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ABSTRACT

We introduce the psychometric concepts of bias and fairness in a
multimodal machine learning context assessing individuals’ hire-
ability from prerecorded video interviews. We collected interviews
from 733 participants and hireability ratings from a panel of trained
annotators in a simulated hiring study, and then trained interpretable
machine learning models on verbal, paraverbal, and visual features
extracted from the videos to investigate unimodal versus multimodal
bias and fairness. Our results demonstrate that, in the absence of
any bias mitigation strategy, combining multiple modalities only
marginally improves prediction accuracy at the cost of increasing
bias and reducing fairness compared to the least biased and most
fair unimodal predictor set (verbal). We further show that gender-
norming predictors only reduces gender predictability for paraverbal
and visual modalities, while removing gender-biased features can
achieve gender blindness, minimal bias, and fairness (for all modali-
ties except for visual) at the cost of some prediction accuracy. Overall,
the reduced-feature approach using predictors from all modalities
achieved the best balance between accuracy, bias, and fairness, with
the verbal modality alone performing almost as well. Our analysis
highlights how optimizing model prediction accuracy in isolation
and in a multimodal context may cause bias, disparate impact, and
potential social harm, while a more holistic optimization approach
based on accuracy, bias, and fairness can avoid these pitfalls.

CCS CONCEPTS

« Applied computing — Law, social and behavioral sciences;
« Information systems — Multimedia and multimodal retrieval,;
Content analysis and feature selection; - Computing method-
ologies — Artificial intelligence.

KEYWORDS

bias, fairness, multimodal learning, automated video interview

ACM Reference Format:
Brandon M. Booth, Louis Hickman, Shree Krishna Subburaj, Louis Tay, Sang
Eun Woo, and Sidney K. D’Mello. 2021. Bias and Fairness in Multimodal

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICMI 21, October 18-22, 2021, Montréal, QC, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8481-0/21/10.

https://doi.org/10.1145/3462244.3479897

Louis Hickman
Purdue University

USA

louishickman@gmail.com

Sang Eun Woo

Purdue University

USA

sewoo@purdue.edu

Shree Krishna Subburaj
University of Colorado Boulder
USA
shree.subburaj@colorado.edu

Sidney K. D’Mello
University of Colorado Boulder
USA
sidney.dmello@colorado.edu

Machine Learning: A Case Study of Automated Video Interviews. In Pro-
ceedings of the 2021 International Conference on Multimodal Interaction (ICMI
"21), October 18-22, 2021, Montréal, QC, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3462244.3479897

1 INTRODUCTION

Much research has demonstrated that humans use multimodal infor-
mation channels to make social inferences, decisions, and judgments
about others [21, 25, 35, 37]. For many, the path towards improving
computational models that make inferences about mental constructs
from observable behaviors, especially in the wild, involves capturing
and utilizing more information in context across a wide range of
modalities (e.g., [14, 19, 46]). However, incautious efforts following
this approach may result in harmful consequences for certain groups
of people stemming from biases and unfair decisions in the machine
learning and prediction process. For example, in a study designed to
train a machine-learned model to make inferences about job-related
social variables (e.g., communication, professionalism) of job can-
didates based on multimodal analysis of their prerecorded “video
interviews,” Muralidhar et al [38] found that the model’s predictions
were more accurate for men than women. The authors posited that
this gender disparity in performance was due to the inclusion of
multimodal predictors related to “powerful speech” behaviors for
which men were rewarded and women were often penalized, consis-
tent with observed gender stereotypes [34]. More and more, these
types of multimodal models are being used to aid in measurement
and assessment of psychological constructs in high-stakes contexts,
such as hireability in pre-employment screening [8, 22, 38]. Thus,
it is important to better understand the potential harmful effects of
including different and multiple modalities when the model predic-
tions are used in high-stakes decision making. In this paper, we use
pre-employment screening as a case study and examine the effect
of combining modalities not just on model prediction performance
but also in terms of bias and fairness across genders.

Bias and fairness in machine learning are not simply a byprod-
uct of the representativeness or correspondence of a data set to its
target population. Bias and unfairness emerge as a result of human
decisions made throughout the model development process. The
data-driven approach of throwing all available predictors into a
model and seeing what sticks is useful for maximizing accuracy,
but if the most useful predictors also contain encoded information
about unrelated traits (e.g., gender, age) then this resulting model
may generalize poorly, leading to different prediction accuracies for
different groups of people and resulting in fairness concerns.
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As a simple example, consider a scenario where a model is trained
to assess the hireability of potential job candidates for a warehouse
restocking position where considerable strength is required for lift-
ing objects. If all available candidate information is provided, the
model may learn that sex is an important predictor because it (bi-
ologically) correlates with strength [16, 26]. This model may rate
males suitable for the job more often than females and raise fair-
ness concerns. However, if no demographic information (e.g., sex)
is provided but strength is still included as a predictor, the model
may still rate males suitable more often than females (a possible
indicator of bias) because strength serves as a proxy predictor for
sex. The fairness concern in this case is further complicated by the
fact that strength is relevant to the job and is therefore an admissible
predictor in spite of its outcomes favoring males (Title VII of the US
Civil Rights Act of 1964 would allow for this difference in treatment
if employers could show that strength is both job relevant and consis-
tent with business necessity). In a multimodal scenario where many
more predictors are available, each potentially encoding information
about traits unrelated to the target construct, the complexity of bias
and fairness concerns is much greater. These considerations have
been the subject of much attention in psychometrics research (i.e.
the science of measuring latent, psychological constructs) [51], but
they are only beginning to receive attention in machine learning re-
search [3, 36], despite being paramount concerns when considering
deploying these technologies in the real world.

