
DChannel: Accelerating Mobile Applications With
Parallel High-bandwidth and Low-latency Channels

William Sentosa•, Balakrishnan Chandrasekaran†, P. Brighten Godfrey•?, Haitham Hassanieh⇧, Bruce Maggs‡

•UIUC, †VU Amsterdam, ?VMware, ⇧EPFL, ‡Duke University and Emerald Innovations

Abstract
Interactive mobile applications like web browsing and gam-

ing are known to benefit significantly from low latency net-
working, as applications communicate with cloud servers and
other users’ devices. Emerging mobile channel standards have
not met these needs: 5G’s general-purpose eMBB channel
has much higher bandwidth than 4G but empirically offers
little improvement for common latency-sensitive applications,
while its ultra-low-latency URLLC channel is targeted at only
specific applications with very low bandwidth requirements.

We explore a different direction for wireless channel de-
sign to address the fundamental bandwidth-latency tradeoff:
utilizing two channels – one high bandwidth, one low la-
tency – simultaneously to improve performance of common
Internet applications. We design DChannel, a fine-grained
packet-steering scheme that takes advantage of these parallel
channels to transparently improve application performance.
With 5G channels, our trace-driven and live network experi-
ments show that even though URLLC offers just 1% of the
bandwidth of eMBB, using both channels can improve web
page load time and responsiveness of common mobile apps by
16-40% compared to using exclusively eMBB. This approach
may provide service providers important incentives to make
low latency channels available for widespread use.

1 Introduction
Low latency is critical to interactive applications such as web
browsing, virtual and augmented reality, and cloud gaming.
For web applications, even an increase of 100 ms latency can
result in as much as 1% revenue loss, as noted by Amazon [21].
Emerging VR, AR, and cloud gaming applications also rely
on low latency to deliver a seamless user experience. For
instance, VR requires 20 ms or lower latency to avoid any
simulator sickness [19].

Current mobile broadband, serving general Internet appli-
cations such as web browsing and video streaming, have not
yet delivered consistent low latency performance, in part due
to the inherent trade-off between latency and bandwidth [22].
One approach is to provide two separate channels (or ser-
vices) – one optimizing for bandwidth, the other optimizing
for latency – with different types of user applications assigned
to them. 5G NR follows this pattern with its enhanced mo-
bile broadband (eMBB) and ultra-reliable and low-latency
communication (URLLC) channels. eMBB, which serves
general-purpose Internet use, is heavily focused on delivering
gigabit bandwidth. This channel will be useful for streaming

media but offers little to no improvement for latency-sensitive
applications, such as web browsing [34, 35, 50]. Experimen-
tally, web page load time in existing 5G deployments, even in
close-to-ideal circumstances (a stationary device and a chan-
nel with little utilization), is similar to 4G for pages smaller
than 3 MB in size and about 19% faster than 4G for pages
larger than 3 MB [34]. This is due to 5G eMBB having 28 ms
or larger latency, broadly similar to 4G [34]. Our measure-
ments of 5G mmWave showed similar results, at around 22
ms in ideal conditions.

Meanwhile, 5G URLLC promises an exciting capability
of very low latency, in the range of 2 to 10 ms [6], but com-
promises severely on bandwidth, making it unsuitable for
common mobile applications. Our experiments emulating
web browsing (the most widely used mobile application [44],
and far from the most bandwidth-intensive application) over
URLLC with 2 Mbps bandwidth show web page load times
would be 5.87⇥ worse than with eMBB. Hence, neither using
URLLC alone nor using eMBB alone provides good perfor-
mance. As the latency-bandwidth trade-off is fundamental,
this separation between a high bandwidth channel (HBC)
and a low latency channel (LLC) is likely to persist; 6G, for
example, is also expected to include both [54].

We believe, however, that the availability of two channels
offers an opportunity to deal with the fundamental latency-
bandwidth tradeoff in a new way, beyond simple static as-
signment of an application to a single channel. Specifically,
we argue that by using high bandwidth and low latency chan-
nels in parallel on mobile devices, significant performance
and user experience improvements are possible for latency-
sensitive applications. Here, we explore this hypothesis for
the case of web browsing and web-based mobile applications.

Mapping an application’s traffic to HBC and LLC is diffi-
cult since we have to use LLC’s bandwidth very selectively.
Indeed, the main deployed transport-layer mechanism to com-
bine multiple channels, MPTCP [49], assumes two interfaces
that are each of significant bandwidth, with the goal of ag-
gregating that bandwidth or supporting failover. LLC’s band-
width, however, is a rounding error compared to HBC’s. Other
works – particularly Socket Intents [42] and TAPS [38] – ex-
ploit multi-access connectivity through application-level in-
put, which we prefer to avoid to ease deployment and expand
relevance to other applications in the future; therefore we
expect new mechanisms are necessary.

To solve these problems, we design DChannel, a system
that leverages parallel channels to improve the performance
of mobile applications. DChannel comprises two modules



running at either end of the channels – namely, in the mobile
device OS and in a gateway device operated by the service
provider. Central to the approach is a packet steering scheme
that operates at the network layer (i.e., IP packets) without
requiring any application input. Such fine-grained, per-packet
decisions (as opposed to, for example, HTTP object-level
steering) are key to making effective use of the limited LLC
bandwidth. To decide which packets are worth accelerating,
since LLC bandwidth is extremely limited, DChannel treats
the channel as an expensive resource and calculates the ben-
efit and cost of utilizing the LLC for each packet. Finally,
since the parallel channels could occasionally confuse the
transport layer with out-of-order delivery, DChannel employs
a reordering buffer in the mobile device and gateway.

To evaluate our design with a concrete scenario, we lever-
age 5G’s eMBB and URLLC as our HBC and LLC. We eval-
uate the benefit of DChannel in our experimental testbed (§4).
Our testbed includes a prototype that can capture and steer
application traffic, and a high-fidelity trace-driven network
emulator that emulates cellular network latency variability
and delay caused by radio resource control (RRC) state tran-
sitions [41]. We gather two types of real 5G eMBB traces –
mmWave and lowband – in three different scenarios: station-
ary, low mobility, and high mobility. Our evaluations cover
popular web applications such as web browsing and Android
mobile applications. Using the testbed, we evaluate our packet
steering scheme and compare it with prior approaches such
as MPTCP [2] and ASAP [29]. We also evaluate DChannel
in live 5G eMBB networks. Our key findings are as follows:

• DChannel, which requires little per-connection state and
no application knowledge, yields superior performance
compared to the other evaluated schemes—object-level
steering, static packet-size-based steering, as well as
prior work, MPTCP and ASAP [29], which used multiple
channels in other settings.

• Compared with exclusively utilizing the eMBB, allo-
cating a modest bandwidth of 2 Mbps to URLLC al-
lows DChannel to improve web page load time (PLT).
Under conditions that are ideal for eMBB (a stationary
client with a line of sight to the base station and full
signal strength), DChannel reduces PLT by 20% and
33% in 5G mmWave and low-band settings, respectively.
Under more challenging mobile conditions, DChannel
improves PLT by 37% and 42% in 5G mmWave and
low-band, respectively.

• In addition to web browsing, we evaluated three Android
mobile apps in a live environment and find DChannel
improves apps responsiveness by 16% on average.

• Somewhat surprisingly, DChannel improves sustained
throughput in our mobile 5G setting by roughly 10% – a
useful side benefit of accelerating the TCP control loop
in dynamic environments.

Finally, we discuss deployment strategies, challenges, and
future opportunities. We believe our basic techniques can
apply to a variety of latency-sensitive applications, and open
new opportunities for app developers and cellular providers.

