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Abstract—In this paper, we explore the fundamental limits of
the 3-dimensional (3D) localization of unmanned aerial vehicles
(UAVs) in conjunction with the effects of 3D antenna radiation
patterns. Although localization of UAVs has been studied to some
extent in the literature, effects of antenna characteristics on 3D
localization remains mostly unexplored. To study such effects,
we consider a scenario where a fixed number of radio-frequency
(RF) sensors equipped with single or multiple dipole antennas
are placed at some known locations on the ground, and they
derive the time-difference-of-arrival (TDOA) measurements from
the time-of-arrival (TOA) data collected for the UAV that is also
equipped with a dipole antenna. We then use these measurements
to estimate the 3D location of the UAYV, and to derive the Cramer-
Rao lower bounds (CRLBSs) on the localization error for various
orientations of the dipole antennas at the transmitter and the
receiver. Namely, we consider vertical-vertical (VV), horizontal-
horizontal (HH), and vertical-horizontal (VH) radiation patterns
in a purely line-of-sight (LoS) environment and a mixed LoS/Non-
line-of-sight (NLoS) environment. We show that the localization
accuracy changes in a non-monotonic pattern with respect to
the UAV altitude and identify the respective critical altitudes
for each of the VV, VH and HH orientations. Subsequently,
we propose a multi-antenna signal acquisition technique that
mitigates the accuracy degradation due to the antenna pattern
mismatches, and we derive the localization CRLB for the multi-
antenna scenario. Our numerical results characterize achievable
localization accuracy for various antenna configurations, UAV
heights, and propagation conditions for representative UAV
scenarios.

Index Terms—Antenna pattern, Cramer-Rao lower bound
(CRLB), drone localization, TDOA, unauthorized UAV.

I. INTRODUCTION

Localization of unmanned aerial vehicles (UAVs) in a 3D
airspace has a wide range of applications in military, commer-
cial, government, and recreational scenarios. Depending on the
context, the UAV may or may not participate in the localization
process, either because the UAV communication system might
not be designed for positioning purposes, or it may be a non-
cooperating and potentially a malicious UAV [1]-[3]. Whether
the goal is to localize a cooperating or a non-cooperating UAV,
there are several parameters associated with an RF signal [2]-
[5] that can be captured from a UAV at multiple sensor
locations, such as the received signal strength (RSS), angle-of-
arrival (AOA), time-of-arrival (TOA), and time difference of
arrival (TDOA) [6]. Those measurements can then be fused by
a centralized unit for localizing and tracking the target UAV.
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Due to the simplicity of implementation, localization
schemes involving RSS, TOA, and TDOA are more common
as compared to the AOA methods, and the time based methods
are usually preferred over the RSS based methods due to the
higher degree of accuracy they provide. Between the TOA
and the TDOA based approaches, TDOA is more suitable to
a wider range of general applications including localization of
unauthorized UAVs, as it does not require the source clock
to be synchronized with that of the RF sensor. We therefore
focus on TDOA based localization in this rest of this paper.

There are various technical challenges for accurate 3D
localization of UAVs that rely on TDOA measurements. Since
air-to-ground (A2G) links have higher likelihood of being
a line-of-sight (LoS) link, the link quality is also highly
sensitive to any possible mismatches in the antenna patterns
at the transmitter and the receiver. As a result, the signal
to noise ratio (SNR) of an A2G link can degrade rapidly
with slight changes in the transmit and the receive antenna
orientations and the mobility of the UAV [7]. Since the
quality of the TDOA measurements are dependent on the
SNR of the target A2G link, it is important to take the 3D
antenna patterns into account while designing a robust 3D
localization algorithm. Moreover, the performance of the time-
based localization methods are known to suffer in a non-LoS
(NLoS) environment [8], [9], due to the introduction of a
positive bias in the localization error. Thus the localization
accuracy of the UAVs may significantly degrade in a densely
built up urban environment due to the diminished likelihood
of the LoS propagation.

In this paper, which is a rigorously extended version of our
earlier work in [10], we develop a unified analytical framework
which jointly takes into account the impact of the 3D antenna
patterns and the probabilistic LoS/NLoS nature of the A2G
links on the accuracy of TDOA-based 3D UAV localization.
To our best knowledge, such a unified framework and analysis
is not available in the existing literature. While in [10] we only
consider a single antenna signal acquisition technique in the
presence of a purely LoS A2G channel, in this work we study
both the single and the multi-antenna techniques in a purely
LoS environment and a mixed LoS/NLoS environment. Our
key contributions can be listed as follows.

o Considering single transmit and receive antennas at the
UAV and the ground sensors, we derive the Cramer-Rao
lower bounds (CRLBs) for TDOA-based 3D localization
of UAVs for three different antenna orientations, namely,
VV, VH, and HH.



« In addition to considering purely LoS A2G links, we also
derive the CRLBs on 3D UAV localization accuracy for
mixed LoS/NLoS A2G links.

o As a mitigation technique, we consider localization by
ground sensors with multiple receive antennas, and we
derive the CRLB for the multi-antenna radiation patterns.

e Our numerical results characterize the achievable 3D
localization accuracy of UAVs for various scenarios
and reveal several insights, such as the non-monotonic
behavior of localization accuracy with respect to the
UAV altitude and the critical altitudes that optimize the
localization accuracy for a given scenario.

The rest of this paper is organized as follows. In Section II,
we provide an overview of the related literature on 3D lo-
calization to place our contributions in context. In Section III,
we describe the system model capturing the network topology,
A2G propagation, and 3D radiation patterns. In Section IV,
we derive the statistical properties of the TOA measurements,
and establish the dependence of the TOA variance on the
antenna patterns. Using these findings, Section V derives the
distribution of the TDOA measurements extracted from the
TOA measurements, and subsequently, the 3D localization
CRLB is derived in Section VI. In Section VII, we present
numerical results that consider both theoretical bounds as
well as a gradient-descent based location estimator for various
scenarios. Finally the paper is concluded in Section VIII.

II. LITERATURE REVIEW

State of the art RF localization methods typically use ap-
proaches such as radio frequency identification, ultra wideband
positioning (UWB), cellular network based positioning, or
wireless local area network based positioning, which are all
applicable to localizing UAVs. There are scenarios where
UAVs are localized through dedicated signaling (see e.g. [32]),
while in some other scenarios sensors are required to passively
intercept the wireless signal exchange between the UAV and its
ground controller (GC) [15], [33], [34]. In either scenario, sen-
sors with an omni-directional radiation on the horizontal plane
can provide good localization coverage as long as UAVs fly
at a close enough altitude with the sensor antennas. However,
for scenarios where UAVs may fly at a wide range of different
altitudes from the ground, it is difficult to maintain omni-
directional radiation across the whole volume where UAVs
are expected to fly. For example, despite the high density of
sub 6 GHz cellular base stations (BSs), the downtilted antenna
pattern at these BSs that are optimized to serve terrestrial users
will result in very poor localization performance when trying
to localize UAVs at higher altitudes.