A prime example of the use of multimodal models in a real, high-
stakes decision-making scenario is an automated video interview
(AVI). In AVIs, machine-learned models are trained to make assess-
ments about the hireability of candidates for particular jobs based on
prerecorded video interviews [23]. Some organizations have already
begun to incorporate this technology into their hiring workflow and
are interested in adopting selection procedures that 1) help them se-
lect high performing employees, 2) are unlikely to result in lawsuits
(coming from bias/fairness concerns), and 3) support diversity and
inclusion initiatives [43]. One company claimed to have conducted
over a million AVIs by mid-2019 [22], and the adoption of AVIs has
likely accelerated during the global COVID-19 pandemic.

In this work, we use AVIs as a case study to examine differences in
gender accuracy, bias, and fairness measures when using unimodal
or multimodal predictors to produce model predictions of candidate
hireability. We initially employ baseline models using all available
predictors in unimodal and multimodal setups. Because the inclusion
of all predictors within each modality combination is likely to man-
ifest in bias and fairness concerns, we additionally explore the multi-
modal effects on accuracy, bias, and fairness of two model variants de-
signed to reduce gender bias and improve fairness: predictor gender-
norming (i.e., z-scoring) within gender groups (as discussed by [47])
and iteratively removing the predictors that contain the most infor-
mation about gender. We investigate whether these approaches can
reduce bias and/or improve fairness when making hireability predic-
tions from different unimodal and multimodal predictors while still
preserving enough relevant information to accurately assess hire-
ability. To support this effort, we collected responses to AVI questions
from over 700 participants in a simulated hiring study, and we asked
apanel of trained annotators, acting as recruiters, to provide hireabil-
ity ratings for each participant using established, psychometrically
validated measures. We address the following research questions:
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Figure 1: Sources of measurement bias in construct assess-
ment [2, 6]

e RQ1: How does the inclusion of predictors from different
modalities affect the accuracy, gender bias, and fairness of
AVT hireability assessments?

e RQ2a-b: What effects do a) gender-norming features and b)
iterative feature reduction to remove gender information have
on accuracy, gender bias, and fairness?

2 BACKGROUND AND RELATED WORK

In order to ground research on bias and fairness of multiple modalities
and AVIs, we first introduce the psychometric concepts of measure-
ment bias and fairness.

2.1 Measurement Bias and Fairness

Though bias, fairness, and ethics have recently become hot topics
in affective computing and multimodal machine learning, there is a
long history of research on enhancing the fairness and reducing the
bias of psychological assessments [29]. This prior research focuses
on measurement bias, which is distinct from other forms of bias
(e.g., implicit bias, sampling bias) often covered in the artificial in-
telligence and machine learning (ML) literature [29, 36]. According
to measurement theory, bias occurs when there is systematic (i.e.,
non-random) error in a measurement procedure (e.g., ML prediction)
that causes a difference in measurement accuracy (as assessed by
alignment with ground truth) in one group compared to another
[2]. For example, gender measurement bias occurs when men and
women have equal ground truth scores but the ML predictions are
lower for one group compared to the other.

Many human trait modeling endeavors, including AVTs, are de-
signed to measure latent constructs (e.g., ability, personality) that
are not directly observable and instead must be inferred from mea-
surements. The goal is to capture construct-relevant variance while
minimizing construct deficiency (construct-relevant variance not
captured), and construct contamination (construct-irrelevant vari-
ance that is captured). Figure 1 illustrates this, also showing that the
substantive, construct-relevant variance is captured when a measure
overlaps with the construct. This representation of bias comes from
the psychometrics literature (e.g., [2, 6]) and is simple, useful, and
helps demonstrate a risk when indiscriminately scaling the number
of predictors up (i.e., the “big data" approach). Specifically, as more
(imperfect) measures of a construct are used, there is more construct-
irrelevant information to potentially contaminate model predictions
and worsen bias (though using more predictors can also help reduce
construct deficiency).

Fairness is a social construct and another important consideration
when assessing a measure’s validity [2]. In the context of personnel
selection and AVIs, the two most relevant aspects of fairness are
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procedural and distributive fairness. Procedural fairness regards the
perceived fairness of the elements of the decision-making process
and in a measurement context is akin to measurement bias. Distribu-
tive fairness regards whether the allocation of important resources,
based on the decisions made or resulting from psychological assess-
ment (e.g., hireability), is perceived as fair. This type of fairness is
encoded in business law in the United States in the idea of adverse
impact [1]. Adverse impact (also called disparate impact) regards
whether selection ratios (i.e., the number of hires divided by the num-
ber of applicants) is substantially different across legally protected
groups (e.g., race/ethnicity, gender). The most common metric for
judging adverse impact is the four-fifths rule, or that the selection
ratio of one group should not be less than four-fifths the selection
ratio of another group [10]. Organizations considering adopting
machine learning systems to aid in personnel selection are very con-
cerned with avoiding adverse impact, because it constitutes prima
facie evidence of discrimination that, regardless of the outcome of
a court case, can cause major expense and public relations issues.
However, this relevant legal statute has received little attention in
previous human-centered ML research or in AVI studies.