2 Background and Motivation
2.1 Channels in 5G
5G wireless networks are designed to support applications
with very different service level requirements. The 5G stan-
dard known as New Radio (NR) specifies three service mod-
els: (1) enhanced mobile broadband (eMBB) for standard
high-data-rate Internet and mobile connectivity, (2) ultra-
reliable low-latency communication (URLLC) for mission-
critical and latency-sensitive applications, and (3) massive
machine-type communications (mMTC) for large-scale IoT
deployments. We describe eMBB and URLLC in more depth.

(1) Enhanced Mobile Broadband: This service focuses on
providing high-data-rate mobile access. It is considered an
upgrade to 4G mobile broadband that will satisfy the ever-
increasing demand for mobile and wireless data. 5G eMBB
can operate either at the low-frequency bands below 6 GHz
which we refer to as low-band or the high-frequency bands
around 28 GHz/39 GHz which we refer to as millimeter wave
(mmWave). The mmWave bands are a key new technology in
5G as they offer 10⇥ the bandwidth that is currently available
to 4G LTE networks [4], enabling user throughput of around
1 Gbps [15].

Providers like Verizon, AT&T, and T-Mobile have already
deployed both the low-band and mmWave 5G in several major
US cities, including Chicago, Atlanta, New York, and Los An-
geles [9–11, 34]. A recent measurement study on commercial
mmWave 5G networks in the US shows TCP throughput of
up to 2 Gbps for download and 60 Mbps for upload, with a
mean RTT of 28 ms measured between the client and the first-
hop edge server right outside the cellular network core [34].
The measurements were performed, however, in conditions
favorable to mmWave such as line-of-sight, no mobility, and
few clients.

eMBB latency is expected to be higher as the number of
users increases and as users move. This is because radio
access networks (RANs) operating in the mmWave bands
use very directional beams to compensate for high signal
attenuation, making them vulnerable to blockage and mobil-
ity. High data rate communication is possible only when the
RAN access point aligns its beam towards the user [27]. This
process, commonly referred to as beam alignment, can intro-
duce significant delays, especially when users are moving,
which requires the access point to keep realigning the beam
of each user [23, 27]. Furthermore, the user or other obstacles
can easily block the beam, leading to unreliable and incon-
sistent performance both in terms of changes in throughput
and highly variable RTT [3, 32, 34]. Our own experiments in
Chicago also confirm this and show that the RTT can vary sig-



nificantly even for stationary clients and is further exacerbated
while walking or driving. This is because 5G eMBB mainly
optimizes for high data rates, focusing less on reliability and
low latency.

(2) Ultra-Reliable Low-Latency Communication: Unlike
eMBB, this channel focuses on providing highly reliable, very
low latency communication at the cost of limited throughput.
It aims to support mission-critical and emerging applications
with stringent latency and reliability requirements such as self-
driving cars, factory automation, and remote surgery. While
the URLLC channel is yet to be deployed in practice, the
standard specifies a target 0.5 ms air latency between the
client and the RAN (1 ms RTT) with 99.999% reliability for
small packets (e.g. 32 to 250 bytes) [15]. It also specifies
a target end-to-end latency (from a client to a destination
typically right outside the cellular network core) of 2 to 10 ms
with throughput ranging between 0.4 to 16 Mbps depending
on the underlying application [6]. URLLC is expected to
operate in the sub-6 GHz frequency bands (e.g. 700 MHz
or 4 GHz) and operators are expected to use network slicing
to provide dedicated resources to URLLC clients in order
to guarantee consistent performance in terms of latency and
reliability across both the radio access network (RAN) and
the cellular core [6]. Finally, client access to the URLLC
channel will be controlled by the network operators. The
access control network slicing mechanisms, however, are left
to the operators’ own implementations [8].

2.2 Web browsing traffic
While we evaluate several applications, web browsing is the
major focus of this work and serves as a running example.

A single web page may contain tens to hundreds of rel-
atively small-sized web objects distributed across multiple
servers and domains. Consequently, web browsing traffic is
characterized by its often short and bursty flows. A study
across Alexa Top 200 pages found that the median number
of objects in a page is 30, while the median object size is
17 KB [48]. Fetching these web objects translates to many
HTTP request-and-response interactions across many short
flows. The browser fires a page load event when it finishes
rendering a page, which is used to determine Page Load Time
(PLT), a performance metric for web browsing. Although PLT
has some shortcomings, the alternatives are not free from is-
sues, and PLT is most widely used. PLT is typically dominated
by DNS lookup, connection establishment, and TCP conver-
gence time—which require little throughput but are highly
dependent on RTT. Prior work also showed that increasing
TCP throughput beyond ⇡ 16 Mbps offers little improvement
in PLT [45].

Of course, web page loading is affected by client CPU and
server delay, in addition to network delay. Prior work found
that 35% of the PLT is spent in client-side computations [47].
But the above characteristics, combined with the fact that
mobile CPUs have been getting increasingly powerful [26],

User equipment

Client
app

DChannel client

Packet 
steerer

Reordering 
buffer

DChannel proxy

Core 
network

Base
station

Packet core 
gateway

App
server

Internet

Packet 
steerer

Reordering 
buffer

LLC

HBC

IP packet

IP packet
Virtual
interface

Figure 1: The overview of DChannel. It has two main com-
ponents: packet steerer that steers application traffic to LLC
and HBC, and reordering buffer that reorders packets coming
from LLC.

still suggest that network latency plays an important part in
mobile web performance. Moreover, a significant portion of
network latency lies in the “last mile” connection of the cellu-
lar network. Many other mobile apps also rely on HTTP-based
interaction with cloud services, resulting in similar network
performance requirements.

3 DChannel Design
3.1 High-Level Architecture
To steer application traffic in both uplink and downlink chan-
nels, there will be two main components, one in the mobile
client device and one in the mobile core network (Figure 1).

On the client, applications interact with the network
through a network interface as usual. In our prototype, this
is a special virtual TUN interface designated for traffic that
should utilize both the HBC and LLC. The client-side agent
captures outgoing packets on this interface and implements
an algorithm to steer traffic between the two channels. The
agent also captures incoming traffic on both channels and
merges it into the virtual interface, after buffering it as needed
to reorder packets (§3.6).

The proxy-side agent performs symmetric functions using
the same algorithms – steering traffic headed towards the
client, and merging and reordering traffic outbound to the
Internet. This agent runs in the service provider’s network,
on a gateway at the point where the separate HBC and LLC
channels begin. The exact location of the proxy-side agent
may depend on the service provider’s internal architectural
choices; note that it is not necessarily located at the RAN
base station, because the LLC’s latency optimizations may
extend into the packet core (e.g., for prioritized queuing and
routing) [5].

The next subsections detail how we design the steering
component, in several steps, as it is the more complex compo-
nent. After that, we describe the reordering buffer.

3.2 Steering Granularity
To build the packet steering module, we begin with the ques-
tion of the granularity, and corresponding layer, at which
steering should occur. We considered splitting at two dif-
ferent layers: the application layer and the network layer.



Application-layer splitting refers to steering application re-
quests and responses to the appropriate channels. In the con-
text of web browsing, this approach translates to requesting
and delivering web objects (in the form of HTTP requests)
on either LLC or HBC. Application-layer splitting is broadly
similar to Socket Intents [42].

