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e provide a psychometric-grounded exposition of bias

and fairness as applied to a typical machine learning

(ML) pipeline for affective computing (AC). We expand
on an interpersonal communication framework to elucidate
how to identify sources of bias that may arise in the process of
inferring human emotions and other psychological constructs
from observed behavior. The various methods and metrics for
measuring fairness and bias are discussed, along with perti-
nent implications within the U.S. legal context. We illustrate
how to measure some types of bias and fairness in a case study
involving automatic personality and hireability inference from
multimodal data collected in video interviews for mock job ap-
plications. We encourage AC researchers and practitioners to
encapsulate bias and fairness in their research processes and
products and to consider their role, agency, and responsibility
in promoting equitable and just systems.

Introduction
The tools used in AC, which enable machines to identify
people’s behaviors and mental states, are being increasingly
utilized in education, health care, and the workplace. One ap-
plication is to aid in the allocation of limited resources (e.g.,
counseling, mental health care, in-person interviews) via au-
tomated screening [1]-[3]. In these types of high-stakes sce-
narios, the assessments provided by AC systems can directly
affect the decision-making processes, which influence the
amount of attention, care, and opportunities afforded to indi-
viduals. As such, it is important that these processes are ac-
curate, unbiased, and fair because any deficiencies or errors
present in these systems stemming from the data they were
trained on, the types of algorithms used, or the decision-mak-
ing processes themselves may disproportionately impact dif-
ferent groups of people and lead to ethical and legal concerns,
not to mention pain and suffering for the vulnerable groups
impacted. Simply put, AC systems must deter, not propagate,
extant systems of inequity and injustice.

Fortunately, we have decades of guidance on how
to construct fair and unbiased measurement systems.
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The fields of educational and psychological measurement
(i.e., psychometrics) have well-established, distinct defini-
tions for test bias and fairness [4]. Great research progress
is being made toward ethical data representations for arti-
ficial intelligence systems [5] and fair emotional expression
recognition systems [6], yet most AC research ignores psy-
chometric aspects entirely and, when considered, many stud-
ies of algorithmic bias treat the notions of bias and fairness
somewhat interchangeably (e.g., [7]). Thus, a crucial first
step toward reducing the potential short- and long-term dis-
parities of AC systems is forming a consistent understanding
of these terms. Accordingly, this article
aims to provide an exposition of bias and

The fields of educational

Bias, fairness, and ML in AC

The terms bias and fairness are sometimes used interchange-
ably in reference to discrimination, and it is important to
distinguish the two. Indeed, discrimination serves as an um-
brella (legal) term encompassing both bias and fairness con-
cerns [9], but these terms have distinct meanings that should
not be confused.

The Standards for Educational and Psychological Testing
(hereafter, the “Standards”) has provided guidance on the devel-
opment of valid, fair, and unbiased measurements since the first
edition was released in 1966. In general, the Standards provides
counsel for assessments (including compu-
tational ones) of psychological constructs

fairness from a psychometric perspective, and psychological intended to differentiate individuals, such

to ground these terms in a typical AC ML measurement (i.e as for mental health treatments or educa-

pipeline, and to enable AC researchers and L tional and employment opportunities. In
psychometrics) have

practitioners to understand how sources of
bias and unfairness contribute to observed
manifestations or measurements of bias
and unfairness.

Our contributions are as follows. First,
we define the psychometric meaning of bias and distin-
guish it from fairness, providing examples of each. Second,
we present a typical ML pipeline used in AC to generate
predictions for mental constructs (e.g., emotions) from
physiological and behavioral data and decompose it into a
recurrent sequence of information exchanges. We demon-
strate that by representing these exchanges as noisy commu-
nication models; borrowed from classic information theory
[8], one can identify possible sources of bias and unfairness
at multiple stages in the pipeline. Third, we connect mea-
surements of bias and fairness from recent computer
science (CS) research to the psychometric definitions of
bias and fairness. Finally, using automated pre-employment
screening, or personnel selection, as an application domain,
which utilizes many analytical tools from AC, we empiri-
cally demonstrate the process of testing for some types of
bias and unfairness in automatic personality and hireability
inference from video interviews.

well-estahlished, distinct
definitions for test hias
and fairness.

AC, we are often interested in measuring
latent constructs (i.e., an individual’s states
or traits) generally not directly observable,
such as emotion, depression, and personal-
ity. In psychometrics (i.e., the study of psy-
chological measurement), these constructs are measured using
carefully crafted and validated assessments, including test
items with correct/incorrect responses (e.g., intelligence tests),
questionnaires with Likert-type scales, and other measurements
(e.g., observations). In AC, these assessment items are replaced
with automated inference from behaviors often obtained using
cameras, microphones, and various physiological sensors. A
typical ML pipeline for predicting a latent mental state involves
passing data (e.g., behavioral observations about a person)
through a trained ML model to obtain a prediction, which can
later be used to make the decisions that affect people (e.g., to
hire or not hire). Figure 1 illustrates this sequence of events and
also depicts the different types of bias and fairness and their
regions of concern with respect to this pipeline.

