
Intelligent Feedback Overhead Reduction (iFOR) in 
Wi-Fi 7 and Beyond 

Mrugen Deshmukh  
InterDigital, Inc. 

New York, USA 
mrugen.deshmukh@interdigital.com 

Mahmoud Kamel 
InterDigital, Inc. 

Montreal, Canada 
mahmoud.kamel@interdigital.com

 Zinan Lin 
InterDigital, Inc. 

New York, USA 
zinan.lin@interdigital 

Rui Yang 
InterDigital, Inc. 

New York, USA 
rui.yang@interdigital.com

 Hanqing Lou 
InterDigital, Inc. 

New York, USA 
hanqing.lou@interdigital.com 

Ismail Güvenç 
Dept. of Electrical & Computer Eng. 

North Carolina State University 

Raleigh, USA 
iguvenc@ncsu.edu  

 

Abstract—The IEEE 802.11 standard based wireless local 

area networks (WLANs) or Wi-Fi networks are critical to 

provide internet access in today's world. The increasing demand 

for high data rate in Wi-Fi networks has led to several 

advancements in the 802.11 standard. Supporting MIMO 

transmissions with higher number of transmit antennas 

operating on wider bandwidths is one of the key capabilities for 

reaching higher throughput. However, the increase in sounding 

feedback overhead due to higher number of transmit antennas 

may significantly curb the throughput gain. In this paper, we 

develop an unsupervised learning-based method to reduce the 

sounding duration in a Wi-Fi MIMO link. Simulation results 

show that our method uses approximately only 8% of the 

number of bits required by the existing feedback mechanism 

and it can boost the system throughput by up to 52%. 

Index Words— Beamforming, CSI Overhead Reduction, K-

means, MIMO, Unsupervised Learning, WLAN. 

I. INTRODUCTION 

Wi-Fi has increasingly become an essential technology for 
consumers at home, enterprise and agriculture among other 
areas. According to a report by Cisco [1], the number of public 
Wi-Fi hotspots are expected to grow fourfold from 169 
million in 2018 to 628 million in 2023. To address the 
challenges raised by growing demand from Wi-Fi services, 
the IEEE 802.11 standard introduces new technical features 
for each generation of Wi-Fi to improve the spectral 
efficiency, reduce latency and improve the quality of service 
(QoS). The latest amendment of the standard is 802.11be, also 
known as Extremely High Throughput (EHT), which will be 
the baseline of Wi-Fi 7 [2]. EHT is projected to support data 
rate of at least 30 Gbps per Access Point (AP), which is 
approximately four times that of the previous amendment. On 
top of the higher throughput, EHT is also expected to provide 
lower latency and higher reliability to enable time-sensitive 
networking [3], to support applications such as augmented and 
virtual reality, gaming, cloud computing, etc. 

One of the important technical features in IEEE 802.11 for 
achieving high data rate is transmit beamforming (BF), which 
was first introduced in the IEEE 802.11n standard [4]. In 
transmit beamforming, the transmitter applies weights to the 
transmitted signal to improve the link performance. The 
weights are adapted from the knowledge of the propagation 
environment or the channel state information (CSI). To obtain 
such weights, the system with transmit BF capability, 
including IEEE 802.11  [4], implements a channel sounding 
protocol where the beamformee (the receiver of the BF 
transmission) reports the CSI to the beamformer (the 

transmitter of the BF transmission) before BF transmission. 
However, existing methods, even with certain compression 
techniques, used to report CSI require a significant amount of 
feedback overhead. Given the increasing demand for higher 
throughput, reducing the feedback overhead stems as an 
unavoidable problem, especially when the number of transmit 
(Tx) antennas is very large, that would require focused efforts 
from researchers and practitioners.  

