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Abstract—The TIEEE 802.11 standard based wireless local
area networks (WLANs) or Wi-Fi networks are critical to
provide internet access in today's world. The increasing demand
for high data rate in Wi-Fi networks has led to several
advancements in the 802.11 standard. Supporting MIMO
transmissions with higher number of transmit antennas
operating on wider bandwidths is one of the key capabilities for
reaching higher throughput. However, the increase in sounding
feedback overhead due to higher number of transmit antennas
may significantly curb the throughput gain. In this paper, we
develop an unsupervised learning-based method to reduce the
sounding duration in a Wi-Fi MIMO link. Simulation results
show that our method uses approximately only 8% of the
number of bits required by the existing feedback mechanism
and it can boost the system throughput by up to 52%.

Index Words— Beamforming, CSI Overhead Reduction, K-
means, MIMO, Unsupervised Learning, WLAN.

I. INTRODUCTION

Wi-Fi has increasingly become an essential technology for
consumers at home, enterprise and agriculture among other
areas. According to a report by Cisco [1], the number of public
Wi-Fi hotspots are expected to grow fourfold from 169
million in 2018 to 628 million in 2023. To address the
challenges raised by growing demand from Wi-Fi services,
the IEEE 802.11 standard introduces new technical features
for each generation of Wi-Fi to improve the spectral
efficiency, reduce latency and improve the quality of service
(QoS). The latest amendment of the standard is 802.11be, also
known as Extremely High Throughput (EHT), which will be
the baseline of Wi-Fi 7 [2]. EHT is projected to support data
rate of at least 30 Gbps per Access Point (AP), which is
approximately four times that of the previous amendment. On
top of the higher throughput, EHT is also expected to provide
lower latency and higher reliability to enable time-sensitive
networking [3], to support applications such as augmented and
virtual reality, gaming, cloud computing, etc.

One of the important technical features in IEEE 802.11 for
achieving high data rate is transmit beamforming (BF), which
was first introduced in the IEEE 802.11n standard [4]. In
transmit beamforming, the transmitter applies weights to the
transmitted signal to improve the link performance. The
weights are adapted from the knowledge of the propagation
environment or the channel state information (CSI). To obtain
such weights, the system with transmit BF capability,
including IEEE 802.11 [4], implements a channel sounding
protocol where the beamformee (the receiver of the BF
transmission) reports the CSI to the beamformer (the
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transmitter of the BF transmission) before BF transmission.
However, existing methods, even with certain compression
techniques, used to report CSI require a significant amount of
feedback overhead. Given the increasing demand for higher
throughput, reducing the feedback overhead stems as an
unavoidable problem, especially when the number of transmit
(Tx) antennas is very large, that would require focused efforts
from researchers and practitioners.

With the development of IEEE 802.11, the number of
transmitter antennas at the AP has been constantly increasing
with each amendment of the standard. For example, the
number of transmit antennas at the AP is up to 8 in 802.11ax
and could be up to 16 in 802.11be [5]. This number could be
even higher in future generations. Subsequently, the feedback
overhead increases with the increasing number of the
transmitter antennas, and further, the complexity of this
problem is worsened with the introduction of multi-AP
cooperation in EHT [2]. Furthermore, in the bursty traffic
application, it may require the AP to sound the channel when
a new data packet comes. Such applications that require more
sounding iterations may have more stringent requirement on
the BF feedback overhead.

The advent of application of machine learning (ML)
algorithms in the wireless communication domain has enabled
exposure to new tools to solve traditional problems in the Wi-
Fi[6] as well as the 3GPP standards [7]. ML has been used to
address issues in PHY features such as interference mitigation
[8] and signal de-noising [9]. BF feedback overhead reduction
is another popular research area where ML techniques are
applied in cellular networks, see e.g., [10], [11] and the
references therein. In [10], the authors propose a neural
network based approach for developing a CSI sensing and
recovery mechanism to learn the channel information based
on training samples in massive MIMO systems. In [11],
authors propose a deep learning-based CSI feedback method
where they substitute the precoding matrix indicator (PMI)
encoding and decoding modules in 5G New Radio (5G NR)
[12] with a neural network.