Fairness is a subjective perspective on the appropriateness of
the way a construct is measured, how the measurement is used
for decision making, and the explanations related to the use of
the construct. Bias is any systematic error that differentially
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FIGURE 1. Different types of bias and fairness and their regions of concern with respect to a typical ML pipeline used for decision making, where the

outcomes affect real people.
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affects assessments of distinct groups of people. These are two
different notions, but we often hear about them together because
they both pertain to potential discrimination and the quality of
decisions. The Standards considers bias to be subsumed by fair-
ness in that a biased measurement is likely to be unfair. Yet, not
all measurements viewed as unfair are biased, not all unbiased
measurements are considered fair, nor will everyone view a
biased measurement (and the subsequent decisions made using
it) as unfair. These terms are sometimes conflated in CS and
ML literature (e.g., [7] and [10]), but psychometrics offers a
clear and established perspective on these topics.

Fairness

Fairness has no universal definition as it is a social, not psy-
chometric, concept rooted in value judgments [11]. Fairness is a
subjective evaluation (e.g., justice and morality), varying across
cultures and societies, and in the context of organizations such
as schools, hospitals, or corporations, organizational justice
has been the predominant theoretical concept used to recog-
nize perceptions of unfairness [12]. Although AC is not broadly
tied to understanding people within organizations, examining
fairness through this lens is highly illustra-

ments, which include facial recognition. Interactional fairness
would be concerned with enhancing the explainability of the
ML pipeline decisions and seeking to provide acceptable justi-
fications for them. Procedural fairness would be concerned with
the use of (or error associated with) facial features for expression
recognition, which may be indicative of group membership (e.g.,
skin color [14] or facial structure).

In the United States, laws and case law (Title VII of the Civil
Rights Act of 1964; Age Discrimination in Employment Act of
1967; Americans with Disabilities Act of 1990; Civil Rights Act
of 1991; Bostock v. Clayton County Georgia) clearly define the
groups that are protected from employment discrimination: age,
disability, race, religion or belief, sex, gender, lesbian, gay, bisex-
ual, transgender, queer, and pregnancy or maternity. The U.S.
Civil Rights Act of 1991 established that direct or indirect mea-
surements of these group attributes cannot be used in the deci-
sion-making process for employment. This precedent establishes
a hard line for procedural fairness for any automated system
deployed within the United States and used to aid in employ-
ment decisions (other countries may have different restrictions).
By extension, this means that facial expression recognition soft-

ware used to aid in employment decisions in

tive of some of the difficulties and inherent Procedural fairness the United States cannot attempt to correct
tradeoffs (compare [13]) in fairness consider- is emphasized in the for its poorer performance for darker skin
ations within AC. Standards hecause it is tones by being aware of skin color. Thus,

. Org?mz.atlo.nal. JllS.tICC 1.nv01ves. three key crucial that an assessment tyese“sy§tems must remain group tl’nawgre
dimensions: distributive, interactional, and (i.e., “fairness through unawareness”) while
procedural fairness [12]. Distributive fairness does not generate also meeting the growing demands for fair
regards the perceived fairness of outcomes different scores among outcomes (i.e., distributive fairness) and
and allocations of important resources (e.g., suhgroups if they have explainability (i.e., interactional fairness).

jobs). Interactional fairness regards how peo-
ple perceive the explanations, rationales, and
justifications for organizational decisions and how they perceive
the interpersonal treatment they receive along the way. Proce-
dural fairness regards the perceived fairness of the elements of
the decision-making process. Procedural fairness is emphasized
in the Standards because it is crucial that an assessment (e.g., ML
predictions) does not generate different scores among subgroups
if they have equivalent true scores. However, if there are differ-
ences among groups due to societal structures or biology, the
assessment should accurately assess any potential differences.
For example, a measurement of height should not show equal
heights for men and women just to be “fair.”

Each of these types of fairness is relevant in the context of AC
research, tools, and products. For example, facial recognition and
expression software has been a core component of the AC tool kit
and used to gain insights into the expressed emotional dynam-
ics during social interactions. This capability is being incorpo-
rated into ML systems that, for example, observe the expression
dynamics of individuals in recorded video interviews to make
inferences about personality and other potentially relevant char-
acteristics for employment [1]. However, one well-known issue
is that the underlying facial recognition software tends to be less
accurate for Black individuals compared to White individuals
[14]. In this context, distributive fairness is concerned with ways
to enhance the equality of scores and outcomes for measure-
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equivalent true scores.

Attaining fairness in these types of systems
is a difficult and complex task, both from an
engineering and social perspective.

This challenge becomes even more apparent when examin-
ing recent work on ML fairness. Many of these works empha-
size distributive fairness, which is highly desirable, but it is
often difficult to achieve because of inherent tradeoffs among
differing perspectives on what is considered fair [13]. One per-
spective on distributive fairness is that of equality, or the notion
that each person or group of persons receives the same outputs
(e.g., job offers). Another perspective is equity, where each per-
son or group of persons should receive outputs proportional to
their inputs (e.g., more job offers go to those who demonstrate
merit). A third perspective is that of need, or the notion that each
person or group of persons receives outputs according to their
necessity (e.g., persons lacking money or who are otherwise dis-
advantaged receive more job offers). These methods for distrib-
uting opportunities are fundamentally opposed, but each may
be deemed fair according to individual differences in outlook.
Creating fair ML systems amounts not only to transparency and
measuring fairness but also a social buy-in from the organiza-
tions utilizing them and the stakeholders affected by them.

