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We provide a psychometric-grounded exposition of bias 
and fairness as applied to a typical machine learning 
(ML) pipeline for affective computing (AC). We expand 

on an interpersonal communication framework to elucidate 
how to identify sources of bias that may arise in the process of 
inferring human emotions and other psychological constructs 
from observed behavior. The various methods and metrics for 
measuring fairness and bias are discussed, along with perti-
nent implications within the U.S. legal context. We illustrate 
how to measure some types of bias and fairness in a case study 
involving automatic personality and hireability inference from 
multimodal data collected in video interviews for mock job ap-
plications. We encourage AC researchers and practitioners to 
encapsulate bias and fairness in their research processes and 
products and to consider their role, agency, and responsibility 
in promoting equitable and just systems.

Introduction
The tools used in AC, which enable machines to identify 
people’s behaviors and mental states, are being increasingly 
utilized in education, health care, and the workplace. One ap-
plication is to aid in the allocation of limited resources (e.g., 
counseling, mental health care, in-person interviews) via au-
tomated screening [1]–[3]. In these types of high-stakes sce-
narios, the assessments provided by AC systems can directly 
affect the decision-making processes, which influence the 
amount of attention, care, and opportunities afforded to indi-
viduals. As such, it is important that these processes are ac-
curate, unbiased, and fair because any deficiencies or errors 
present in these systems stemming from the data they were 
trained on, the types of algorithms used, or the decision-mak-
ing processes themselves may disproportionately impact dif-
ferent groups of people and lead to ethical and legal concerns, 
not to mention pain and suffering for the vulnerable groups 
impacted. Simply put, AC systems must deter, not propagate, 
extant systems of inequity and injustice.

For tunately, we have decades of guidance on how 
to construct fair and unbiased measurement systems. 
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The fields of educational and psychological measurement 
(i.e., psychometrics) have well-established, distinct defini-
tions for test bias and fairness [4]. Great research progress 
is being made toward ethical data representations for arti-
ficial intelligence systems [5] and fair emotional expression 
recognition systems [6], yet most AC research ignores psy-
chometric aspects entirely and, when considered, many stud-
ies of algorithmic bias treat the notions of bias and fairness 
somewhat interchangeably (e.g., [7]). Thus, a crucial first 
step toward reducing the potential short- and long-term dis-
parities of AC systems is forming a consistent understanding 
of these terms. Accordingly, this article 
aims to provide an exposition of bias and 
fairness from a psychometric perspective, 
to ground these terms in a typical AC ML 
pipeline, and to enable AC researchers and 
practitioners to understand how sources of 
bias and unfairness contribute to observed 
manifestations or measurements of bias 
and unfairness.

Our contributions are as follows. First, 
we define the psychometric meaning of bias and distin-
guish it from fairness, providing examples of each. Second, 
we present a typical ML pipeline used in AC to generate 
predictions for mental constructs (e.g., emotions) from 
physiological and behavioral data and decompose it into a 
recurrent sequence of information exchanges. We demon-
strate that by representing these exchanges as noisy commu-
nication models; borrowed from classic information theory 
[8], one can identify possible sources of bias and unfairness 
at multiple stages in the pipeline. Third, we connect mea-
surements of bias and fairness from recent computer 
science (CS) research to the psychometric definitions of 
bias and fairness. Finally, using automated pre-employment 
screening, or personnel selection, as an application domain, 
which utilizes many analytical tools from AC, we empiri-
cally demonstrate the process of testing for some types of 
bias and unfairness in automatic personality and hireability 
inference from video interviews.

Bias, fairness, and ML in AC
The terms bias and fairness are sometimes used interchange-
ably in reference to discrimination, and it is important to 
distinguish the two. Indeed, discrimination serves as an um-
brella (legal) term encompassing both bias and fairness con-
cerns [9], but these terms have distinct meanings that should 
not be confused.

The Standards for Educational and Psychological Testing 
(hereafter, the “Standards”) has provided guidance on the devel-
opment of valid, fair, and unbiased measurements since the first 
edition was released in 1966. In general, the Standards provides 

counsel for assessments (including compu-
tational ones) of psychological constructs 
intended to differentiate individuals, such 
as for mental health treatments or educa-
tional and employment opportunities. In 
AC, we are often interested in measuring 
latent constructs (i.e., an individual’s states 
or traits) generally not directly observable, 
such as emotion, depression, and personal-
ity. In psychometrics (i.e., the study of psy-

chological measurement), these constructs are measured using 
carefully crafted and validated assessments, including test 
items with correct/incorrect responses (e.g., intelligence tests), 
questionnaires with Likert-type scales, and other measurements 
(e.g., observations). In AC, these assessment items are replaced 
with automated inference from behaviors often obtained using 
cameras, microphones, and various physiological sensors. A 
typical ML pipeline for predicting a latent mental state involves 
passing data (e.g., behavioral observations about a person) 
through a trained ML model to obtain a prediction, which can 
later be used to make the decisions that affect people (e.g., to 
hire or not hire). Figure 1 illustrates this sequence of events and 
also depicts the different types of bias and fairness and their 
regions of concern with respect to this pipeline.

