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ABSTRACT

Deep neural networks (DNNs) demonstrates significant advantages
in improving ranking performance in retrieval tasks. Driven by
the recent developments in optimization and generalization of
DNNs, learning a neural ranking model online from its interactions
with users becomes possible. However, the required exploration for
model learning has to be performed in the entire neural network
parameter space, which is prohibitively expensive and limits the
application of such online solutions in practice.

In this work, we propose an efficient exploration strategy for on-
line interactive neural ranker learning based on bootstrapping. Our
solution is based on an ensemble of ranking models trained with
perturbed user click feedback. The proposed method eliminates ex-
plicit confidence set construction and the associated computational
overhead, which enables the online neural rankers training to be ef-
ficiently executed in practice with theoretical guarantees. Extensive
comparisons with an array of state-of-the-art OL2R algorithms on
two public learning to rank benchmark datasets demonstrate the
effectiveness and computational efficiency of our proposed neural
OL2R solution.
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1 INTRODUCTION

Online learning to rank (OL2R) has recently attracted great research
interest because of its unique advantages in capturing users’ rank-
ing preferences without requiring expensive relevance labeling as in
classical offline learning to rank solutions [24, 28, 33, 36, 43, 48, 54].
Because users’ implicit feedback is noisy and biased [2, 10, 26, 27],
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the key in OL2R is to effectively explore the unknowns for improved
relevance estimation, while serving the users with high-quality
ranked results, which is known as the explore-exploit trade-off.

Most existing work in OL2R assumes a linear scoring function
[43, 48, 54]. Dueling bandit gradient descent (DBGD) and its dif-
ferent variants are the most popularly used OL2R solutions [54],
where new model variants are sampled via random perturbations
in the parameter space to estimate the direction for model update.
As its non-linear extension, pairwise differential gradient descent
(PDGD) [40] samples the next ranked document from a Plackett-
Luce model and estimates an unbiased gradient from the inferred
pairwise preference. PairRank [24] learns a logistic ranker online
in a pairwise manner and explores the ranking space based on the
model’s estimation uncertainty about the pairwise comparisons
of document rankings. Though practically effective, such a linear
or generalized linear model assumption is incompetent to capture
the possible complex non-linear relations between a document’s
ranking features and its relevance quality. This is already proved
to be crucial in the past offline learning to rank practices [6, 38]

To unleash the power of representation learning, deep neural net-
works (DNN) have been introduced to learn the underlying scoring
function for document ranking. In [40], PDGD is also experimented
on a neural ranker. Though the authors reported promising empiri-
cal results, its theoretical property (e.g., convergence) is unknown.
On the other hand, enabled by the substantial progress in opti-
mization and generalization of DNNs, quantifying a neural model’s
uncertainty on new data points become possible [3, 7, 8, 11, 12].
A recent work named olRankNet [23] extended PairRank with a
neural network ranker, which performs exploration in the pair-
wise document ranking space with topological sort by using the
neural tangent kernel technique [22]. Compared with PairRank, ol-
RankNet provided encouraging performance improvement, which
was reported to be the best among all state-of-the-art OL2R solu-
tions. More importantly, olRankNet is proved to achieve a sublinear
gap-dependent regret upper bound, which is defined on the total
number of mis-ordered pairs over the course of interactions with
users. To our best knowledge, olRankNet is the first known OL2R
solution for neural rankers with theoretical guarantees.

Despite being theoretically sound and empirically effective, ol-
RankNet’s limitation is also remarkably serious: its computational
cost for performing the required exploration is prohibitively high
(almost cubic to the number of neural network’s parameters). More
specifically, to quantify the uncertainty of its estimated pairwise
preferences among candidate documents, it has to maintain a high-
probability confidence set for the current ranker’s parameter esti-
mation over time. However, the construction of the confidence set
depends on the dimensionality of the neural network’s parameters:
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as required by the neural tangent kernel, an inverse of the covari-
ance matrix computed based on the gradient of the entire neural
network is needed whenever the network is updated. For example,
for a simple two layer feed-forward neural network with input
dimension d and m neurons in each layer, the size of the covariance
matrix is (md +m? +m)?. The best known time complexity for com-
puting the inverse of this covariance matrix is O ((md+m?+m)%373),
by the optimized Coppersmith-Winograd algorithm [51]. This com-
putational complexity quickly outpaces the limit of any modern
computational machinery, given m or d are usually very large in
practice (e.g., m is often in the hundreds and d in tens of thousands)
and such matrix inverse operation is needed in every round when
the neural network is updated. Due to this limitation, olRankNet
has to employ the diagonal approximation of the covariance matrix
in its actual implementations [23]. But such an approximation loses
its all theoretical guarantees, which unfortunately leads to a gap
between the theoretical and empirical performance of olRankNet.
And even how this gap would depend on the dimensionality of
the network and affect olRankNet’s performance is completely un-
known. This inevitably limits the application of the neural OL2R
solutions, especially the olRankNet-type algorithms, in practice.

In this work, we develop an efficient and scalable exploration
strategy for olRankNet by eliminating its explicit confidence set
construction. The basic idea is to use bootstrapping technique to
measure the uncertainty of a neural ranker’s output via a set of sam-
ple estimates. In particular, we maintain N rankers in parallel. And
in each round, after receiving the user’s click feedback, each of the
rankers is updated with the observed clicks and independently gen-
erated pseudo noise from a zero-mean Gaussian distribution. The
overall model’s estimation uncertainty on a pair of documents is
then determined by an ensemble of the estimates from all N rankers.
For example, for a document pair (i, j), if all N rankers predicti > j,
(i, j) is considered as in a certain rank order, otherwise it is con-
sidered as in an uncertain rank order, where exploration is needed.
Besides regular neural network updates, no additional computation
is needed, which greatly reduces the computational overhead as
required in olRankNet. We name our new solution as Perturbed
Pairwise Neural Rank (or P?2NeurRank in short). We rigorously
prove that with a high probability P?NeurRank obtains the same
regret as olRankNet, but the computational complexity is way much
lower. In addition, as no approximation is needed in P?NeurRank,
its theoretical analysis directly suggests its empirical performance.
Our extensive empirical evaluations demonstrate the strong advan-
tage in both efficiency and effectiveness of P2NeurRank against
olRankNet and a rich set of state-of-the-art solutions over two OL2R
benchmark datasets on standard retrieval metrics.