Bias
The term bias is semantically overloaded and has many spe-
cialized definitions in different contexts. Many are familiar
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with bias in the form of implicit and explicit bias, which in-
volve systematic errors of judgment among humans due to
the demographic characteristics of a given target (e.g., race,
gender, or religion) [15]. These types of bias relate to the sys-
tematic influences that alter human behaviors or judgments
about others as a function of their group membership.

In psychological assessment, which characterizes much of
the AC applications in this area, bias refers to any systematic
error in a test score that differentially affects the performance
of different groups of test takers [16, p. 23], where group mem-
bership is determined by distinguishing characteristics among
the agents (e.g., gender or age). For example, any facial recog-
nition software whose accuracy scores vary by race or gender
would be biased. This is the definition of bias we adopt for the
remainder of this article, and first distinguish between sources
of bias and evidence or manifestations of bias.

The sources of bias in an assessment of a construct can broad-
ly be attributed to either construct contamination or deficiency
[4], as illustrated in Figure 2. Contamination refers to the sources
that introduce construct-irrelevant variance, while deficiency re-
fers to the omission of construct-relevant variance. If these types
of errors universally inflate or deflate scores
independent of group status, then the assess-
ments may be described as inaccurate, but
they would not necessarily be biased. Psy-
chometric bias regards errors that differen-
tially affect members of one group compared
to members of another. For example, an AC
system for judging hireability from tone of
voice and nonverbal behaviors (ostensibly
signaling competence) trained exclusively on
White individuals (i.e., population bias, sampling bias, and repre-
sentation bias) will tend to be deficient when assessing hireability
patterns for other racial groups, and it will also be contaminated
with the behavioral patterns applicable to whites but not other
racial groups.

The manifestation of bias in ML, or the bias that we
observe, mostly comes from measurement bias. Measurement
bias occurs when assessment scores contain systematic error
that is not relevant to the construct of interest, such as an ML
pipeline producing predictions of personality scores, which
are systematically influenced by race. In this case, measure-
ment bias would be observed if racial subgroups have the same
ground-truth scores but the assessment systematically provides
different scores.

Importantly, we do not make any intentional attributions
to bias, instead arguing that it arises from the involvement of
humans in the process. For example, in AC, we typically rely
on human-produced (i.e., self- or other-reported) assessments
of constructs to serve as ground-truth labels for ML model-
ing. This step is necessary because the constructs of interest
are latent, meaning they are hidden and cannot be directly
observed. Intuitively, we may imagine that differences in the
mean-ground-truth label for different groups indicates bias,
but the Standards states that group differences in outcomes do
not in themselves indicate that a testing application is biased or

Contamination refers to
the sources that
introduce construct-
irrelevant variance, while
deficiency refers to the
omission of construct-
relevant variance.

unfair [4, p. 54]. Any differences in group means may reflect
true differences in the underlying construct. Simply put, a
measurement of height that systematically indicates that men
are on average taller women is not biased.

Ground truth in AC is sometimes obtained with the aid of
validated self-reported psychological measurements, which
have ostensibly been tested for bias with various subgroups.
However, when observers are used to obtain ratings or
annotations, steps should be taken to ensure ground-truth
validity, including conducting frame-of-reference training
[17], using a panel of diverse annotators, monitoring anno-
tation quality (e.g., via interrater reliability/agreement), and
removing outlying or low-quality annotators. These kinds
of steps result in a collection of annotations, which can be
better trusted in aggregate as accurate ground-truth rep-
resentations, where any group differences are a reflection
of true differences among groups rather than bias. These
steps are absolutely essential for bias analysis—if human
implicit/explicit bias contaminates the ground-truth mea-
surement, then the resulting ML assessment is very likely
to reflect these biases.

Identifying Sources of Bias

We endeavor to provide a framework for
identifying the possible sources of bias in
AC ML (Table 1) by deconstructing the
ML pipeline into a recurrent sequence of
exchanges of information among differ-
ent pieces of the pipeline. We can then ex-
amine the sources of bias associated with
each piece to understand how bias emerges,
propagates, and manifests at various points throughout the
ML process. To do so, we expand upon a common conceptual
framework employed in AC and natural language processing
to understand noisy information exchange [8], [18]: the two-
agent communication model. We caution, however, that any
list of biases, such as the examples presented in Table 1, only
serve as a reference for researchers and may not be comprehensive

Construct
Relevance

Sources
of Bias

Construct Construct

Deficiency Contamination
FIGURE 2. The sources of measurement bias in construct assessment [4]
(reproduced from [3]).
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enough to represent all the possible sources of bias in any
given study.