 With the development of IEEE 802.11, the number of 
transmitter antennas at the AP has been constantly increasing 
with each amendment of the standard. For example, the 
number of transmit antennas at the AP is up to 8 in 802.11ax 
and could be up to 16 in 802.11be [5]. This number could be 
even higher in future generations. Subsequently, the feedback 
overhead increases with the increasing number of the 
transmitter antennas, and further, the complexity of this 
problem is worsened with the introduction of multi-AP 
cooperation in EHT [2]. Furthermore, in the bursty traffic 
application, it may require the AP to sound the channel when 
a new data packet comes. Such applications that require more 
sounding iterations may have more stringent requirement on 
the BF feedback overhead. 

The advent of application of machine learning (ML) 
algorithms in the wireless communication domain has enabled 
exposure to new tools to solve traditional problems in the Wi-
Fi [6] as well as the 3GPP standards [7]. ML has been used to 
address issues in PHY features such as interference mitigation 
[8] and signal de-noising [9]. BF feedback overhead reduction 
is another popular research area where ML techniques are 
applied in cellular networks, see e.g., [10], [11] and the 
references therein. In [10], the authors propose a neural 
network based approach for developing a CSI sensing and 
recovery mechanism to learn the channel information based 
on training samples in massive MIMO systems. In [11], 
authors propose a deep learning-based CSI feedback method 
where they substitute the precoding matrix indicator (PMI) 
encoding and decoding modules in 5G New Radio (5G NR) 
[12] with a neural network.   

In this paper, we propose a method, named intelligent 
Feedback Overhead Reduction (iFOR) for Wi-Fi networks. In 
this method, we explore the use of ML based classification 
algorithms, namely K-means clustering, to reduce the 
beamforming feedback overhead. We classify the compressed 
feedback from the non-AP Station (STA) to an AP into a fixed 
number of candidate vectors. Using fixed number of 
candidates enables us to reduce and even control the number 
of bits required to feedback the CSI. We further display the 
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benefits of our proposed method in reducing the overhead and 
increasing the throughput. Furthermore, we discuss the trade-
offs with respect to the impact of using reduced feedback 
candidates on the packet error rate (PER) performance. To the 
best of our knowledge, no work in literature proposes a 
feedback overhead reduction method that uses data from 
compressed BF feedback to generate candidate vectors. Our 
proposed method is the first to use such ML enabled methods 
to solve the BF overhead reduction in the Wi-Fi domain. 

The rest of this paper is organized as follows. Section II 
describes the system model we use in our investigation and 
the derivation of our throughput calculations. Section III 
describes the need to reduce feedback overhead and how we 
generate the data and the candidate vectors in our proposed 
method. In Section IV we show the simulation results and 
discuss the benefits and trade-offs of the proposed method. In 
Section V, we conclude the paper and discuss possible future 
work. 

II. SYSTEM MODEL 

For our system model, we consider a Single-User Multiple 
Input Multiple Output (SU-MIMO) link between an access 

point (AP) and a non-AP STA. We consider ��� number of 
transmit antennas at the AP. 

In Wi-Fi systems, the MIMO channel measurements at 
the receiver side are performed with every physical layer 
protocol data unit (PPDU) using the long training fields 
(LTFs) in the physical layer (PHY) preamble [4]. Before 
transmitting data through the MIMO channel, to apply BF, it 
is desirable to know the channel state information (CSI) to 
the highest accuracy possible at the transmitter side. To 
enable this, a sounding PPDU can be used to acquire the 
required channel sounding information [4]. For example, an 
AP may initiate a sounding sequence via transmitting the Null 
Data Packet Announcement (NDPA) frame, which carries all 
necessary sounding requirements, e.g., the beamformee 
address, bandwidth, among other information. A Short Inter-
Frame Space (SIFS) after the NDPA, the AP uses a Null Data 
Packet (NDP) to sound the channel. The beamformee that 
receives the NDP transmits the beamforming report a SIFS 
after the sounding NDP. The single user sounding sequence 
(which is called non-Trigger Based sounding in 802.11 
specifications) is described in Fig. 1.  

 
Figure 1: Example of single user sounding sequence. 