Object-level splitting may benefit from application-level
knowledge about web objects, which vary in size and priority.
Since LLC is bandwidth constrained, LLC can only deliver
small objects faster than HBC.1 Web pages have complex de-
pendency structures, and certain objects can be on the critical
path for web page loading. These critical-path objects need
not necessarily be small in size. Small objects might have
low priorities such that accelerating them will not improve
load time and thus would waste LLC bandwidth. In contrast,
high-priority objects can be large such that sending those to
LLC will be slower than HBC. Application-level input could
help distinguish between these cases.

But object-level splitting has two drawbacks. First, we want
to avoid requiring application input, which creates deploy-
ment hurdles and extra work for developers. Second, it misses
opportunities for latency improvement. A web object that’s
not small enough to be sent over LLC will still involve small
and latency-sensitive DNS lookups, TCP connection estab-
lishment, TLS handshaking, and ACKs. Accelerating this traf-
fic could significantly reduce object delivery time. We later
demonstrate (§5.3) that object-level splitting is less effective
than finer-grained packet-level steering.

Steering packets at the network layer (e.g., IP datagrams)
comes with its own challenges, however. First, we do not have
any application-level insight into the flow: we do not neces-
sarily know how packet-level acceleration affects application-
level acceleration, so we will need a careful steering heuristic.
Second, even if we identify the packets to accelerate, sending
packets within a flow across two different channels might
result in the packets arriving out-of-order, confusing TCP. To
address this issue, we will introduce a small reordering buffer
(ROB) at the endpoints. The following subsections discuss
these components of the design.

3.3 Packet Steering Intuition
Define a “message” as a sequence of one or more packets
such that the receiving endpoint can take some useful action
after receiving the full message. For example, an individual
SYN or ACK is a message (because the transport layer can
act on it), and an HTTP request or a full response spread
across multiple packets is a message (because the application
may be able to process the request, display an object to the
user, etc.). In contrast, an individual data packet belonging to
a large HTTP request/response is not a message on its own
and would not be worth accelerating individually since we

1If URLLC is assigned a capacity of 2 Mbps (⇡250 bytes per ms) and
its RTT is ⇡15 ms less than that of eMBB, any object of size larger than
3.75 KB are likely to be delivered faster on eMBB.

need to accelerate the whole sequence of packets to finish the
message.

Ideally, we would like to accelerate the delivery of mes-
sages, especially those that are most valuable to accelerate,
within the bandwidth constraints of the LLC. This suggests a
cost-rewards calculation weighing the benefit of accelerating
a message against the cost of utilizing the meager bandwidth
of the LLC which might be better spent on other messages.

A direct, exact cost-rewards calculation is infeasible since
DChannel running at the network layer lacks full knowledge
of message boundaries (in the application’s data stream), as
well as the relative value of messages to the receiver’s trans-
port layer or application. This leads us to begin with a permis-
sive assumption: any packet might be a message boundary and
we will optimistically consider accelerating it. Nevertheless,
even operating transparently at the network layer, DChannel
does have certain information about rewards and costs that
will help it distinguish among packets.

First, the benefit of steering a packet to the LLC depends on
how much its arrival time would improve, if at all, compared
to using the HBC. This depends on packet size, current output
queue lengths for both channels (which are locally observ-
able), and latency of both channels (which can be estimated).
In addition, the vast majority of applications utilize TCP or
other transport that delivers messages in order.2 This means
that for a message inside packet Pi, delivery of the message
to the application (as opposed to the delivery of Pi to the
receiving host) will depend not only on the arrival time of Pi,
but also on the arrival time of packets P0, . . . ,Pi�1 (which can
also be estimated). For example, suppose Pi�1 was sent over
the HBC, and Pi is ready to send immediately after. If Pi is
also sent over HBC, the pair will arrive at about the same time.
If Pi is sent over LLC, it will very likely arrive much sooner,
but will end up waiting for Pi�1 before it can be delivered to
the application, meaning sending over the LLC is likely not
useful in this case.

Second, the cost of utilizing LLC resources will depend on
the packet length and how much the LLC will be in demand
for other messages in the near future. The latter is not perfectly
known, but current or recent outgoing LLC queue depths
provide some signal.

The net effect of the above considerations is that packets
should tend to get steered to the LLC when they are smaller,
and when they are more isolated in time as individual packets
or members of short packet sequences. This corresponds well
with the intuition of prioritizing acceleration of control mes-
sages or small application-level messages. We now proceed
to describe how we realize this cost-rewards approach.

3.4 Rewards and Cost
Problem statement. The packet steering algorithm is pre-
sented with a sequence of packets and needs to decide if each

2Some don’t, of course, but our goal in this work is to develop generic
packet steering, leaving application-specialized schemes for the future.



packet Pn should be sent via LLC or HBC. We let P1, . . . ,Pn
denote the sequence of packets in a single end-to-end flow (by
which we mean a unidirectional transport layer connection,
which may contain multiple messages).

Rewards. At the packet level, the objective is to minimize
the packet completion time Cn, defined as the time by which all
packets P0, . . . ,Pn would arrive at the receiver. This captures
the intuition (§3.3) that any Pn might be a useful message
to accelerate on its own, but it wouldn’t be delivered to the
application until prior packets are also delivered. The benefit
of sending a packet Pn via LLC is thus the reduction of Cn
if Pn is sent via LLC (denoted Cn,LLC), compared to when
it is sent via HBC (denoted Cn,HBC). Thus, we calculate the
rewards for sending Pn via LLC as: R(Pn) =Cn,LLC �Cn,HBC.

To calculate the above, we first need to estimate the de-
livery time D for a packet that depends on the channel/link3

propagation delay Dproplink and bandwidth Blink, packet size,
and the link’s queue size Qlink at time tn . The Qlink counts
the number of bytes that have been enqueued for transmis-
sion through a link but have not yet been transmitted out the
interface. Delivery time for Pn on a certain link is thus:

Dlink(Pn) = Dproplink +(size(Pn)+Qlink(tn))/Blink (1)

The packet completion time for Pn (Cn) should also account
for completion times of P0 through Pn�1 (i.e., Cn�1) since
Pn may arrive at the receiver before Pn�1, especially if Pn is
sent over LLC and Pn�1 was sent over HBC. Thus, we can
calculate (Cn,link) as:

Cn,link = max(Cn�1,(tn +Dlink(Pn))) (2)

Note that Dproplink are nondeterministic, comprising dy-
namic channel delay and any congestion along the channel’s
path, and will thus have to be estimated. We return to this
later.

Cost. The cost of sending a packet to the LLC comes from
the increased utilization of LLC. Intuitively, the cost should
increase with the added queueing delay that a packet arriving
very soon after Pn would experience, i.e., size(Pn)/Bllc. The
cost should also be higher if the LLC is currently more highly
utilized so that its limited capacity is reserved for higher-
reward packets. We use a heuristic that captures this by adding
these two effects; specifically, we compute the cost (or fare
F) of putting Pn on LLC as:

F(Pn) = (size(Pn)+Qllc(tn))/Bllc (3)

Note that to be more precise, we should compute the differ-
ence in costs of putting the packet on LLC vs. HBC. But as the
HBC bandwidth is dramatically higher, its cost is negligible
and we omit it for simplicity.

3We use these terms interchangeably for convenience. Note, however, the
LLC channel may involve acceleration in the WAN in addition to the RAN,
so it actually may span multiple physical links.

Comparing rewards and cost. At a high level, we want to
steer packets to LLC when the rewards outweigh the costs, but
comparing them involves a tradeoff: the benefit is immediate
to packet Pn, whereas the cost affects possible subsequent
packets which may not appear. We introduce a parameter a
to capture this, so that we will send a packet to LLC when:
R(Pn)> aF(Pn).