Fairness is a subjective perspective on the appropriateness of 
the way a construct is measured, how the measurement is used 
for decision making, and the explanations related to the use of 
the construct. Bias is any systematic error that differentially 

Interactional
Fairness

Procedural Fairness Distributive
Fairness

Bias

Fairness

Contamination and Deficiency
(Sources)

Measurement Bias
(Manifestations)

ML Pipeline Data ML Model Predictions Decisions

FIGURE 1. Different types of bias and fairness and their regions of concern with respect to a typical ML pipeline used for decision making, where the 
outcomes affect real people.
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affects assessments of distinct groups of people. These are two 
different notions, but we often hear about them together because 
they both pertain to potential discrimination and the quality of 
decisions. The Standards considers bias to be subsumed by fair-
ness in that a biased measurement is likely to be unfair. Yet, not 
all measurements viewed as unfair are biased, not all unbiased 
measurements are considered fair, nor will everyone view a 
biased measurement (and the subsequent decisions made using 
it) as unfair. These terms are sometimes conflated in CS and 
ML literature (e.g., [7] and [10]), but psychometrics offers a 
clear and established perspective on these topics.

Fairness
Fairness has no universal definition as it is a social, not psy-
chometric, concept rooted in value judgments [11]. Fairness is a 
subjective evaluation (e.g., justice and morality), varying across 
cultures and societies, and in the context of organizations such 
as schools, hospitals, or corporations, organizational justice 
has been the predominant theoretical concept used to recog-
nize perceptions of unfairness [12]. Although AC is not broadly 
tied to understanding people within organizations, examining 
fairness through this lens is highly illustra-
tive of some of the difficulties and inherent 
tradeoffs (compare [13]) in fairness consider-
ations within AC.

Organizational justice involves three key 
dimensions: distributive, interactional, and 
procedural fairness [12]. Distributive fairness 
regards the perceived fairness of outcomes 
and allocations of important resources (e.g., 
jobs). Interactional fairness regards how peo-
ple perceive the explanations, rationales, and 
justifications for organizational decisions and how they perceive 
the interpersonal treatment they receive along the way. Proce-
dural fairness regards the perceived fairness of the elements of 
the decision-making process. Procedural fairness is emphasized 
in the Standards because it is crucial that an assessment (e.g., ML 
predictions) does not generate different scores among subgroups 
if they have equivalent true scores. However, if there are differ-
ences among groups due to societal structures or biology, the 
assessment should accurately assess any potential differences. 
For example, a measurement of height should not show equal 
heights for men and women just to be “fair.”

Each of these types of fairness is relevant in the context of AC 
research, tools, and products. For example, facial recognition and 
expression software has been a core component of the AC tool kit 
and used to gain insights into the expressed emotional dynam-
ics during social interactions. This capability is being incorpo-
rated into ML systems that, for example, observe the expression 
dynamics of individuals in recorded video interviews to make 
inferences about personality and other potentially relevant char-
acteristics for employment [1]. However, one well-known issue 
is that the underlying facial recognition software tends to be less 
accurate for Black individuals compared to White individuals 
[14]. In this context, distributive fairness is concerned with ways 
to enhance the equality of scores and outcomes for measure-

ments, which include facial recognition. Interactional fairness 
would be concerned with enhancing the explainability of the 
ML pipeline decisions and seeking to provide acceptable justi-
fications for them. Procedural fairness would be concerned with 
the use of (or error associated with) facial features for expression 
recognition, which may be indicative of group membership (e.g., 
skin color [14] or facial structure).

In the United States, laws and case law (Title VII of the Civil 
Rights Act of 1964; Age Discrimination in Employment Act of 
1967; Americans with Disabilities Act of 1990; Civil Rights Act 
of 1991; Bostock v. Clayton County Georgia) clearly define the 
groups that are protected from employment discrimination: age, 
disability, race, religion or belief, sex, gender, lesbian, gay, bisex-
ual, transgender, queer, and pregnancy or maternity. The U.S. 
Civil Rights Act of 1991 established that direct or indirect mea-
surements of these group attributes cannot be used in the deci-
sion-making process for employment. This precedent establishes 
a hard line for procedural fairness for any automated system 
deployed within the United States and used to aid in employ-
ment decisions (other countries may have different restrictions). 
By extension, this means that facial expression recognition soft-

ware used to aid in employment decisions in 
the United States cannot attempt to correct 
for its poorer performance for darker skin 
tones by being aware of skin color. Thus, 
these systems must remain group unaware 
(i.e., “fairness through unawareness”) while 
also meeting the growing demands for fair 
outcomes (i.e., distributive fairness) and 
explainability (i.e., interactional fairness). 
Attaining fairness in these types of systems 
is a difficult and complex task, both from an 

engineering and social perspective.
This challenge becomes even more apparent when examin-

ing recent work on ML fairness. Many of these works empha-
size distributive fairness, which is highly desirable, but it is 
often difficult to achieve because of inherent tradeoffs among 
differing perspectives on what is considered fair [13]. One per-
spective on distributive fairness is that of equality, or the notion 
that each person or group of persons receives the same outputs 
(e.g., job offers). Another perspective is equity, where each per-
son or group of persons should receive outputs proportional to 
their inputs (e.g., more job offers go to those who demonstrate 
merit). A third perspective is that of need, or the notion that each 
person or group of persons receives outputs according to their 
necessity (e.g., persons lacking money or who are otherwise dis-
advantaged receive more job offers). These methods for distrib-
uting opportunities are fundamentally opposed, but each may 
be deemed fair according to individual differences in outlook. 
Creating fair ML systems amounts not only to transparency and 
measuring fairness but also a social buy-in from the organiza-
tions utilizing them and the stakeholders affected by them.