A. Compressed Beamforming Feedback in IEEE 802.11ax 

As mentioned before, with every new amendment of the 
Wi-Fi standard, the number of antennae at the AP and non-

AP STAs has increased, with up to 16 antennae expected at 
the AP in 802.11be and beyond [5]. To ensure efficient 
beamforming transmission, the weights of each of these 
antennae at the AP need to be determined. 

Broadly, beamforming feedback can be categorized in 
two types: implicit feedback and explicit feedback. The 
explicit feedback can be further divided into three types: CSI 
feedback, non-compressed beamforming weights feedback, 
and compressed beamforming weights feedback. This paper 

is focused on the compressed beamforming weights type of 
feedback (which is commonly used in 802.11ax and expected 
to be used in 802.11be). In this method, the beamformer 
transmits an NDP. The beamformee computes the 

beamforming feedback matrix (�) for every active subcarrier 
using the training fields in the NDP. The beamformee will 

then compress the �  matrix in the form of angles [4] and 
transmit it to the beamformer. 

      The method to compress the matrix �  in the form of 

angles is shown below. The matrix � is of the dimensions �� × �
  [4]. ��  is indicated by the preamble of the EHT 

sounding NDP and �
  is indicated in NDP Announcement 

frame. The matrix � can be mathematically represented as 

� = � 
 ��� 
 ����
��

�����
������ × ����×��

 !"���, ��$��
��� % , �1� 

where ����×��is an identity matrix padded with 0s to fill the 

additional rows or columns when �� ≠ �
. Unless mentioned 

otherwise, we assume �� = ��� . The matrix ������  is a 

Givens rotation matrix of dimensions �� × ��  as shown 
below 

������ =
⎣⎢
⎢⎢
⎡��$� 0 0 0 00 cos��� 0 sin��� 00 0 ��$�$� 0 00 −sin��� 0 cos��� 00 0 0 0 ��1$�⎦⎥

⎥⎥
⎤
,   �2� 

and the matrix ��  is a diagonal matrix also of the dimensions �� × �� and is represented as  

�� =  
⎣⎢
⎢⎢
⎡��$� 0 ⋯ ⋯ 00 789:,: 0 ⋯ 0⋮ 0 ⋱ 0 ⋮⋮ ⋯ 0 789=�>?,: 00 0 ⋯ 0 1⎦⎥

⎥⎥
⎤ , �3� 

where each �  is an m×m identity matrix. 
When the beamformee is requested to send the BF reports, 

it will actually report a vector containing the indices of 

quantized values of angles Φ = CD�,�E, F ∈ {1, … , min��
, �� − 1�} and Ψ = C��,�E, L ∈ {F + 1, … , ��}, which are used 

to re-construct the � matrix by the beamformer. The length 

of this vector depends on �
 and ��. The number of bits, N9 

and NO , are used to quantize each element of Φ  and Ψ , 

respectively. In 802.11,N9  and NO  are indicated by EHT 

NDP Announcement frame sent from the beamformer.  
Instead of feeding back the angle vector which contains the 

indices of Ds and �s, our proposed iFOR scheme feeds back 
the index of the selected angle vector (or a candidate vector) 
which matches the computed angle vector the most. The set 
of candidate angle vectors that cover all possible angle 
feedback vectors is known by the beamformee and the 
beamformer. This method significantly reduces the feedback 
overhead. We will discuss this in more detail in section III. 

B. Goodput Calculations 

We define the goodput (Γ) as the ratio of the successfully 
transmitted packets and the total time required for their 
transmission. Mathematically, we can express the goodput as 
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Γ =  Successful Data TransmittedTotal Duration =` ��$ae��sounding��data� �ACK ,  (4) 

where f is the length of the payload (in bits), ge is the packet 

error rate, hdata  is the time duration for data transmission, hACK  is the time duration for the ACK transmission and hsounding  is the total time duration for channel sounding 

protocol which is calculated as  hsounding = hNDPA + 2hSIFS + hNDP + hMU-PPDU,      (5)  

where hNDPA is the time duration for the NDPA transmission, hSIFS is the time duration for the SIFS transmission between 
two different frames, hNDP is the time duration for the NDP 
transmission and hMU-PPDU is the time duration of the multi-
user physical layer protocol data unit (MU-PPDU) used for 
BF feedback transmission. Please note that in 802.11be single 
user that performs data transmission also uses the MU-PPDU 
format. 