Many measures have been proposed for quantifying manifes-
tations of bias and unfairness in ML contexts. For example, equal
accuracy [53] regards whether an assessment is equally accurate
across groups. This measure reflects our definition of bias since a
measure that is not equally accurate across groups may be contam-
inated by construct-irrelevant information or deficient in relevant
variance. Multiple notions of distributive fairness exist, including
equality, or that each group should receive equal outcomes (which is
the perspective of adverse impact statutes, although some leeway is
given), and equity, or that outcomes received should be proportional
to their inputs [17].

In this work, we adopt correlational accuracy [24, 49] for assessing
measurement bias, gender predictability for identifying potentially
biased predictors, and adverse impact for measuring one type of dis-
tributive fairness. These metrics are defined and discussed in Section
3.7.Readers are referred to [29, 36, 50] for more information on other
bias and fairness metrics.

2.2 Related Work on Bias/Fairness in AVIs

AVIresearch began in earnest with Nguyen et al [40] who found that
their ML models could accurately assess hireability from paraverbal
and visual behavioral cues. However, research using visual cues ex-
tracted from videos to infer personality traits began even earlier [5].
This work is relevant because personality— along with intelligence—
are considered to be one of the most robust predictors of occupational
outcomes and are hence relevant to hiring decisions [4].

Given that the job-interview process is multimodal, especially
in employment interviews [27], it seems important to consider in-
cluding verbal, paraverbal, and visual behaviors in AVI ML models.
However, the majority of prior AVI research has used only one or
two of these modalities. For example, [40] did not include verbal
behavior in their AVI models even though employment interviews
have been called verbal tests of ability [28]. Similarly, because the
ChaLearn First Impressions data set [44] (also used as a job applicant
screening challenge) used short 15-second video clips, virtually all
models applied to the data have not included verbal predictors (for
example, [53]).

Several recent studies such as [9, 39] have examined the accuracy
of ML models constructed for personality and hireability assessment
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using features from each modality. Both of these works examined the
accuracy of binary classification of the constructs, which is helpful
in separating low and high performers but impractical when trying
to select only a few of the highest ones. Rasipuram et al [45] explored
multimodal modeling of communication performance in asynchro-
nous versus face-to-face interviews, but also used binarized labels
for prediction and model evaluation. Chen et al [8] constructed multi-
modal models to predict personality and hireability in a small (n=36)
experiment and this work is perhaps most similar to the present
one. These authors found 1) verbal features to be substantially more
useful than the others in personality assessment, 2) both verbal and
paraverbal features somewhat helpful for hireability assessments,
and 3) visual features (e.g., seven facial emotions) relatively unhelp-
ful. Each of these works focused on the accuracy of personality or
hireability assessment, while the present work primarily investigates
the biases stemming from these modalities as well.

Regarding bias mitigation approaches for AVIs, there was a push
by some psychometricians in the 1980°s towards adoption of group
norming [20]. Group norming involves separately converting raw
test scores to percentiles for each group, where the aim is to atten-
uate construct contamination (i.e., bias) by reducing the amount of
construct-irrelevant (i.e., group) information [20, 26] . For example,
an intelligence test would be normed separately based on test takers’
race (e.g., Black and White) to address measurable group differences
in test scores and equalize test performance relative to racial affilia-
tion [20, 26]. However, group norming has been explicitly outlawed
in the United States since the Civil Rights Act of 1991 due to con-
cerns about reverse discrimination. Nevertheless, various forms of
within-group normalization continue to appear in machine learning
efforts (e.g., [31, 54]) and are worth exploring in low-stakes research
contexts as they help develop understanding of the effectiveness of
reducing group information while preserving construct-relevance.
We investigate the merits of group z-norming with regards to gender
and the features extracted from different modalities, and then we
compare it to a feature elimination strategy where features contain-
ing gender information (i.e., gender-relevant variance) are removed
prior to modeling.

2.3 Contribution and Novelty of Current Study

Our paper is the first to introduce and evaluate psychometric bias
and fairness in a multimodal context and demonstrate the benefits of
removing gendered-features when making hireability assessments
in AVIs. Our contributions are as follows:

(1) We root our investigation of unimodal versus multimodal bias
in psychometrics by introducing the concepts of measurement
bias and fairness, starting a dialog in the ML community about
the trade-off between accuracy, bias, and fairness with regards
to predictors and modalities.

(2) (RQ1) We use a large (n=733) data set to investigate and quan-
tify manifestations of measurement gender bias and fairness
emerging from verbal, paraverbal, and visual modalities in
the context of AVIs.

(3) (RQ2a-b) We explore gender-norming and iterative gendered-
predictor removal as two strategies for mitigating gender bias
in an AVI context and for improving fairness by reducing the
amount of gender information in the feature set. We inves-
tigate whether these approaches can reduce bias while still
preserving enough relevant information to accurately assess
hireability.
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(4) We conclude with a discussion about the legal issues surround-
ing bias and fairness in AVIs and the importance of adopting
a holistic optimization approach—one that considers accu-
racy, bias, and fairness—for machine learning pipelines when
deployed for use in high-stakes decision-making scenarios.