Calibrating a. If we set a too low, a flow may aggressively
send packets to LLC so that it will deny resources to another
flow in a multi-flow application. If we set it too high, we can
be too conservative in utilizing the fast LLC. To find a good
a and determine how sensitive performance is to its value,
we conduct experiments with web browsing across different
alpha values. We load 40 web pages from our corpus over
different a values and pick a with the best Page Load Time
(PLT) result on average. We use our testbed (§5.1) and apply
the packet steering over HBC and LLC. For LLC, we use 5G
NR URLLC as a reference where the RTT and bandwidth
is 5 ms and 2 Mbps. For HBC, we vary its RTT while fixing
bandwidth at 200 Mbps.

The detailed results are in §A.2. In summary, the results
confirm that setting a too low or high has suboptimal per-
formance. The best value for HBC RTT of 20 ms to 60 ms is
0.75. This RTT range covers most cases of 5G eMBB. As the
RTT increases to 80 ms and higher, a = 1 is slightly better.
The difference, however, is less than 1%. We use a = 0.75
for all subsequent experiments.

Note on design. The steering approach described here is
not an optimal choice derived from a model – it is a heuristic,
particularly the calculation of cost and calibration of a, in part
since some of the relevant information (like the application-
level importance of a particular packet) is unavailable. How-
ever: (1) we find the heuristic does perform well in realis-
tic environments, (2) even if poor decisions do occur, they
lead only to suboptimal performance, rather than a correct-
ness problem, and (3) performance is not very sensitive to
the exact value of a. In particular, even with a = 0 – which
corresponds to the greedy strategy, where each packet uses
LLC whenever it expects a reward for itself – there is still a
very good PLT improvement, within 5% or less of the best a.
That said, this problem could be interesting to formalize in
the future, perhaps as an online algorithm that could provide
worst-case guarantees, or using queueing-theoretic tools.

3.5 The Packet Steering Algorithm
Putting together the above pieces, the complete steering algo-
rithm is shown in Algorithm 1 in Appendix A.1. To make a
decision, the algorithm requires (1) packet size, (2) current
LLC queue size, (3) LLC bandwidth, and (4) latency of both
LLC and HBC. The LLC bandwidth is controlled (assigned
by the operator) so it is known, and (1) is directly observable.

LLC queue size (2) may directly be observable at the client,
assuming its NIC is limited to the LLC bandwidth. But the
proxy may have a higher local NIC rate. The proxy, therefore,



tracks outgoing traffic per user and computes what the queue
depth would be if the NIC had been limited. Depending on
the service provider’s admission control policy, the rate could
alternately be explicitly limited at the proxy. Client can also
apply similar approach if (2) is not directly observable.

Latency (4) has to be estimated. To do this, we perform pe-
riodic handshakes (e.g., in every 500 ms in our use case). The
handshakes consist of four steps, all with UDP packets: (1) the
client agent sends a special packet we call a “D-SYN” to the
proxy agent using both HBC and LLC. (2) The proxy agent
upon seeing a D-SYN responds with “D-SYN/ACK” packets
sent across both HBC and LLC. (3) The client agent receives
the D-SYN/ACK packets, updates the base RTT value for
both channels based on the difference between D-SYN/ACK
receive time and D-SYN release time, and replies with “D-
ACK” packets sent across both channels. (4) The proxy agent
receives the D-ACK packets and updates the base RTT value
for both channels. We use the minimum RTT value for the
measurement. As we will see in the evaluation (§5), very
rough latency estimates are sufficient.

The algorithm requires maintaining per-flow state, specifi-
cally to store Cn�1, the estimated completion time of the most
recent previous packet. The proxy also stores per-user state
for its queue depth calculation.

3.6 Reordering buffers at the endpoints
Splitting packets across asymmetric paths (particularly with a
latency differential, as there is for LLC vs HBC) can cause out-
of-order packet delivery, which can be harmful to application
performance. In particular, TCP uses out-of-order packets as
a signal of congestion, potentially causing retransmissions
and a drop in sending rate. To solve this problem, we adopt a
reordering buffer (ROB) in the receiving direction of each of
our agents, to buffer packets arriving only from LLC. Note
that we only buffer packets arrived from LLC as we only
want to handle packet reordering caused by sending packets
through the faster LLC and not to solve reordering caused by
external factors such as wireless losses.

To avoid unbounded buffering delay if the previous packet
was lost, the ROB also releases packets after a timeout. Ideally,
the timeout should equal the latency of HBC, but because the
latency of HBC can be variable and hard to track, we use a
conservative 100 ms timeout. We evaluate the effectiveness
of this timeout value under random packet loss in §5.

4 Prototype and Experimental Setup
Our experiments involve a client representing a mobile end-
user application (e.g., a web browser) fetching content from
a web or content server. Both the client and server endpoints
have access to two interfaces, one representing the high-
bandwidth channel (HBC) and the other the low-latency chan-
nel (LLC). In the case of 5G, HBC and LLC map to eMBB
and URLLC, respectively. Depending on the experiment con-
ditions, the interfaces may be real or emulated. We masked

the two interfaces at the endpoints, however, using a smart
DChannel virtual interface implemented on top of a TUN de-
vice; the client and server use only this virtual interface to
send and receive data. Our DChannel prototype then performs
endpoint-transparent (and application-agnostic) steering of
traffic.

We developed a DChannel prototype and packaged it as
a UNIX shell, similar to the shells in Mahimahi [36]. The
shell captures all outgoing traffic from any unmodified ap-
plication running within it and tunnels them to our DChan-
nel implementation; it processes incoming traffic in a simi-
lar application-transparent manner, so both the steering and
buffering modules of DChannel are used. Our DChannel pro-
totype attaches additional metadata (sequence number and
flow ID) prior to transmission to assist the receiver in reorder-
ing packets and strips this before delivering to the application.
We used our own metadata header as a convenience, but in a
real implementation, this could be avoided by looking inside
the layer 4 header.

We evaluated the performance of DChannel using this pro-
totype under two settings. The first is a live setting where
we used the actual 5G NR eMBB channel as HBC. The sec-
ond setting, in contrast, is one where we emulated the eMBB
channel based on traces that we gathered from an actual 5G
eMBB channel. In both settings, since URLLC is not yet
commercially available, we emulated its “expected” behav-
ior (based on the 5G specification [6]) using a low-latency,
bandwidth-limited wired Ethernet connection.

4.1 Live-eMBB Setting
In this setting, DChannel steers traffic over two real interfaces
(Fig. 2): One interface is tethered with a 5G phone for provid-
ing access to a live eMBB channel, while another is connected
to a low-latency bandwidth-limited Ethernet connection for
emulating the URLLC channel. Packets transmitted over the
5G eMBB channel traverse the core network of the mobile
provider before exiting via the packet gateway (i.e., mobile
path) and then one or more ASes in the public Internet (i.e.,
Internet path) to reach our server. Data sent over the Ethernet
interface, in contrast, traverse a traditional ISP and then one
or more ASes to reach the server. On the server side, DChan-
nel receives all the packets from both the interfaces, reorders
them (if required), and then delivers them to the server-side
application via the TUN device.

We used Ethernet and not WiFi for emulating URLLC,
since the channel is expected to provide high reliability
(� 0.9999) [8]. We capped the bandwidth of this link us-
ing netem to emulate the low bandwidth of URLLC. Since
the client must remain physically plugged in to a wired net-
work for emulating URLLC, this setting allows us to study
performance only in stationary conditions.