In this paper, we propose a method, named intelligent
Feedback Overhead Reduction (iFOR) for Wi-Fi networks. In
this method, we explore the use of ML based classification
algorithms, namely K-means -clustering, to reduce the
beamforming feedback overhead. We classify the compressed
feedback from the non-AP Station (STA) to an AP into a fixed
number of candidate vectors. Using fixed number of
candidates enables us to reduce and even control the number
of bits required to feedback the CSI. We further display the



benefits of our proposed method in reducing the overhead and
increasing the throughput. Furthermore, we discuss the trade-
offs with respect to the impact of using reduced feedback
candidates on the packet error rate (PER) performance. To the
best of our knowledge, no work in literature proposes a
feedback overhead reduction method that uses data from
compressed BF feedback to generate candidate vectors. Our
proposed method is the first to use such ML enabled methods
to solve the BF overhead reduction in the Wi-Fi domain.

The rest of this paper is organized as follows. Section II
describes the system model we use in our investigation and
the derivation of our throughput calculations. Section III
describes the need to reduce feedback overhead and how we
generate the data and the candidate vectors in our proposed
method. In Section IV we show the simulation results and
discuss the benefits and trade-offs of the proposed method. In
Section V, we conclude the paper and discuss possible future
work.

II. SYSTEM MODEL

For our system model, we consider a Single-User Multiple
Input Multiple Output (SU-MIMO) link between an access
point (AP) and a non-AP STA. We consider N, number of
transmit antennas at the AP.

In Wi-Fi systems, the MIMO channel measurements at
the receiver side are performed with every physical layer
protocol data unit (PPDU) using the long training fields
(LTFs) in the physical layer (PHY) preamble [4]. Before
transmitting data through the MIMO channel, to apply BF, it
is desirable to know the channel state information (CSI) to
the highest accuracy possible at the transmitter side. To
enable this, a sounding PPDU can be used to acquire the
required channel sounding information [4]. For example, an
AP may initiate a sounding sequence via transmitting the Null
Data Packet Announcement (NDPA) frame, which carries all
necessary sounding requirements, e.g., the beamformee
address, bandwidth, among other information. A Short Inter-
Frame Space (SIFS) after the NDPA, the AP uses a Null Data
Packet (NDP) to sound the channel. The beamformee that
receives the NDP transmits the beamforming report a SIFS
after the sounding NDP. The single user sounding sequence
(which is called non-Trigger Based sounding in 802.11

specifications) is described in Fig. 1.
SIFS SIFS

AP NDPA NDP

non-AP STA

BF Report

Figure 1: Example of single user sounding sequence.

A. Compressed Beamforming Feedback in IEEE 802.11ax

As mentioned before, with every new amendment of the
Wi-Fi standard, the number of antennae at the AP and non-
AP STAs has increased, with up to 16 antennae expected at
the AP in 802.11be and beyond [5]. To ensure efficient
beamforming transmission, the weights of each of these
antennae at the AP need to be determined.

Broadly, beamforming feedback can be categorized in
two types: implicit feedback and explicit feedback. The
explicit feedback can be further divided into three types: CSI
feedback, non-compressed beamforming weights feedback,
and compressed beamforming weights feedback. This paper

is focused on the compressed beamforming weights type of
feedback (which is commonly used in 802.11ax and expected
to be used in 802.11be). In this method, the beamformer
transmits an NDP. The beamformee computes the
beamforming feedback matrix (V) for every active subcarrier
using the training fields in the NDP. The beamformee will
then compress the V matrix in the form of angles [4] and
transmit it to the beamformer.

The method to compress the matrix V in the form of
angles is shown below. The matrix V is of the dimensions
N X N, [4]. N; is indicated by the preamble of the EHT
sounding NDP and N, is indicated in NDP Announcement

frame. The matrix V can be mathematically represented as
min(N¢, Ny—1) Np

v=l T | [ ] 6hwo|x T ) 0

i=1 I=i+1
where I, NyxN IS an identity matrix padded with Os to fill the
additional rows or columns when N, # N.. Unless mentioned
otherwise, we assume N, = Ny, . The matrix G; () is a
Givens rotation matrix of dimensions N, X N, as shown
below

I, O 0 0 0
0 cos(y) 0 sin(y) O
Gu@) =| 0 0 her 00 (2)
0 —sin(@) 0 «cos(y) O
0 0 0 0 Iy

and the matrix D; is a diagonal matrix also of the dimensions
N, X N, and is represented as

[Ii—1 0 . - 0]
0 el%i o0 0

D=1 : 0o - 0 .3
: 0 e/Pne-1i
0 0 0 1

where each I, is an mXm identity matrix.

