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ABSTRACT
Deep neural networks (DNNs) demonstrates significant advantages

in improving ranking performance in retrieval tasks. Driven by

the recent developments in optimization and generalization of

DNNs, learning a neural ranking model online from its interactions

with users becomes possible. However, the required exploration for

model learning has to be performed in the entire neural network

parameter space, which is prohibitively expensive and limits the

application of such online solutions in practice.

In this work, we propose an efficient exploration strategy for on-

line interactive neural ranker learning based on bootstrapping. Our

solution is based on an ensemble of ranking models trained with

perturbed user click feedback. The proposed method eliminates ex-

plicit confidence set construction and the associated computational

overhead, which enables the online neural rankers training to be ef-

ficiently executed in practice with theoretical guarantees. Extensive

comparisons with an array of state-of-the-art OL2R algorithms on

two public learning to rank benchmark datasets demonstrate the

effectiveness and computational efficiency of our proposed neural

OL2R solution.
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1 INTRODUCTION
Online learning to rank (OL2R) has recently attracted great research

interest because of its unique advantages in capturing users’ rank-

ing preferences without requiring expensive relevance labeling as in

classical offline learning to rank solutions [24, 28, 33, 36, 43, 48, 54].

Because users’ implicit feedback is noisy and biased [2, 10, 26, 27],
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the key in OL2R is to effectively explore the unknowns for improved

relevance estimation, while serving the users with high-quality

ranked results, which is known as the explore-exploit trade-off.

Most existing work in OL2R assumes a linear scoring function

[43, 48, 54]. Dueling bandit gradient descent (DBGD) and its dif-

ferent variants are the most popularly used OL2R solutions [54],

where new model variants are sampled via random perturbations

in the parameter space to estimate the direction for model update.

As its non-linear extension, pairwise differential gradient descent

(PDGD) [40] samples the next ranked document from a Plackett-

Luce model and estimates an unbiased gradient from the inferred

pairwise preference. PairRank [24] learns a logistic ranker online

in a pairwise manner and explores the ranking space based on the

model’s estimation uncertainty about the pairwise comparisons

of document rankings. Though practically effective, such a linear

or generalized linear model assumption is incompetent to capture

the possible complex non-linear relations between a document’s

ranking features and its relevance quality. This is already proved

to be crucial in the past offline learning to rank practices [6, 38]

To unleash the power of representation learning, deep neural net-

works (DNN) have been introduced to learn the underlying scoring

function for document ranking. In [40], PDGD is also experimented

on a neural ranker. Though the authors reported promising empiri-

cal results, its theoretical property (e.g., convergence) is unknown.

On the other hand, enabled by the substantial progress in opti-

mization and generalization of DNNs, quantifying a neural model’s

uncertainty on new data points become possible [3, 7, 8, 11, 12].

A recent work named olRankNet [23] extended PairRank with a

neural network ranker, which performs exploration in the pair-

wise document ranking space with topological sort by using the

neural tangent kernel technique [22]. Compared with PairRank, ol-

RankNet provided encouraging performance improvement, which

was reported to be the best among all state-of-the-art OL2R solu-

tions. More importantly, olRankNet is proved to achieve a sublinear

gap-dependent regret upper bound, which is defined on the total

number of mis-ordered pairs over the course of interactions with

users. To our best knowledge, olRankNet is the first known OL2R

solution for neural rankers with theoretical guarantees.

Despite being theoretically sound and empirically effective, ol-

RankNet’s limitation is also remarkably serious: its computational

cost for performing the required exploration is prohibitively high

(almost cubic to the number of neural network’s parameters). More

specifically, to quantify the uncertainty of its estimated pairwise

preferences among candidate documents, it has to maintain a high-

probability confidence set for the current ranker’s parameter esti-

mation over time. However, the construction of the confidence set

depends on the dimensionality of the neural network’s parameters:
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as required by the neural tangent kernel, an inverse of the covari-