Communication model for bias identification

Mehu and Scherer [19] helped bridge social signal processing
with psychology and ethology by considering how the (un)reli-
able and contextual nature of human behavior impacts com-
munication and efforts to automate its understanding. In this
work, they considered communication as an encoded exchange
of information, hearkening back to early communication
models such as the Shannon—Weaver one [8], first proposed in
1948, or the sender-message-channel-receiver model, later in-
troduced by David Berlo [18]. These models consider commu-
nication as a process (not necessarily serial) among a sender,
who encodes a message; a receiver, who perceives and decodes
the message; and a channel, through which the message passes
between the two, as illustrated in Figure 3.

Table 1. The sample sources of bias relevant to ML for AC.

Bias Term
Selection/sampling

Meaning

Statistics, demographics, and
user characteristics are differ
ent in the user population than
in the collected data

One or more important vari-
ables are left out of the model

Deficiency

— Omitted variable

Contamination  Historical Existing systemic biases seep
into the data collection process
Decision makers incorrectly
apply priors from an earlier sit
uation they perceive as similar
to the current one

Behavior in the user population
differs from behavior in the
training data

When the order or style of
information presented to partic-
ipants causes faulty reasoning
or alters their behavior

The tendency for people fo sub-
consciously project their expec-
tations onto their observations

— Representation

— Behavioral

— Presentation

— Observer

Note: Although these terms are commonly dubbed bias and may cause psychomet-
ric bias, they are not themselves psychometric bias (i.e., a systematic error differen-
tially affecting groups).

Sender \\\6\68

Source Concept

N 2 5 ;

envidal Encodi T Decod Individual
Differences JPEmEeny Communication Channel ecoding Differences
Action Plan Expression —¢ R »— Perception itemale
Representation

The information in this diagram flows from left to right,
starting with a source concept, representing what the sender
intends to communicate. This concept is then encoded as a
sequence of behavioral actions (the action plan). These actions
may include speaking, gesturing, touching, typing, or gen-
erally any form of sensory output. The speaker attempts to
execute the actions to try to express the source concept to a
receiver by means of a communication channel, such as air
(carrying vocalizations) or a digital video recording. This
channel is considered to be a noisy information tunnel where
the encoded message may be altered on its way to the receiver
and may thus interfere with the receiver’s interpretation and
understanding. The receiver perceives a potentially contami-
nated or deficient version of these expressions (e.g., via sen-
sory inputs) and generates an internal representation of the
expression. Finally, this representation is decoded to form the
receiver’s estimated concept, a version of the sender’s source
concept. Individual differences (e.g., experiences, behaviors,
or genetic traits) in the sender and receiver may separately
influence their encoding and decoding of the message which,
together with noise in the communication channel, are poten-
tial sources of bias.

To make this model more concrete, consider an example rele-
vant to AC where the sender is a speaker and attempts to describe
her feelings (source concept) about a recent event to a friend. The
speaker recalls her prior experiences to decide (action plan) how
to describe her feelings. Her voice travels through the air (com-
munication channel) to the receiver, who perceives the utterances
and forms an internal representation of the words. The word rep-
resentations are decoded to form the receiver’s estimated concept
and give meaning to the message.

In this example, the speaker’s and receiver’s individual dif-
ferences as well as the communication channel may be sources
of bias. If the speaker has a speech impediment (speaker indi-
vidual difference) that momentarily interferes with her vocal-
izations, then there may be bias in the form of a deficiency in
the information exchanged. Suppose the receiver is elderly and
suffers from high-frequency hearing loss, then words may be
lost during perception (communication channel). An elderly
receiver may also have more trouble remembering the entirety
of the message (receiver individual differences). If we assess the

Receiver

Estimated
Concept

FIGURE 3. A one-way communication model for the transmission of a source concept (information) sent by one agent (sender) and received by another
(receiver). Successful communication in this framework relies on the proper encoding and decoding of a concept—moderated by each agent’s individual
differences—and also on minimal interference (noise) from the communication channel. The agents’ individual differences and communication-channel

noise represent potential sources of bias.
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accuracy of this information exchange based on a successful
transmission of the sender’s source concept to the receiver, then
this type of information exchange would be biased as it is sys-
tematically less accurate for people with speech impediments,
hearing loss, or memory difficulties.

The model presented in Figure 3 enables us to enumerate
the potential sources of bias during information exchange:
the sender’s individual differences, systematic noise in
the communication channel, and the receiver’s individual dif-
ferences. Referring back to our notions of contamination and
deficiency from the Standards, these bias sources can affect the
information by contaminating it and/or facilitating omission.
We can chain elements of this model together to understand
how biases influence communication in larger systems.

ML as a communication process

Let us examine a typical process for training a supervised ML
model for AC. First, data (face, voice, physiology, and actions)
are collected from a group of participants, usually selected out
of convenience, while they engage with a stimulus (stimuli)
and complete a task (tasks). Then, for each participant, a set
of labels of subjective constructs (e.g., emotions) are collected
using self-annotation or a panel of human observers. These as-
sessments are combined or fused (e.g., by averaging) to form
a ground-truth representation. Separately, a machine observer
generates a set of features representing the participants’ external
behaviors and internal (e.g., physiological) responses. A model
is trained using the machine-observed features and the ground-
truth scores and subsequently tested using a predetermined
evaluation metric, as defined and operationalized by stakehold-
ers, to assess whether the model meets the goals of the project.
Each of these steps may be repeated iteratively until the model
is satisfactory.