4.2 Emulated-eMBB Setting
To evaluate DChannel under a wide variety of scenarios,
specifically those including client mobility, we used trace-



Client

Server

Mahimahi replay

DChannel
client

Replayserver-1

DChannel
proxy

Ethernet 
with capped 
bandwidth

USB
tethering

ISP

Mobile ISP

Replayserver-2

Figure 2: In our live 5G eMBB testbed, the client has two
paths to the server: One path over a tethered connection to
a 5G phone for utilizing the eMBB channel, and the other
through a bandwidth-capped connection over Ethernet, for
emulating the URLLC channel.

driven emulations. Below, we describe how we captured the
network (latency and bandwidth) traces of the 5G eMBB chan-
nel under stationary and low-to-moderate mobility scenarios
and used them in our emulations.

4.2.1 Collecting network traces
To capture the temporal variability of mobile networks, we
measured both the latency and throughput of the eMBB chan-
nel over time.
Latency traces. We measured the latency of the eMBB
channel by periodically sending probes (UDP packets) from
the client to the server. We set the probing period to 15ms to
force the UE radio to remain always in “active” mode and
generate only a small amount of probe traffic to avoid queuing.
Our measurements capture the latency imposed by the base
station and core network, since our server was always in close
proximity to the client (i.e., less than 150 miles), minimizing
the Internet-path latency. Our traceoutes from the client to
the server, although not shown in the paper, also confirmed
that the latency between the client and the server was very
close to the latency between the client and the packet gateway.
Bandwidth traces. We measured the throughput across time
of both uplink and downlink channels by saturating them with
MTU-sized UDP packets. Since TCP cannot reliably saturate
the highly variable cellular uplink and downlink concurrently,
we used an overestimated fixed sending rate to always fill the
queue. First, we measured the maximum supported upload
and download UDP throughput using existing tools such as
iperf. Then, we sent traffic at this maximum rate from both
endpoints. Finally, we used the actual packets received over
time by the endpoints to estimate the uplink and downlink
capacities.
Measuring both latency and bandwidth. A key challenge
in measuring both latency and bandwidth simultaneously is
avoiding interference: bandwidth-intensive operations can sat-
urate the link and fill the queue, thereby inflating the latency.
Since cellular networks use per-user queues, we addressed this
challenge by measuring latency and bandwidth from separate
devices. When using two separate devices, we did not see any
perceivable interference for measurements on 5G low-band,
although we observed them on 5G mmWave. Specifically, we

observed inflation in latency if a nearby device was uploading
data at more than 5 Mbps using mmWave.4 For 5G mmWave,
we measured, hence, only the downlink throughput over time;
we set the uplink bandwidth to a single, fixed rate of 60 Mbps.

The accuracy of temporal variations in latency matters most
for our trace-driven emulations, since the main applications
that we use in our evaluations, web browsing and mobile apps,
are latency-sensitive. The performance of such applications
crucially depends on TCP-related configurations (e.g., initial
congestion window) and network latency (or RTT) rather than
on available bandwidth, particularly when the bandwidth is
more than 16 Mbps [45]. Our approach to estimating band-
widths, therefore, is adequate for our evaluations.

4.2.2 Emulating the traces
In the emulated-eMBB setting, we run both the client and
the server on the same machine. DChannel then steers traffic
between them over two virtual interfaces, emulated using an
extended version of Mahimahi [36]. Specifically, we extended
Mahimahi’s delay shell to vary the eMBB channel latency
over time, based on a trace generated from a real 5G deploy-
ment. The modified delay shell accepts a trace comprising
a “timeline” of RTT values and halves each value to derive
the individual uplink and downlink latency timelines. The
shell then assigns per-packet latency by choosing an uplink or
downlink latency by matching the time a packet arrives at the
interface against the timelines. Since the trace-file granular-
ity is one RTT sample per 15 ms, we use linear interpolation
for assigning RTTs arriving between two samples. Similarly,
we emulated URLLC with a propagation delay of 5 ms and
bandwidth of 2Mbps, unless noted otherwise.

Mobile applications’ traffic (especially web browsing) is
typically bursty in nature and contains periods of inactiv-
ity. To preserve energy during idle periods, UEs switch to a
low-power (or “sleep”) state, which supports discontinuous re-
ception (DRX). The transition to the low-power state depends
on an inactivity timer that we observed (through probing [35])
to be around 30 ms for 5G mmWave; once the device enters
this state, it will “wake up” periodically (every 40 ms). When
emulating the latency traces, we therefore also estimate the
radio power states of the device (based on its activity) and
take into account any additional latency the state transitions
may impose. A packet that arrives 20 ms after the UE enters
the sleep state, for instance, will experience an additional
20 ms delay before it is processed. This delay, however, is not
incurred on the uplink. For 5G low-band, we set the inactivity
timer to 100 ms and wake-up interval to 20 ms.

For the bandwidth emulation, we extended Mahimahi’s
link shell to emulate a time-varying bandwidth that changes
every second. To emulate a link of capacity 60 Mbps at time

4Low-band uses OFDMA so multiple devices can communicate at the
same time and the latency is not inflated, while mmWave uses single carrier
modulation, where multiple devices must take turns transmitting and the
antenna must switch its beam pattern.



Table 1: Characteristics of network traces gathered from actual 5G deployments at different locations and under different
conditions. ‘p50’ and ‘p98’ refer to the 50th and 98th percentiles, and ‘CV’ refers to the coefficient of variation.

Trace name Span RTT (ms) Mean bw. Description
(mins.) min. p50 p98 mean CV " / # (Mbps)

mmWave-Stationary
(MM-S)

60 18 22 106 29.88 0.77 60/140 UE was in a building in the downtown Chicago, placed
near a window with a base station in line of sight.

mmWave-Walking
(MM-W)

56 16 22 120 30.32 0.98 60/110 UE was held by user walking in downtown area of
Chicago.

mmWave-Driving
(MM-D)

18 18 40 236 56.15 0.96 60/100 Phone was with a user driving through the downtown
area of Chicago at low to moderate driving speeds.

LowBand-Stationary
(LB-S)

60 34 40 132 45.20 0.50 26/93 Phone was located in a building in a university campus.
It was placed near a window with full signal strength.

LowBand-Walking
(LB-W)

53 32 52 156 58.94 0.50 21/63 Phone held by user walking in a university campus.

LowBand-Driving
(LB-D)

23 34 54 202 68.84 0.62 15/57 Phone was with a user driving near a university campus.

n seconds, for instance, this extended link shell will release
7.5 KB per millisecond. In our emulation tests, we also used
a FIFO (drop-tail) queue, and we set the buffer to 800 MTU-
sized packets.

5 Evaluation
We evaluated DChannel using 5G eMBB and URLLC as
HBC and LLC, respectively. We ran the client (e.g., a web
browser) on a laptop, unless otherwise mentioned. The laptop
had 16 GB RAM, 512 GB SSD, and an Intel Core i7 processor
running Ubuntu 20.04 (Focal Fossa).

5.1 Testbed Configuration
In the live-eMBB setting, we tethered the laptop with a Google
Pixel 5 phone using USB (refer Fig. 2). We ran the live exper-
iments from two locations: UIUC campus with access to 5G
low-band and the Chicago downtown area for 5G mmWave
access. We emulated the URLLC link between the client
and server using a wired (Ethernet) link and configured it
based on URLLC end-to-end specification and use-cases [6].
The emulated link provides 5 ms RTT between the client and
the network gateway and has 2 Mbps capacity. At the 5G
mmWave test site, however, the wired link only provided a
minimum latency of 8 ms for the URLLC emulation.