hdata  in (4) accounts for the preamble and the transmitted 
codeword. It can be calculated as 

 hdata =  hpreamble + `qdata , (6) 

where hpreamble  is the time required for preamble symbol 

transmission and rdata is the data rate based on the code rate 
for the LDPC code which is determined by the chosen MCS 
index, and the number of spatial streams used in data 
transmission. 

III. FEEDBACK CANDIDATE GENERATION WITH IFOR 

A. Need for Reduction in CSI Feedback Overhead 

Consider a case where �
  =  2  and ��  =  8 . For 

quantization of the feedback angles with N9  =  6 and NO  = 4, the number of angles reported in the CSI feedback is �u  = �
 × �2 × �� − �
 − 1�  =  26  with half of them for the 
angles in Φ and other half for the angles in Ψ. With each 
iteration of channel sounding, the number of feedback bits 

required to represent one of these unique vectors is �u ×�N9 + NO�/2 =  130 per subcarrier group. For a bandwidth 

of 20 MHz with 242 subcarriers and �wnumber of subcarrier 

groups, there are 242/�w such feedback reports, requiring a 

total of 130 × �242/�w�  bits of feedback for the entire 

bandwidth. In 802.11, �w ∈ {1, 2, 4, 16} which can be used to 

trade-off between the feedback overhead and performance. 
In Fig. 2, we show the number of feedback bits required 

for different configurations of a �� × �
  MIMO link. The 
calculations to determine the number of feedback bits are 
done similar to the example shown above. As expected, the 

feedback bits required goes up with increasing value of �� 

and goes up to 290 bits for the 16 × 2 MIMO case, which is 
expected to be incorporated in the IEEE 802.11be standard. 

For the 64 × 2 MIMO case, which may be considered in a 
future amendment of 802.11, the required bits for feedback 

go up to 1250. Considering this trend, it becomes imperative 

to find alternative ways that relieve the beamformee of this 

high feedback requirement. 

B. iFOR: Candidate Set Index Feedback  

Instead of feeding back the angles to represent one CSI 
vector, we propose the iFOR algorithm, which feeds back an 
index from a set of candidates that represent a diverse set of 
CSI feedback. This set of candidate vectors may be obtained 

by using a clustering algorithm on a dataset of �z  CSI 

feedback vectors. For example, if we cluster the dataset of �z 

vectors into 1024 candidates, we will only require 10 bits to 
report the CSI feedback. This significantly reduces the 
feedback overhead, with the trade-off being loss in the 
accuracy of the CSI feedback. 

 
Figure 2 Comparing feedback overhead (in bits) for different 

MIMO configurations per subcarrier group. 

C. Data and Candidate Generation 

The dataset of the �z vectors is generated in simulations 
and stored in a database over time. This saved data is then fed 
to a K-means classifier to obtain the pre-defined number of 

candidates �{. Thus, the candidate generation is performed 
in an offline manner. 

The K-means algorithm [13] divides the given data into �{ 

clusters defined by centroids, where �{ is chosen before the 

algorithm starts. The algorithm then starts with �{  initial 
cluster centers (centroids) and computes point-to-centroid 
Euclidean distances of all the points in the dataset. With each 
iteration, the algorithm computes the mean of the data points 
in each cluster to obtain the new centroid values. When the 

K-means algorithm converges, the �{  cluster centroids 
obtained may be used as the candidates that classify the CSI 

feedback into �{ distinct possible matrices. 
The stepwise procedure to obtain the candidate vectors is 

described in Algorithm 1 –  
 

Algorithm 1: Using K-means classification to obtain the 
feedback candidate vectors  

Input: Number of candidates �{. 

1: For | ∈ {1,2, … , �{} , initialize the �{  centroids }�, }~, … , }8 randomly. 