Figure 4 illustrates this process for training AC ML mod-
els, beginning with a participant (left) and ending with satisfied
stakeholders (right). This process includes several steps where
information is exchanged between various agents, so we can uti-
lize the noisy communication model from the previous section
to represent the flow of information. Each information producer
or consumer in the process is represented as a sender or receiver
(green boxes). The information passed between them is repre-
sented as a message channel (yellow, wavy boxes).

Given this version of the ML process represented as a
sequence of communication model exchanges, we can start to
think about each step in the pipeline as being a potential source
of bias. Just as before, each message channel may be subjected
to external noise, which may differentially corrupt or omit
information transmitted from the source sender. Likewise, the
senders and receivers themselves may also introduce bias to
the ML process when they send or receive messages based on
their individual differences.

Taking the time to depict the flow of information in the ML
process, whether it follows this typical AC workflow or not,
enables stakeholders to produce a comprehensive set of bias
sources from which construct-relevant information may be
ignored (deficiency) or from which construct-irrelevant infor-

mation may be added (contamination). However, the potential
impact of contamination and deficiency from each source is not
equally impactful or relevant in all settings. For example, the
data produced by a machine observer are often communicated
to the learning model digitally and may by temporarily stored
as a file in computer memory. The noise influencing this digital
communication channel is characterized by bit corruption and/
or read/write errors, which are unlikely occurrences in modern
robust computer hardware and even more unlikely to differen-
tially impact groups. On the other hand, when interactions occur
over videoconferencing, known deficiencies in the communica-
tion medium, such as bandwidth, which vary based on socioeco-
nomic status, can be a source of bias.

The potential bias introduced by the ML model itself, taken
as another example, illustrates the key distinction between the
sources and manifestations of bias. Some ML models, once fully
trained, result in a fixed and deterministic algorithm, which
always maps the same feature inputs to a particular prediction
(e.g., random forests, linear regressions, or neural networks).
Once these models are deployed, they never change and thus
cannot draw from prior predictions to introduce an additional
bias (i.e., a bias other than the training data) into their predic-
tions. These types of models therefore cannot be sources of bias
themselves because they lack any agency and are not influenced
by prior experiences (i.e., individual differences from Figure 3).
The learning models that do modify future predictions based
on inaccuracies in the past (e.g., online ML and reinforcement
learning) have a memory and may appropriately be considered
sources of bias. When differential outcomes across groups are
observed in the output from the ML model (i.e., manifested
bias) and the model itself cannot be a source of bias, then the
bias source is upstream. It may be directly upstream (e.g., the
machine observer), or it may stem from previous decisions made
by the stakeholders (see Figure 4) who, for example, may have
selected a machine observer that is not equally accurate across
groups, as in the case of facial expression recognition software
that is less accurate for people with darker skin tones, or eye
trackers that have difficulty for those with corrective vision.

Measuring bias and fairness

Let us consider how to measure bias and fairness in practice.
Many formalized definitions of bias and fairness have been
proposed and explored in the ML literature. We refer interested
readers to [10], [20], and [21] for an overview. Here we focus
on metrics for measuring psychometric bias and fairness when
ML models are used to measure psychological constructs such
as emotion or personality.

Table 2 lists several bias and fairness metrics relevant to
AC and categorizes them according to their inputs by pipeline
stage, as illustrated in Figure 4. This list is not exhaustive and
is only intended to be instructive to readers when considering
how bias and fairness can be measured at different ML pipe-
line stages. Note that each of the three stages near the bottom
of the figure (i.e., the feature, prediction, and decision stages)
are represented in the table, but not in the ground-truth stage.
This is because in AC, the constructs of interest are always
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latent (e.g., emotions), and thus a ground-truth measurement
must first be established to evaluate bias. Any sources of con-
struct contamination or deficiency in the ground-truth stage
can be evaluated using traditional psychometric techniques
(e.g., differential item functioning and differential prediction)
and is not our focus here.

Bias mefrics

Bias metrics come in a variety of forms and are designed to
help probe for group differences (see the top half of Table 2).
Each of these measurements is mathematically defined, but
we omit the mathematical definitions for simplicity. Interested
readers are referred to [10], [20], and [21] for more information,
with our note of caution that the terms bias and fairness are
sometimes used interchangeably in the CS literature.

Bias metrics at the feature stage are concerned with the
contamination or deficiency of construct-relevant information
contained within the predictors themselves. “Fairness through
unawareness” is a binary metric that considers whether group
membership is included as a predictor, which is often (but not
always) construct irrelevant and should presumably be exclud-
ed to minimize bias. The other measurements of bias at the
prediction and decision stages are tied to the accuracy of the
models’ predictions and are designed to check for unexpected
differences in accuracy between groups. Intuitively, a predic-
tion that is less accurate for one group compared to another
contains systematic error, which disproportionately affects one
group over another, whether that error is introduced via con-
tamination or deficiency. These measurements can only pro-
vide evidence of manifested bias, so the bias source is always
somewhere upstream of the measurement (see Figure 4).