3 METHOD

We analyze a data set of prerecorded mock interviews collected as
part of an AVI study. A total of 4255 videos were collected from 733
participants and were separately rated by a panel of annotators to
assess hireability. Our study protocol was reviewed for informed
consent, data collection, data storage, data access, among other items
and approved by a university institutional review board.

3.1 Data Collection Protocol

A total of 733 participants, consisting primarily of upper-level under-
graduate students, were recruited from multiple universities and the
crowd-sourcing website Prolific. Students at this level were expected
to be seeking employment (either as interns or regular positions)
and were thereby considered to be an appropriate sample for this
work. Participants were compensated with a $10 Amazon gift card
for participating when recruited directly from a university or a direct
payment of $7.20 in Prolific.

Participants completed a mock interview comprising six inter-
view questions, each of which was answered in a 1-3 minute video
recording. Prior to responding to the first question, participants were
given an opportunity to familiarize themselves with the online video
capture system by answering the faux question, “Please tell us about
yourself” The six questions were displayed one-at-a-time in random
order and were designed to elicit information relevant to assessing
hireability for a generic managerial/team lead role. Interviews were
retained for analysis as long as features could be extracted from at
least four of the six videos (detailed below). The study and interview
were administered asynchronously online. Figure S1 in the supple-
mental materials shows a sample screenshot of the video capture
system interface alongside the mock interview questions.

3.2 Ground Truth Annotation by Trained Raters

Each interview was reviewed and rated by at least three (usually
four; approximately 85% of participants) different research assistants.
Following employment interview best practices [7], the research
assistants first underwent 1-2 hours of frame-of-reference training
which included the following steps: defining the construct to be
rated, reviewing the scale and scale anchors, completing practice
ratings, and discussing sources of (dis)agreement with other raters.
Since hireability is commonly assessed in interview studies [32], two
5-point Likert-scale items were used to rate hireability: “I would rec-
ommend that this person be hired" and “If hired, I believe this person
would perform well on the job" [15]. The final hireability score was
taken as the average over these two items across all raters for a given
participant. An inter-rater reliability ICC(1,k) =0.67 was computed
using the one-way, random, average intra-class correlation coeffi-
cient, which is considered moderate agreement according to [33].
Ratings of other traits were collected (not discussed in this work) and
used to provide evidence of convergent validity of the hireability rat-
ings. The hireability scores correlated positively with general mental
(r=.15) and verbal (r=.22) ability test scores [13], which are among
the most valid predictors of job performance across occupations [48].
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3.3 Feature Extraction

A set of features was extracted from each video’s visual and audio
channels capturing verbal, paraverbal, and visual behaviors.
Verbal: Verbal features included n-gram (unigram, bigram and tri-
gram) frequencies and Linguistic Inquiry and Word Count (LIWC)
summary categories [42]. All n-gram features were term frequency-
inverse document frequency (TF-IDF) weighted, and the bigrams
and trigrams with a point-wise mutual information (PMI) less than
4.0 were dropped to remove spurious n-grams (per [41]).
Paraverbal: The Geneva Minimalistic Acoustic Parameter Set of fea-
tures were extracted using OpenSmile [18]. These features included
loudness, Mel-frequency cepstral coefficients, jitter and shimmer.
Visual: Visual features were extracted from facial expressions and
body motion. Emotient’s FACET was used to extract facial expres-
sion features from individual video frames where a face could be
detected, which included the likelihood estimates for 20 facial action
units and the size (area) of the face. Estimates of facial expressivity,
positive valence and negative valence were also computed based on
the facial action unit activation [12]. Additionally, face and upper
body motion was estimated using the Motion Tracker software [52].
One set of features per participant across the entire mock inter-
view was generated as follows. LIWC and n-gram features were ex-
tracted per participant across their six videos combined. For all other
features, a set of statistical functionals was independently applied
to each feature separately in each of the six videos, including me-
dian, standard deviation, minimum, maximum and range, and then
averaged across each participant’s recordings. In total, there were
approximately 5653 verbal features after PMI filtering (depending on
the words uttered), 125 paraverbal features, and 250 visual features.

3.4 Matching on Gender

We balanced the data across genders using a matching algorithm
[49] to minimize source data discrepancies in gender representa-
tion and hireability. While balancing the data may have reduced the
severity of gender bias, we note that it was still present in this case
study and thus enabled us to focus the analysis on manifestations
of gender bias introduced by the machine learning process itself. As
part of the study’s procedure, participants were asked to provide
their gender and 727 self-affiliated as either a man (n=262) or woman
(n=465). Since the non-binary gender (n=6) representation was in-
sufficient for statistical analysis, we excluded these six individuals
and matched the data on men and women. The matching method
ensured that an equal number of men and women were present in
the data set by down-sampling the majority class (women) to match
the minority class (men). The designmatch package in R [55] was
used to perform bipartite cardinality matching with the constraint
that the mean gender difference in interview-rated hireability was
no larger than % of a standard deviation. After matching, 262 men
and 262 women (524 total) remained.