ance matrix computed based on the gradient of the entire neural

network is needed whenever the network is updated. For example,

for a simple two layer feed-forward neural network with input

dimension 𝑑 and𝑚 neurons in each layer, the size of the covariance

matrix is (𝑚𝑑 +𝑚2 +𝑚)2. The best known time complexity for com-

puting the inverse of this covariancematrix is𝑂
(
(𝑚𝑑+𝑚2+𝑚)2.373

)
,

by the optimized Coppersmith–Winograd algorithm [51]. This com-

putational complexity quickly outpaces the limit of any modern

computational machinery, given𝑚 or 𝑑 are usually very large in

practice (e.g.,𝑚 is often in the hundreds and 𝑑 in tens of thousands)

and such matrix inverse operation is needed in every round when

the neural network is updated. Due to this limitation, olRankNet

has to employ the diagonal approximation of the covariance matrix

in its actual implementations [23]. But such an approximation loses

its all theoretical guarantees, which unfortunately leads to a gap

between the theoretical and empirical performance of olRankNet.

And even how this gap would depend on the dimensionality of

the network and affect olRankNet’s performance is completely un-

known. This inevitably limits the application of the neural OL2R

solutions, especially the olRankNet-type algorithms, in practice.

In this work, we develop an efficient and scalable exploration

strategy for olRankNet by eliminating its explicit confidence set

construction. The basic idea is to use bootstrapping technique to

measure the uncertainty of a neural ranker’s output via a set of sam-

ple estimates. In particular, we maintain 𝑁 rankers in parallel. And

in each round, after receiving the user’s click feedback, each of the

rankers is updated with the observed clicks and independently gen-

erated pseudo noise from a zero-mean Gaussian distribution. The

overall model’s estimation uncertainty on a pair of documents is

then determined by an ensemble of the estimates from all𝑁 rankers.

For example, for a document pair (𝑖, 𝑗), if all 𝑁 rankers predict 𝑖 ≻ 𝑗 ,
(𝑖, 𝑗) is considered as in a certain rank order, otherwise it is con-

sidered as in an uncertain rank order, where exploration is needed.

Besides regular neural network updates, no additional computation

is needed, which greatly reduces the computational overhead as

required in olRankNet. We name our new solution as Perturbed

Pairwise Neural Rank (or P
2
NeurRank in short). We rigorously

prove that with a high probability P
2
NeurRank obtains the same

regret as olRankNet, but the computational complexity is way much

lower. In addition, as no approximation is needed in P
2
NeurRank,

its theoretical analysis directly suggests its empirical performance.

Our extensive empirical evaluations demonstrate the strong advan-

tage in both efficiency and effectiveness of P
2
NeurRank against

olRankNet and a rich set of state-of-the-art solutions over two OL2R

benchmark datasets on standard retrieval metrics.

2 RELATED WORK
Online learning to rank with neural rankers.Most of the exist-

ing parametric OL2R solutions are limited to linear ranking models

[36, 54]. In particular, DBGD and its extensions [44, 48, 49, 54],

as the most popularly referred OL2R solutions, are inherently de-

signed for linear models as they rely on random perturbations in

linear model weights for parameter estimation. But such a linear as-

sumption is incompetent to capture any non-linear relations about

documents’ relevance quality under given queries, which shields

such OL2R algorithms away from the successful practices in offline

learning to rank models that are empowered by DNNs [6, 41].

Such a limitation motivates some preliminary attempts in OL2R.

In [40], pairwise differentiable gradient descent (PDGD) is pro-

posed to sample the next ranked document from a Plackett-Luce

model and estimate an unbiased gradient from the inferred pairwise

ranking preference. Although improved empirical performance is

reported for PDGD with a neural ranker, there is no theoretical

guarantee on its online performance. Taking a completely differ-

ent perspective, PairRank [24] directly learns a pairwise logistic

regression ranker online and explores the pairwise ranking space

via a divide-and-conquer strategy based on the model’s uncertainty

about the documents’ rankings. The authors claimed logistic re-

gression can be treated as a one-layer feed-forward neural network,

but it is unclear how PairRank can be extended to more general

neural ranking architectures.