The bias measurements that capture group differences in
accuracy depend on the measurements of accuracy themselves.
For example, studies that use correlational or mean-level mea-
surements of accuracy can use group differences in these
measurements as relevant measurements of bias. Similarly, for
studies involving binary label prediction, accuracy measure-
ments derived from the confusion matrix, such as treatment
equality or equalized odds, can be relevant bias measurements.
Bias can be further evaluated at the decision stage for some
decision function by examining group differences in predic-
tion-based outcomes when compared to the outcomes resulting
from applying the same decision function to the ground-truth
construct labels.

Once the bias metrics are computed, a separate question is
how to interpret them. When the same bias measurements are
reported in related research, direct comparisons can be made.
However, in the absence of comparable bias measurements, dif-
ferences in accuracy between groups can be difficult to interpret.
One solution is to implement multiple ML prediction experi-
ments with small changes, perhaps involving bias-reduction
strategies, and then compare bias measurements (with accom-
panying statistical tests) to assess the effects of these changes.

Fairness metrics

Fairness is not concerned with the differential group accuracy
but rather with how information is consumed and transformed
to produce an actionable result as well as how different people
are treated and impacted by the decisions. The bottom half of
Table 2 presents some fairness measurements that are relevant
in AC, but readers are referred to [10] and [20] for more com-
prehensive lists.

Table 2. Sample bias and fairness metrics relevant to ML for AC.

Stage(s) Name
Bias Features Fairness through unawareness
Procedural Fairness/  Prediction Correlational accuracy
Measurement Bias

Differential item functioning
— Prediction/decision  Effectsize difference
Treatment equality
Equalized odds

Equal opportunity
Predictive equality
Overall accuracy equality
Predictive parity

Distributive Fairness  Prediction/decision

adverse impact
AUC parity

Fairness through awareness
Counterfactual fairness

— Decision

Single threshold

Statistical parity/group fairness/

Conditional demographic parity

Description

Group membership is not used in an assessment

Equal correlations between prediction and ground truth

across groups

Equal-tem total correlations for annotations and/or predictions
Effect sizes between groups in predictions are equal to effect sizes
between groups in ground fruth

Equal ratio of false negatives to false positives across groups
Equal number of group true and false positive rafes

Equal number of group true positive rates

Equal number of group false positive rates

Equal number of confusion matrices across groups

Chance of individual selection across groups is equal using
ground truth and predictions

Equal number of group passing or hiring rates

Area under the receiver operating characteristic curve is equal
across groups

Equal number of predictions is given to similar individuals,

given group knowledge

Equal number of predictions is given to individuals if hypothetically
assigned to different groups

Decisions are independent of groups given the data

A single decision threshold is used for everyone

AUC: area under the curve. The metrics are categorized according to their inputs by pipeline stage as illustrated in Figure 4.
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Each fairness measurement is based on a different interpre-
tation of fairness and is therefore not necessarily compatible
with other measurements of fairness. For example, counterfac-
tual fairness assumes that predictions should be equal for an
individual regardless of group membership, which presumes
knowledge of group types and intentionally ignores true group
membership for individuals. Conditional demographic par-
ity suggests that decisions are fair when they are indepen-
dent of the relevant groups, given a particular set of data,
which assumes knowledge of group types and may or may
not include true group membership for individuals. Fair-
ness through awareness assumes that group membership
contains useful information for adjusting predictions to
make them more accurate and thus should be included in an
assessment. Researchers and practitioners should be aware
of the underlying assumptions imposed by each metric and
whether they are compatible with stakeholder goals and
legal restrictions.

Additionally, fairness metrics are distinct from measurement
bias metrics and need to be considered separately for stakehold-
ers to evaluate the benefits and potential harms of a deployed
automated AC assessment tool. In a hypothetical experiment
using real-world data, Kleinberg et al. [22] showed that an algo-
rithm for deciding college admissions that is given knowledge
about demographics (e.g., fairness through awareness) could
help inform admissions committees in admitting a greater pro-
portion of black and African American students (who are under-
represented in U.S. colleges) while also meeting or exceeding
the average student body GPA goals. Notably, any algorithm that
utilizes demographics to measure some construct is inherently
biased because the algorithm is using construct-irrelevant infor-
mation (e.g., race) to measure the construct. This is one perhaps
counterintuitive example where increasing the bias of an assess-
ment can lead to more fair outcomes.