Bias
The term bias is semantically overloaded and has many spe-
cialized definitions in different contexts. Many are familiar 
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crucial that an assessment 
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different scores among 
subgroups if they have 
equivalent true scores.
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with bias in the form of implicit and explicit bias, which in-
volve systematic errors of judgment among humans due to 
the demographic characteristics of a given target (e.g., race, 
gender, or religion) [15]. These types of bias relate to the sys-
tematic influences that alter human behaviors or judgments 
about others as a function of their group membership.

In psychological assessment, which characterizes much of 
the AC applications in this area, bias refers to any systematic 
error in a test score that differentially affects the performance 
of different groups of test takers [16, p. 23], where group mem-
bership is determined by distinguishing characteristics among 
the agents (e.g., gender or age). For example, any facial recog-
nition software whose accuracy scores vary by race or gender 
would be biased. This is the definition of bias we adopt for the 
remainder of this article, and first distinguish between sources 
of bias and evidence or manifestations of bias.

The sources of bias in an assessment of a construct can broad-
ly be attributed to either construct contamination or deficiency 
[4], as illustrated in Figure 2. Contamination refers to the sources 
that introduce construct-irrelevant variance, while deficiency re-
fers to the omission of construct-relevant variance. If these types 
of errors universally inflate or deflate scores 
independent of group status, then the assess-
ments may be described as inaccurate, but 
they would not necessarily be biased. Psy-
chometric bias regards errors that differen-
tially affect members of one group compared 
to members of another. For example, an AC 
system for judging hireability from tone of 
voice and nonverbal behaviors (ostensibly 
signaling competence) trained exclusively on 
White individuals (i.e., population bias, sampling bias, and repre-
sentation bias) will tend to be deficient when assessing hireability 
patterns for other racial groups, and it will also be contaminated 
with the behavioral patterns applicable to whites but not other  
racial groups.

The manifestation of bias in ML, or the bias that we 
observe, mostly comes from measurement bias. Measurement 
bias occurs when assessment scores contain systematic error 
that is not relevant to the construct of interest, such as an ML 
pipeline producing predictions of personality scores, which 
are systematically influenced by race. In this case, measure-
ment bias would be observed if racial subgroups have the same 
ground-truth scores but the assessment systematically provides 
different scores.

Importantly, we do not make any intentional attributions 
to bias, instead arguing that it arises from the involvement of 
humans in the process. For example, in AC, we typically rely 
on human-produced (i.e., self- or other-reported) assessments 
of constructs to serve as ground-truth labels for ML model-
ing. This step is necessary because the constructs of interest 
are latent, meaning they are hidden and cannot be directly 
observed. Intuitively, we may imagine that differences in the 
mean-ground-truth label for different groups indicates bias, 
but the Standards states that group differences in outcomes do 
not in themselves indicate that a testing application is biased or 

unfair [4, p. 54]. Any differences in group means may reflect 
true differences in the underlying construct. Simply put, a 
measurement of height that systematically indicates that men 
are on average taller women is not biased.

Ground truth in AC is sometimes obtained with the aid of 
validated self-reported psychological measurements, which 
have ostensibly been tested for bias with various subgroups. 
However, when observers are used to obtain ratings or 
annotations, steps should be taken to ensure ground-truth 
validity, including conducting frame-of-reference training 
[17], using a panel of diverse annotators, monitoring anno-
tation quality (e.g., via interrater reliability/agreement), and 
removing outlying or low-quality annotators. These kinds 
of steps result in a collection of annotations, which can be 
better trusted in aggregate as accurate ground-truth rep-
resentations, where any group differences are a reflection 
of true differences among groups rather than bias. These 
steps are absolutely essential for bias analysis—if human 
implicit/explicit bias contaminates the ground-truth mea-
surement, then the resulting ML assessment is very likely 
to reflect these biases.

Identifying Sources of Bias
We endeavor to provide a framework for 
identifying the possible sources of bias in 
AC ML (Table 1) by deconstructing the 
ML pipeline into a recurrent sequence of 
exchanges of information among differ-
ent pieces of the pipeline. We can then ex-
amine the sources of bias associated with 
each piece to understand how bias emerges, 

propagates, and manifests at various points throughout the 
ML process. To do so, we expand upon a common conceptual 
framework employed in AC and natural language processing 
to understand noisy information exchange [8], [18]: the two-
agent communication model. We caution, however, that any 
list of biases, such as the examples presented in Table 1, only 
serve as a reference for researchers and may not be comprehensive 

Construct
Deficiency

Construct
Contamination

Construct Measure

Sources
of Bias

Construct
Relevance

FIGURE 2. The sources of measurement bias in construct assessment [4] 
(reproduced from [3]).

Contamination refers to 
the sources that  
introduce construct-
irrelevant variance, while 
deficiency refers to the 
omission of construct-
relevant variance.



88 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2021   |

enough to represent all the possible sources of bias in any 
given study.