We also collected latency and bandwidth traces (summa-
rized in Tab. 1) at the two test locations under three mobil-
ity conditions: stationary, walking, and driving. All traces
were collected using Google Pixel 5 phones with Verizon 5G.
Though mmWave offers lower latency (for eMBB) than low-
band, it also experiences higher variance than low-band, even
when the UE was stationary. This inconsistency in perfor-
mance becomes even worse under mobility. Low-band offers
a stable, albeit relatively higher, RTT than mmWave. We ran
all the components, i.e., the client, DChannel’s modules, and
the server, on the laptop in the emulated-eMBB setting, and
used the traces (in Table 1) for emulating the eMBB channel.

5.2 Application use cases
We evaluated DChannel on 5G under a wide variety of net-
work conditions to highlight its benefits for web browsing
and web-based mobile (Android) applications. We supple-
mented these experiments with a bulk-download application
for demonstrating DChannel’s merits for long (i.e., bandwidth-
intensive) flows.
Web browsing. To measure the improvements brought
about by DChannel for web browsing, we first fetched a set of
200 web pages of “popular” websites, selected uniformly at
random from the Hispar corpus [16]. The sample comprised
40% of landing and 60% of internal pages from 200 websites.
The median web page size and the number of objects are
3.7 MB and 60, while the 95th percentile are 11.8 MB and
168. When fetching these pages, we recorded all the HTTP
requests and responses using mitmproxy [1]. Then we used
a version of Mahimahi with HTTP/2 support [53] to serve
the responses from our server. While recording the pages, we
also estimated the server response time for each request by
subtracting the time-to-first-byte (TTFB) from the client-to-
server RTT. We used the server-response times to emulate
server-side processing delays during the replays.

We used an unmodified Chromium browser spawned within
a DChannel shell to fetch the pages from our server. We
cleared the browser and DNS caches prior to each fetch and
used the default Linux congestion control, TCP CUBIC, un-
less noted otherwise, for all web-browsing experiments. We
measured the page-load time (PLT), based on the onLoad
event [37] in each experiment, on each fetch. In the live-
eMBB setting, we first used the DCHANNEL scheme to fetch
a page and repeated that page fetch in quick succession using
a different scheme. We calculated the difference in PLT be-
tween the different schemes and repeat the fetch five times
to compute the mean difference in PLTs. In the emulated-
eMBB setting, we picked a random sub-sequence from a
trace for each page fetch. Given a page, we used the same
sub-sequence for measuring the PLT across different schemes



amazon.com


swer to this question, we used curl to fetch the landing page
(i.e., the root document, “/”) of amazon.com in the emulated-
eMBB setting (40 ms RTT and 200 Mbps) without any server-
side response delay. DChannel performs better than not only
all-eMBB, but also all-URLLC (Tab. 2). While URLLC has
lower latency than eMBB, it also has a significantly lower
bandwidth than eMBB. We identified three key sources of
performance gains by analyzing DChannel’s per-packet deci-
sions. DChannel steers three types of packets over URLLC:
(1) DNS packets; (2) control packets (e.g., SYN and client-
to-server ACK packets); and (3) small data packets. Sending
DNS and SYN packets over URLLC reduces DNS lookup and
TCP connection-setup times, and accelerating ACK packets
reduces the object transfer time. The last category includes
small data transfers such as the TLS client-key exchange and
HTTP requests.

Packet vs. web objects steering. Obj-steering performs
HTTP request and response on URLLC when the web ob-
ject size is small such that it will finish faster than eMBB.
The scheme only offers slight improvement to PLT (2-14%).
This is because not all small objects are critical. In fact, we
found out that only 14% of small web objects have VeryHigh
priority [25].

DChannel vs. static packet-size-based steering. Best-pkt-
size steers individual IP packets whose size is smaller than the
best static threshold to URLLC, and the reordering buffer will
reorder any out-of-order packets. To find the best threshold,
we performed web page load experiments for each trace with
five different (size) thresholds: 250, 500, 750, 1000, 1250, and
1400 bytes. We found 750 bytes and 1000 bytes give the best-
averaged result (across the stationary, walking, and driving
scenarios) for mmWave and Low-Band traces, respectively.

DChannel shows an overall better improvement than best-
pkt-size across different network conditions, albeit best-pkt-
size offers similar improvements in stationary traces. In sta-
tionary traces, network latency is more predictable, and static
decisions might suffice. When the network conditions are
more variable, such as in the driving scenario, however, the
static decisions do not suffice. DChannel observes network
conditions, as they evolve, and estimates URLLC channel
usage to make steering decisions dynamically. DChannel will
not steer small packets to URLLC, for instance, if the channel
is already congested. Note that these results are overly gener-
ous to best-pkt-size, for comparison purposes: the best size is
selected in retrospect after running on the test scenarios. In
reality, determining a single packet size threshold would be
complicated: it depends on application traffic patterns as well
as network conditions.

Is MPTCP not designed to exploit multiple channels?
MPTCP works at the transport layer, and in general, it load-
balances application traffic among the available paths and
aggregates their throughput. In our evaluations, MPTCP per-
forms worse (by inflating PLTs between 16% and 66% across

Table 3: The p50 and (p95) of the avg. and max. buffer sizes
(in bytes) when loading 200 web pages under MM-S and LB-
D traces.

MM-S LB-D
Proxy UE Proxy UE

Avg buffer
size (b)

2
(15,7)

12
(63.5)

14
(96)

130
(2638)

Max buffer
size (b)

392
(1122)

944
(2597)

757
(2375)

2848
(15521)

different conditions5) than simply using only the eMBB path.
This poor performance stems from MPTCP’s default sched-
uler (minRTT), which prefers the path with the smallest esti-
mated RTT. This scheduler thus infers that URLLC is better
than eMBB and diverts traffic to URLLC until experiencing
congestion. DChannel, unlike MPTCP, works at the network
layer such that it allows steering data packets on eMBB and
ACK packets on URLLC. MPTCP cannot perform such
packet-level steering, since it results in each path having a
separate data-ACK loop, which MPTCP cannot support.
DChannel vs ASAP. ASAP identifies the different phases
of a web transaction (e.g., TLS handshake and HTTP request)
and accelerates packets of latency-sensitive phases. It accel-
erates, for instance, TLS/SSL handshake as well as HTTP
request traffic, but leaves HTTP responses to eMBB. ASAP
performs better than all other schemes except DChannel. It
falls behind DChannel, however, because of its static heuris-
tics (e.g., accelerate all HTTP requests). HTTP requests are
typically, but not always, small. A user uploading a photo,
for instance, is one example where the assumption fails to
hold. ASAP also encounters problems when the user browses
complex internal pages that push some data to the server.

In the above experiments, we emulated URLLC based on
the 5G standard. We found, however, that DChannel contin-
ues to offer significant PLT improvements even if URLLC
latency is doubled or tripled or when URLLC latency changes
over time (§A.3.2). DChannel offers good performance even
in situations we cannot accurately estimate the eMBB RTT
(§A.3.4), which is crucial for calculating rewards and cost
(§3.4). We also examined DChannel’s performance under dif-
ferent URLLC bandwidths in §A.3.3. Finally, we evaluated
DChannel’s rewards calculation accuracy in §A.4

5.4 Live 5G Experiments
We repeated the web-page fetches (similar to those in §5.3)
over both the live-eMBB and emulated-eMBB settings.
We then compared the relative improvements in PLTs
brought about by DChannel across these settings, for both
5G mmWave and Low-Band (Fig. 4). In conclusion, the
PLT improvements are quite similar between the live and

5We clipped the bottom of the Y-axis in Fig. 3 to focus on performance
gains.

amazon.com






sensitive traffic to the low-latency ISP.
Future wireless design: The 5G URLLC is only equipped
with limited user bandwidth, and hence it is not suitable to
serve general application traffic. The bandwidth is severely
compromised because it needs to provide both low latency
and very high reliability (99.999%). However, general appli-
cations do not need the almost-perfect reliability that URLLC
guarantees. Future wireless networks (such as 6G) may recon-
sider this trade-off and provide a low-latency channel with
somewhat greater bandwidth and somewhat lower reliability.