In order to maintain communication with the GCs through-
out the UAV flight, typically, dipole antennas are used at the
UAV and the GC, which have an omni-directional radiation
pattern in the horizontal plane. There are many papers in
the literature that experimentally study the degradation in
communication performance due to the use of dipole antennas
for different UAV altitudes, see e.g. [7], [11]-[14]. However,
to our best knowledge, such antenna effects have not been

studied in the existing literature from a 3D UAV localization
perspective other than our earlier preliminary work in [10].
There is hence a gap in the literature on the characterization
of 3D UAV localization accuracy considering different antenna
patterns and orientations.

In most of the existing related literature, the problem of
3D localization is studied in the context of a generic wire-
less sensor network (WSN). Papers such as [16], [18]-[21]
construct novel 3D location estimators from RSS and/or AOA
measurements for generic 3D targets, under propagation con-
ditions that assume constant presence of a LoS component in
conjunction with log normal shadowing. While such works are
not directly applicable to localization of UAVs, due to the lack
of an appropriate A2G channel model (which is probabilistic
and mixed LoS/NLoS in nature), they also fail to account
for any realistic antenna patterns. Moreover the authors only
compare the performance of their proposed estimators against
state-of-the art techniques, and do not provide any theoretical
characterization and fundamental bounds.

In [17], [22], although the authors derive both the CRLB
and an estimator for an emitter’s location, they still consider
less than realistic LoS channel model and isotropic antenna
patterns. In a similar line of work, [23], [30], [31] derive
location estimators using sensor networks of different kinds,
such as a UWB sensor network and a vehicular ad-hoc
network (VANET), respectively. Although all of these works
consider a more realistic 3D channel, composed of both LoS
and NLoS components, they do not consider any realistic
antenna patterns. Finally, in [29] the authors derive the CRLB
on 3D localization for a visible light communication (VLC)
sensor network and theoretically characterize the impact of
Lambertian [35] (directional) radiation pattern on the accuracy.
However, this work is not applicable to localization of UAVs
that use RF links for communication, due to the significant
difference between the characteristics of the wireless RF
channels and wireless optical channels [35].

In [24]-[28], authors consider cellular BSs as the sensor
network for 3D localization. Although most BSs have a
vertically downtitlted antenna pattern, the authors in [24], [26],
[27] do not consider any realistic antenna pattern. While [24]
derives the CRLB for the RSS-based localization for a UAV
in particular, it fails to account for a realistic antenna pattern,
and only considers purely LoS A2G links, which can deviate
significantly from the true nature of the A2G links in urban
environments. In [25], the authors use TDOA measurements
from a network of cellular BSs to localize UAVs in the
presence of a mixed LoS/NLoS channel, and characterize the
probability of localization. However they do not consider the
the realistic downtilted antenna patterns that most terrestrial
cellular BSs are equipped with, and they do not provide a
theoretical characterization of the localization error. Lastly,
in [28] the authors consider the antenna patterns for uniform
planar array (UPA) at the BS, in conjunction with a mixed
LoS/NLoS channel, but only location estimators were derived,
and the impact of the antenna pattern on the localization
performance was not considered.

For easier comparison of the contributions of our work
on 3D localization, we provide an overview of the related



TABLE I: Related work on 3D localization and the impact of 3D antenna patterns (AOD: angle of departure, IMU: intertial
measurement unit, ADCPM: angle-delay domain channel power matrix, AP: access point).

Paper Infrastructure Measurement Channel Model Antenna Pattern | Localized Node Contribution

[71, [11]- | WiFi RSS LoS Dipole, WiMo | N/A, focus is on UAV | Experimental analysis of 3D

[14] 18720.11 3D link reliability dipole antenna patterns

[15] Passive RF sen- | TDOA LoS Omni-directional UAV in 3D space Experimental analysis of 3D

sor network broadband localization accuracy

[16] WSN RSS, AOA LoS/Shadowing Isotropic Generic 3D target Location estimator

[17] WSN RSS, AOA LoS/Shadowing Isotropic UAV in 3D space Location estimator, CRLB

[18] WSN RSS LoS Isotropic Generic 3D target Location estimator

[19], [20] | WSN RSS, AOA LoS/Shadowing Isotropic Generic 3D target Location estimator

[21] WSN RSS LoS/Shadowing Isotropic Generic 3D target Location estimator

[22] WSN RSS/TOA, AOA LoS Isotropic Generic 3D target Location estimator, CRLB

[23] WSN (UWB) TOA, TDOA IEEE 802.15.4a | Isotropic Generic 3D target Location estimator

LoS/NLoS

[24] Cellular network | RSS Deterministic LoS | Isotropic UAV in 3D space CRLB

[25] Cellular network | TDOA LoS/NLoS Isotropic UAV in 3D space Localizalibity

[26] Single BS AOD, AOA, TOA | Indoor NLoS Isotropic 3D mobile station Location estimator, CRLB

[27] Single BS TOA/IMU LoS Isotropic 3D mobile station CRLB

[28] Single BS ADCPM LoS/NLoS UPA Generic 3D target Location estimator

[29] VLC Access | RSS, AOA Wireless  optical | Lambertian VLC receiver in 3D | CRLB with directional beam

Points channels space patterns
[30], [31] | VANET TOA, RSS, AOA LoS/NLoS Isotropic 3D vehicular node Location estimator
Our work | WSN TDOA LoS/NLoS Dipole UAV in 3D space CRLB with 3D antenna pat-
terns and LoS/NLoS
literature on 3D localization in z
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A. Propagation Channel Model

The A2G links usually tend to have a line-of-sight (LoS)
component, giving rise to a mixed LoS/NLoS channel. Due
to the lower availability of scattering and blocking objects
in the case of a 3D channel, the probability of having a
LoS path in an A2G channel is usually larger than that of
terrestrial channels. Thus in this paper we model all the A2G

2

of mixed LoS/NLoS nature. For the characterization of the
mixed LoS/NLoS A2G links, we adopt the model in [36], that
represents the total path loss in an A2G link, as the sum of the
free space path loss, and an additional path loss (7°*) due to
the reflections, scattering and shadowing in the environment,
depending on the state, Sy € {LoS, NLoS} of the given A2G
link, where 7N~ > 7t°5 [36]. Thus, the path loss over the
i*" A2G link is given in the dB scale as [36]:

Ar fe
C

PL** = 201log (d;) + 201og ( ) +20log (**) , (3
where f. is the frequency of transmission from the unautho-
rized UAV and c is the speed of light. The probability that
the A2G link between the UAV and the i*" ground sensor
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Fig. 2: Radiation pattern of a vertically oriented dipole antenna
on the horizontal and the vertical planes.

will have a LoS path is described [36] as a function of the
respective elevation angle, «;, shown in (2):

P 1

LoS(Oéz) - 1+ bexp{—c[l;rﬂ(ai) — b]} 5
where b and c¢ are constants which depend on the environment,
r; is the horizontal distance between the UAV and the ground
sensor, and £ is the altitude of the UAV. The probability of the
A2G link being in the NLoS state is given as: 1 — Ppos(a;).
We note that, in this model, the probability of having a LoS
path for an A2G channel increases with the increasing altitude
of the aerial object. For this work, we consider two different
A2G environments, namely, a suburban (SU), and an urban

(U), mentioned in the order of decreasing LoS dominance.