We performed a non-parametric Fligner-Killeen test for whether
the variances were equivalent across genders and found the dif-
ference to be insignificant (y? = 0.029, p = 0.87). Additionally, we
performed a Kolomogorov-Smirnoff test to assess the likelihood
that the data was drawn from different distributions and found the
distribution difference to be insignificant (D = 0.097, p = 0.76), sug-
gesting successful matching. Distributions of hireability scores for
the matched samples of men and women are illustrated in Figure 2.
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Figure 2: Distributions of hireability scores across genders

3.5 Machine Modeling (Learning)

We constrain our analysis to interpretable learning algorithms since
our focus is on measuring bias and fairness with regards to legal
contexts where layperson explanations of outcomes may be neces-
sary. In our early tests, we employed elastic net and random forest
(RF) regressors and found the RF achieved higher accuracy, so we
selected this model as a baseline for our remaining analyses.

We separately trained three types of RF models, described as fol-
lows, on the verbal, paraverbal, and visual unimodal feature sets and
also on their multimodal combination:

Baseline Model: All features from the chosen modality were used
and were z-normalized across all participants prior to training.
Gender-normed Model: Features were z-normalized separately
across men and women before training.

Reduced Features Model: A subset of the features were used for
modeling, obtained via an iterative feature elimination procedure
aimed at minimizing the predictability of gender. Specifically, for
each modality set, we trained a model in the same manner as the
baseline to predict gender (instead of hireability) using all features
z-normalized across all participants. In each iteration, the 10 features
with the greatest importance (i.e. feature “weights") were removed
and another RF was trained in the same manner on the remaining
features. A single pre-made train/test partition was used in each
iteration where an equal number of men and women were present
in each subset (further details in Section 3.6). In each iteration, we
evaluated gender predictability using the area under the curve (AU-
ROC) measure, and the process continued until no features remained.
For each modality, a reduced features model was selected from the
models produced at each iteration corresponding to the one with an
AUROC closest to 0.5. In other words, the reduced features model was
unique for each modality and had approximately chance-level ability
to predict gender. After feature reduction, there were approximately
3760 verbal (34% reduction), 8 paraverbal (94% reduction), and 0
visual (100% reduction) features, an overall drop from approximately
6028 in the combined feature set to about 3768.

3.6 Model Training and Tuning

Premade train/test splits: To facilitate fair comparison between
models, a predefined data partition was obtained for training and
testing by splitting the data into five folds. Stratified sampling was
used to generate five non-overlapping subsets of samples such that
the distributions of hireability scores were approximately equal per
subset. Since each sample corresponded to data from a single par-
ticipant, this scheme resulted in a participant-independent partition.
During model training, one fold at a time was held out and the re-
maining four used for training. Predictions were made by the trained
models on the held out data and later recombined to produce the
final hireability predictions for all participants.

Hyperparameter tuning: We optimized the hyperparameters in
the baseline model separately for each modality using nested strat-
ified five-fold cross-validation. For each training data set (from the
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train/test splits), the data was partitioned using stratified sampling
in the same manner as described above. One subset was withheld
at a time for hyperparameter validation (i.e., the inner loop) and
the hyperparameter configuration with the best average perfor-
mance was selected for model retraining on the entire training set to
make test-set predictions. For the paraverbal and visual modalities,
we tested different RF parameterizations: number of decision trees
({250,500,800}) and maximum depth ({10,50,80}). The verbal and
combined modalities included additional transcript-based features,
and we also tested each combination of these parameterizations:
minimum document frequency ({0.01,0.02,0.03}) and stop words
removal (none, English). The performance of the baseline model for
verbal and combined modalities was achieved with 500 trees, max
depth of 50, document frequency of 0.03 and no stop words. This
combination of parameters performed near optimally as well for
paraverbal and visual modalities, so to enable fair comparison of the
results, we selected this set of hyperparameters to use for all models.

3.7 Evaluation Measures and Metrics

Robustness: For each set of modalities and each model variant (i.e.,
baseline, gender-normed, reduced features), one hundred indepen-
dent trials were conducted to assess the variability in performance
of the optimal tuned models. For each trial, a new five-fold train/test
split was generated from a random seed, and a new RF model was
trained using the best hyperparameters from the previous step. Dif-
ferences in the train/test splits and in the randomized subsets of
features and instances made available to each decision tree in the RF
models produced variance in the output predictions. These sources
of randomness allowed us to estimate the reliability of the evaluation
metrics (below) relative to these sources of randomness and were
more robust than considering a single instantiation.

Metrics: The predictions output by the three models for each of the
four sets of modalities were evaluated in terms of accuracy, bias, and
fairness. Assuming that hiring or employment screening decisions
are made based on the relative rankings of participants rather than
the hireability scores themselves, we used Spearman rank-based
correlation (p) as an accuracy metric. To assess gender bias, we
use correlational accuracy, or the difference in p between men and
women, per [49]. We assessed fairness using two metrics: the adverse
impact ratio (one distributive fairness metric) and the predictability
of gender (a type of construct contamination bias related to pro-
cedural fairness). The Al ratio is defined as the ratio of selection
ratios between two groups (in this case, men and women) where the
selection ratio (SR) is the number of group members selected divided
by the total number of applicants from that group. For example, let
us assume 10 people are selected, 3 men and 7 women, and that there
are 50 men and 50 women who applied (100 total), then SRyen = %,