7 Related work
There have been multiple works that try to exploit the multi-
access connectivity on the client.
Application layer multipath: Socket Intents [42] and In-
tentional networking [28] both expose custom APIs to ap-
plications and offer OS-level support for managing multiple
interfaces. Both of them regulate application traffic based on
application-specific information. Our work, in contrast, does
not require application inputs or modifications, although in
the future we might consider giving input to the steerer to
support more specific applications.
Transport layer multipath: There are already numerous
efforts to design multipath transport protocols such as R-
MTP [33], pTCP [30], mTCP [52], SCTP multihoming [31],
and MPTCP [49]. These protocols deliver application traf-
fic through multiple paths to achieve better throughput and
reliability. Due to the bandwidth aggregation focus, multi-
path transport protocols give notable benefits to long-flow
dominated applications but not to short-flow dominated ap-
plications such as web browsing [20]. Our approach works
transparently with single-path transport protocols (e.g., TCP
and UDP).
Network layer multipath: Tsao and Sivakumar [46] pro-
posed a super aggregation concept where TCP can achieve
better WiFi throughput by selectively steering packets to 3G.
ASAP [29] steers network packets over satellite ISP and lower-
latency terrestrial networks to improve HTTPS. We compared
DChannel against ASAP in our evaluation and found that
DChannel is better for eMBB and URLLC pairs as it benefits
from finer-grained decisions.

An early version of DChannel was presented in [43]. This
work comes with a new and better-performing packet steering
algorithm, a more robust evaluation with real-world traces
and live 5G eMBB, and new use cases including mobile apps
and bulk transfer.

Acknowledgements
We thanked the anonymous reviewers and our shepherd Fadel
Adib for their valuable inputs. This work was supported by
a gift from T-Mobile and NSF CNS Awards 1763742 and
1763841.

References

[1] mitmproxy. https://mitmproxy.org/. [Last ac-
cessed on April 18, 2022].

[2] Multipath TCP in the Linux Kernel v0.94. http://www.
multipath-tcp.org, March 2018. [Last accessed on
June 16, 2020].

[3] MWC: Are Your 5 Fingers Blocking Your 5G?
https://www.eetimes.com/mwc-are-your-5-
fingers-blocking-your-5g/, February 2018. [Last
accessed on June 24, 2020.

[4] 3GPP Release 15. https://www.3gpp.org/release-
15, April 2019. [Last accessed on May 24, 2020].

[5] 3GPP TR 23.725 version 16.2.0 Release 16.
https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.
aspx?specificationId=3453, June 2019. [Last
accessed on January 20, 2022].

[6] 3GPP TR 38.824 Release 16. https://www.3gpp.
org/release-16, March 2019. [Last accessed on June
16, 2020].

[7] 3GPP TS 22.261 version 15.7.0 Release 15. https://
www.etsi.org/deliver/etsi_TS/122200_122299/
122261/15.07.00_60/ts_122261v150700p.pdf,
March 2019. [Last accessed on January 20, 2021].

[8] 3GPP Release 16 Description; Summary of Rel-16 Work
Items. https://www.3gpp.org/release-16, March
2020. [Last accessed on June 16, 2020].

[9] AT&T: 5G Coverage Map. https://www.att.com/
5g/coverage-map/, 2020. [Last accessed on June 13,
2020].

[10] T-Mobile: The Only Nationwide 5G Network Cover-
age Map. https://www.t-mobile.com/coverage/
5g-coverage-map, 2020. [Last accessed on June 13,
2020].

[11] Verizon: 5G Coverage Map. https://www.verizon.
com/5g/coverage-map/, 2020. [Last accessed on June
13, 2020].

[12] Scenecut extractor. https://github.com/slhck/
scenecut-extractor, December 2021. [Last accessed
on April 15, 2022].

[13] AndroidViewClient. https://github.com/
dtmilano/AndroidViewClient, March 2022. [Last
accessed on April 15, 2022].

[14] FFmpeg. https://ffmpeg.org/, January 2022. [Last
accessed on April 15, 2022].

https://mitmproxy.org/
http://www.multipath-tcp.org
http://www.multipath-tcp.org
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.3gpp.org/release-15
https://www.3gpp.org/release-15
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://www.3gpp.org/release-16
https://www.3gpp.org/release-16
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.3gpp.org/release-16
https://www.att.com/5g/coverage-map/
https://www.att.com/5g/coverage-map/
https://www.t-mobile.com/coverage/5g-coverage-map
https://www.t-mobile.com/coverage/5g-coverage-map
https://www.verizon.com/5g/coverage-map/%20
https://www.verizon.com/5g/coverage-map/%20
https://github.com/slhck/scenecut-extractor
https://github.com/slhck/scenecut-extractor
https://github.com/dtmilano/AndroidViewClient
https://github.com/dtmilano/AndroidViewClient
https://ffmpeg.org/


[15] 3rd Generation Partnership Project. Study on scenarios
and requirements for next generation access technolo-
gies. Technical report, 2017.

[16] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feld-
mann, and Bruce M Maggs. On landing and internal
web pages: The strange case of jekyll and hyde in web
performance measurement. In Proceedings of the ACM
Internet Measurement Conference (IMC), 2020.

[17] Jozef Babiarz, Kwok Chan, and Fred Baker. Configu-
ration guidelines for diffserv service classes. Network
Working Group, 2006.

[18] Debopam Bhattacherjee, Waqar Aqeel, Sangeetha Abdu
Jyothi, Ilker Nadi Bozkurt, William Sentosa, Muham-
mad Tirmazi, Anthony Aguirre, Balakrishnan Chan-
drasekaran, P. Brighten Godfrey, Gregory Laughlin,
Bruce Maggs, and Ankit Singla. cISP: A Speed-of-
Light Internet Service Provider. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2022.

[19] Eduardo Cuervo. Beyond reality: Head-mounted dis-
plays for mobile systems researchers. GetMobile: Mo-
bile Computing and Communications, 21(2), 2017.

[20] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and
Hari Balakrishnan. WiFi, LTE, or both? Measuring
multi-homed wireless internet performance. In Pro-
ceedings of the ACM Internet Measurement Conference
(IMC), 2014.

[21] Yoav Einav. Amazon found every 100ms of latency cost
them 1% in sales, January 2019.

[22] A El Gamal, James Mammen, Balaji Prabhakar, and
Devavrat Shah. Throughput-delay trade-off in wireless
networks. In IEEE INFOCOM 2004, volume 1, 2004.

[23] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi.
A Tutorial on Beam Management for 3GPP NR at
mmWave Frequencies. IEEE Communications Surveys
& Tutorials, 21(1), 2019.

[24] Giacomo Giuliari, Tobias Klenze, Markus Legner, David
Basin, Adrian Perrig, and Ankit Singla. Internet back-
bones in space. ACM SIGCOMM Computer Communi-
cation Review, 50(1), 2020.

[25] Sergio Gomes. Resource prioritization –
getting the browser to help you. https:
//developers.google.com/web/fundamentals/
performance/resource-prioritization, June
2020. [Last accessed on June 12, 2020].