“4)

B. Realistic 3D Dipole Antenna Pattern

In order to study the impact of the dipole antenna radiation
patterns on the TOA CRLB, we characterize the relationship
between the total antenna gain experienced at the i*"" sensor,
and the variance of the TOA measurement noise at the i*®
sensor. Fig. 2(a) and Fig. 2(b) demonstrate the radiation pattern
of a vertically oriented (i.e. placed along the z-axis) dipole
antenna located at (x;,y;,0), in the azimuth and the elevation
plane, respectively. We note that the radiation pattern for the
vertical orientation, denoted as, G, (¢;, «; ), is omni-directional
in the azimuth plane and doughnut-shaped in the elevation
plane. Conversely, when the dipole antenna is horizontally
oriented (i.e. placed along the y-axis), the resultant radiation
pattern, denoted as G (¢;, v;), has an omni-directional com-
ponent in the vertical plane and a doughnut-shaped component
in the horizontal plane. More specifically, G,(¢;, ;) and
Gy(¢s, ;) are described as [37]:

cos (”lfc sin(ai)) - cos(”fcl)

C (&

G. (i, ) = ) )

cos(a;)

cos(%fccos(cos_1 (cos(a;) sin(¢;))))

sin(cos~!(sin(¢;) cos(a;)))
cos(%)
~ sin(cos—1(sin(¢;) cos(a;)))’
where [ is the length of the dipole antenna and f. is the fre-
quency of transmission. In the rest of the paper we specifically

Gy(9i, i) =

(6)

Fig. 3: Different radiation patterns arising from different
antenna orientations at the transmitter (UAV) and the receiver
(ground sensor). The combined antenna gain is the product of
transmit and receive antenna gains across the A2G link.

consider a half-wave dipole antenna, and thus [ = %, where

A = £ is the wavelength. We refer to this description of the
3D radiation patterns of a dipole antenna, given by (5) and
(6), as the Model-1.

For a 3D single input single output (SISO) link, where the
transmitter and the receiver are each equipped with a single an-
tenna, we consider the 4 possible antenna orientations. In par-
ticular, we have the VV pattern, where both the transmit and
the receive antennas are oriented vertically, the HH pattern,
where both the transmit and the receive antennas are oriented
horizontally, and the VH pattern, where the transmit and the
receive antennas are respectively, vertically and horizontally
oriented (see e.g. [7], [11], [12] for similar analysis). The
transmit gain, Grx(¢;, ;) and the receive gain, Grx (¢, «;)
for the different orientations are summarized in the left half
of Table II, where the total antenna gain experienced by the
it" A2G link can be obtained by the product of the transmit
and the receive gain Grx (¢;, a;)Grx (@i, ;). The reason that
we do not explicitly consider the HV antenna orientation case
is because the total antenna gain (i.e. the the product of the
transmit and the receive gain Grx (¢;, a;)Grx (¢4, ;)) in this
case is the same as in the case of the VH orientation, and will
yield same outcomes.

TABLE II: Transmit and receive antenna gains for the different
antenna orientations in Fig. 3 with the realistic and approxi-
mated antenna patterns.

Model-1 \AY VH HH
Grx(¢i, i) || Ga(bi i) | Guldi, i) | Gy(gi, )
Grx(¢i, i) || Gu(bis ) | Gy(¢i, i) | Gy(i, )

Model-2 \A% VH HH
Grx (i, ) cos(a;) cos(a) sin(a;)
GRX(Cbiv Ozi) COS(OQ‘) Sin(ai) Sin(ai)

C. Approximated 3D Dipole Antenna Pattern Model

In addition to the realistic dipole antenna pattern, we also
introduce a simpler approximation of the dipole antenna gain
for the VV, HH and VH orientations described in the last
section, and analyze the performance gap. In particular we



adopt the the approximation of the dipole antenna gains
described in [38], [39]. Here the dipole antenna gain is
approximated as a sine/cosine function of the elevation angle
(c;) between the aerial transmitter (the UAV), and the receiver
at the i*" ground sensor depending on the orientation of the
transmit and receive antennas. We refer to this description of
the 3D radiation patterns of a dipole antenna, as the Model-2.
Fig. 3(a) and Fig. 3(b), respectively show the antenna radiation
patterns for the VV and the HH scenario. The VH and the
HV patterns are identical in terms of the total antenna gain,
and are illustrated in Fig. 3(c) and Fig. 3(d), respectively. The
total antenna gain experienced by the the it* A2G link can
be obtained by the product of the transmit and the receive
gain Grx(¢;, a;)Grx(¢i, ), and individual gains can be
extracted from Table II for a given orientation.

IV. IMPACT OF ANTENNA ORIENTATIONS ON TOA
DISTRIBUTION

In the first step of the localization process, we extract
the time-of-arrival (TOA) measurements from the UAV signal
received by each of the ground sensors in the network. Then
the position of the target UAV is estimated based on the TDOA
observations, which in turn are obtained by calculating the
difference between the TOA estimates measured by a pair
of time synchronized sensors. In this section we substantiate
a relation between the variance of the TOA estimates and
the total antenna gains, and thereby establish the dependency
of the TDOA-based localization performance on the various
antenna orientations.

A. TOA Measurements in Purely LoS Environment

We assume that each of the ground sensors in the network
intercepts the UAV signal within the time interval (0,7),
where the UAV signal assumed to be transmitted for a duration
of Ty < T, starting from an unknown time ¢y < 7'. In presence
of a purely LoS A2G link, the signal received at the i*" sensor

is given as:

where 7; is the true value of the TOA at the i*® sensor, s(t)

is the unit-energy pulse shaping signal, A; is the amplitude

factor representing large scale fading, and n(t) is the additive

white Gaussian noise (AWGN) at the receiver with zero mean

and spectral density % Let 7; be the measured value of the

TOA of the UAV signal at the i*" ground sensor, given as:
di

T; —

and ;= —
¢

fi:Ti+ni7 +t0; (8)
where n; ~ N(0,02) is the additive measurement noise, and
c is the speed of propagation.

In the literature, the maximum likelihood estimates (MLEs)
of the TOAs in a LoS environment, are established as unbiased
estimates with a zero-mean Gaussian noise, that achieves the
CRLB. Thus the lower bound on the variance o7 of the TOA

estimate 7; is given as [6], [40]:
2 1 k

= ovanpr, T, ®

g

where [ is the effective UAV signal bandwidth, and T'; =
% is the SNR of received signal at the i*h sensor, with F
representing the energy in the transmit pulse shaping signal
s(t) (i.e. Ex = 1). For the broader objective of this paper, we
summarize the impact of factors other than the SNR on the
TOA measurement noise, using a proportionality constant k.
Using the antenna gains described in Table II and following
the free scale path loss model, the SNR of the it A2G link,
in a purely LoS environment, is given in terms of the total
received power, Prx(a;, ¢;) (i.e. A;?):

L

)

_ Prx(i,di) (A ? PrxGrx (as, ¢i)Grx (i, 61)
(7n2 47 UnzdiQ

(10)

where 0,2 is the variance of the thermal AWGN, Prx is the
transmitted signal power at the UAV.