2 RELATED WORK

Online learning to rank with neural rankers. Most of the exist-
ing parametric OL2R solutions are limited to linear ranking models
[36, 54]. In particular, DBGD and its extensions [44, 48, 49, 54],
as the most popularly referred OL2R solutions, are inherently de-
signed for linear models as they rely on random perturbations in
linear model weights for parameter estimation. But such a linear as-
sumption is incompetent to capture any non-linear relations about
documents’ relevance quality under given queries, which shields
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such OL2R algorithms away from the successful practices in offline
learning to rank models that are empowered by DNNs [6, 41].

Such a limitation motivates some preliminary attempts in OL2R.
In [40], pairwise differentiable gradient descent (PDGD) is pro-
posed to sample the next ranked document from a Plackett-Luce
model and estimate an unbiased gradient from the inferred pairwise
ranking preference. Although improved empirical performance is
reported for PDGD with a neural ranker, there is no theoretical
guarantee on its online performance. Taking a completely differ-
ent perspective, PairRank [24] directly learns a pairwise logistic
regression ranker online and explores the pairwise ranking space
via a divide-and-conquer strategy based on the model’s uncertainty
about the documents’ rankings. The authors claimed logistic re-
gression can be treated as a one-layer feed-forward neural network,
but it is unclear how PairRank can be extended to more general
neural ranking architectures.

Recently, substantial progress in optimization and generaliza-
tion of DNNs enables theoretical analysis about the neural mod-
els [18, 37, 39, 46, 47, 52, 53, 57, 58]. For example, with the neural
tangent kernel technique [22], the uncertainty of a neural model’s
estimation on new data points can be quantified [25, 55, 56]. Most
recently, olRankNet [23] is proposed to extend PairRank with a
multi-layer neural ranker. The authors proved that the good theo-
retical properties of PairRank (i.e., sublinear regret) are inherited in
olRankNet, and empirically improved performance over PairRank
was also reported in olRankNet. However, one serious issue of ol-
RankNet is its cumbersome computational complexity: to quantify
the confidence interval of the neural ranker’s output for the ex-
ploration purpose, one has to compute the inverse of a covariance
matrix which is derived by the gradient of entire neural network.
The complexity is almost cubic to the number of parameters in
the neural network, which is prohibitively expensive for OL2R, as
this matrix inverse is needed every time the ranker is updated. The
authors in [23] suggested using diagonal approximation for the
covariance matrix, but no guarantee is provided about the impact
of such an approximation.

Randomized exploration in online learning,. Efficient explo-
ration is critical for online algorithms, as the model learns by ac-
tively acquiring feedback from the environment [34]. Distinct from
the deterministic exploration strategies, such as upper confidence
bound [1, 5], randomization-based exploration enjoys advantages
in its light computational overhead and thus has received increasing
attention in online learning community. The most straightforward
randomization-based exploration strategy is e-greedy [5], which
takes the currently estimated best action with probability 1 — e,
otherwise randomly take an action. It has been applied in OL2R
in [19]. Almost no additional computation is needed in e-greedy
for exploration, but the exploration is also independent from the
current model estimation and therefore can hardly be optimal in
practice. More advanced randomization-based exploration strate-
gies are built on the bootstrapping technique in statistics. Giro [30]
explores by updating a model with a bootstrapped sample of its
history with pseudo reward. In [29, 32], random noise is added to
the observed feedback for the model training to achieve the purpose
of exploration in model’s output. Such a strategy is proved to be
effective in both linear and generalized linear model training. Most
recently, Jia et al. [25] proved randomization can also be used for
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online neural network learning. The most closely related work to
our study is [4, 21], where an ensemble of models are trained to
approximate the confidence interval for the purpose of exploration
in online model update.

3 METHOD

In this section, we provide a brief introduction of the general prob-
lem setting in OL2R, and then present our proposed solution for
scalable exploration in neural OL2R.

3.1 Problem Formulation

In OL2R, aranker directly learns from the interactions with users for
T rounds. At each round ¢ = 1, ..., T, the ranker receives a query g;
and its associated V; candidate documents represented as a set of d-
dimensional query-document feature vectors, X; = {x{, Xg, ... X{,t }

with xf € R4, and we assume that ||Xf || < u. Once the query is

received, the ranker determines the ranking of the V; documents
based on its knowledge about the documents’ relevance so far. We
denote 7 = (74(1), ..., m(V;)) € II([V;]) as the ranking of the L,
documents, where 7; (i) represents the rank position of document
i given query gq;, and II([V;]) is the set of all permutations of
the V; documents. After the ranked list is returned to the user,
the user examines the list and provides her click feedback C; =
{c{, cé, ey c{,t}, where cf = 1 if the user clicks on document i at

round t; otherwise cf = 0. The ranker updates itself according to
the feedback and proceeds to the next query.

Existing studies have repeatedly demonstrated that C; is biased
and noisy [2, 10, 26, 27]. Users tend to click more on the top-ranked
documents, which is known as the position bias; and as users can
only interact with the documents shown to them, the ranker only
has partial observations about relevance feedback from user clicks,
which is known as the presentation bias. Therefore, a good OL2R
solution needs to carefully deal with the biased implicit feedback
and effectively explore the unknowns for improved relevance esti-
mation on the one hand, and serve users with the currently best
estimated ranked result on the other hand.

In this work, we follow the standard practice and treat clicks
as relative preference feedback [26]. More specifically, the clicked
documents are assumed to be preferred over those examined but
unclicked documents. Besides, we consider every document that
precedes a clicked document and the first [ subsequent unclicked
document as examined. Such an assumption is widely adopted
and proved to be effective in both offline and online learning to
rank [2, 24, 40, 48]. In particular, we denote o; as the index of the
last examined position in the ranked list ; at round ¢.

Different from offline learning to rank, OL2R needs to serve
the users while learning from its presented rankings. Therefore
cumulative regret is an important metric for evaluating OL2R. In
this work, we follow the regret defined as the number of mis-ordered
pairs from the presented ranking to the ideal one [23, 24, 33],

T T .
RT = E[ Zt=1 rt] = ]E[ Zt=1 K(ﬂ.’[, ”t)]
where 7 is the ranked list generated by the current ranker, 7} is

the optimal ranking for the current query, and K (7, 7}) = }{(1 j):

i< g (me (i) < me() A (D) > (D) V(i) > 7 () A (i) <
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7 ( ]))}‘ Such a pairwise regret definition directly connects an

OLZ2R algorithm’s online performance with classical ranking eval-
uations as most ranking metrics, such as ARP and NDCG can be
decomposed into pairwise comparisons [50].