Communication model for bias identification
Mehu and Scherer [19] helped bridge social signal processing 
with psychology and ethology by considering how the (un)reli-
able and contextual nature of human behavior impacts com-
munication and efforts to automate its understanding. In this 
work, they considered communication as an encoded exchange 
of information, hearkening back to early communication 
models such as the Shannon–Weaver one [8], first proposed in 
1948, or the sender-message-channel-receiver model, later in-
troduced by David Berlo [18]. These models consider commu-
nication as a process (not necessarily serial) among a sender, 
who encodes a message; a receiver, who perceives and decodes 
the message; and a channel, through which the message passes 
between the two, as illustrated in Figure 3.

The information in this diagram flows from left to right, 
starting with a source concept, representing what the sender 
intends to communicate. This concept is then encoded as a 
sequence of behavioral actions (the action plan). These actions 
may include speaking, gesturing, touching, typing, or gen-
erally any form of sensory output. The speaker attempts to 
execute the actions to try to express the source concept to a 
receiver by means of a communication channel, such as air 
(carrying vocalizations) or a digital video recording. This 
channel is considered to be a noisy information tunnel where 
the encoded message may be altered on its way to the receiver 
and may thus interfere with the receiver’s interpretation and 
understanding. The receiver perceives a potentially contami-
nated or deficient version of these expressions (e.g., via sen-
sory inputs) and generates an internal representation of the 
expression. Finally, this representation is decoded to form the 
receiver’s estimated concept, a version of the sender’s source 
concept. Individual differences (e.g., experiences, behaviors, 
or genetic traits) in the sender and receiver may separately 
influence their encoding and decoding of the message which, 
together with noise in the communication channel, are poten-
tial sources of bias.

To make this model more concrete, consider an example rele-
vant to AC where the sender is a speaker and attempts to describe 
her feelings (source concept) about a recent event to a friend. The 
speaker recalls her prior experiences to decide (action plan) how 
to describe her feelings. Her voice travels through the air (com-
munication channel) to the receiver, who perceives the utterances 
and forms an internal representation of the words. The word rep-
resentations are decoded to form the receiver’s estimated concept 
and give meaning to the message.

In this example, the speaker’s and receiver’s individual dif-
ferences as well as the communication channel may be sources 
of bias. If the speaker has a speech impediment (speaker indi-
vidual difference) that momentarily interferes with her vocal-
izations, then there may be bias in the form of a deficiency in 
the information exchanged. Suppose the receiver is elderly and 
suffers from high-frequency hearing loss, then words may be 
lost during perception (communication channel). An elderly 
receiver may also have more trouble remembering the entirety 
of the message (receiver individual differences). If we assess the 

Table 1. The sample sources of bias relevant to ML for AC.

Bias Term Meaning 
Deficiency Selection/sampling Statistics, demographics, and 

user characteristics are differ-
ent in the user population than 
in the collected data 

— Omitted variable One or more important vari-
ables are left out of the model 

Contamination Historical Existing systemic biases seep 
into the data collection process 

— Representation Decision makers incorrectly 
apply priors from an earlier sit-
uation they perceive as similar 
to the current one 

— Behavioral Behavior in the user population 
differs from behavior in the 
training data 

— Presentation When the order or style of 
information presented to partic-
ipants causes faulty reasoning 
or alters their behavior 

— Observer The tendency for people to sub-
consciously project their expec-
tations onto their observations 

Note: Although these terms are commonly dubbed bias and may cause psychomet-
ric bias, they are not themselves psychometric bias (i.e., a systematic error differen-
tially affecting groups).

Sender

Source Concept

ExpressionAction Plan

Receiver

Estimated
Concept

Internal
Representation

Encoding Decoding

PerceptionMessage

Noise

Individual
Differences Communication Channel

Individual
Differences

FIGURE 3. A one-way communication model for the transmission of a source concept (information) sent by one agent (sender) and received by another 
(receiver). Successful communication in this framework relies on the proper encoding and decoding of a concept—moderated by each agent’s individual 
differences—and also on minimal interference (noise) from the communication channel. The agents’ individual differences and communication-channel 
noise represent potential sources of bias.
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accuracy of this information exchange based on a successful 
transmission of the sender’s source concept to the receiver, then 
this type of information exchange would be biased as it is sys-
tematically less accurate for people with speech impediments, 
hearing loss, or memory difficulties.

The model presented in Figure 3 enables us to enumerate 
the potential sources of bias during information exchange: 
the sender’s individual differences, systematic noise in 
the communication channel, and the receiver’s individual dif-
ferences. Referring back to our notions of contamination and 
deficiency from the Standards, these bias sources can affect the 
information by contaminating it and/or facilitating omission. 
We can chain elements of this model together to understand 
how biases influence communication in larger systems.

ML as a communication process
Let us examine a typical process for training a supervised ML 
model for AC. First, data (face, voice, physiology, and actions) 
are collected from a group of participants, usually selected out 
of convenience, while they engage with a stimulus (stimuli) 
and complete a task (tasks). Then, for each participant, a set 
of labels of subjective constructs (e.g., emotions) are collected 
using self-annotation or a panel of human observers. These as-
sessments are combined or fused (e.g., by averaging) to form 
a ground-truth representation. Separately, a machine observer 
generates a set of features representing the participants’ external 
behaviors and internal (e.g., physiological) responses. A model 
is trained using the machine-observed features and the ground-
truth scores and subsequently tested using a predetermined 
evaluation metric, as defined and operationalized by stakehold-
ers, to assess whether the model meets the goals of the project. 
Each of these steps may be repeated iteratively until the model  
is satisfactory.