Next, using (9), the relationship between the total antenna
gain, and the variance of the TOA measurement noise at the
i*? sensor is given as:

2 kod;?

- Grx(ai, ¢;)Grx (i, ¢i)

g

(1)

where the proportionality constant ky summarizes the impact
of all the factors other than the total antenna gain, and the 3D
link distance, and is given as kg = ;:;;J;‘; [41].

1) TOA Measurements with Single Antenna Techniques:
Given the relationship between the total antenna gains of the
A2G link and the variance of the respective TOA measurement
in (11), we now state the TOA variance for the case where
the UAV and each of the ground sensors is equipped with a
single dipole antenna. The variances of the TOA measurement
between the UAV location (x, y, h) and the ‘" sensor location
(z;,v;,0), in a purely LoS environment, for the VV, HH and
the VH orientations with Model-1 are given as:

ko d;2 cos? (o
o2, = o cov () (12)
cos?(mk sin(ay;)
2 _ kod;? sin®(cos™! (cos(ay;) sin(¢;))) (13)
o cos?(mk cos(a;) sin(¢;)) ’
2 kod;? cos(oy;) sin(cos ™! (cos(ay;) sin(¢;))) (14)
VT cos(mky sin(oy ) cos(mky cos(ay;) sin(¢;))
These are obtained after replacing | = % into (5)
and (6), and computing the total antenna gains,

Grx (i, 2;)Grx (¢, o;), according to Model-1 in Table IIL
Substituting GTX(¢i7 ai)GRX(@-, Oéi) into (11) yields
(12)-(14).

Following similar steps for Model-2 described in the second
half of Table II, the TOA variances with Model-2 for antenna
radiation can be calculated as:

kod;”
sin(a;) cos(a;)

15)

2 kod; 2 kod; 2

v T m » Oican = m ) Ojove =



2) TOA Measurements with Multiple Antenna Techniques:
In order to mitigate the orientation mismatches between the
transmit and the receive antennas, we employ a multi-antenna
technique at the ground receivers. This allows us to leverage
the pattern and the orientation diversity by receiving two
different versions of the transmitted signal via two receive
antennas with two different orientations. Thus we now con-
sider a 3D multiple input single output (MISO) link, where
the transmitter is equipped with only one antenna but the
receiver is equipped with two orthogonal dipole antennas,
(one oriented vertically and another oriented horizontally),
and characterize the receive gain at the i*" ground receiver,
(Ghu-v), as Gy (ai, ¢;) + jGu(ay, ¢;) [42]. Here, each of the
single dipole antenna patterns can be modeled according to
the antenna patterns described in Table II. Finally for the two
possible orientations of the single dipole antenna at the UAV
(either vertical (V) or horizontal (H)), there are two possible
total antenna gain patterns, denoted respectively, as Gy_pv
and GH—HV-

Lemma 1: The variances of the ¢** TOA measurements,
in the cases, where the ground sensor is equipped with two
orthogonally oriented antennas, and the UAV antenna is either
vertically or horizontally orientated, are denoted respectively

th

2 2 .
as o7, and of, ., and are expressed as:
02,0 02,0
2 _ i-HH VY 2 _ i-vy 1-HH
Oinny = 9 2 \3 Oiyny = 9 9 N1 (16)
(Ui—HH + Ui-vv) (Ui—HH + ai—vv)
Note that 02, and o2, can be obtained in closed form by

using (14) for the realistic dipole antenna pattern and (15) for
the approximated antenna pattern.
Proof: See Appendix A. ]

B. TOA Measurements in a Mixed LoS/NLoS Environment

Although the TOA measurement noise in a purely LoS
environment can be modelled as a zero-mean Gaussian random
variable whose variance is given by (9), the TOA extraction
in the NLoS situation, results in biased TOA estimates [43].
This is due to the fact that the multipath components in
a NLoS environment, travel more than the LoS distance to
reach the intended receivers. In addition, the TOA estimates
in a mixed propagation environment have higher variance,
compared to the TOA variance in a purely LoS environment,
as the total path loss experienced by the UAV signal in
a mixed propagation environment (as indicated by (3)) is
slightly higher. Thus in a mixed propagation environment
where the NLoS bias has the Gaussian distribution N (i, 02),
the distribution of the TOA measurement for a given location
of the UAV x = (x,y, h), as collected by the i*" sensor located
at ; = (x;,9;,0) is given as:

~ {N(Ti7 nLOSUiQ) )

with PLoS (33, :Ez)

T~ ,
’ N (7i + pp,pN502 + 02) |, with 1 — PLos(z, ;)

(17)

where nNL°S, 7; and 0;2 are obtained, respectively, from (3),

(8) and (11).

V. DISTRIBUTION OF THE TDOA MEASUREMENTS

Having derived the distribution of the TOA measurements
in the last section, we now obtain the distribution of the
associated TDOA measurements.

A. Conditional Distribution of the TDOA Measurements in a
Mixed LoS/NLoS Environment

Since TDOA measurements are obtained by computing the
difference between the respective TOA measurements, using
(8), the true and the estimated values of a TDOA observation,
7;; and 7;;, as collected by the i*" and the j*" sensors can be
given as:

d; d;

J
Tis = — — —
J c ’

Fi=t— T
c J J

(18)
From (17) and (18) we note that the distribution of the TDOA
measurements depend on the particular propagation states (i.e.
Sa,; and Sp ;) of the two associated A2G links, and describe
the TDOA distribution in the following lemma.

Lemma 2: Under a mixed LoS/NLoS environment, where
the NLoS biases, {b;} at all sensors are independent and iden-
tically distributed (i.i.d) according to the Gaussian distribution:
bi ~ N (b, o), for 1 < i < N, the conditional distribution
of a single TDOA measurement for a given UAV location
x = (,y, h), collected by the i** and the j*" sensors, while
in the propagation states Sa; and Sa j, respectively, is given
in (19).

Proof: See Appendix B. [ ]

In this paper, we choose the 15t sensor, as shown in
Fig. 1, as the reference sensor, and subtract the TOA mea-
surement, 71, from all other TOA measurements, {7;} for
2 < 4 < N. Thus, we obtain the TDOA measurement
vector z = [f12,713...71ny] € ROV=UX1 Due to having
a common reference sensor, the TDOA measurements are
not independent, and the dependence is modeled through the
covariance matrix R (x) € RV=Dx(N=1) "We also note that
the distribution of z is also dependent on the propagation
states of all the sensors {Sa;} for 1 < ¢ < N. For the
ease of explanation we define a N-element random vector
S : Q0 — {LoS,NLoS}", where S(i) = Sa . for 1 <i < N.
The joint probability mass function (PMF) of the random
vector S is given as:

P(S = S) = H PLos(w,wi)
i:8(1)=LoS
x ][ (Q-Pus(@z;), (0

j:8(j)=NLoS

where P\ os(x,x;) is obtained from (4). Next we define an
indicator random variable, Iy : Q — {0, 1}, associated with
the occurrence of the NLoS state as:

Iy(Sa) = {1, if Sa; = NLoS

21
0, if Sa; = LoS @D

In other words, the indicator random variable has a value 1 if
the NLoS event occurs and has value 0 otherwise.
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Lemma 3: For a given realization of S = s, the conditional
distribution of the TDOA measurement vector, z, has a joint-
Gaussian distribution z ~ N (p (x,s), R (x, s)), where the
i*h element of the mean vector, p(x,s) € ROV=DX1 " py(5)
and the (k,j)-element of the co-variance matrix R (x,s) €
ROV-DX(N=-1)" R(k,j), for 1 <i < N—1land 1< j <
N — 1, are given in (22) and (23), respectively.