3.2 Exploration in olRankNet

In the recent decade, DNNs have demonstrated powerful represen-
tation learning capacity and significantly boosted the performance
for a wide variety of machine learning tasks [14, 35], including
learning to rank [13, 17, 20, 45]. OL2R, on the other hand, has re-
ceived limited benefit from the advances in DNNs. While DNNs
are generally more accurate at predicting a document’s relevance
under a given query (i.e., exploitation), creating practical strategies
to balance exploration and exploitation for neural ranking models
in sophisticated online learning scenarios is challenging.

Built on the advances in renewed understandings about the
generalization of DNNs, olRankNet extends PairRank with a neural
scoring function and demonstrates the best empirical performance
with theoretical guarantees [23]. olRankNet directly learns a neural
ranker from users’ implicit feedback with a fully connected neural
network f(x;0) = VmWyp(Wr_14(...$(W1x))), where depth
L > 2, ¢(x) = max{x,0}, and W; € Rmxd W; e RM™XM 2 < j <
L—-1, W € R and 0 = [vec(W1)T,...,vec(W)T]T € R?
with p = m+md+m?(L—2). At each round, the model 6, is updated
by optimizing the cross-entropy loss between the predicted pairwise
relevance distribution on all documents and those inferred from
user feedback till round ¢ with a #;-regularization term centered at
the randomly initialized parameter 6y:

L:(6) 222:1 Z(i,j)er ~(1-yip)log (1= o (i)

- y};log (a(fij)) +mA/2(16 - 6%, (3.1)
where flz = f(xi;0;-1) — f(xj;6;-1) is the difference between
the estimated ranking scores of document i and j, 4 is the #;-
regularization coefficient, Qs denotes the set of document pairs
that received different click feedback at round s, i.e. Qg = {(4, j) :
¢ # cj,\?’rs(i) < 75(j) < ot} yfj indicates whether document
i is preferred over document j based on the click feedback, i.e.,
yfj =(c; - cj +1)/2 [6].

However, there is uncertainty in the estimated model 6; due
to the click noise, i.e., ||6; — 6%|| # 0, where 0* is assumed to be
the underlying ground-truth model parameter. And therefore the
model’s output ranking might be wrong because of this uncertainty.
olRankNet decides to randomize its output document rankings
where its estimation is still uncertain, which helps collect unbiased
feedback for improved model estimation subsequently. Based on
the neural tangent kernel technique, the uncertainty of olRankNet’s
estimated pairwise rank order can be analytically quantified and
upper bounded with a high probability, under the assumption that
pairwise click noise follows a R-sub-distribution [23]. This is de-
scribed in the following lemma.

Lemma 3.1. (Confidence Interval of Pairwise Rank Order in ol-
RankNet). There exist positive constants C; and Cy such that for
any d1 € (0, 1), with satisfied step size of gradient descent , and
the neural network width m, at round ¢ < T, for any document pair
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(i, j) under query q;, with probability at least 1 — 1,

lo(f) = o(F)] < arllgly/Vmllg +e(m), (3.2)

where e€(m) is the approximation error from gradient descent in
neural network optimization, f* is the ground-truth difference be-
tween document pair (i, j), g?j. = g(xi; 05) — g(x;; 0s) with g(x; 0)
as the gradient of input x with respect to the entire network param-

eters, a; = Cy (\/Rz log(det(A;)/5% det(AD)) + ‘/IC_'Q) with C; and

C, as positive constants, Ay = Zi;% 2, eQs #gf,’j,gf,’j,T + AL

With the constructed confidence interval of the estimated pair-
wise document rank order, olRankNet separates all the candidate
document pairs into two sets, certain rank order Sf and uncertain
rank order S¥. S¢ contains the document pairs where with high
probability the estimated pairwise order is correct. For example, for
document i and j, if the lower confidence bound of the probability
that i is better than j, i.e., o( l.;.) —a; ||gfj/\/ﬁ||A;1 —€e(m), is larger
than 0.5, then (i, j) belongs to S7. Otherwise, the pair belongs to S}/,
which indicates that the predicted rank order can still be wrong.

When constructing the ranked list, olRankNet first builds a rank-
ing graph with all the candidate documents and the certain rank
orders in Sf. Then topological sort is performed, where the certain
rank orders will be followed (i.e., exploitation), and uncertain rank
orders will be randomized (i.e., exploration). With such a ranking
strategy, olRankNet is proved to have an O(log?(T)) cumulative
pairwise regret upper bound.

Although olRankNet has a strong theoretical foundation, its
scalability is severely limited due to the additional computation
required for constructing the confidence interval. In particular, the
covariance matrix A in Lemma 3.1 is constructed with the gradient
of the scoring function with respect to the network parameters, of
which the size p is very large. In order to construct the confidence
interval according to Eq (3.2), the inverse of the covariance matrix
A has to be computed whenever the model is updated, which results
in an unacceptably high computational cost (around O(p?)). As a
consequence, it is practically impossible for olRankNet to be exactly
executed. In [23], approximation is employed to make olRankNet
operational in practice, e.g., only using the diagonal of A. How-
ever, there is no theoretical guarantee for such an approximation,
which unfortunately breaks the theoretical promise of olRankNet
and directly leads to an unknown gap between its theoretical and
empirical performance.

3.3 Scalable Exploration with Perturbed
Feedback

To bridge the gap, we develop an efficient and scalable strategy for
recognizing the certain and uncertain rank orders without explicitly
constructing the confidence set. And our basic idea is to leverage the
bootstrapping technique to create randomness in a neural ranker’s
output. In particular, at each round, we perturb the entire user
feedback history for N times with noise freshly and independently
sampled from a zero-mean Gaussian distribution, and train the
corresponding neural ranker as usual. Denote model 0" forn e
[N] as the solution of minimizing the following objective function
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Figure 1: Comparison between PairRank/olRankNet and
P?LinRank/P?NeuRank

with gradient descent,
. ¢
0 =min 33, 3y, 1= 05475 o 0 =)

— (v3; + 75" og (a(fi))) +mA/21|6 — 6], (3.3)

where {yis ]’.(n) }2:1 ~ N(0, v?) are Gaussian random variables that
are independently sampled in each round ¢, and v is a hyper-
parameter that controls the strength of perturbation (and thus the
exploration) in P2NeurRank.

The detailed procedure of P?NeurRank is given in Algorithm 1.
The algorithm starts by initializing the N neural rankers. At each
round of interaction, given a query g, for each pair of candidate
documents, N parallel predictions about their rank order will be
generated by the set of neural rankers. If all the N estimations
give the same prediction about the document pair’s rank order, e.g.,
i > j for document i and document j, then (i, j) is considered as a
certain rank order (line 9 - line 13 in Algorithm 1). Otherwise, the
relation between these two documents is still uncertain and further
exploration is needed there when generating the ranked list. Once
the sets of certain and uncertain rank orders are determined, we
follow the same procedure of olRankNet to generate the ranked list
via topological sort with respect to the certain rank orders.