When the beamformee is requested to send the BF reports,
it will actually report a vector containing the indices of
quantized values of angles @ = {¢>L~,i}, i €{1,..,min(N,
N.—D}Yand ¥ = {p,;},1 € {i + 1, ..., N;}, which are used
to re-construct the V matrix by the beamformer. The length
of this vector depends on N, and N;. The number of bits, by
and bw, are used to quantize each element of ® and W,
respectively. In 802.11,by and by, are indicated by EHT
NDP Announcement frame sent from the beamformer.
Instead of feeding back the angle vector which contains the
indices of ¢ps and Ys, our proposed iFOR scheme feeds back
the index of the selected angle vector (or a candidate vector)
which matches the computed angle vector the most. The set
of candidate angle vectors that cover all possible angle
feedback vectors is known by the beamformee and the
beamformer. This method significantly reduces the feedback
overhead. We will discuss this in more detail in section III.

B. Goodput Calculations

We define the goodput (T') as the ratio of the successfully
transmitted packets and the total time required for their
transmission. Mathematically, we can express the goodput as
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T = Successful Data Transmitted
- Total Duration -
L (1-P,)

)
Tsounding +Tdatat TACK

“4)

where L is the length of the payload (in bits), P, is the packet
error rate, Ty, 1S the time duration for data transmission,
Tack 1s the time duration for the ACK transmission and
Tsounding 18 the total time duration for channel sounding
protocol which is calculated as

Tsounding = Tnoea + 2Tsies + Tnpp + Tmu-peous ()

where Typpa is the time duration for the NDPA transmission,
Tsps 1s the time duration for the SIFS transmission between
two different frames, Typp is the time duration for the NDP
transmission and Tyy_pppy 18 the time duration of the multi-
user physical layer protocol data unit (MU-PPDU) used for
BF feedback transmission. Please note that in 802.1 1be single
user that performs data transmission also uses the MU-PPDU
format.

T4ara in (4) accounts for the preamble and the transmitted
codeword. It can be calculated as

L

Tdata = Ipreamble (6)

Rdata ’
where Tpreample 18 the time required for preamble symbol
transmission and Ry, is the data rate based on the code rate
for the LDPC code which is determined by the chosen MCS
index, and the number of spatial streams used in data
transmission.

III. FEEDBACK CANDIDATE GENERATION WITH IFOR

A. Need for Reduction in CSI Feedback Overhead

Consider a case where N, = 2 and N, = 8. For
quantization of the feedback angles with by = 6 and by, =
4, the number of angles reported in the CSI feedback is N, =
N X (2X N.—N.—1) = 26 with half of them for the
angles in @ and other half for the angles in ¥. With each
iteration of channel sounding, the number of feedback bits
required to represent one of these unique vectors is N, X
(bg + by)/2 = 130 per subcarrier group. For a bandwidth
of 20 MHz with 242 subcarriers and Ngnumber of subcarrier
groups, there are 242 /N, such feedback reports, requiring a
total of 130 X (242/N,) bits of feedback for the entire
bandwidth. In 802.11, N, € {1, 2,4, 16} which can be used to
trade-off between the feedback overhead and performance.

In Fig. 2, we show the number of feedback bits required
for different configurations of a N. X N. MIMO link. The
calculations to determine the number of feedback bits are
done similar to the example shown above. As expected, the
feedback bits required goes up with increasing value of N,
and goes up to 290 bits for the 16 X 2 MIMO case, which is
expected to be incorporated in the IEEE 802.11be standard.
For the 64 x 2 MIMO case, which may be considered in a
future amendment of 802.11, the required bits for feedback
go up to 1250. Considering this trend, it becomes imperative
to find alternative ways that relieve the beamformee of this
high feedback requirement.

B. iFOR: Candidate Set Index Feedback

Instead of feeding back the angles to represent one CSI
vector, we propose the iFOR algorithm, which feeds back an
index from a set of candidates that represent a diverse set of
CSI feedback. This set of candidate vectors may be obtained
by using a clustering algorithm on a dataset of N, CSI
feedback vectors. For example, if we cluster the dataset of N,
vectors into 1024 candidates, we will only require 10 bits to
report the CSI feedback. This significantly reduces the
feedback overhead, with the trade-off being loss in the
accuracy of the CSI feedback.

1400
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1000 [~

802.11n 802.11ax 802.11be
| upper bound upper bound upper bound
800 (expected)

600

No. of Feedback Bits

400

200

0

4x2 8x2 16x2 32x2 64x2
MIMO MIMO MIMO MIMO MIMO

Figure 2 Comparing feedback overhead (in bits) for different
MIMO configurations per subcarrier group.