Proof: See Appendix C. ]

Lemma 4: The marginal probability density function,
p (z|x), of the jointly-Gaussian distributed TDOA measure-
ment vector z = [Fy2,713...71n], for a given UAV location
(z,y,h) can be computed as:

p(zlz) = Y P(S=s)p(zlz,s) ,
se{LoS,NLoS}
o(—3 (@) R (@,8)(z—p(x,s)))
p(z|z,s) = . (24

27| R (x, s) |

where the probability value, P(S = s), is obtained from (20)
and p(x,s) and R (xz,s) are formed using (22) and (23),
respectively.

Proof: From (24) and (20), fRN_lp(z|w) dz
Yo P(S = s) [anoip(2|®,8) dz=1, and therefore the
likelihood function also satisfies the regularity condition:

E[%&zm}:o,mlgé?}. -

VI. TDOA-BASED LOCALIZATION AND CRLB

In this section we formulate the TDOA-based MLE estima-
tor for the 3D localization. Given (22) and (23), we realize that
the likelihood function for the TDOA measurement vector, z,
is a function of the UAV location @ = (x,y,h) and the ML
estimate of x is given as:

~

& = argmax p(z|x) . (25)
The relationship between the mean square error (MSE) and
the Fisher information matrix (FIM), Iz can be given as [40]:

.y, h)]

where the inverse of the FIM is the CRLB on the covariance
matrix of the location estimates given as: cz — I 1 > 0.
Next we provide the expressions for each element of the FIM,
across various scenarios discussed in this paper.

Theorem 1: For a network of N synchronized ground
sensors located in a mixed LoS/NLoS environment, the (%, )

element of the FIM, for 1 <1¢,5 < 3, is given as:

1 Op(zlz) Op (2|z)
p?(z|lx) O Ox; ’

E(z,y,h) > trace[I~ (26)

Lij = —Egz 27

where the partial derivative of the conditional density function,
p(z|x) with respect to each location coordinate z; is given
in (29), where 8P(8i%s), the partial derivative of the joint
probability of the N FTs being in LoS/NLoS states, P(S = s),
with respect to x; is given as:

IB(S=s) _ Z P(S =s) OPLos(x, @)
Ox; m:s(m)=LoS PLos(2; Zm) Ox;
P (S = S) 8PLOS(w, :Bn)

-2

1
n:s(n)=NLoS

(28)

- PLoS(mamn) ox; ’

OPos (&, Em
%km) C/PLOS(mvxm)<1 o

PLos (@, Tm ) 52- (%) ,and ¢/ = (—180abPus)

Proof: See Appendix D. [ ]
From (27), we see that computing the required FIM elements
involves working with the conditional pdf p(z|xz,s) for a
given realization of the random vector S = s. Thus, we
approximate the true expectation in (27) by generating a
large number of samples of the random vector z, using the
respective distributions given in (22), (23), for each possible
realization of S, out of all the 2V cases mentioned in (20).
Finally, we take the average of all the values of the term
ey A 2EEL) ysing (28) and (29), for all the said
samples of z. Theé general expressions for the elements of
the FIM for the special case of a purely LoS environment, is
presented as a corollary (corollary 1) to Theorem 1.

Corollary 1: In a purely LoS environment, the (i, j) element
of the FIM [40], for 1 < 4,5 < 3, is given in (30). This follows
from noticing p (z|x) = p(z|z, s), where s(k) = LoS, for
1<k<N.

Next we derive the elements of the FIM for the various
antenna patterns in a purely LoS environment. Since the mean
vector of the TDOA measurement () does not change with
Varzying antenna patterns, we only provide the expressions for

where

2

and 90, v
’ ox;

2 2
8‘Tj.vv 8‘7j-1-11-1

Ox; * Oxm;
H

. . R . . o
is sufficient to compute the o, term using (31). Since 3’—%

do?
5 and
P

antenna orientations, namely, , as this

802 .
g;fm, in the

can be decomposed in terms of

, , S 00?2
corollaries below, we provide the relatlonshlp between g;VH ,

902 o3
5o, and —™, and the expression for B;VH for the two
3

cases: the realistic half-wave dipole antenna pattern and the
approximated dipole antenna pattern. In the case of the VV
antenna orientation, for 1 < i < N and 1<ji< 3 the term

jVV and O, _]HH
ZTq ox;

a0—i2-\/1-1 _ 71 Oi-un 80’1 W Ti-vv anQ-HH
Oz 2 \o3, Ox ol = Ox ’

1-VV 1-HH

0o 1VH

, can be expressed in terms of 2 as:

(32)



p(i) = ——" 4y, In(Sa1) — HN(SA,1+1):| ; (22)

op |:]IN(SA,1) + ]IN(SA,i+1):| + pNLoS |:]IN(SA,1)U% + ]IN(SA,i+1>UZ‘2+1:|

R(i,j) = + 75 | (1 = In(San)) ot + (1 — In(Sasiv1)) o2 | i=j . (23)

o2In(Sa1) + NS |:]IN(SA.,1)0'%:| + koS [(1 —In(San))oi] i F ]

Op(z|x) OP(S=s) 1 -1 ORT (z, s)
P :Zp(z|:c,s) |:—21P’(S:s) |R(x,s)| Tr (R (w,s))] +

61‘1‘ 5 8arl 8a:i
ouT(xz,s) 1 TOR Y(x, s
ZP(S:S)p(z|.’B,8) |:‘U/a(r)R 1(‘7}’ S)(Z—,U(.’B,S)) —5(2—#(.’1),8)) al(.)(z_:u(mvs))] ) (29)
_ ou(x) aﬂ(w)T 1 “1, (OR(x) .,  OR(x)
I; = oz, R ' (x) oz, + trace R " (x) oz, R " (x) 7z, , (30)
where for L <m < (N—-1)and 1 <m < (N —-1),
ou 1 (0dy Odyyq OR do? Oot,,  OR do?
81‘,'( ) (8.%1 8l‘i ) ’ 83,3( ’m) (93?1 + 8$l ’ 8335( ’ ) 81‘,‘ ( )
Corollary 2: For a half-wave dlpole antenna pattern, and 0oy = 2%k(z — 2;)®i(z,y,h) , (36)
1 <7< Nand1<j <3, the term a“J’Y is given as: Oz
_ 2 2 diz
do2,,  2(z—x;) (1 — mhd; hr;? tan (3)) where ®;(z,y, h) = d; (uliz—h2 - diLh?)'
or cos? () ) Proof: See Appendix E. [ ]

In the next corollary we compute the terms necessary for

obtaining the FIM elements in the case of a multi-antenna
dy cos? (B) ’ sensor network in a purely LoS environment.