Figure 4 illustrates this process for training AC ML mod-
els, beginning with a participant (left) and ending with satisfied 
stakeholders (right). This process includes several steps where 
information is exchanged between various agents, so we can uti-
lize the noisy communication model from the previous section 
to represent the flow of information. Each information producer 
or consumer in the process is represented as a sender or receiver 
(green boxes). The information passed between them is repre-
sented as a message channel (yellow, wavy boxes).

Given this version of the ML process represented as a 
sequence of communication model exchanges, we can start to 
think about each step in the pipeline as being a potential source 
of bias. Just as before, each message channel may be subjected 
to external noise, which may differentially corrupt or omit 
information transmitted from the source sender. Likewise, the 
senders and receivers themselves may also introduce bias to 
the ML process when they send or receive messages based on 
their individual differences.

Taking the time to depict the flow of information in the ML 
process, whether it follows this typical AC workflow or not, 
enables stakeholders to produce a comprehensive set of bias 
sources from which construct-relevant information may be 
ignored (deficiency) or from which construct-irrelevant infor-

mation may be added (contamination). However, the potential 
impact of contamination and deficiency from each source is not 
equally impactful or relevant in all settings. For example, the 
data produced by a machine observer are often communicated 
to the learning model digitally and may by temporarily stored 
as a file in computer memory. The noise influencing this digital 
communication channel is characterized by bit corruption and/
or read/write errors, which are unlikely occurrences in modern 
robust computer hardware and even more unlikely to differen-
tially impact groups. On the other hand, when interactions occur 
over videoconferencing, known deficiencies in the communica-
tion medium, such as bandwidth, which vary based on socioeco-
nomic status, can be a source of bias.

The potential bias introduced by the ML model itself, taken 
as another example, illustrates the key distinction between the 
sources and manifestations of bias. Some ML models, once fully 
trained, result in a fixed and deterministic algorithm, which 
always maps the same feature inputs to a particular prediction 
(e.g., random forests, linear regressions, or neural networks). 
Once these models are deployed, they never change and thus 
cannot draw from prior predictions to introduce an additional 
bias (i.e., a bias other than the training data) into their predic-
tions. These types of models therefore cannot be sources of bias 
themselves because they lack any agency and are not influenced 
by prior experiences (i.e., individual differences from Figure 3). 
The learning models that do modify future predictions based 
on inaccuracies in the past (e.g., online ML and reinforcement 
learning) have a memory and may appropriately be considered 
sources of bias. When differential outcomes across groups are 
observed in the output from the ML model (i.e., manifested 
bias) and the model itself cannot be a source of bias, then the 
bias source is upstream. It may be directly upstream (e.g., the 
machine observer), or it may stem from previous decisions made 
by the stakeholders (see Figure 4) who, for example, may have 
selected a machine observer that is not equally accurate across 
groups, as in the case of facial expression recognition software 
that is less accurate for people with darker skin tones, or eye 
trackers that have difficulty for those with corrective vision.

Measuring bias and fairness
Let us consider how to measure bias and fairness in practice. 
Many formalized definitions of bias and fairness have been 
proposed and explored in the ML literature. We refer interested 
readers to [10], [20], and [21] for an overview. Here we focus 
on metrics for measuring psychometric bias and fairness when 
ML models are used to measure psychological constructs such 
as emotion or personality.

Table 2 lists several bias and fairness metrics relevant to 
AC and categorizes them according to their inputs by pipeline 
stage, as illustrated in Figure 4. This list is not exhaustive and 
is only intended to be instructive to readers when considering 
how bias and fairness can be measured at different ML pipe-
line stages. Note that each of the three stages near the bottom 
of the figure (i.e., the feature, prediction, and decision stages) 
are represented in the table, but not in the ground-truth stage. 
This is because in AC, the constructs of interest are always 
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latent (e.g., emotions), and thus a ground-truth measurement 
must first be established to evaluate bias. Any sources of con-
struct contamination or deficiency in the ground-truth stage 
can be evaluated using traditional psychometric techniques 
(e.g., differential item functioning and differential prediction) 
and is not our focus here.

Bias metrics
Bias metrics come in a variety of forms and are designed to 
help probe for group differences (see the top half of Table 2). 
Each of these measurements is mathematically defined, but 
we omit the mathematical definitions for simplicity. Interested 
readers are referred to [10], [20], and [21] for more information, 
with our note of caution that the terms bias and fairness are 
sometimes used interchangeably in the CS literature.

Bias metrics at the feature stage are concerned with the 
contamination or deficiency of construct-relevant information 
contained within the predictors themselves. “Fairness through 
unawareness” is a binary metric that considers whether group 
membership is included as a predictor, which is often (but not 
always) construct irrelevant and should presumably be exclud-
ed to minimize bias. The other measurements of bias at the 
prediction and decision stages are tied to the accuracy of the 
models’ predictions and are designed to check for unexpected 
differences in accuracy between groups. Intuitively, a predic-
tion that is less accurate for one group compared to another 
contains systematic error, which disproportionately affects one 
group over another, whether that error is introduced via con-
tamination or deficiency. These measurements can only pro-
vide evidence of manifested bias, so the bias source is always 
somewhere upstream of the measurement (see Figure 4).