Finally, some of the proposed measurements of fairness
make strong assumptions about the true distribution of con-
struct scores in the population across groups, which may or
may not be reflected in the ground truth. For example, statisti-
cal parity, group fairness, and adverse impact (Al) are all con-
cerned with the equality of acceptance rates across groups,
presuming that ground-truth group score distributions should
be equal. The Standards explicitly rejects these definitions of
fairness because real differences may exist between groups
(e.g., women tend to be perceived as slightly more extroverted
than men [23]); however, it points out that group differences
should cause additional scrutiny for other potential sources of
measurement unfairness and bias. In certain high-stakes sce-
narios where automated AC assessment tools are used, such as
employee selection in the United States, noticeably different
hiring rates (AI) may constitute prima facie evidence of dis-
crimination [9]. In spite of the strong (and sometimes perhaps
inaccurate) assumptions made by these fairness measure-
ments, it is crucial that researchers and practitioners engaged
in developing high-stakes AC systems evaluate and use them
to avoid any ethical or legal concerns and to avoid harming
vulnerable populations.

Case study: Automated video interviews

‘We demonstrate the process of mapping and measuring potential
sources of bias and fairness in a case study of automated video
interviews (AVIs). In AVIs, job candidates are given a series of
questions and asked to record their answers as part of a one-way
(or asynchronous) interview. AVIs use computer software to in-
gest the recordings and generate behavioral features, which are
inputted into ML models to score interviewee knowledge, skills,
abilities, or other characteristics (e.g., personality) to help com-
panies screen the candidates (e.g., a yes-or-no decision about
whether to proceed with in-person interviews or hiring [1]). Hu-
man annotations are often used during the ML model develop-
ment process as a ground-truth reference. Human assessments
of these traits are based on the dynamics of vocalization, body
expression, linguistic cues, perceived emotions, and other social
signals as collected by speech and natural language processing,
computer vision, and various other AC tools.

Fortune 500 companies are increasingly interested in uti-
lizing AVIs to help screen job candidates more efficiently and
effectively, but there has recently been push back due to poten-
tial biases in these systems [24]. For instance, in an in-person
mock job interview experiment, Muralidhar et al. [2] observed
that the automated assessment often rated males substantially
higher than females on professional, social, and communication
skills (e.g., enthusiasm, competence, and motivation), postulat-
ing that the differences were due to gender stereotyping in social
cue perception while collecting ground-truth scores. It is both
legally and ethically imperative that developers of these high-
stakes AVI systems carefully analyze bias and fairness to avoid
social harm and aid in promoting just systems. We demonstrate
this process using a data set of mock video interviews and an
ML model trained to make assessments of job-relevant traits.

Data and models

Description

A total of 511 college students (62% female, 37% male, and 1%
nonbinary) were recruited to participate in a mock video inter-
view for a hypothetical job opening. The participants were pre-
sented with six interview questions in random order, one at a
time; and for each question, they were given a few minutes to
prepare a response before recording a short video (1-3 min) of
themselves answering it. A full list of the questions can be found
in [3]; one sample question is, “Tell me about a recent uncom-
fortable or difficult work situation. How did you approach this
situation? What happened?”’

Ground truth

At least three members of a larger panel of trained human
annotators, acting as the interview committee, rated the
videos for each participant. The seven constructs of interest
were the Big Five personality traits (agreeableness, openness,
extraversion, emotional stability, and conscientiousness), per-
ceived intellect, and hireability. The ratings were provided
separately by each rater and were based on all the responses
from a given participant. After establishing adequate interrater
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reliability [a one-way, random, average intraclass correlation
coefficient (ICC)(1,k) = .67)], the ratings from the annotators
were averaged to generate a ground-truth score for each par-
ticipant and construct.

Features

A set of features was extracted from each video’s visual and au-
dio channels, capturing verbal [e.g., n-gram (word and phrases)
frequencies, linguistic inquiry, and word count categories], para-
verbal [e.g., loudness, Mel-frequency cepstral coefficients
(MFCCs), jitter, and shimmer], and nonverbal (e.g., facial action
units and total body motion) behaviors. Unigram, bigram, and
trigram features were computed from the audio transcripts pro-
duced by the IBM Watson automatic speech recognition service.
Bigrams and trigrams with a point-wise mutual information
(PMI) measurement of less than four were dropped to reduce
the overall feature count (per [25]). For each participant, a set of
statistical functionals was independently applied to the features
extracted from each of the six videos, including median, stan-
dard deviation, minimum, maximum and range, and then aver-
aged across the recordings to produce one multidimensional ob-
servation per participant throughout the entire mock interview.

ML model

A random forest learning model was selected to make predictions
of the constructs based on the audio and video features (although
any model would suffice for the following bias/fairness analysis).
The data set was partitioned separately for each construct into
five equally sized folds, utilizing a stratified sampling approach
such that each construct’s ground-truth distributions were roughly
equal across folds. As each data sample corresponded to a unique
participant, the folds were participant independent. Nested five-
fold cross validation was used to tune the hyperparameters of
the random forest algorithm (number of decision trees {10, 250,
500}, maximum depth {10, 50}) and the verbal feature extractor
(stop words {none, English}, minimum term frequency {.01, .02,
.03}). In total, there were approximately 7,877 features after PMI
filtering, depending on the fold, construct, and the words uttered
by participants, which comprised 250 visual, 125 paraverbal, and
roughly 7,502 verbal features.