dol,, orkd; 3r;* tan (B) Corollary 4: The FIM elements for the V-HV and the H-

ooty  2(y—wyi)(1- mkd;"*hr;% tan (B))

1-vv

1-VV
oh cos? () ’ (33) HV patterns for the mult1 antenna acqulsmon technique, are
kR 902 <. . obtained in terms of 2 ‘VV and ‘HH, with 1 < ¢ < N and
where [ i and the term e, 1s given as: 1< j < 3, are given as
2 . _ T3y — us) s
80—”_“{ = 2 (I — ‘Tl) (1 ﬂ-kdl (y yl) rw?’(‘T? h) tan 0) ) aa-izv-l-[\/ 1 2vv _% (9(7 vV U4VVJ2HH .
Ox cos? B =3 1+ 2 8' —|— = W(ig) |
do2,  2h (1- mhkd; i (z, h) (y — y;) tan 9) i O ) Li Ol T T
oh N C0829 ’ aa’i?ﬂ-l—[v 1 (1 4 12HH> 2 |:aal -HH + O—leHJ?vv \I/(Z ]):|
80i2—HH _ Zﬂkdii?) (7/)1 (.23, h’))2 tan 6 (34) 61‘]‘ 2 Ui—VV 63:] HH + U|2vv ’
oy cos2f ’ (37)
where 0 = (y 4 and gpy(w, h) = (z — )" + h2. where ¥(i.j) = o 65;““ 33%'
Proof: See Appendix E. ] Proof- See Appendlx F. ' n
Corollary 3: In the case of2 the approximated antenna
pattems, the exnressions for ag;?“, with 1 < ¢ < N and VII. NUMERICAL RESULTS
1 <35 <3, are given as: . . . .
) 9 ) 9 In this section, we present numerical results that illustrate
90 _ 4k (z — m;)d; 90 _ 4k(y — yi)di the impact of the various antenna orientations on the perfor-
Ox h? dy h? mance of the TDOA-based localization scheme for the dipole
902 ok 2d;?  d;* 35 antenna models in Table II. All the plots in this sections are
oh L R3O (35) drawn using the CRLB expressions derived in Section VI.

whereas the 8""’ terms are given as:

2 2 2
907wy _ Akhd; 9oy = 2k(y — y;)®i(z,y, h) , We consider an area of size 1000x1000m? with 4 RF

oh d*—h2’ Oy sensors placed at the following 2D coordinates: x; =

A. System Assumptions and Parameters
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Fig. 4: CRLB RMSE distribution for single receive antenna for VV, VH, and HH orientations of the two antenna patterns
(Model-1 and Model-2) at UAV altitudes of (a-c) 10 meters, and (d-f) 100 meters.

(250,250) m, 2 = (—250,250) m, &z = (—250,—250) m,
and x4 = (250, —250) m. We also assume that the bandwidth
and the transmit power of the UAV are 10 MHz and 20 dBm,
respectively [4], [5], and that the noise power spectral den-
sity (PSD) is —174 dBm/Hz [44]. In order to demonstrate
the difference in the localization performance caused by a
mixed LoS/NLoS A2G channel as compared to a purely
LoS channel, we plot the localization error in a suburban
and an urban environment, where the two A2G channels
are characterized by (3) and (4), with the following set
of parameters: (a,b) = (4.88,0.429), (n-°5, nNtoS) = (0.1, 21)
dB for the suburban setting, and (a,b)=(9.6117,0.1581),
(ntoS,nNLS) = (1,20) dB for the urban setting [36]. Lastly,
for the results related to the Model-1 antenna pattern, we
consider a half-wave dipole antenna, where [ = %

For all the plots in Figs. 4, 5, 8, 9, in addition to theoretical
results, we also provide simulation results for a gradient-decent
based location estimator. The process of the simulation is as
follows. We consider a uniform grid over our 1 km x 1 km
system area, and each node of the grid is considered for the
unknown UAV location (x (z,y,h)). For 1 < i < 4,
for all combinations of x; and x, TOA measurements, 7;,
are generated by generating 4 random numbers, each drawn
from Gaussian distributions described by (8) in the purely LoS
case, and by (17), in the case of a mixed LoS/NLoS scenario.

These TOA measurements are then used to generate the TDOA
measurements: 7is, 713,714, according to (18). Finally we
construct the marginal probability density function, p (z|x),
of the jointly-Gaussian distributed TDOA measurement vector
z = [T12,T13,714] using (24), for a given UAV location
(z,y,h). Following (25), the location estimate &, of the un-
known UAV location is then obtained by maximizing nonlinear
likelihood function with help of a method of gradient descent
[45]. Since the likelihood function is highly nonlinear and
complicated, we find the best approximation to the solution
by randomly choosing an initial solution and then performing
a fixed large number (5000) of iterations of iterations of
the gradient descent method. We repeat the same process of
simulation for the different altitudes and antenna patterns to
produce the results on the localization error, || — &||g3, as
presented in Fig. 4, Fig. 5, Fig. 8, and Fig. 9.

B. Single Antenna Localization in LoS Channel

In Fig. 4 and Fig. 5, we characterize the theoretical and
simulated localization performance provided by the different
SISO antenna orientations (i.e. VV, VH, and HH) in a purely
LoS environment, across various UAV altitudes ranging from
10 meters to 700 meters. While the first two columns in each
row of Fig. 4, and Fig. 5, describe the localization CRLB and
the gradient-descent based localization error for Model-1 and

10
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Fig. 5: CRLB RMSE distribution for single receive antenna for VV, VH, and HH orientations of the two antenna patterns
(Model-1 and Model-2) at UAV altitudes of (a-c) 500 meters, and (d-f) 700 meters.

Model-2, respectively, the third column depicts the agreement
between the two antenna pattern models at the low localization
error region.

As demonstrated by Fig. 4(a), we observe that at very low
UAV altitudes, such as 10 meters, the CDF for the VV (Model-
1) pattern lies above the VH and HH patterns (for Model-
1), for all values of the localization RMSE, §. This implies
that, at the very low altitudes, the best localization coverage
Pr(RMSE < §), for the Model-1 pattern, is provided by the
VV pattern, followed by the VH and the HH patterns. On the
contrary the curves in Fig. 4(b), show us that, although the
VV orientation among the Model-2 antenna patterns achieves
the highest coverage probability subject to very low error
tolerances (such as 6 < 10 m), the best coverage probability
for relatively higher error tolerances (6 > 10 m), is provided
by the Model-2 VV pattern. From Fig. 4(c), we also note
that at very low altitudes the Model-2 antenna patterns find
the best agreement with the Model-1 antenna patterns, for the
VV orientation but there is a non-negligible performance gap
between the two models for the VH and the HH orientations.

Next, from Fig. 4(d) and Fig. 4(e), we observe that for
medium UAV altitudes of about 100 meters, the VV orientation
yields the highest area coverage probability subject to all
values of the RMSE threshold, followed by the VH and the
HH orientations, for both the Model-1, and Model-2 antenna

patterns. In addition, from Fig. 4(f), we note that, at medium
altitudes there is a strong agreement between Model-1, and
Model-2 with respect to the VV orientation, followed by the
VH and the HH orientation. On the contrary, Fig. 5(a) through
Fig. 5(c), illustrate that, at an altitude of 500 meters, the CDF
curves for all the orientations almost overlap with each other,
for both Model-1, and Model-2.