The key intuition for P2NeurRank is to utilize the variance in-
troduced in the randomly perturbed click feedback to encourage
exploration. With the injected perturbation, there are two kinds
of deviations existing in the estimated pairwise preference in each
of the N parallel neural rankers: 1) the deviation caused by the
observation noise introduced by the click feedback; 2) the deviation
caused by the added perturbations. By properly setting the variance
parameter v for the added perturbation, the corresponding devia-
tion will introduce enough randomness in the model estimation.
For each round of interaction, we maintain N models and with
high probability, the minimum of the estimated pairwise preference
serves as the pessimistic estimate of the preference.

Compared to olRankNet, which requires to maintain the inverse
of the covariance matrix, P2NeurRank does not need any added
computation for the purpose of exploration, besides the regular
neural network updates. As a result, P2NeurRank greatly alleviates
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the computation burden in neural OL2R. More specifically, in each
round, the online neural ranking algorithm generally takes the
following steps: (1) predict the rank order in each document pair,
(2) generate the ranked list by topology sort via the constructed
certain and uncertain rank orders, and (3) update the model accord-
ing to the newly received click feedback. With p representing the
total number of parameters in a neural ranker, olRankNet has the
time complexity O(V;p + V) for the first step. As the N neural
models in P2NeurRank are independent from each other, the time
complexity of P2NeurRank in the first step is also O(V;p + V}?)
by executing the N ranker’s predictions in parallel. For the third
step, again by the training the N neural rankers in parallel using
gradient descent, both P2NeurRank and olRankNet have the time
complexity of O(rp 22:1 |Qs|) where 7 is the number of epochs
for training the neural network. The key difference lies in the
second step. olRankNet requires the inverse of covariance ma-
trix, which has the time complexity at least O(p??373). Besides,
constructing the confidence interval for all the document pairs
has the time complexity of O(V/?p?). While for PNeurRank, find-
ing the minimum of the N predictions for all the document pairs
costs O(N Vtz). Once the certain and uncertain rank orders are de-
termined, both algorithms require O(V; + E;) for the topological
sort, where E; represents the number of certain rank orders and
E; < V;.Therefore, for the second step, olRankNet has the total time
complexity as O(p*#7 + Vip? + Vi + Er) = O(p*#7 +VEp?),
while P2NeurRank has the time complexity as O(N Vt2 +Vi+E) =
O(N Vtz). As p is oftentimes in the order of tens of thousands (if not
less), P2NeurRank greatly reduces the time required for perform-
ing exploration in neural OL2R. And also empirically, the number
of parallel rankers N in P?NeurRank does not need to be large.
For example, in our experiments, we found N = 2 already led to
promising performance of P2NeurRank comparing to olRankNet.

We want to highlight that our proposed perturbation-based ex-
ploration strategy can also be applied to linear ranking models, e.g.,
PairRank [24]. The procedure is almost the same as described in
Algorithm 1, and so is its computational advantage in linear models,
especially when the dimension of the feature vectors is large. In
our experiments, we empirically evaluated our perturbation-based
method in PairRank (named P?LinRank) and observed its expected
performance and computational advantages.

4 REGRET ANALYSIS

In this section, we provide the regret analysis of the proposed
exploration strategy. For better readibility, we present the analysis
of alinear ranker. According to the anlaysis in [23], under the neural
tangent technique and the convergence analysis of the gradient
descent in neural network optimization, the linear analysis can be
readily applied to the neural ranker. And we discuss the difference
between the analysis between the linear ranker and neural ranker
in the appendix.

Follow the standard assumption in [23, 24], we assume that on
the examined documents where 7; (i) < o, the obtained feedback
C; is independent from each other given the true relevance of doc-
uments, so is their noise [15, 16, 26]. Therefore, the noise in the
inferred preference pair becomes the sum of noise from the clicks
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Algorithm 1 P?NeurRank

1: Input: Number of rounds T, regularization coefficient A, per-
turbation parameter v, network width m, network depth L, and
number of rankers N.

2: Initialize N neural network models {6 }},:]:1 with m and L

3 fort=1,..,Tdo

4: S? = 0, S? =0

5. g < receive_query(t)

6 X = {xﬁ,xé, .. .xﬁ/[ } « retrieve_candidate_documents(q;)

7. for each document pair (i, j) € [V;]? do

8 {a(fi;?’t)}fl\]:l — gethfestimations(xf, xj., {9;’}2’:1)

9: if min, ¢ [N a(fi;?’t) > 1/2 or maxpe[N) cr(fi’]’.’t) < 1/2
then

10: S« S{U (i, )

11 else

12: SE—SYU(,))

13: end if

14:  end for

15:  m « topological_sort(Sy, S¥)

16:  Cy « collect_click_feedback(s;)

172 Q. {yij}(ij)eq, < construct_training_data(Ct)

182 forn=1,... Ndo

19: Generate {{yi;} (i j)eq, }ﬁzl ~ N(0,v?)

20: Set 6;* by the output of gradient descent for solving Eq (3.3)
with {Qs}gzl.

21:  end for

22: end for

in the two associated documents. And we also only use the indepen-
dent pairs to construct Q; as suggested in PairRank and olRankNet.
Thus, the pairwise noise satisfies the following proposition.

Proposition 4.1. For any t > 1, V(i, j) € Q;, the pairwise feed-
back follows yfj = o(f(xi;0%) — f(xj;6%)) + el.tj, where eitj satis-

fies that for all f € R, E| exp(Bel))I{{€} ; }r.jc0, Yooy Q| <
exp(f?R?), is an R-sub-Gaussian random variable.

To train a linear ranker, we have the scoring function f(x; 6) =
x' 0. And we assume that ||x|| < P and ||@|| < Q. The loss function
can be rewritten as,

t
707 > Y (55" log(o(x;T0)
s=—d+1 (i,j) €Qs
— (1= (5 +75") log (1 - o (x5, 76)),

where xfj = xf — x5 is the difference between the feature vectors of

1)

document i and j, and d is the dimension of the feature vectors. With
Q] =1, xfj = \/Zei, yfj =0 for s € [—d + 1, 0], this loss function
can be interpreted as adding I, regularization to the cross-entropy
loss.