Bias and fairness results

We evaluate the bias and fairness of the AVI ML pipeline with
respect to gender at the feature, prediction, and decision stages,
in line with the stages illustrated in Figure 4 and mentioned
in Table 2. Our data set contained only four participants with
nonbinary gender affiliations, so we exclude them in the fol-
lowing analysis, noting that more data would be necessary to
understand how bias and fairness concerns impact the excluded
gender groups.

Feature stage

We adopt a fairness through unawareness strategy to minimize
bias, where the gender of each participant is not included in the
features used to train the ML model. By this definition, per-
sonality, intelligence, and hireability do not depend on gender

information, so including gender would contaminate the ML
predictions with construct-irrelevant information and introduce
bias. Although omitting gender seems to satisfy this bias goal,
we note that gender information is often encoded in other fea-
tures such as vocal pitch, shimmer, and MFCCs, which we do
include. These features likely contain both construct-relevant
information and gender bias, so a careful analysis of the impact
of bias would be necessary.

An exploration of bias-mitigation strategies is outside the
scope of this article, but various techniques such as the exclu-
sion of gender-biased features (i.e., features that carry a lot of
gender-relevant information) [3] or fair representation learn-
ing should be considered and tested. Although the per-gender
normalization of features may seem justifiable, the U.S. Civil
Rights Act of 1991 explicitly outlaws using demographic infor-
mation to indirectly adjust scores.

Prediction stage
We evaluate the ML model using a Spearman correlation, which
examines the rank-order consistency between the predicted and
ground-truth scores, a relevant metric for when applicants will
be ranked against each other [26]. The left section of Table 3
shows the correlations for all participants, separately for women
and men, and also the correlation difference between women and
men, which provides one measurement of bias. By themselves,
these measurements are difficult to interpret but would serve as
a baseline for comparison in attempts to mitigate bias. Larger
group correlational differences, such as the —.12 for extraversion
or .11 for conscientiousness, arouse our suspicions as evidence of
manifested gender bias and warrant further investigation.

The second section of Table 3 shows an effect-size dif-
ference (see Table 2) bias measurement operationalized
using Cohen’s d effect size [Cohen’s d = (%n—Xw/s),
where s*= [[(nm —Dsi+ (e —Dsil/(mm+ne—2)| m =
men, w = women). The mean-effect-size differences between
men and women are computed separately in the ground-truth
labels and in the predictions, and then the difference in Cohen’s
d between the two constitutes a measurement of bias. The gen-
eral guidelines for interpreting d dictate that values between
.2 and .5 are considered small-to-medium-effect sizes, and thus
we can see evidence of potential bias in the predicted values for
all the constructs except agreeableness (for which the predictions
were so inaccurate that invalidity is a bigger concern than bias).
A further investigation reveals that the predicted values from
the ML model range between approximately 3 and 6, while the
ground truth ranges from 1 to 7. The restricted range of the pre-
dictions may be contributing to the larger differences in d (due
to lower standard deviation) and warrant further investigation.

Decision stage

To assess compliance with the U.S. Civil Rights Act of 1964
[9], we focus on Al as a decision-stage fairness measurement.
Al is defined as the quotient of group selection ratios, in our
case computed by min[(SRw /SRu),(SRu /SRw)], where SRw
is the number of women accepted by some binary decision
process divided by the total women applicants (likewise for
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men). We simulate a realistic decision function by selecting the
top k candidates among all participants based on the construct
predictions, and then we set k equal to 10% of all participants
so that we have a sufficiently large sample size for computing
group selection ratios.

Taking hireability as an example trait and using the ground-
truth scores as a baseline, we find the selection ratio for women is
.1 and for men is .1, resulting in an Al ratio=1, which suggests that
selecting for hireability in the ground truth is equitable. Using
hireability predictions, the selection ratio for women is .11 and for
men is .08, yielding an Al ratio of .7. In the United States, this vio-
lates the “four-fifths rule” (29 CFR§1607.4) and would be consid-
ered prima facie evidence to support a legal discrimination claim.
Although the underlying cause of this unfairness may be bias
upstream from the selection procedure, any system deployed
for employment selection (at least in the United States) needs to
demonstrate compliance with the four-fifths rule regardless of
whether any bias can be found. Further exploration of the (un)
fairness of other decision thresholds (i.e.,

siderations. It has been recognized that there is often a tradeoff
between creating the most accurate model possible and reduc-
ing bias or enhancing fairness [10]. Model validity, bias, and
fairness are all crucial considerations for automated AC
systems, and therefore, ongoing and future work should con-
sider holistic optimization approaches rather than more tradi-
tional optimization of accuracy alone. More work is needed
to investigate and normalize the methods that effectively maxi-
mize these outcomes, but some Pareto-optimization techniques
already show promise [27].

In summary, the researchers and practitioners in AC
developing the algorithms, software, and tools employed to
aid in decision making have an ethical and moral responsibil-
ity to assess systemic errors and gauge the disproportionate
impact that they can impose on people. We hope this exposi-
tion has been instructive in understanding, identifying, and
measuring bias and unfairness, taking the first step toward
this goal.

other settings for k) should be conducted to Researcher and Acknowledgments
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Table 3. The example bias and fairness measurements in our case study.
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