C. Data and Candidate Generation

The dataset of the N, vectors is generated in simulations
and stored in a database over time. This saved data is then fed
to a K-means classifier to obtain the pre-defined number of
candidates Ny. Thus, the candidate generation is performed
in an offline manner.

The K-means algorithm [13] divides the given data into Ny
clusters defined by centroids, where Ny is chosen before the
algorithm starts. The algorithm then starts with Ny initial
cluster centers (centroids) and computes point-to-centroid
Euclidean distances of all the points in the dataset. With each
iteration, the algorithm computes the mean of the data points
in each cluster to obtain the new centroid values. When the
K-means algorithm converges, the Ny cluster centroids
obtained may be used as the candidates that classify the CSI
feedback into Ny distinct possible matrices.

The stepwise procedure to obtain the candidate vectors is
described in Algorithm 1 —

Algorithm 1: Using K-means classification to obtain the
feedback candidate vectors

Input:  Number of candidates Ny.

1: For j €{1,2,..,Ny} , initialize the Ny centroids
U1, Hp, v, it randomly.

2: For every vector x' in the dataset, find the nearest
centroid, ¢! := arg mjin”xi - ,uj||2.
Assign the vector x! to the cluster c'.

4: New p; is the mean of all the (m) vectors assigned to
that cluster, p; := %) 1fct = j}xt/TM 1{ct = j}

S: Repeat steps 2-5 till convergence or a specified number

of iterations are over.
Output: Centroids of the Ny clusters.
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The Ny candidate vector set thus generated needs to be
stored at the beamformer as well as the beamformee. During
deployment, the beamformee will calculate the CSI feedback
vector and then find the candidate vector with the lowest
Euclidean distance from it. The index of this candidate vector
is then fed back to the beamformer instead of feeding back
the entire vector. Since the beamformer has the same
candidate set available, it can identify the BF vector it will
apply in transmission.

IV. SIMULATION RESULTS

A. Simulation Setup

In this subsection, we describe the parameter values used
in our simulations. We use channel models A, B, and D [14]
defined by the 802.11 working group in our simulations.
Channel model A is a single tap flat fading model, model B
can have up to 7 taps with maximum delay spread of 15 ns
and model D can have up to 16 taps with maximum delay
spread of 50 ns. We consider an 8 X 2 MIMO link (N, =
8,N. = 2). The payload length in each iteration of the
simulation in 1000 bytes unless mentioned otherwise. For all
the iFOR results below, we use 1024 candidate vectors that
requires 10 bits in the feedback report. Different random
seeds are used for PER simulations and the simulations to
generate training data for iFOR. All the relevant simulation
parameters for our simulations and their values are listed in
Table I.

TABLE L. SIMULATION PARAMETERS AND THEIR VALUES
Parameter Value Parameter Value
Tnppa 28 us Tsigs 16 ps
Tap 48+N,;x8 pis Tpreamble 64 ps
Channel coding LDPC Ng 4
Channel bandwidth Quantization 6
(BW) 20 MHz bits by
. Quantization 4
Guard interval 0.8 us bits by,
No. of Subcarriers 242 Target PER 1072

B. Results

In comparison to the required feedback bits shown in
Fig. 2, the benefits of iFOR are clear, i.e., only log, Ny bits
of feedback are required. Additionally, in iFOR, the number
of feedback bits can be adaptive to different application
requirements.

In Fig. 3, we compare the packet error rate (PER) versus
SNR performance of the proposed method (iFOR) to the
baseline for MCS index 3 that represents 16-QAM and an
LDPC code with the code rate of 1/2. We consider the
current methodology used for compressed beamforming in
the IEEE 802.11ax standard to be the baseline. For all our
simulations, we use the relevant libraries for the IEEE
802.11ax standard that are available in the WLAN toolbox
offered by MathWorks. All the PER simulations are done for
channel model D. For iFOR, we consider 1024 candidate
vectors and the training data used obtain the candidates (via
simulation) is generated using three different methods:
channel model D only, channel model B only and combining
data obtained from channel models A, B and D.

It can be observed in Fig. 3 that there is a degradation of
approximately 2 dB from iFOR to the baseline when the

Packet Error Rate (PER) is 1072 and the training data is
obtained from channel model D. PER performance degrades
more when the training data is obtained from channel models
A, B and D, or from channel model B only. This loss in PER
performance is expected since the number of CSI feedback
matrices to choose from is vastly reduced in iFOR. However,
because of using a predefined set of CSI feedback candidates,
the channel sounding time in using the iFOR method
significantly decreases, resulting in an improvement of up to
52% in the goodput with respect to the 802.11ax baseline
which is shown later in Fig. 5.