while SRy omen = %, and the Al ratio = % =0.43 (smaller value in
the numerator), which would be considered quite unfair. We also
measured the predictability of gender for each modality by training
a RF (with the same hyperparameters as above) to predict the gender
of each participant (on the held-out test sets) and then compared the
output to the true gender using AUROC as the metric of interest. With
these formulations, unbiased and fair models would have correlation
differences close to zero, Al close to one, and AUROC:s close to 0.5.
Accurate models would have high Spearman correlations, with a cor-
relation of 0.3 reflecting a medium-sized effect (Cohen’s d of 0.5) [11].
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Figure 3: Distributions of gender prediction AUROCS in the
baseline model across modalities. The green dashed line
indicates the ideal value of 0.5 (gender blindness).
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Figure 4: Distributions of gender prediction AUROCs for
each model variant using the combined modality. The green
dashed line indicates the ideal value of 0.5.

4 RESULTS

Table 1 shows the means and standard deviations for each metric
over 100 random trials.

4.1 Gender Predictability (Procedural Fairness)

Figure 3 illustrates the gender prediction AUROC distributions for
each modality across the 100 trials using the baseline models. The
optimal AUROC is 0.5 (indicated by the dotted green line) which cor-
responds to the inability of the model to predict gender (i.e., gender
blindness). In our matched data set, there were an equal number of
men and women so the prior probability of guessing a participant’s
gender was 0.5, which was an ideal starting point for analyzing
gender predictability.

The results indicate that all modalities contributed gender infor-
mation to the baseline models. The verbal baseline and visual baseline
models had the lowest AUROCS (0.73 and 0.79 respectively), indicat-
ing they had incomplete knowledge of gender. The baseline model’s
paraverbal and combined modalities were able to infer gender nearly
perfectly (unsurprisingly due to the presence of vocal pitch infor-
mation).

Figure 4 demonstrates how the two employed gender bias mitiga-
tion strategies affected the predictability of gender in 100 trials using
the combined modality. Gender predictability for the combined base-
line and combined gender-normed models were well above the ideal
AUROC=0.5 (green dashed line), suggesting that gender-norming
predictors via z-scoring did not effectively reduce the amount of
gender information in a fully multi-modal setting. For the unimodal
gender-normed models in Table 1, gender-norming did substantially
reduce gender predictability for the visual and paraverbal modalities
(from 0.79 to 0.58 and 0.99 to 0.69 respectively). Gender-norming
was ineffective for the verbal modality (and by extension the com-
bined modality), which is consistent with known language usage
differences between men and women [30, 34]. The reduced features
model achieved an AUROC within a few standard deviations of the
ideal 0.5 for all modalities, suggesting it was successful at achieving
gender blindness.

Booth, et al.

Verbal _/\/\
Paraverbal ’_/\
Visual /\

Combined
0.0 0.2 0.4

Spearman

Figure 5: Distributions of p achieved by the baseline model
using only the features available from each modality.
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Figure 6: Distributions of p per model variant using the
combined modality.

4.2 Accuracy (Validity)

Figure 5 illustrates the distributions of p over 100 trials for each
modality set in the baseline models. Across all modalities and model
variants, the standard deviations across trials was small (between
0.02 and 0.03), which indicates that each model’s p was robust to
randomness in how the train/test data was partitioned and the RF
training process.

Looking first at the unimodal cases, the paraverbal and visual
modalities under-performed compared to the verbal modality. The
verbal feature set alone achieved p =0.45, indicating moderate ac-
curacy (ranked alignment between predictions and ground truth).
The combined feature set performed negligibly better than the verbal
modality (p=0.46).

Figure 6 shows the performance distributions of the model vari-
ants using the combined modality since it is the most interesting from
a multimodal perspective. We found the combined gender-normed
model performed nearly identically to the combined baseline model.
As expected, the combined reduced-features model obtained a lower
p (also for each modality; see Table 1), ostensibly because some of
the features which contained information pertinent to assessing
hireability also helped predict gender and were removed. The com-
bined reduced-features model’s drop in p from the combined baseline
model is significant (p < 0.01, using paired correlated-sample t-tests),
but this model still achieved a notable p=0.38.

4.3 Differential Correlational Accuracy (Bias)

Figure 7 shows the distributions of differences in p computed sep-
arately for men and women. If no bias sources were present in the
data or modeling processes, then the model would be equally ac-
curate at assessing men and women (i.e., p would be the same for
men and women and the difference would be zero, indicated by the
green dashed vertical line). In our matched data set, we observed
the gender difference in mean ground truth hireability scores was
-0.03, which was small in comparison to the hireability scale (1-5)
and provided an ideal lower bound.