2: For every vector ��  in the dataset, find the nearest 

centroid,  �� ∶= arg min8 ��� − }8�~
. 

3: Assign the vector �� to the cluster ��. 
4: New }8  is the mean of all the (m) vectors assigned to 

that cluster, }8 ∶= ∑ 1C�� = |E������ / ∑ 1{�� = |}����     
5: Repeat steps 2-5 till convergence or a specified number 

of iterations are over.  
Output:  Centroids of the �{ clusters. 

 

4x2

MIMO

8x2

MIMO

16x2

MIMO

32x2

MIMO

64x2

MIMO

0

200

400

600

800

1000

1200

1400

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on November 22,2022 at 00:53:34 UTC from IEEE Xplore.  Restrictions apply. 



The �{  candidate vector set thus generated needs to be 
stored at the beamformer as well as the beamformee. During 
deployment, the beamformee will calculate the CSI feedback 
vector and then find the candidate vector with the lowest 
Euclidean distance from it. The index of this candidate vector 
is then fed back to the beamformer instead of feeding back 
the entire vector. Since the beamformer has the same 
candidate set available, it can identify the BF vector it will 
apply in transmission. 

IV. SIMULATION RESULTS 

A. Simulation Setup 

In this subsection, we describe the parameter values used 
in our simulations. We use channel models A, B, and D [14] 
defined by the 802.11 working group in our simulations. 
Channel model A is a single tap flat fading model, model B 

can have up to 7 taps with maximum delay spread of 15 ns 

and model D can have up to 16 taps with maximum delay 

spread of 50 ns. We consider an 8 × 2 MIMO link (�� =8, �
 = 2 ). The payload length in each iteration of the 

simulation in 1000 bytes unless mentioned otherwise. For all 

the iFOR results below, we use 1024 candidate vectors that 

requires 10  bits in the feedback report. Different random 
seeds are used for PER simulations and the simulations to 
generate training data for iFOR. All the relevant simulation 
parameters for our simulations and their values are listed in 
Table I. 

TABLE I.  SIMULATION PARAMETERS AND THEIR VALUES 

Parameter Value Parameter Value hNDPA 28 µ� hSIFS 16 µ� 

hNDP 48+Nr×8 µs hpreamble 64 µ�  
Channel coding LDPC �w 4 

Channel bandwidth 
(BW) 

20 MHz 
Quantization 

bits N9 
6 

Guard interval 0.8 µ� 
Quantization 

bits NO 
4 

No. of  Subcarriers 242 Target PER 10$~ 
B. Results 

In comparison to the required feedback bits shown in    

Fig. 2, the benefits of iFOR are clear, i.e., only log~ �{ bits 
of feedback are required. Additionally, in iFOR, the number 
of feedback bits can be adaptive to different application 
requirements.   

In Fig. 3, we compare the packet error rate (PER) versus 
SNR performance of the proposed method (iFOR) to the 

baseline for MCS index 3 that represents 16-QAM and an 

LDPC code with the code rate of 1/2 . We consider the 
current methodology used for compressed beamforming in 
the IEEE 802.11ax standard to be the baseline. For all our 
simulations, we use the relevant libraries for the IEEE 
802.11ax standard that are available in the WLAN toolbox 
offered by MathWorks. All the PER simulations are done for 

channel model D. For iFOR, we consider 1024  candidate 
vectors and the training data used obtain the candidates (via 
simulation) is generated using three different methods: 
channel model D only, channel model B only and combining 
data obtained from channel models A, B and D.  

It can be observed in Fig. 3 that there is a degradation of 

approximately 2 dB from iFOR to the baseline when the  

Packet Error Rate (PER) is 10$~  and the training data is 
obtained from channel model D. PER performance degrades 
more when the training data is obtained from channel models 
A, B and D, or from channel model B only. This loss in PER 
performance is expected since the number of CSI feedback 
matrices to choose from is vastly reduced in iFOR. However, 
because of using a predefined set of CSI feedback candidates, 
the channel sounding time in using the iFOR method 
significantly decreases, resulting in an improvement of up to 52% in the goodput with respect to the 802.11ax baseline 
which is shown later in Fig. 5.  