Given this objective function is log-convex with respect to 6, its
solution ’9;(") of ranker n for n € [N] is unique under the following
estimation method at each round t,

C ()
Z(i,j)er (o(xije) = (yi; + Yisj n )) X} +46 =0
(4.2)

s=—d+1
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Let g;(0) = Zgidﬂ 2(i,))€Qs O'(X?jTO)X?jA+ A0 be the invErt—
ible function such that the estimated parameter Gt(n) satisfies gt(Ot( n))

Z;ldﬂ 2(0,j)€Qs (yfj + yfj’.(”))xfj. As discussed before, there are

two kinds of deviations inside this estimation 5t(n). To analyze
their effect in the estimation, we introduce an auxiliary solution o,
for solving the linear objective function, which satisfies g;(6;) =
Z;% 2(i,j) €Qs yfjxfj. Then, for the two solutions Ot(") and 6;, we
have the following lemmas quantifying the deviations in the esti-
mation.

Lemma 4.2. (Deviation from observation noise). At round ¢t < T,
for any pair of document (xf , xj.) under query g;, with probability
at least 1 — 8, we have,

t Th t T t
lo(x;; ) —o(x;; 6;)] < arlxijlla-

where a; = (2ky/c,)(VR? log(det(A;)/(52 det(AD))) + d), A; =
A+ 2;% 2(i, ) €Qs x,-/,jrx;',—’j,, ky, is the Lipschitz constant of the
sigmoid link function o, ¢, = infgeg ¢(x" 6), with & as the first
derivative of o.

Accordingly, we define E; as the success event at round ¢:

Er = {V(i.)) € [Ve]% lo(x; " 0r) — o (x}; 07)] < arllxlla 1}

Intuitively, E; is the event that the auxiliary solution ; is “close”
to the optimal model 8* at round t.

As discussed before, we define the regret as the number of mis-
ordered pairs. Therefore, the key step in regret analysis is to quan-
tify the probability that an estimated preference is uncertain. Ac-
cording to Algorithm 1, the certain rank order in the perturbed
pairwise ranker is defined as follows,

Definition 4.3. (Certain Rank Order) At round ¢, the rank or-
der between documents (i, j) € [V;]? belongs to the set of cer-

tain rank orders w{ if and only if min,c[N] o (fit.’(n)) > %

max,c[N] O (f;.t.’(n)
According to the definition, and the deviations caused by the
observation noise and the pseudo noise, we have the following
lemma quantifying the probability of an estimation being uncertain.
Lemma 4.4. There exist positive constants ¢, C; and Cy, that with
p = (c1 Vd+Cy\/log (1/8)+(P*Rk,,) / (VAc Amin) )2+ 2k,,P
Amin (Z) ¢, Amin

\/IQ), 8 € (0,1), for round t > t’, with probability at least 1 — 6,
event E; holds with a; defined in Lemma 4.2, with N > log §/log(1—
exp(=f%)/(4v7p)), where f = %, for a document pair (i, j) that
i > j for the given query, the prI(l)bability that the estimated pair-

wise preference is uncertain is upper bounded as P((i, j) € wt”) <
2NVAE I 112
L where Apin =

or

1 . .o
) < 3;otherwise, (i, j) € }.

. T
B tET,(?_};Ié[Vt]Z |0(ij %) - %l rep-
resenting the smallest gap of pairwise difference between any pair
of documents associated to the same query over time (across all
queries).

The detailed proof is provided in the appendix. This lemma pro-
vides the upper bound of the probability that an estimated pairwise
preference is uncertain. The key idea is to analyze the concentra-

tion and anti-concentration property of the deviation caused by the

(\/RZ log(1/0)+
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pseudo noise. In particular, the deviation caused by the pseudo noise
v, and the ensemble of N rankers should be sufficiently large so that

for document pairs (i, j), the maximum estimated pairwise pref-
On the other hand, with more observations, the probability of being
uncertain will be shrinking with the concentration property of the
pseudo noise.

Following the assumption in [23, 24, 31], denote p; as the proba-

bility that the user examines all documents in 7; at round ¢, and let
p* = minj <; <7 p; be the minimal probability that all documents in
a query are examined over time. The regret of the proposed model
can be upper bounded as follows.
Theorem 4.5. Assume pairwise query-document feature vector
xfj under query q¢, where (i,j) € [V;]? and t € [T], satisfies
Proposition 1. With § € (0, 1), with probability at least 1 — §, the
T-step regret of the proposed model is upper bounded by:

OmaxTPZ
2dA

erence, max,¢[n] o(X Tgt(n) ) is optimism to trigger exploration.

1
Ry <R’ + Ezdvmaxc log (1 +

where R’ = t'Vinax, Vinax represents the maximum number of docu-
ment associated with the same query over time, and ¢’ is defined
in Lemma 4.4, and w = ZST:t/ ((Vnzmx — 2Vinax) P? /Amin(As)), and
By choosing 61 = 2 = 1/T, we have the expected regret at most
Rr < O(dlog?(T)).

We provide the detailed proof in the appendix. According to
the pairwise exploration strategy, the regret only comes from the
document pairs that are uncertain, e.g., random shuffling will be
conducted to perform the exploration. With the quantified uncertain
probability in Lemma 4.4, the pairwise regret can be upper bounded
accordingly.

In neural rankers, the neural network approximation error should
be considered in addition to the deviations caused by the noise. Ac-
cording to the analysis in [25], the variance of the added noise
should be set according to the deviations caused by both the obser-
vation noise and the approximation error. Based on the theoretical
analysis in [23], by properly setting the width of the neural network
and the step size of gradient descent, the model with a neural ranker
will still have a sublinear regret.

5 EXPERIMENT

In this section, we empirically compare our proposed model with
an extensive list of state-of-the-art OL2R algorithms on two large
public learning to rank benchmark datasets.

5.1 Experiment Setup

5.1.1 Dataset. We experimented on the Yahoo! Learning to Rank
Challenge dataset [9], which consists of 292,921 queries and 709,877
documents represented by 700 ranking features, and MSLR-WEB10K
[42], which contains 10,000 queries, each having 125 documents
on average represented by 136 ranking features. Both datasets are
labeled on a five-grade relevance scale: from not relevant (0) to
perfectly relevant (4). These two datasets are the most popularly
used in literature for evaluating OL2R algorithms. We followed
the train/test/validation split provided in the datasets to perform
the cross-validation to make our results comparable to previously
reported results.
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Figure 2: Offline performance of linear OL2R on two benchmark datasets.
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Figure 3: Online performance of linear OL2R on two benchmark datasets.