Using training data from channel model D produces the
best PER performance among these three different training
data resources. When we use channel model D data to
generate the candidate set, we are essentially choosing the
training data which match the PER performance most. This
results in the best PER performance among the three iFOR
curves, as expected. When we use only the data from channel
model B, the generated candidate set does not encompass as
many diverse CSI vectors that can occur in an environment
with channel model D. This results in the worst PER
performance of the three curves. When we extract the data
from channel models A, B and D to generate the candidate
set, however, the resulting candidate set is more diverse and
the resulting PER performance is only slightly worse than the
case when channel model D is used for candidate set
generation. In real deployment, using the training data
obtained from channel models A, B and D would be most
common. Because it may be hard to predict the real channel
model accurately. Therefore, we suggest using the training
data obtained from mixed channel models in real deployment.

~
SN N

Packet Error Rate (PER)
o

—— 802.11ax Baseline VY

102 |- |- -0~ — iFOR, Training Data: Chan D A \\7

— A — iFOR, Training Data: Chan B VN A

— < — iFOR, Training Data: Chan A,B & D v
. . .

4 6 8 10 12 14
SNR (dB)

Figure 3 PER performance comparison for MCS = 3.

We perform PER versus SNR simulations for MCS indices
0-11 for both baseline as well as iIFOR. We then use this
simulation data to determine which MCS index a certain
method will choose at a given SNR, shown in Fig. 4. The
chosen MCS is determined by the PER simulation result with
the highest MCS index that is lower than a pre-defined PER
threshold, i.e., the target PER. The target PER is set to be
1072 in Fig. 4.

In Fig. 5 and Fig. 6, we show the goodput comparison
between the baseline and iFOR for payload length of 1000
Bytes and 5000 bytes respectively. On top of the bar plots in
Fig. 5 and Fig. 6, we show the gain obtained from using the
proposed method using channel model D data to generate the
candidate vectors. Goodput results here are based on the
calculations shown in section II B. It can be seen in Fig. 5 that
for a relatively smaller payload length, using iFOR provides
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significant improvement in the goodput, especially at high
SNR where the gain is approximately 52%. The baseline uses
the high overhead approach shown in section II B. Hence,
despite the lower PER in Fig. 3, the goodput performance

suffers.
11 T T T T T T T

% 802.11ax Bascline y

10 [ |- - - iFOR, Training Data: Chan D anav
—-A-—iFOR, Training Data: Chan B , L/

9 F |- ¢ — iFOR, Training Data: Chan A,B & D £ A

Selected MCS Index

0 5 10 15 20 25 30 35
SNR (dB)

Figure 4 The chosen MCS index to satisfy PER target of 107.

When the payload length (L) increases, the duration for data
transmission (Ty,,) also increases correspondingly. As per
the goodput calculations shown in (4), the sounding duration
reduced using iFOR becomes less impactful on the goodput
as L and Ty, both increase. As seen in Fig. 6, the goodput
gain using iFOR reduces when payload length increases to
5000 Bytz%s.
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Figure 5 Goodput comparison for payload = 1000 bytes.
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Figure 6 Goodput comparison for payload = 5000 bytes.

In this paper, we use 10 feedback bits (1024 candidates)
for all simulations. For every additional feedback bit used, the
size of the candidate set is doubled. On the other hand, the
resulting improvement in PER is limited. There may be an

optimal number of candidates considering the trade-off
between the computational complexity, overhead reduction,
and PER improvement, finding which was not part of our
investigation.

V. CONCLUSION & FUTURE WORK

In this paper, we propose a novel method to reduce the
feedback overhead in MIMO beamforming for WLAN
systems. The proposed method can be extended to other
modern wireless systems with ease. We show how Ny
candidate feedback vectors can be generated and used to
reduce the overhead. Moreover, our simulation results show
that reducing the number of bits required for feedback can lead
to an improvement of up to 52% with respect to the 802.11ax
baseline in the goodput at high SNR. We also discuss the
trade-off of our proposed method where increasing the
payload length will reduce the goodput improvement offered
by our proposed method.

Our initial findings in simulations show that the accuracy
of certain feedback angles affects the PER performance more
than the others. We plan to explore this phenomena further.
We also plan to explore the use of Neural Network based
classifiers to generate the candidate vectors from the data.
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