Using training data from channel model D produces the 
best PER performance among these three different training 
data resources. When we use channel model D data to 
generate the candidate set, we are essentially choosing the 
training data which match the PER performance most. This 
results in the best PER performance among the three iFOR 
curves, as expected. When we use only the data from channel 
model B, the generated candidate set does not encompass as 
many diverse CSI vectors that can occur in an environment 
with channel model D. This results in the worst PER 
performance of the three curves. When we extract the data 
from channel models A, B and D to generate the candidate 
set, however, the resulting candidate set is more diverse and 
the resulting PER performance is only slightly worse than the 
case when channel model D is used for candidate set 
generation. In real deployment, using the training data 
obtained from channel models A, B and D would be most 
common. Because it may be hard to predict the real channel 
model accurately. Therefore, we suggest using the training 
data obtained from mixed channel models in real deployment. 

 
Figure 3 PER performance comparison for MCS = 3. 

We perform PER versus SNR simulations for MCS indices 0-11 for both baseline as well as iFOR. We then use this 
simulation data to determine which MCS index a certain 
method will choose at a given SNR, shown in Fig. 4. The 
chosen MCS is determined by the PER simulation result with 
the highest MCS index that is lower than a pre-defined PER 
threshold, i.e., the target PER. The target PER is set to be 10$~ in Fig. 4. 
    In Fig. 5 and Fig. 6, we show the goodput comparison 

between the baseline and iFOR for payload length of 1000 

Bytes and 5000 bytes respectively. On top of the bar plots in 
Fig. 5 and Fig. 6, we show the gain obtained from using the 
proposed method using channel model D data to generate the 
candidate vectors. Goodput results here are based on the 
calculations shown in section II B. It can be seen in Fig. 5 that 
for a relatively smaller payload length, using iFOR provides 
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significant improvement in the goodput, especially at high 

SNR where the gain is approximately 52%. The baseline uses 
the high overhead approach shown in section II B. Hence, 
despite the lower PER in Fig. 3, the goodput performance 
suffers.  

 
Figure 4 The chosen MCS index to satisfy PER target of 10-2. 

When the payload length (f) increases, the duration for data 

transmission (hdata) also increases correspondingly. As per 
the goodput calculations shown in (4), the sounding duration 
reduced using iFOR becomes less impactful on the goodput 

as f and hdata both increase. As seen in Fig. 6, the goodput 
gain using iFOR reduces when payload length increases to 5000 Bytes.  

 
Figure 5 Goodput comparison for payload = 1000 bytes. 

 
Figure 6 Goodput comparison for payload = 5000 bytes. 

In this paper, we use 10 feedback bits (1024 candidates) 
for all simulations. For every additional feedback bit used, the 
size of the candidate set is doubled. On the other hand, the 
resulting improvement in PER is limited. There may be an 

optimal number of candidates considering the trade-off 
between the computational complexity, overhead reduction, 
and PER improvement, finding which was not part of our 
investigation. 

V. CONCLUSION & FUTURE WORK 

In this paper, we propose a novel method to reduce the 
feedback overhead in MIMO beamforming for WLAN 
systems. The proposed method can be extended to other 
modern wireless systems with ease. We show how �{ 
candidate feedback vectors can be generated and used to 
reduce the overhead. Moreover, our simulation results show 
that reducing the number of bits required for feedback can lead 
to an improvement of up to 52% with respect to the 802.11ax 
baseline in the goodput at high SNR. We also discuss the 
trade-off of our proposed method where increasing the 
payload length will reduce the goodput improvement offered 
by our proposed method.  

Our initial findings in simulations show that the accuracy 
of certain feedback angles affects the PER performance more 
than the others. We plan to explore this phenomena further. 
We also plan to explore the use of Neural Network based 
classifiers to generate the candidate vectors from the data. 
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