5.1.2  User interaction simulation. A standard simulation setting
for the user clicks is adopted in our experiment [24, 40], which is
the most popularly used procedure for OL2R evaluations. At each
round, a query is uniformly sampled from the training set. The
model will then generate a ranked list and return it to the user.
Dependent click model (DCM) [16] is applied to simulate user be-
haviors, which assumes that the user will sequentially scan the
ranked list and make click decisions on the examined documents.
In DCM, the probabilities of clicking on a given document and
stopping the subsequent examination are both conditioned on the
document’s true relevance label. Three different model configura-
tions are employed in our experiments to represent three different
types of users. The details are shown in Table 1. In particular, perfect
users will click on all relevant documents and do not stop browsing
until the last returned document; navigational users are very likely
to click on the first encountered highly relevant document and stop
there; and informational users tend to examine more documents,
but sometimes click on irrelevant documents, which contribute a
significant amount of noise in the click feedback. To reflect the
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presentation bias, all the models only return the top 10 ranked
results.
Table 1: Configuration of simulated click models.

Click Probability Stop Probability
R 0 1 2 3 4 0 1 2 3 4
per 00 02 04 08 10 |00 00 0.0 0.0 0.0
nav 005 03 05 0.7 09 |02 03 05 07 09
inf 04 06 07 08 09 |01 02 03 04 05

5.1.3 Baselines. We list the OL2R solutions used for our empir-
ical comparisons below. We performed the experiments on both
linear and neural rankers to show the general effectiveness of our
proposed exploration strategy. For convenience of reference, in the
experiment discussion, we name our model with a linear ranker as
P2LinRank

o ¢-Greedy (linear and neural) [19]: At each rank position
from top to bottom, it randomly samples an unranked docu-
ment with probability € or selects the next best document
based on the currently learned ranker.
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Figure 5: Online performance of neural OL2R on two benchmark datasets.

e DBGD (linear and neural) [54]: DBGD uniformly sam-
ples a direction in the entire model space for exploration
and model update. Its convergence is only proved for linear
rankers, though empirically previous studies also applied it
to neural rankers.

e PDGD (linear and neural) [40]: PDGD samples the next
ranked document from a Plackett-Luce model and estimates
gradients from the inferred pairwise preferences. The only
known theoretical property about PDGD is its estimated
gradient is unbiased, but how this unbiased gradient leads
model training is still unknown.

e PairRank [24]: PairRank learns a pairwise logistic regres-

sion ranker online and explores by divide-and-conquer in the

pairwise document ranking space. The training of PairRank
is known to converge with a sublinear regret defined on the
cumulative number of misordered document pairs.

PairRank-Diag: This is a variant of PairRank where the

diagonal approximation of its covariance matrix is used to

calculate the required confidence interval.

olRankNet [23]: olRankNet is an extension of PairRank with

a neural ranker, where the confidence interval is constructed
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via the neural tangent kernel. It inherits good theoretical
properties from PairRank.

¢ olRankNet-Diag: This is a variant of olRankNet, where the
diagonal approximation of the covariance matrix is applied
to calculate the confidence interval.

5.1.4 Hyper-Parameter Tuning. MSLR-WEB10K dataset is equally
partitioned into five folds, while Yahoo Learning to Rank dataset is
equally partitioned into two folds. We performed cross validation
on each dataset. For each fold, the models are trained on the training
set, and the hyper-parameters are tuned based on the performance
on the validation set.

In our experiments, for all the neural rankers, a two layer neural
network with width m = 100 is applied. We did a grid search in
olRankNet, PairRank, PairRank-Diag for its regularization parame-
ter A over {107¢ ;.1:1, exploration parameter & over {107/ ?:1. For
parameter estimation in all neural rankers, we did a grid search
for learning rate over {10_i}?:1 for gradient descent. PairRank and
PairRank-Diag are directly optimized with L-BFGS. The model up-
date in PDGD and DBGD is based on the optimal settings in their
original paper (i.e., the exploration step size and learning rate). The
hyper-parameters for PDGD and DBGD are the update learning
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Figure 6: Comparison among neural rankers

rate and the learning rate decay, for which we performed a grid
search for learning rate over {107 ?:1, and the learning rate decay
is set t0 0.999977. For P2NeurRank and P2LinRank, we have an extra
hyper-parameter N, which is searched over {2,5, 10}. We fixed the
total number of iterations T to 5000. The experiments are executed
for 10 times with different random seeds and the averaged results

are reported in this paper.

5.1.5 Evaluations. To evaluate an OL2R model, we report both the
offline and online performance during the interactions. The offline
performance is evaluated in an “online” fashion where the newly
updated ranker is evaluated on a hold-out testing set against its
ground-truth relevance labels. This measures how fast an OL2R
model improves its ranking quality. Such setting can be viewed as
using one portion of the traffic for model update, while serving an-
other portion with the latest model. NDCG@10 is used to assess the
ranking performance. In addition to the offline evaluation, we also
evaluate the models’ online result serving quality. This reflects user
experience during the interactions and thus should be seriously
considered. Sacrificing user experience for model training will com-
promise the goal of OL2R. We adopt the cumulative Normalized
Discounted Cumulative Gain to assess models’ online performance.
For T rounds, the cumulative NDCG is calculated as

T
Cumulative NDCG = Zt—l NDCG(r) - y(t—l),

which computes the expected utility a user receives with a proba-
bility y that he/she stops searching after each query [40]. Following
the previous work [23, 24, 40, 48, 49], we set y = 0.9995.

5.2 Experiment Results

5.2.1 Offline and online performance. We first compare our pro-
posed model with the baselines using a linear ranker. The results
are reported in Figure 2 and 3. For P?LinRank, we reported the
best performance with N = 2 and N = 5. We can clearly observe
P2LinRank maintained PairRank’s strong advantage over other
OLZ2R solutions, including e-Greedy, DBGD, and PDGD, in both
online and offline evaluations across three click models. It is also
obvious that a straightforward perturbation of model’s output, i.e.,
€-Greedy, basically led to the worst OL2R performance, although it
is often the default choice for exploration in online learning.
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Figure 8: P°NeurRank with variance v? = 0.01

More importantly, PairRank with a diagonal approximated co-
variance matrix showed serious degradation in its ranking perfor-
mance, especially its online performance. For example, on MSLR-
Web10K dataset, PairRank with diagonal approximation was even
worse than PDGD in the online evaluation under both perfect and
informational click models. This means an approximated covari-
ance matrix cannot accurately measure the ranker’s estimation
uncertainty. Furthermore, this inaccuracy’s impact is not deter-
ministic: under perfect feedback, the seriously degenerated online
performance together with mild decrease in offline performance
suggest the model over explored; but under informational feedback,
both online and offline performance dropped, which suggests in-
sufficient estimation. This demonstrates the complication of using
approximations in OL2R solutions, which loses all theoretical guar-
antees in the original analysis. As a result, it also strongly suggests
olRankNet might not be optimal in practice, given the diagonal
approximation employed to make its computation feasible. This
will be demonstrated in our experiments next.