Recently, substantial progress in optimization and generaliza-

tion of DNNs enables theoretical analysis about the neural mod-

els [18, 37, 39, 46, 47, 52, 53, 57, 58]. For example, with the neural

tangent kernel technique [22], the uncertainty of a neural model’s

estimation on new data points can be quantified [25, 55, 56]. Most

recently, olRankNet [23] is proposed to extend PairRank with a

multi-layer neural ranker. The authors proved that the good theo-

retical properties of PairRank (i.e., sublinear regret) are inherited in

olRankNet, and empirically improved performance over PairRank

was also reported in olRankNet. However, one serious issue of ol-

RankNet is its cumbersome computational complexity: to quantify

the confidence interval of the neural ranker’s output for the ex-

ploration purpose, one has to compute the inverse of a covariance

matrix which is derived by the gradient of entire neural network.

The complexity is almost cubic to the number of parameters in

the neural network, which is prohibitively expensive for OL2R, as

this matrix inverse is needed every time the ranker is updated. The

authors in [23] suggested using diagonal approximation for the

covariance matrix, but no guarantee is provided about the impact

of such an approximation.

Randomized exploration in online learning. Efficient explo-

ration is critical for online algorithms, as the model learns by ac-

tively acquiring feedback from the environment [34]. Distinct from

the deterministic exploration strategies, such as upper confidence

bound [1, 5], randomization-based exploration enjoys advantages

in its light computational overhead and thus has received increasing

attention in online learning community. The most straightforward

randomization-based exploration strategy is 𝜖-greedy [5], which

takes the currently estimated best action with probability 1 − 𝜖 ,
otherwise randomly take an action. It has been applied in OL2R

in [19]. Almost no additional computation is needed in 𝜖-greedy

for exploration, but the exploration is also independent from the

current model estimation and therefore can hardly be optimal in

practice. More advanced randomization-based exploration strate-

gies are built on the bootstrapping technique in statistics. Giro [30]

explores by updating a model with a bootstrapped sample of its

history with pseudo reward. In [29, 32], random noise is added to

the observed feedback for the model training to achieve the purpose

of exploration in model’s output. Such a strategy is proved to be

effective in both linear and generalized linear model training. Most

recently, Jia et al. [25] proved randomization can also be used for
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online neural network learning. The most closely related work to

our study is [4, 21], where an ensemble of models are trained to

approximate the confidence interval for the purpose of exploration

in online model update.

3 METHOD
In this section, we provide a brief introduction of the general prob-

lem setting in OL2R, and then present our proposed solution for

scalable exploration in neural OL2R.

3.1 Problem Formulation
In OL2R, a ranker directly learns from the interactions with users for

𝑇 rounds. At each round 𝑡 = 1, ...,𝑇 , the ranker receives a query 𝑞𝑡
and its associated𝑉𝑡 candidate documents represented as a set of 𝑑-

dimensional query-document feature vectors, X𝑡 = {x𝑡
1
, x𝑡

2
, . . . x𝑡

𝑉𝑡
}

with x𝑡
𝑖
∈ R𝑑 , and we assume that ∥x𝑡

𝑖
∥ ≤ 𝑢. Once the query is

received, the ranker determines the ranking of the 𝑉𝑡 documents

based on its knowledge about the documents’ relevance so far. We

denote 𝜋𝑡 = (𝜋𝑡 (1), ..., 𝜋𝑡 (𝑉𝑡 )) ∈ Π( [𝑉𝑡 ]) as the ranking of the 𝐿𝑡
documents, where 𝜋𝑡 (𝑖) represents the rank position of document

𝑖 given query 𝑞𝑡 , and Π( [𝑉𝑡 ]) is the set of all permutations of

the 𝑉𝑡 documents. After the ranked list is returned to the user,

the user examines the list and provides her click feedback 𝐶𝑡 =

{𝑐𝑡
1
, 𝑐𝑡
2
, ..., 𝑐𝑡

𝑉𝑡
}, where 𝑐𝑡

𝑖
= 1 if the user clicks on document 𝑖 at

round 𝑡 ; otherwise 𝑐𝑡
𝑖
= 0. The ranker updates itself according to

the feedback and proceeds to the next query.