The bias measurements that capture group differences in 
accuracy depend on the measurements of accuracy themselves. 
For example, studies that use correlational or mean-level mea-
surements of accuracy can use group differences in these 
measurements as relevant measurements of bias. Similarly, for 
studies involving binary label prediction, accuracy measure-
ments derived from the confusion matrix, such as treatment 
equality or equalized odds, can be relevant bias measurements. 
Bias can be further evaluated at the decision stage for some 
decision function by examining group differences in predic-
tion-based outcomes when compared to the outcomes resulting 
from applying the same decision function to the ground-truth 
construct labels.

Once the bias metrics are computed, a separate question is 
how to interpret them. When the same bias measurements are 
reported in related research, direct comparisons can be made. 
However, in the absence of comparable bias measurements, dif-
ferences in accuracy between groups can be difficult to interpret. 
One solution is to implement multiple ML prediction experi-
ments with small changes, perhaps involving bias-reduction 
strategies, and then compare bias measurements (with accom-
panying statistical tests) to assess the effects of these changes.

Fairness metrics
Fairness is not concerned with the differential group accuracy 
but rather with how information is consumed and transformed 
to produce an actionable result as well as how different people 
are treated and impacted by the decisions. The bottom half of 
Table 2 presents some fairness measurements that are relevant 
in AC, but readers are referred to [10] and [20] for more com-
prehensive lists.

Table 2. Sample bias and fairness metrics relevant to ML for AC.

Stage(s) Name Description 
Bias Features Fairness through unawareness Group membership is not used in an assessment 
Procedural Fairness/ 
Measurement Bias

Prediction Correlational accuracy Equal correlations between prediction and ground truth  
across groups 

— — Differential item functioning Equal-item total correlations for annotations and/or predictions 
— Prediction/decision Effect-size difference Effect sizes between groups in predictions are equal to effect sizes 

between groups in ground truth 
— — Treatment equality Equal ratio of false negatives to false positives across groups 
— — Equalized odds Equal number of group true and false positive rates 
— — Equal opportunity Equal number of group true positive rates 
— — Predictive equality Equal number of group false positive rates 
— — Overall accuracy equality Equal number of confusion matrices across groups 
— — Predictive parity Chance of individual selection across groups is equal using  

ground truth and predictions 
Distributive Fairness Prediction/decision Statistical parity/group fairness/ 

adverse impact
Equal number of group passing or hiring rates

— — AUC parity Area under the receiver operating characteristic curve is equal 
across groups 

— — Fairness through awareness Equal number of predictions is given to similar individuals,  
given group knowledge 

— — Counter-factual fairness Equal number of predictions is given to individuals if hypothetically 
assigned to different groups 

— Decision Conditional demographic parity Decisions are independent of groups given the data 
— — Single threshold A single decision threshold is used for everyone 

AUC: area under the curve. The metrics are categorized according to their inputs by pipeline stage as illustrated in Figure 4.
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Each fairness measurement is based on a different interpre-
tation of fairness and is therefore not necessarily compatible 
with other measurements of fairness. For example, counterfac-
tual fairness assumes that predictions should be equal for an 
individual regardless of group membership, which presumes 
knowledge of group types and intentionally ignores true group 
membership for individuals. Conditional demographic par-
ity suggests that decisions are fair when they are indepen-
dent of the relevant groups, given a particular set of data, 
which assumes knowledge of group types and may or may 
not include true group membership for individuals. Fair-
ness through awareness assumes that group membership 
contains useful information for adjusting predictions to 
make them more accurate and thus should be included in an 
assessment. Researchers and practitioners should be aware 
of the underlying assumptions imposed by each metric and 
whether they are compatible with stakeholder goals and 
legal restrictions.

Additionally, fairness metrics are distinct from measurement 
bias metrics and need to be considered separately for stakehold-
ers to evaluate the benefits and potential harms of a deployed 
automated AC assessment tool. In a hypothetical experiment 
using real-world data, Kleinberg et al. [22] showed that an algo-
rithm for deciding college admissions that is given knowledge 
about demographics (e.g., fairness through awareness) could 
help inform admissions committees in admitting a greater pro-
portion of black and African American students (who are under-
represented in U.S. colleges) while also meeting or exceeding 
the average student body GPA goals. Notably, any algorithm that 
utilizes demographics to measure some construct is inherently 
biased because the algorithm is using construct-irrelevant infor-
mation (e.g., race) to measure the construct. This is one perhaps 
counterintuitive example where increasing the bias of an assess-
ment can lead to more fair outcomes.

Finally, some of the proposed measurements of fairness 
make strong assumptions about the true distribution of con-
struct scores in the population across groups, which may or 
may not be reflected in the ground truth. For example, statisti-
cal parity, group fairness, and adverse impact (AI) are all con-
cerned with the equality of acceptance rates across groups, 
presuming that ground-truth group score distributions should 
be equal. The Standards explicitly rejects these definitions of 
fairness because real differences may exist between groups 
(e.g., women tend to be perceived as slightly more extroverted 
than men [23]); however, it points out that group differences 
should cause additional scrutiny for other potential sources of 
measurement unfairness and bias. In certain high-stakes sce-
narios where automated AC assessment tools are used, such as 
employee selection in the United States, noticeably different 
hiring rates (AI) may constitute prima facie evidence of dis-
crimination [9]. In spite of the strong (and sometimes perhaps 
inaccurate) assumptions made by these fairness measure-
ments, it is crucial that researchers and practitioners engaged 
in developing high-stakes AC systems evaluate and use them 
to avoid any ethical or legal concerns and to avoid harming 
vulnerable populations.