It is worth noting that P2LinRank with N = 2 already exhibits
faster convergence than PairRank, and simply increasing N does
not necessarily further improve the model’s performance. This
result is very promising: as the only computational overhead in
our perturbation-based exploration strategy is to estimate N — 1
additional rankers, the actual added cost in practice is minimum
when N = 2. Similar observation is also obtained when applied to
neural rankers.

In Figure 4 and 5, we report the results obtained on the neural
rankers. First of all, olRankNet and P2NeurRank still showed signif-
icant improvement over other OL2R solutions, including e-Greedy,
DBGD, MGD and PDGD. This means the pairwise exploration im-
plemented in olRankNet is still effective for neural OL2R. The most
important finding in this experiment is that P2NeurRank outper-
formed olRankNet, where m = 100 for the neural network structure.
As we have repeatedly mentioned, though enjoying nice theoreti-
cal advantages, in practice it is impossible to use the required full
covariance matrix to compute the confidence interval in olRankNet,
the diagonal approximation creates an unknown gap from its theo-
retical guarantee to practical performance. In Figure 6, we compare
the offline performance of P2NeurRank with m = 100, olRankNet
with m = 100, and neural models with simpler neural structures
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under the perfect click model. The results demonstrate that for the
models with 16 X 16 neural network, the diagonal approximation
hurts the performance compared to using the full covariance matrix.
As proved in our theoretical analysis, P2NeurRank enjoys the same
theoretical regret guarantee as olRankNet; but because it does not
need to endure the approximation, all its nice theoretical proper-
ties are preserved in its actual implementation. Compared to the
results obtained in linear models, we have good reasons to believe
olRankNet with full covariance matrix could perform even better,
but with a much larger (if not infeasible) computational overhead.

Again the impact from the number of parallel rankers one needs
to maintain for perturbation-based exploration in P?°NeurRank is
still not sensitive. As shown in both Figure 4 and 5, N = 2 gave
us the most promising empirical performance, with the minimum
added computational overhead. This is a strongly desired property
for applying P?NeurRank in practice.

5.2.2 Zoom into P’ NeurRank. In this experiment, we provide de-
tailed analysis on P?NeurRank. P2NeurRank has only two hyper-
parameters, in addition to those inherited from olRankNet, i.e., the
number of parallel rankers N and the scaled of pesudo noise 1.
In Figure 7 and 8, we report the online and offline performance of
P2NeurRank with varying value of N for a fixed variance scale v?
of the added noise. We can clearly observe that with a larger noise
scale, e.g., v = 0.1, setting N = 2 gives the best performance, com-
paring to N = 5 and N = 10. When the added noise scale is small,
e.g., v = 0.01, setting N = 10 demonstrates better performance than
those with fewer number of models. This indicates that the variance
of the added noise v and the number of parallel rankers N together
control the exploration in P2NeurRank. A larger variance scale, e.g.,
v = 0.1, together with too many models, e.g., N = 10, lead to more
aggressive exploration and less effective model training. A smaller
variance, e.g., v = 0.01, together with fewer models might not lead
to sufficient exploration for model update, which also leads to worse
performance. Therefore, in practice, the value of v and N should be
carefully handled to perform effective exploration. And considering
the added computational overhead, using fewer parallel rankers
with larger scale of added noise should be a preferred solution.

5.2.3  Efficiency comparison. In this section, we compare the run-
ning time of our proposed P?NeurRank and the olRankNet models.
We performed the experiments on a NVIDIA GeForce RTX 2080Ti
graphical card. As discussed before, with complex neural networks,
e.g., m = 100, it is impossible to perform the inverse of the full
covariance matrix due to both high space and time complexity.
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Therefore, to compare running time, we perform the experiments
on the MSLR-Web10K dataset using a simpler neural network with
m = 16, where the perfect click model is adopted to generate the
clicks. The result is reported in Figure 9. We compare the olRankNet
with a full covariance matrix, olRankNet with diagonal covari-
ance matrix, P2NeurRank with N=2 and P?NeurRank with N = 1.
For P2NeurRank, no extra computation is required for exploration.
Therefore, the running time of P2NeurRank with N = 1 can be
viewed as the time used for the model training. We can clearly
notice the big gap between the running time of olRankNet with
full covariance matrix and P2NeurRank with N = 1, which indicates
the computational overhead caused by constructing the confidence
interval with the full covariance matrix. Using diagonal approxima-
tion greatly reduces the total running time. However, according to
our previous discussion, there is no theoretical performance guar-
antee for such an approximation, and our empirical results show
that the diagonal approximation often leads to decreased perfor-
mance in both offline and online evaluations. On the other hand,
P?NeurRank with N=2 takes slightly more time than olRankNet
with diagonal approximation, while the empirical performance is
significantly better (shown in Figure 2 and Figure 6). Besides, in
practice, the N models can be trained in parallel, which will fur-
ther reduce the running time. This demonstrate the feasibility and
advantage of our proposed OL2R model in real applications.

6 CONCLUSION

In this work, we developed a provable efficient exploration strategy
for neural OL2R based on bootstrapping. Previous solutions for
the purpose either do not have theoretical guarantees [40, 54] or
are too expensive to be exactly implemented in practice [23]. Our
solution has an edge on both sides: it is proved to induce a sublinear
upper regret bound counted over the number of mis-ordered pairs
during online result serving, and its added computational overhead
is feasible. Our extensive empirical evaluations demonstrate that
our perturbation-based exploration unleashes the power of neural
rankers in OL2R, with minimally added computational overhead
(e.g., oftentimes only one additional ranker is needed to introduce
the required exploration). And our perturbation-based exploration
is general and can also be used in linear models when the input
feature dimension is very large.