[26] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi.
Mobile cpu’s rise to power: Quantifying the impact of

generational mobile cpu design trends on performance,
energy, and user satisfaction. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 64–76. IEEE, 2016.

[27] Haitham Hassanieh, Omid Abari, Michael Rodriguez,
Mohammed Abdelghany, Dina Katabi, and Piotr Indyk.
Fast Millimeter Wave Beam Alignment. In Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2018.

[28] Brett D Higgins, Azarias Reda, Timur Alperovich, Jason
Flinn, Thomas J Giuli, Brian Noble, and David Watson.
Intentional networking: opportunistic exploitation of
mobile network diversity. In Proceedings of the 16th
annual international conference on Mobile computing
and networking (MobiCom), 2010.

[29] Se Gi Hong and Chi-Jiun Su. ASAP: fast, controllable,
and deployable multiple networking system for satellite
networks. In IEEE Global Communications Conference
(GLOBECOM), 2015.

[30] Hung-Yun Hsieh and Raghupathy Sivakumar. pTCP:
An end-to-end transport layer protocol for striped con-
nections. In Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP), 2002.

[31] Janardhan R Iyengar, Paul D Amer, and Randall Stewart.
Concurrent multipath transfer using SCTP multihoming
over independent end-to-end paths. IEEE/ACM Trans-
actions on networking (ToN), 14(5), 2006.

[32] Adrian Loch, Irene Tejado, and Joerg Widmer. Potholes
Ahead: Impact of Transient Link Blockage on Beam
Steering in Practical mm-Wave Systems. In The 22nd
European Wireless Conference, May 2016.

[33] Luiz Magalhaes and Robin Kravets. Transport level
mechanisms for bandwidth aggregation on mobile hosts.
In Proceedings of the 9th IEEE International Confer-
ence on Network Protocols (ICNP), 2001.

[34] Arvind Narayanan, Eman Ramadan, Jason Carpenter,
Qingxu Liu, Yu Liu, Feng Qian, and Zhi-Li Zhang. A
First Look at Commercial 5G Performance on Smart-
phones. In Proceedings of The Web Conference, 2020.

[35] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao,
et al. A variegated look at 5G in the wild: performance,
power, and QoE implications. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2021.

https://developers.google.com/web/fundamentals/performance/resource-prioritization
https://developers.google.com/web/fundamentals/performance/resource-prioritization
https://developers.google.com/web/fundamentals/performance/resource-prioritization


[36] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for HTTP. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2015.

[37] Jan Odvarko. Har 1.2 spec, 2007.

[38] Tommy Pauly, Brian Trammell, Anna Brunstrom, Gorry
Fairhurst, Colin Perkins, Philipp S Tiesel, and Christo-
pher A Wood. An architecture for transport services.
Internet-Draft draft-ietf-taps-arch-00, IETF, 2018.

[39] Maxim Podlesny and Sergey Gorinsky. RD network
services: differentiation through performance incentives.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM),
2008.

[40] Murali Ramanujam, Harsha V Madhyastha, and Ravi
Netravali. Marauder: synergized caching and prefetch-
ing for low-risk mobile app acceleration. In Proceedings
of the 19th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2021.

[41] Sanae Rosen, Haokun Luo, Qi Alfred Chen, Z Morley
Mao, Jie Hui, Aaron Drake, and Kevin Lau. Discover-
ing fine-grained RRC state dynamics and performance
impacts in cellular networks. In Proceedings of the 20th
annual international conference on Mobile computing
and networking (MobiCom), 2014.

[42] Philipp S Schmidt, Theresa Enghardt, Ramin Khalili,
and Anja Feldmann. Socket intents: Leveraging ap-
plication awareness for multi-access connectivity. In
Proceedings of the 9th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
2013.

[43] William Sentosa, Balakrishnan Chandrasekaran,
P Brighten Godfrey, Haitham Hassanieh, Bruce Maggs,
and Ankit Singla. Accelerating mobile applications
with parallel high-bandwidth and low-latency channels.
In Proceedings of the 22nd International Workshop on
Mobile Computing Systems and Applications, pages
1–7, 2021.

[44] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang,
and Jia Wang. Characterizing geospatial dynamics of
application usage in a 3G cellular data network. In
Proceedings IEEE INFOCOM, 2012.

[45] Srikanth Sundaresan, Nick Feamster, Renata Teixeira,
and Nazanin Magharei. Measuring and mitigating web
performance bottlenecks in broadband access networks.
In Proceedings of the ACM Internet Measurement Con-
ference (IMC), 2013.

[46] Cheng-Lin Tsao and Raghupathy Sivakumar. On effec-
tively exploiting multiple wireless interfaces in mobile
hosts. In Proceedings of the 5th International Confer-
ence on Emerging Networking Experiments and Tech-
nologies (CoNEXT), 2009.

[47] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Kr-
ishnamurthy, and David Wetherall. Demystifying page
load performance with wprof. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

[48] Xiao Sophia Wang, Aruna Balasubramanian, Arvind
Krishnamurthy, and David Wetherall. How Speedy is
SPDY? In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2014.

[49] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and
Mark Handley. Design, implementation and evaluation
of congestion control for multipath tcp. In 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2011.

[50] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang,
Xi Liu, Congkai An, Yiming Shi, Liang Liu, and
Huadong Ma. Understanding operational 5G: A first
measurement study on its coverage, performance and
energy consumption. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM), 2020.

[51] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Ragha-
van, Riad S Wahby, Philip Levis, and Keith Winstein.
Pantheon: the training ground for internet congestion-
control research. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 731–743, 2018.

[52] Ming Zhang, Junwen Lai, Arvind Krishnamurthy,
Larry L Peterson, and Randolph Y Wang. A Transport
Layer Approach for Improving End-to-End Performance
and Robustness Using Redundant Paths. In USENIX
Annual Technical Conference (ATC), 2004.

[53] Torsten Zimmermann, Benedikt Wolters, Oliver
Hohlfeld, and Klaus Wehrle. Is the web ready for
http/2 server push? In Proceedings of the 14th ACM
Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2018.

[54] Baiqing Zong, Chen Fan, Xiyu Wang, Xiangyang Duan,
Baojie Wang, and Jianwei Wang. 6g technologies: Key
drivers, core requirements, system architectures, and en-
abling technologies. IEEE Vehicular Technology Maga-
zine, 14(3), 2019.








	1 Introduction
	2 Background and Motivation
	2.1 Channels in 5G
	2.2 Web browsing traffic

	3 DChannel Design
	3.1 High-Level Architecture
	3.2 Steering Granularity
	3.3 Packet Steering Intuition
	3.4 Rewards and Cost
	3.5 The Packet Steering Algorithm
	3.6 Reordering buffers at the endpoints

	4 Prototype and Experimental Setup
	4.1 Live-eMBB Setting
	4.2 Emulated-eMBB Setting
	4.2.1 Collecting network traces
	4.2.2 Emulating the traces


	5 Evaluation
	5.1 Testbed Configuration
	5.2 Application use cases
	5.3 Comparing steering schemes
	5.4 Live 5G Experiments
	5.5 Evaluating the reordering buffer
	5.6 Bulk download performance
	5.7 Mobile application performance

	6 Discussions and Future Work
	7 Related work
	A Appendix
	A.1 Algorithm Listing
	A.2 Parameter Calibration
	A.3 Understanding DChannel Performance
	A.3.1 Performance under high eMBB RTT
	A.3.2 Varying URLLC latency
	A.3.3 Varying URLLC bandwidth
	A.3.4 Working with Incorrect Latency Estimates
	A.3.5 DChannel under TCP BBR

	A.4 DChannel rewards calculation accuracy