Case study: Automated video interviews
We demonstrate the process of mapping and measuring potential 
sources of bias and fairness in a case study of automated video 
interviews (AVIs). In AVIs, job candidates are given a series of 
questions and asked to record their answers as part of a one-way 
(or asynchronous) interview. AVIs use computer software to in-
gest the recordings and generate behavioral features, which are 
inputted into ML models to score interviewee knowledge, skills, 
abilities, or other characteristics (e.g., personality) to help com-
panies screen the candidates (e.g., a yes-or-no decision about 
whether to proceed with in-person interviews or hiring [1]). Hu-
man annotations are often used during the ML model develop-
ment process as a ground-truth reference. Human assessments 
of these traits are based on the dynamics of vocalization, body 
expression, linguistic cues, perceived emotions, and other social 
signals as collected by speech and natural language processing, 
computer vision, and various other AC tools.

Fortune 500 companies are increasingly interested in uti-
lizing AVIs to help screen job candidates more efficiently and 
effectively, but there has recently been push back due to poten-
tial biases in these systems [24]. For instance, in an in-person 
mock job interview experiment, Muralidhar et al. [2] observed 
that the automated assessment often rated males substantially 
higher than females on professional, social, and communication 
skills (e.g., enthusiasm, competence, and motivation), postulat-
ing that the differences were due to gender stereotyping in social 
cue perception while collecting ground-truth scores. It is both 
legally and ethically imperative that developers of these high-
stakes AVI systems carefully analyze bias and fairness to avoid 
social harm and aid in promoting just systems. We demonstrate 
this process using a data set of mock video interviews and an 
ML model trained to make assessments of job-relevant traits.

Data and models

Description
A total of 511 college students (62% female, 37% male, and 1% 
nonbinary) were recruited to participate in a mock video inter-
view for a hypothetical job opening. The participants were pre-
sented with six interview questions in random order, one at a 
time; and for each question, they were given a few minutes to 
prepare a response before recording a short video (1–3 min) of 
themselves answering it. A full list of the questions can be found 
in [3]; one sample question is, “Tell me about a recent uncom-
fortable or difficult work situation. How did you approach this 
situation? What happened?”

Ground truth
At least three members of a larger panel of trained human 
annotators, acting as the interview committee, rated the 
videos for each participant. The seven constructs of interest 
were the Big Five personality traits (agreeableness, openness, 
extraversion, emotional stability, and conscientiousness), per-
ceived intellect, and hireability. The ratings were provided 
separately by each rater and were based on all the responses 
from a given participant. After establishing adequate interrater 
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reliability [a one-way, random, average intraclass correlation 
coefficient (ICC)(1,k) . )67= ], the ratings from the annotators 
were averaged to generate a ground-truth score for each par-
ticipant and construct.

Features
A set of features was extracted from each video’s visual and au-
dio channels, capturing verbal [e.g., n-gram (word and phrases) 
frequencies, linguistic inquiry, and word count categories], para-
verbal [e.g., loudness, Mel-frequency cepstral coefficients 
(MFCCs), jitter, and shimmer], and nonverbal (e.g., facial action 
units and total body motion) behaviors. Unigram, bigram, and 
trigram features were computed from the audio transcripts pro-
duced by the IBM Watson automatic speech recognition service. 
Bigrams and trigrams with a point-wise mutual information 
(PMI) measurement of less than four were dropped to reduce 
the overall feature count (per [25]). For each participant, a set of 
statistical functionals was independently applied to the features 
extracted from each of the six videos, including median, stan-
dard deviation, minimum, maximum and range, and then aver-
aged across the recordings to produce one multidimensional ob-
servation per participant throughout the entire mock interview.

ML model
A random forest learning model was selected to make predictions 
of the constructs based on the audio and video features (although 
any model would suffice for the following bias/fairness analysis). 
The data set was partitioned separately for each construct into 
five equally sized folds, utilizing a stratified sampling approach 
such that each construct’s ground-truth distributions were roughly 
equal across folds. As each data sample corresponded to a unique 
participant, the folds were participant independent. Nested five-
fold cross validation was used to tune the hyperparameters of 
the random forest algorithm (number of decision trees {10, 250, 
500}, maximum depth {10, 50}) and the verbal feature extractor 
(stop words {none, English}, minimum term frequency {.01, .02, 
.03}). In total, there were approximately 7,877 features after PMI 
filtering, depending on the fold, construct, and the words uttered 
by participants, which comprised 250 visual, 125 paraverbal, and 
roughly 7,502 verbal features.

Bias and fairness results
We evaluate the bias and fairness of the AVI ML pipeline with 
respect to gender at the feature, prediction, and decision stages, 
in line with the stages illustrated in Figure 4 and mentioned 
in Table 2. Our data set contained only four participants with 
nonbinary gender affiliations, so we exclude them in the fol-
lowing analysis, noting that more data would be necessary to 
understand how bias and fairness concerns impact the excluded 
gender groups.

Feature stage
We adopt a fairness through unawareness strategy to minimize 
bias, where the gender of each participant is not included in the 
features used to train the ML model. By this definition, per-
sonality, intelligence, and hireability do not depend on gender 

information, so including gender would contaminate the ML 
predictions with construct-irrelevant information and introduce 
bias. Although omitting gender seems to satisfy this bias goal, 
we note that gender information is often encoded in other fea-
tures such as vocal pitch, shimmer, and MFCCs, which we do 
include. These features likely contain both construct-relevant 
information and gender bias, so a careful analysis of the impact 
of bias would be necessary.