Most interestingly, from Fig. 5(d), and Fig. 5(e), we see that,
at an even higher altitude of 700 meters, the HH orientation
yields the highest coverage probability, followed by the VH
and the VV orientations, for both Model-1, and Model-2.
This particular result lies in complete contrast with our earlier
observation for the lower altitudes of 10 meters, and 100
meters, where the highest and the lowest coverage probability
was produced by the VV and the HH orientation, respectively.
Finally, we observe that the CRLBs provide a reasonably
tight lower bound on the localization errors produced by the
gradient descent-based location estimators (simulation results)
across all antenna orientations and all drone altitudes.

Having realized how the performance of the different ori-
entations changes with the UAV altitude, we plot the median
RMSE as a function of the UAV altitude for both the Model-1
and Model-2 antenna patterns, respectively, in Fig. 6(a) and
Fig. 6(b). The curves in Fig. 6 illustrate that the localization
accuracy for both the Model-1 and Model-2 antenna pattern
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Fig. 6: Median RMSE as functions of UAV altitude for the various orientations (VV, VH and HH) of (a) realistic, and (b)

approximated dipole antenna pattern.

change in a non-monotonic pattern with respect to the UAV
altitude, and that there exist respective critical heights where
the corresponding median RMSE for the given antenna ori-
entation is minimized. We also see that there exist points of
intersection between the RMSE curves for the various antenna
orientations, and the abscissa of the points of intersection of
all the 3 curves gives us the crossover height beyond which the
choice of the best antenna orientation changes. For example,
Fig. 6(a), and Fig. 6(b) illustrate that the crossover altitude
is, respectively, 425 meters, and 475 meters, for Model-1, and
Model-2, below which the lowest median RMSE is obtained
from the VV orientation, but beyond it, the best accuracy is
achieved by the ‘HH’ orientation.

C. Multi Antenna Localization in LoS Channel

Next in Fig. 7, we demonstrate the improved robustness of
the multi-antenna signal acquisition technique (described in
Section IV-A1), to the mismatches in the antenna orientations
arising from the single antenna techniques. Unlike the plots in
the earlier figures, all the plots in Fig. 7 and on-wards discuss
the localization performance only for the Model-1 antenna
pattern, and does not include the curves corresponding to the
Model-2 patterns. In particular, in Fig. 7, we consider Model-1
antenna pattern and compare the CDFs of the CRLB RMSE for
the SISO (VV and HH) orientations, to the MISO orientations
(V-HV and H-HV).

First of all we note that at all altitudes, the V-HV and
the H-HV patterns yield higher coverage probability subject
to all RMSE tolerance, § m, as compared to the VV and
the HH orientations, respectively. Next, from Fig. 7(b) and
Fig. 7(c) we see that the red curves almost overlap with the
corresponding black curves, which in turn indicates that at
the medium altitudes (i.e. between 100 meters to 500 meters)
the gain in the accuracy is very small for both the MISO
orientations. On the other hand Fig. 7(a) and Fig. 7(d) show
us that at very low and very high altitudes (such as 10 meters

and 700 meters), there is moderate to major gain due to using
MISO orientations. In particular, from Fig. 7(a), we see that at
very low altitudes, the MISO scheme has a considerable gain
over the SISO scheme, HH, but only a marginal gain over VV.
On the contrary, Fig. 7(d) shows us that at very high altitudes,
the MISO localization gain is high over the VV orientation,
but small over the HH orientation.

D. Localization Performance in Mixed LoS/NLoS Environment

Due to the introduction of a positive bias, the localization
in a mixed LoS/NLoS environment always experiences a
performance loss, regardless of the antenna orientation in
question. Therefore we choose to characterize the impact of
the LoS/NLoS propagation, using a MISO orientation that
provides an upper bound on all other antenna orientations,
discussed in this paper. In particular, in Fig. 8, we plot the
CDFs of the H-HV CRLB-RMSE, across various altitudes, in a
suburban and an urban environment. As illustrated by Fig. 8(a)
and Fig. 8(b), we note that, for lower to moderately high UAV
altitudes, the localization errors in the suburban environment
is lower than that in the urban environment. Moreover, while
at very low altitudes, there is only a minor increase in the
localization error in an urban environment, at medium altitudes
the localization in an urban environment undergoes a severe
performance loss. Next, contrary to the common intuition,
Fig. 8(c) and Fig. 8(d), reveal that at very high altitudes, the
performance in the urban environment is better than that in
the suburban environments. This is because, at a very high
altitude, the probability of LoS propagation in the suburban
environment is very close to one, but the probability of LoS
in the urban environment still keeps growing larger with the
increasing UAV altitude. Thus, while the TOA measurements
in the suburban environment are almost bias free at such alti-
tudes, the average bias in the TOA measurement in the urban
environment keeps decreasing with the increasing altitude.
Therefore, at a very high altitude, the likelihood of the TDOA
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Fig. 7: CRLB RMSE distribution for single and multiple dipole receive antennas with VV and HH orientations at UAV altitudes
of (a) 10 meters, (b) 100 meters, (c) 500 meters, and (d) 700 meters.

measurements in the urban environment is more sensitive to
the changes in the (x,y,z) coordinates, resulting in higher
accuracy of the localization estimates. Simultaneously at such
a high altitude, the SNR of the UAV signal is very low in
both suburban and urban environments, and thus the variance
of the LoS error in the TOA measurements is very high in
both environments and not very sensitive to the changes in
the environment anymore. Finally we note that the line curves
in all the plots in Fig. 8, lies below the respective black
and red curves with the markers, and closely follows them.
This implies that the MISO CRLB provides a tight lower
bound to the localization error of the gradient-descent based
location estimator, across both the suburban and the urban
environments, across all altitudes.

Next, in Fig. 9, we compare the dependence of the local-
ization accuracy on the UAV altitude under different degrees
of LoS dominance. From, Fig. 9(a) we note that the median
RMSE changes in non-monotonic pattern, with respect to
the UAV altitude, in both the suburban and the urban en-
vironment, and that the critical altitude (where the median

localization error is minimized), in an urban environment
(around 300 meters) is higher than that in a suburban environ-
ment (around 100 meters). In order to improve the resolution
of the plot in Fig. 9(a), we plot the median RMSE against a
shorter range of the UAV altitude, in Fig. 9(b). This allows
us to note that the crossover altitude, where the localization
error in the suburban environment increases beyond that in the
urban environment is noted to be around 450 meters.