In the unimodal cases, we found upwards of 95% of the 100 trials for
the paraverbal baseline and 100% of the trials for the visual baseline
resulted in positive p differences, indicating that these modalities
were consistently more accurate for women than men. The mean
bias for the baseline’s verbal modality was positive, small (.04), and
lower than paraverbal (.07), which in turn, was much lower than
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Table 1: Accuracy, bias, and fairness metrics per modality applied to the baseline, gender-normed, and reduced features models

Modalities Spearman (W and M) Gender AUROC Spearman Diff. (W-M) Al Ratio
Baseline Gender Reduced Baseline Gender Reduced Baseline Gender Reduced Baseline Gender Reduced
Normed Features Normed Features Normed Features Normed Features
Verbal ~ .45(.02) .46(.02) .36(.03) | .73(01) .99(.00)  .51(.02) | .04(.03) .05(.03) .01(.05) | .87(.10) .88(.10)  .85(.11)
Paraverbal .35(.02) .35(.02) .11(.03) | .99(.00) .69(.10) .45(.02) | .07(.03) .10(.03) .05(.04) | .87(.10) .88(.09)  .85(.10)
Visual  .16(02) .16(.02) .07(.02) | .79(.01)  .58(.05) .45(.02) | .15(.05) .16(.04) .15(.04) | .52(.11) .60(.12)  .80(.13)
Combined  .46(.02)  .46(.02) .38(.02) | .98(.00) .99(.00) .51(.02) | .09(.03) .10(.03) .00.04) | .76(11) .81(12) .87(.11)

Each entry contains the mean value across 100 independent trials followed by the standard deviation in parentheses. W = women, M = men.

Verbal -/;/ \

Paraverbal
Visual 1
Combined

-0.1 0.0 0.1 0.2 0.3
Spearman Diff. (W-M)

Figure 7: Distributions of bias (0women —Pmen) in the baseline
model across modalities. The green dashed line indicates the
ideal value of zero.
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-0.1 0.0 0.1 0.2 0.3
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Figure 8: Distributions of bias (0women —Pmen) in the baseline
model for each model variant using the combined modality.
The green dashed line indicates the ideal value of zero.

visual (.15). In the combined baseline, 100% of the trials resulted in p
differences greater than zero, with a magnitude in-between the three
individual modalities (.04, .07, .15). In other words, for all baseline
models except for the verbal modality, the sources of bias (whatever
they may have been) were having notable differential effects on the
model performance as a function of gender.

Figure 8 shows how the gender difference in p varied for different
model variants using the combined modality (again, it is the multi-
modal model of interest here). Just as the combined baseline model,
the p differences were positive in all of the trials for the combined
gender-normed model (.09 and .10), also indicating the presence of up-
stream bias sources. The combined reduced-features model, however,
achieved a mean p difference of zero, which suggests that remov-
ing the features containing gender information also substantially
reduced the bias. The results in Table 1 for the paraverbal and ver-
bal modalities also demonstrated that the gender-normed model did
not decrease bias (in fact it increased it slightly) while the reduced-
features model reduced bias, moderately for paraverbal (.07 to .05),
and almost completely (.04 to .01) for the verbal model. No notable
changes in the bias measure were apparent for the visual modality
across model variants, which suggests that the sources of gender
bias for visual predictors were independent of gender (and may have
been due to the relatively low accuracy: p=0.16).

4.4 Adverse Impact (Distributive Fairness)

Figure 9 shows the Alratio distributions for each modality in the base-
linemodel under the assumption that the top 10% of participants were
selected. In practice the quantity of participants selected would vary

Verbal
Paraverbal
Visual
Combined
0.2 0.4 0.6 0.8 1.0
Al Ratio

Figure 9: Distributions of adverse impact ratios in the
baseline model across modalities. The green region is legally
acceptable under the four-fifths rule.

based on organizational needs and resources, but 10% provided an
illustrative snapshot of Al fairness. The optimal Al ratio is 1.0, mean-
ing an equal proportion of men and women would be selected. Per the
four-fifths rule [10], any Al ratio greater than 0.8 is considered fair by
legal precedent in the US court system. If selected the top 10% of can-
didates with the highest ground truth hireability scores, we would
observe an Al ratio of 1.0, a suitable baseline for fairness analysis.

In a majority of the random trials for verbal baseline (70%) and par-
averbal baseline (72%), the Al ratio (mean Al ratio of .87 in both cases)
fell within thislegally acceptable range. Interestingly, the visual base-
line fell short (mean Al ratio of .52) in 99% of the trials, which would
be considered clear legal evidence of discrimination in the US. For
the combined baseline, a majority of the trials’ Al ratios (73%; mean
Al = 0.76) were below the acceptable 0.8 threshold, which might
also be considered legal evidence of discrimination. Defending this
model in court would require evidence that the model predictions
were valid/accurate (e.g., p = 0.46) and that all of the features and
the target construct (e.g., hireability) used to aid in hiring decisions
were job-relevant [1].

Figure 10 shows how the bias mitigation strategies impact this
measure of distributive fairness when using the combined modal-
ity. Gender normalization of the features did improve the mean
Al ratio (in spite of its lack of effect on bias), while the combined
reduced-features approach improved it even further (.76 to .81 to
.87, respectively). From Table 1 for the visual modality, the gender-
norming model improved fairness slightly (AI of 0.60 compared to
0.52) and the reduced-features model helped considerably (Al up to
0.80). The Al ratio for the baseline verbal and paraverbal modality
models started in an acceptable range (> 0.8) and there were no no-
ticeable changes for the other model variants. Thus, both mitigation
strategies helped the Al ratio as needed.

5 DISCUSSION

This paper has introduced the psychometric concepts of measure-
ment bias and fairness to multimodal machine learning and examined
how different sets of modalities and gender bias mitigation strategies
affect measures of accuracy, bias, and fairness.
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Figure 10: Distributions of adverse impact ratios for each
model variant using the combined modality. The green
region is legally acceptable under the four-fifths rule.

