where 0, 0.5 and 1 correspond to

period of 15, 10, 5), Katch-Up usage (expressed as percentage

of frames to which Katch-Up is applied) and normalized

model used (EffDet 0, 2, 4 respectively mapped to 0, 0.5, 1) of

SmartDet against 2 fixed configurations. The first fixed policy

(Policy 1) maximizes resource usage by applying Katch-Up
on all the frames and setting the period to its minimum value.

The fixed second policy (Policy 2) completely deactivates

Katch-Up, and sets the period to its maximum value, thus

minimizing resource usage. Both policies use EfficientDet 4 to

maximize OD accuracy. In summary, by learning to dynamically

adapt local analysis and offloading parameters to the current

state, SmartDet achieves optimally controls resource usage

while maximizing mAR. With respect to Policy 1, we still

increase mAR by 4% while applying Katch-Up to only 1/3

of the frames and doubling the period. With respect to Policy

2, we increase mAR by 20%, while increasing Katch-Up
usage to 1/3 and channel usage by 1/3.

We now analyze the decision making of the agent. In

Fig. 12b, we show the mAR performance and channel usage,

Katch-Up activation and used model for different Wi-Fi

channel quality index. First, we observe that mAR increases

with channel quality as expected, and is extremely stable from

low to high channel quality. Notably, the SmartDet agent

uses different strategies for different channel qualities, thus

demonstrating how the optimal parameter configuration needs

to take into account contextual variables. As expected, as the

channel improves the agent activates Katch-Up less often, due

to the decreased OD latency. We note that channel/edge usage

and model is non-obvious. Indeed, for low and high channel

index the agent selects simpler – and thus faster – EfficientDet

models, while sending more frames to the edge server for OD.

This behaviour exposes some of the interdependencies between

the different metrics. Notice how using higher EfficientDet

requires higher Katch-Up to be performed (more complex

OD has higher transmission and computation delay), and forces

the agent, who is rewarded with higher mAR, to offload less

frequently.

Fig. 12c shows the metrics as a function of the target

movement. Again, we see how this parameter influences

the decision made by the agent, and how the agent is

capable of making mAR uniform across different classes

of videos. When the video has slow target movements, the

SmartDet agent uses less channel/edge resources, activates

Katch-Up less often and uses a more complex, and thus

slow, EfficientDet model compared to portions of videos where

targets move fast. This strategy privileges fast OD reference

turnout accepting a reference quality degradation as tracking

would not be able to otherwise follow the fast targets. The more

frequent Katch-Up activation further improves the “freshness”

of the reference. When the targets have medium mobility,

the SmartDet agent uses a different strategy, using more

complex EfficientDet models applied to fewer frames while

compensating activating more often Katch-Up.

VI. CONCLUSIONS

This paper focused on edge-assisted real-time OT at mobile

devices, where the edge server periodically performs OD to

generate references for the tracker. In this context, the key issues
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Fig. 12: (a) mAR performance and resource usage of SmartDet against fixed strategies. (b) mAR performance and resource

usage of SmartDet in different link conditions. (c) mAR performance and resource usage of SmartDet for video sections

with different target mobility.

are (i) remote OD may have a large and erratic latency due

to channel capacity and server limitations, and (i) the system

and characteristics of the video are time-varying. To address

these issues, we made two main innovations: (i) we proposed

Katch-Up, a tracking strategy that boosts performance while

sacrificing computing load and energy at the mobile device;

(ii) a DRL agent which dynamically controls tracking and

offloading parameters to adapt image analysis to time-varying

characteristics of the video and system variables. Results on

a real-world experimental platform demonstrate the ability of

the system to provide optimal tracking performance while

parsimoniously using channel and energy resources.
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