VIII. CONCLUSION

In this paper a TDOA-based RF positioning system for
localization of UAVs is studied in conjunction with air-to-
ground 3D antenna radiation patterns for dipole antennas.
Our results show that accounting for antenna effects makes a
significant difference and reveals many important relationships
between the localization accuracy and the altitude of the UAV.
We show that the localization performance varies in a non-
monotonic pattern with respect to the UAV altitude. We are
also able to characterize the critical heights at which the
coverage and accuracy metrics are optimized, as well as the
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Fig. 8: Impact of LoS/NLoS A2G link on CRLB RMSE Distribution for MISO receive antenna patterns at UAV altitudes of
(a) 10 meters. (b) 100 meters, (c¢) 500 meters, and (b) 700 meters.

crossover UAV heights before and after which the choice of the
best antenna pattern yielding best performance changes. This
work has numerous possible extensions. Our framework can
be extended to more complicated antenna pattern scenarios,
such down-tilted sector antennas used by cellular base stations.
The expressions for the lower bounds on the localization error
derived in this study can be used to find the optimal location
of the ground sensors with non-isotropic antenna patterns.
Another meaningful extension would be to use this framework
to investigate the selection of optimal reference sensor for
TDOA observations in the presence of directional antenna
patterns. Our future plans include doing experiments over the
NSF AERPAW Platform at NC State University to validate
some of the findings in this paper.

APPENDIX

A. TDOA Variance for Multi-Antenna Techniques
The total gain for the H-HV and the V-HV case are:

GTXGRX = |]Gy(Gz +.7G1/)‘ = C7'y \/ Gy2 + Gz2 5 (38)
GrxGrx = |G.(G. + jG,)| = G,\/G,> +G.2 . (39)

. . .2 2
Substituting Gy2 = ’;;%—d;m and G,? = f_gd"lv from (14) and

(15) into (39), we get:

2 2
kod; oo
2 004 i-ap?i-vv
O jonnv = > 5 = 5 5 37 (40)
/ 2
Gy Gy + Gz (Ui—HH + Ui—vv)
2 2
kO dz Oy Ti-un

Uzi-vrﬂv = = 5 5 L 41)
Gz\/ Gy2 + Gz2 (Ui—HH + Ui—vv) :

which are the same as the expressions stated in (16).
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B. Distribution of a Single TDOA Measurement

Case 1 (Sp; = NLoS, Sp; = NLoS):  Using  (4), the
probability of having both S-i and S-j in the NLoS
states are given as: PP(Sa; = NLoS,Sa; =NLoS) =
(1 —Pros(x,x;)) (1 — Pros(x,x;)).  Since, 7;  and

7; are independent, using (17) the distribution of
the TDOA measurement 7;; = 7; — 7; is given as:
iy ~ N (1 —75,nN%(07 + 07) 4 20¢), with probability
P (Sa; = NLoS,Sa ; = NLoS). The distribution for the
other 3 cases listed below can be obtained similarly.
Case 2 (Sa; = LoS, Sa j = NLoS):

#i~ N (1i,n%02) | 75 ~ N (75 +,ub,77NL0502 +0?) .
Case 3 (Sa; = NLoS, Sa j = LoS):

7o e N (7i o+ i, 1" 507 + o)
Case 4 (Sp; = LoS, Sa j = LoS):

Ti NN(Ti,nL°SJ$) . Ty NN(TJ',ULOSUJZ) .

7y~ N (75,n%0%)

C. Conditional Distribution of TDOA Measurements
From (17) and (19), the distribution of 7;, for a given link

state, Sa i, is stated as:

E [7]Sai] = 7 + 1In(SA)) , (42)

(E [#15a] ) = 0502 (1 — In(Sa.))

+ (NS0 + o2)IN(Sa,) -
(43)

E [72(Sa,] —

Thus the mean and variance of a TDOA measurement, 74;,
given the states, Sp ; and Sa 1 are:

p(i) = E[71:[{Sa,1,Sa,i}] = E[71|Sa 1]

—E[#[Sal]
— ((ddcl +dHN(?A’1)Mb> _ (di;rl (SA,i;\Mb)
1 Wil

S + 1y |:]IN(SA)1) — HN<SA,1+1):| , (44

which is the same as (22), and
R(i,i) = B[] — (E [#1:])?
—E (7 —%)°] - (B[] - E[7])’
=E [#}Sas] — (E[#1|Sa1])? — E [#2|Sa1] — (E [#[Sa,i])?
=107 (1 —In(Sa1)) + (1""%07 + 07)In(Sa 1)
+nLoS Z2(1 *HN(SA,i))( NLoS _2 )

o; Jr(rb
= o} |:HN(SA,1) + In(Sa, .+1)}

NLoS |:HN SAI Ul —|—HN(SA |+1) z+1:|

LOS |:(]. SA 1 ) (]. - ]IN (SA I+1))Jz'2+1:| . (45)
For i # j,
R(i,7) = E[71;71;/{SA,1,SA,i» Saj}]

— E[#1:[{Sa1, Sai HE[71;]{SA,1, Sa,;}]

=E[(71/Sa,1 — 7ilSa,i) (71[Sa,1 — 75/Sa )]

— (E[71[Sa1] — E[7[Sa,i]) (E [71[Sa1] — E[7(Sa,])
=E [#7|Sa1] — (E[#1[Sas])®

= ogln(Sa1) + oS |:HN(SA71)U%:|

+ koS [(1 - HN(SA,l))U%:| ; (46)

which are same as the expressions given in (23).

D. FIM in Mixed LoS/NLoS Environment
We define the following:



to rewrite (24) as p (z|x, s) = 2REI@2) Thyg we get:

op(zie.s)  (IR(@s)|  exp(—g(w.5) 252
om Van
(5IR (@, 5) |7 exp (g (. ) 252l

- Vo
(IR (e, 5)| 7 AR | 226001 omy(e.

o 57IR (z,5) ]
— 1 -1 0|R(z,s)|  9g(x,s)
_ —p(z[z,s) 1 4 OR” (x, s)
= flR(iB,S)l Tr | R (az,s)T

o (el s) D[z~ n(@ )T B (@.5) (2 — i (w.9)))
_ —p(zlz,s) 1 5 OR” (x, 5)
= f|R(w7s)| Tr | R (w,s)T

T r,S
+p(z|z, s) [éma(xi?)Rl(a;,s)(zu(m,s))]
Z|I, S aR_l xr,S

_{p(LNz_M%@y“aé)@_M@ﬁD]

(47)

OP(S=s)

Next we compute —5—

Wt = Y (zle. 8) T+ 3 P(S = 5) PG,
obtain (29). Finally, deﬁnmg f (x) =

15017 tan—1 ( h
we rewrite (4) as Pos(, Tym) = m

of () _

OPlos(®, @)  —ae/®) 180ab

— as an explicit function of the
marginal pdf p(z|z, s), in (48). Substituting (47) and (48), into
we

Tm (:I:)
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Oxp o (1+a€f(a:))2 or

< (1_ 1 Tn 2 i h
1+ aelf@) ) 2 + b2 0z \ rp(x)

E. Single Antenna FIM

Us1ng (D), (2), and (14) we get: 02, = r;?cos 2 (B), and

1-VV

= ;(z, h)cos™
to x, we get the terms 80'”” and 2 'VV in (32).

lHH

F. Multi Antenna FIM
Differentiating the first equation in (16), we get:

do? 9o, . Oc? 0o, .. Oc?

1-V-HV 1 V-HV 1-HH + 1 V-HV 1-VV
T 2 ] 2 .
ox; 0ol 0% do?,, Ox;
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Simple algebraic manipulation yields the first equation in (37),

and the second can be obtained similarly.
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