An exploration of bias-mitigation strategies is outside the 
scope of this article, but various techniques such as the exclu-
sion of gender-biased features (i.e., features that carry a lot of 
gender-relevant information) [3] or fair representation learn-
ing should be considered and tested. Although the per-gender 
normalization of features may seem justifiable, the U.S. Civil 
Rights Act of 1991 explicitly outlaws using demographic infor-
mation to indirectly adjust scores.

Prediction stage
We evaluate the ML model using a Spearman correlation, which 
examines the rank-order consistency between the predicted and 
ground-truth scores, a relevant metric for when applicants will 
be ranked against each other [26]. The left section of Table 3 
shows the correlations for all participants, separately for women 
and men, and also the correlation difference between women and 
men, which provides one measurement of bias. By themselves, 
these measurements are difficult to interpret but would serve as 
a baseline for comparison in attempts to mitigate bias. Larger 
group correlational differences, such as the −.12 for extraversion 
or .11 for conscientiousness, arouse our suspicions as evidence of 
manifested gender bias and warrant further investigation.

The second section of Table 3 shows an effect-size dif-
ference (see Table 2) bias measurement operationalized 
using Cohen’s d effect size [Cohen’s ,d x x sm w= -r r^ h  
where ( ) ( ) / ( )[ ]s n s n s n n1 1 2m m w w m w

2 2 2= - + - + -6 @  m = 
men, w = women). The mean-effect-size differences between 
men and women are computed separately in the ground-truth 
labels and in the predictions, and then the difference in Cohen’s 
d between the two constitutes a measurement of bias. The gen-
eral guidelines for interpreting d dictate that values between  
.2 and .5 are considered small-to-medium-effect sizes, and thus 
we can see evidence of potential bias in the predicted values for 
all the constructs except agreeableness (for which the predictions 
were so inaccurate that invalidity is a bigger concern than bias). 
A further investigation reveals that the predicted values from 
the ML model range between approximately 3 and 6, while the 
ground truth ranges from 1 to 7. The restricted range of the pre-
dictions may be contributing to the larger differences in d (due 
to lower standard deviation) and warrant further investigation.

Decision stage
To assess compliance with the U.S. Civil Rights Act of 1964 
[9], we focus on AI as a decision-stage fairness measurement. 
AI is defined as the quotient of group selection ratios, in our 
case computed by , ,min SR SR SR SRW M M W^ ^h h6 @  where SRW 
is the number of women accepted by some binary decision  
process divided by the total women applicants (likewise for 
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men). We simulate a realistic decision function by selecting the 
top k candidates among all participants based on the construct 
predictions, and then we set k equal to 10% of all participants 
so that we have a sufficiently large sample size for computing 
group selection ratios.

Taking hireability as an example trait and using the ground-
truth scores as a baseline, we find the selection ratio for women is 
.1 and for men is .1, resulting in an AI ratio=1, which suggests that 
selecting for hireability in the ground truth is equitable. Using 
hireability predictions, the selection ratio for women is .11 and for 
men is .08, yielding an AI ratio of .7. In the United States, this vio-
lates the “four-fifths rule” (29 CFR§1607.4) and would be consid-
ered prima facie evidence to support a legal discrimination claim. 
Although the underlying cause of this unfairness may be bias 
upstream from the selection procedure, any system deployed 
for employment selection (at least in the United States) needs to 
demonstrate compliance with the four-fifths rule regardless of 
whether any bias can be found. Further exploration of the (un)
fairness of other decision thresholds (i.e., 
other settings for k) should be conducted to 
assess the sensitivity of the AI ratio for this 
AVI system.

Discussion
This article presented a framework for un-
derstanding psychometric bias and fairness 
according to the Standards in the context 
of a machine-based assessment of emo-
tion and its related constructs. We aimed to 
demonstrate that deconstructing a complex ML pipeline into a 
recurrent sequence of information exchanges and then treating 
those exchanges as noisy communication channels facilitates an 
understanding of how bias emerges, propagates, and manifests 
at various points throughout the ML development process. We 
suggest that decomposing other complex systems involving in-
formation exchange in this same manner will enable more pre-
scriptive bias and fairness assessments.

We were not able to cover many important issues in this arti-
cle and want to conclude with some remarks about future con-

siderations. It has been recognized that there is often a tradeoff 
between creating the most accurate model possible and reduc-
ing bias or enhancing fairness [10]. Model validity, bias, and 
fairness are all crucial considerations for automated AC 
systems, and therefore, ongoing and future work should con-
sider holistic optimization approaches rather than more tradi-
tional optimization of accuracy alone. More work is needed 
to investigate and normalize the methods that effectively maxi-
mize these outcomes, but some Pareto-optimization techniques 
already show promise [27].

In summary, the researchers and practitioners in AC 
developing the algorithms, software, and tools employed to 
aid in decision making have an ethical and moral responsibil-
ity to assess systemic errors and gauge the disproportionate 
impact that they can impose on people. We hope this exposi-
tion has been instructive in understanding, identifying, and 
measuring bias and unfairness, taking the first step toward 
this goal.
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