Our current theoretical analysis depends on gradient descent
over the entire training set for model update in each round, which
is still expensive and should be further optimized. We would like
to investigate the possibility of more efficient model update, e.g.,
online stochastic gradient descent or continual learning, and the
corresponding effect on model convergence and regret analysis. In
addition, how to generalize our neural ranker architecture to more
flexible choices, e.g., recurrent neural networks and Transformers,
is another important direction of our future work.
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A APPENDIX
A.1 Proof of Lemma 4.2

Proor. According to the definition of g;() in Section 4, we
have the following equation for the auxiliary solution 6;,
-1

9:(6r) = Z Z Y?jxfj

s=—d+1 (i,j) €Qs

Then, to bound the deviation caused by the observation noise, we
have the following derivations for any input x

lo(x76;) — o(x" 6| < kylx" (8, — 6]

_ k _
=kulx"G; 1 (g:(0r) — g:(6))] < i|xTAt_1(g,(9,) - g:(6M)]

k N *
< lxllp-1lge (8e) = ge (0% l| o
cﬂ t t

The first inequality is due to the Lipschitz continuity of the logistic
function. As logistic function is continuously differentiable, the
second equality is according to the Fundamental Theorem of Calcu-
lus, where G; = Zé;} 22(i,j) Qs é'(xls.j—r9))(?].)(?].—r + AL In the third
inequality, A; = Z;i 2(i,j) €Q, xfjxls.j-r + AL And this inequality
holds as G; > c, Ay, with ¢, = infgeg 6(x' 0).

Next, we will bound ||g; (0;) — 9f(0*)”A;1-

llg:(6;) —gt(o*)”A;l
-1

.
=1 D) v - ol T O la
=—d+1
0
.
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The first equality is based on the definition of function g;, and 6;.
The last inequality is according to the self-normalized bound for
martingales in [1]. This completes the proof. O

A.2 Proof of Lemma 4.4

Proor. According to Lemma 4.2, with probability at least 1 -,
event E; defined in Section 4 occurs. Under event E;, for document
pair (i, j) satisfying i > j for the given query (e.g., U(xijO*) > %)

we first analyze the probability that at least one estimate o(xij 5; ") ) >

l for n € [N], e.g., P(maxp,e [N O'(Xt TG("))) > —. For simplic-
~(n)

ity, in the following analysis, we use o, ’, 6;and o™ to present

U(ijTGt(")), O'(Xlu Ot)and J(xijTG ) respectively.
IP( max 0' > )—1 H]P’(O'(") %
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For any n € [N], we have the following bound for P(O't(") < %) .

P(o(™ < %) <P(o" < o*)
=P(c\" 6, < " — &)

<P(o}" = 61 < arllxtllp-1)

<P(euxt; (8 - 0) < arlixfllz )
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ik
=P(U(x};) < Uft”Xl]”A 1)
Cu

where U(xt )= xt TA l(gt(Ot) - 9+(0)). According to the defini-

tion of 0;, we know that,

t—1
t t T -1 S oS
UG =%, AT D v
s=—d+1

It is easy to obtain that E[U(xfj)] = 0 with E[y] = 0. And the

variance of U(xfj) is,

-1
Var[U(xU)] —vx At( Z xijij)Atxgj
—d+1

_szt A 1().I+Zx”xs T)A

Therefore, we have U(xl?j) ~ N(0,v? ||xfj ||i;1 ), and the probability
t

can be upper bounded as,

ky ky
P(U(x;) < Loy||xt ||A_1)—1—P(U(x i) > at”Xl]”A-l)
Cu Cu
_p2
B
4rp
where f =
N > log 5/log(1 - exp( —B%)/(4vzp)), with probablhty at least
1- 4, P(max,e| N O't( > 2)

Therefore, under event E;, with N > log §/log(1—exp(-%)/(4v7p)),

based on the definition of w} in Section 3.2, we know that for docu-
(n))
To

,6rand o™ to

mentiand jatroundt, (i, j) € wf ifand only if ming, ¢ 0'(

~(n)

E' For simplicity, in the following analysis, we use o,
present a( ¢ Tﬂ(n)) ( Ot)and 0(
the probability of being uncertam can be bounded as,

9*) respectively. Then
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Based on the definition of Ay, 0 —1/2 > Apin and 6 —6; < CB.
And according to the random matrix theory and Lemma 2 in [24],
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when t > t’, Apmin — CB > 0 which can be viewed as a constant
¢Amin. Therefore, we have the following inequalities,

PE™ > 1/2) =PE™ 0" + 0" — 6, + 61 > 1/2)

(m)

—~ 1 —~
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Let B= —/>—"% we have the probability of being uncertain

rank order upper bounded as,
P((i.)) € 0ff) <1 = (1= exp(-B)"
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< — Nlog(1 - exp(—B)) < —Nlogexp(-1/B))
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Therefore, P((i,j) € w’t“‘) < min {1, —_—

2 2A2
Cuc Amin

pletes the proof. O

}. This com-

A.3 Proof of Theorem 4.5

ProOF. Once the certain and uncertain rank orders are deter-
mined, our proposed model will generate the ranked list by topo-
logical sort with respect to the certain rank orders. Therefore,
the regret only comes from the uncertain rank orders. In each
round of result serving, as the model 6; would not change until
the next round, the expected number of uncertain rank orders, Uy,
can be estimated by summing the uncertain probabilities over all
possible pairwise comparisons under the current query g;, e.g.,
E[U] = YR ) € of).

Based on Lemma 4.4, the cumulative number of mis-ordered
pairs can be bounded by the probability of observing uncertain
rank orders in each round, which shrinks with more observations
become available over time,

T 1T
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2,2 2
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As A; only contains information of observed document pairs so
far, the number of mis-ordered pairs among the observed documents
is guaranteed to be upper bounded. To reason about the number of
mis-ordered pairs in those unobserved documents (i.e., from o; to V;
for each query gq;), we leverage the constant p*, which is defined as
the minimal probability that all documents in a query are examined
over time,

T
E[Zm' Z(i,j)e[V,]Z ”Xltj”AZI]
T —
B[ Dy Z(i,j)e[vt]z Ibcijla; < Elpr ' 1{or = Vi3 ]]

. T
<P B[ Dy Dinyervye Khillag tor = Vi)

Besides, we only use the independent pairs Q; to update the
model and the corresponding A; matrix. Therefore, to bound the
regret, the pairs can be divided into two parts based on whether they
are belonging to the observed set Q;. Then, we have the following
inequalities,

T s Ta—-1_s
Zs:t’Z(i,j)er Zke[v,]\{i,j}zxik As X

T
< Zs:t/ (Vnzmx - 2Vmax)P2//1min(As)~

T

<=1 based on Lemma 10

And for the pairs belonging to the {Qs}
and Lemma 11 in [1], we have,
OmaxTP?

T s 12
Do Daiinea, Ve = DIKGIIE - < 2dVinax log(1+ =22

Then, chaining all the inequalities, we have when event E; hap-
pens, the regret can be upper bounded as,

’ T ’ 1 OmaxTPZ
RT <R + Zs:t’ rs <R+ p_*ZdeaXClOg(l + W)
where C = 2Nkl2,v2/cl2,czA12mn, R’ = t'Viax, with t’ defined in
Lemma 4.4. This completes the proof. O
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