5.1 Summary of Main Findings

We demonstrated clear variation in our bias and fairness metrics
based on the unimodal or multimodal predictor sets used (RQ1). Our
results suggest that in the absence of bias mitigation, combining
modalities barely improves prediction accuracy (accordant with re-
sults from a similar AVIstudy [8]) but often leads to increased correla-
tional bias, group predictability, and adverse impact when compared
to the least biased and most fair unimodal models (verbal in this case).

We have further shown that predictor bias mitigation strate-
gies can likewise influence bias and fairness at the cost of accu-
racy (RQ2a). In particular, we showed that while predictor gender-
norming seems like a plausible strategy for reducing gender pre-
dictability, it only works for certain modalities (i.e. paraverbal and
visual) and it does not quite reduce it enough to reach true gender
blindness (AUROCSs ranged from .58 to .99). As mentioned earlier,
this technique was outlawed in the US due in part to the fact that
it contaminates the data with irrelevant demographic information
in an attempt to improve procedural fairness. When combined with
its negligible effect across all modalities on improving correlational
bias and adverse impact, we do not suggest using this approach.

The reduced features bias mitigation approach, on the other hand,
provides some benefit across modalities but further exemplifies the
bias-accuracy trade-off (RQ2b). In terms of fairness, we found this
approach successfully improved adverse impact (or avoided reduc-
ing what was already acceptable) and also achieved gender blindness
across all modalities when compared to the baseline. It was addi-
tionally able to generally reduce the correlational bias (except for
visual) and eliminate it completely for the combined model. However,
these bias and fairness improvements were offset by its reduction
in accuracy in all cases, though its accuracy for the combined model
(.38) might still be acceptable.

So, which model and which set of modalities are the best given the
scope of this AVI case study? Top contenders in terms of accuracy
are the baseline and gender-normed models using either the verbal
or combined modalities. As mentioned, the gender-normed version
does not achieve gender blindness for either modality, nor does the
combined baseline version. This leaves the unimodal verbal baseline
which also exhibits diminished gender predictability (AUROC=0.73),
moderate correlational accuracy (p =.45), small correlational bias
(paig=0.04), and acceptable adverse impact (AI=0.87). In some con-
texts, it may be desirable to trade-off accuracy to improve bias and
enhance fairness. In this case, the combined reduced-features model
provides the next best accuracy (p =0.38), better gender blindness
(AUROC=0.51), no correlational bias (pgif=0.00), and equivalently
acceptable adverse impact (AI=0.87). The verbal reduced-features
model achieves a similar accuracy (p=.36), gender blindness (AU-
ROC=.51), low bias (pgj=0.01), acceptable adverse impact (AI=.85),
and it avoids the risk of including features with irrelevant infor-
mation when making hireability assessments (such as visual ones)
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when compared to the combined reduced-features model. Based on
the metrics here, we would consider the reduced-features approach
with either the verbal or combined modalities to be better choices
than the verbal or combined baseline model.

5.2 Limitations and Future Work

One important point worth highlighting is related to the amount
of variance we observed for each measure of accuracy, bias, and
fairness. The standard deviations computed over 100 trials in Table 1
assess the reliability of each measure relative to randomness only in
the training and modeling processes, where many other factors were
held constant (e.g., the data set, learning algorithm, hyperparame-
ters, predictors). These standard deviations therefore serve as lower
bounds on the amount of variance that we would expect to observe
in other scenarios or other studies where these factors may vary. For-
tunately, the standard deviations for many of the accuracy, gender
predictability, and correlational bias metrics reported were relatively
low, which gives us some confidence in the reliability of our findings.
In contrast, the standard deviations for the Al ratios were higher
(approximately 0.10), revealing that this measure is highly sensitive
to experimental perturbations (even with a 10% selection ratio). Fu-
ture work may seek to find ways of reducing this sensitivity to help
improve distributive fairness in more of the randomized trials.

We have only begun to scratch the surface of understanding mani-
festations of bias according to the choice of modalities and according
to bias mitigation strategies. There are many ways of measuring bias
and fairness [29, 36, 50], and many more protected groups (e.g., age,
gender, religion) that would need to be considered. Our analysis only
considered bias and fairness effects relative to a random forest model
on matched data, where bias and fairness effects may be different and
perhaps worse when using black-box models or unmatched data.

Finally, our study also involved low-stakes mock interviews and
the use of trained raters rather than expert raters. Though we aimed
to increase ecological validity by emulating real-world conditions,
extension to more ecologically valid scenarios is warranted.

6 CONCLUSION

As scientists interested in enabling machines to process and under-
stand humans and human-produced data, it is tempting to throw as
much data as possible into machine inference systems to enable them
to discover unintuitive predictor relationships and to help teach us
more about ourselves. This is the auspicious prospect of the “big
data” revolution. This type of scientific inquiry can indeed help us
uncover some unique associations that explain human behavior, but
it can also be the cause of lasting harm to certain groups of people,
especially when these systems are deployed in high-stakes decision-
making scenarios. Our results from the AVI case study echo this point:
predictors should be justifiably relevant to the target construct or
else irrelevant patterns may be discovered in the noise, introducing
systemic bias and causing social harms.
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