Existing studies have repeatedly demonstrated that 𝐶𝑡 is biased

and noisy [2, 10, 26, 27]. Users tend to click more on the top-ranked

documents, which is known as the position bias; and as users can

only interact with the documents shown to them, the ranker only

has partial observations about relevance feedback from user clicks,

which is known as the presentation bias. Therefore, a good OL2R

solution needs to carefully deal with the biased implicit feedback

and effectively explore the unknowns for improved relevance esti-

mation on the one hand, and serve users with the currently best

estimated ranked result on the other hand.

In this work, we follow the standard practice and treat clicks

as relative preference feedback [26]. More specifically, the clicked

documents are assumed to be preferred over those examined but

unclicked documents. Besides, we consider every document that

precedes a clicked document and the first 𝑙 subsequent unclicked

document as examined. Such an assumption is widely adopted

and proved to be effective in both offline and online learning to

rank [2, 24, 40, 48]. In particular, we denote 𝑜𝑡 as the index of the

last examined position in the ranked list 𝜋𝑡 at round 𝑡 .

Different from offline learning to rank, OL2R needs to serve

the users while learning from its presented rankings. Therefore

cumulative regret is an important metric for evaluating OL2R. In

this work, we follow the regret defined as the number ofmis-ordered

pairs from the presented ranking to the ideal one [23, 24, 33],

𝑅𝑇 = E
[∑︁𝑇

𝑡=1
𝑟𝑡
]
= E

[∑︁𝑇

𝑡=1
𝐾 (𝜋𝑡 , 𝜋∗𝑡 )

]
where 𝜋𝑡 is the ranked list generated by the current ranker, 𝜋∗𝑡 is

the optimal ranking for the current query, and 𝐾 (𝜋𝑡 , 𝜋∗𝑡 ) =
���{(𝑖, 𝑗) :

𝑖 < 𝑗,
(
𝜋𝑡 (𝑖) < 𝜋𝑡 ( 𝑗) ∧ 𝜋∗𝑡 (𝑖) > 𝜋∗𝑡 ( 𝑗)

)
∨
(
𝜋𝑡 (𝑖) > 𝜏𝑡 ( 𝑗) ∧ 𝜋∗𝑡 (𝑖) <

𝜋∗𝑡 ( 𝑗)
)}���. Such a pairwise regret definition directly connects an

OL2R algorithm’s online performance with classical ranking eval-

uations as most ranking metrics, such as ARP and NDCG can be

decomposed into pairwise comparisons [50].

3.2 Exploration in olRankNet
In the recent decade, DNNs have demonstrated powerful represen-

tation learning capacity and significantly boosted the performance

for a wide variety of machine learning tasks [14, 35], including

learning to rank [13, 17, 20, 45]. OL2R, on the other hand, has re-

ceived limited benefit from the advances in DNNs. While DNNs

are generally more accurate at predicting a document’s relevance

under a given query (i.e., exploitation), creating practical strategies

to balance exploration and exploitation for neural ranking models

in sophisticated online learning scenarios is challenging.

Built on the advances in renewed understandings about the

generalization of DNNs, olRankNet extends PairRank with a neural

scoring function and demonstrates the best empirical performance

with theoretical guarantees [23]. olRankNet directly learns a neural

ranker from users’ implicit feedback with a fully connected neural

network 𝑓 (x;𝜽 ) =
√
𝑚W𝐿𝜙 (W𝐿−1𝜙 (. . . 𝜙 (W1x))), where depth

𝐿 ≥ 2, 𝜙 (x) = max{x, 0}, and W1 ∈ R𝑚×𝑑 , W𝑖 ∈ R𝑚×𝑚 , 2 ≤ 𝑖 ≤
𝐿 − 1, W𝐿 ∈ R𝑚×1, and 𝜽 = [vec(W1)⊤, . . . , vec(W𝐿)⊤]⊤ ∈ R𝑝
with 𝑝 =𝑚+𝑚𝑑+𝑚2 (𝐿−2). At each round, the model 𝜽𝑡 is updated
by optimizing the cross-entropy loss between the predicted pairwise

relevance distribution on all documents and those inferred from

user feedback till round 𝑡 with a ℓ2-regularization term centered at

the randomly initialized parameter 𝜽0:

L𝑡 (𝜽 ) =
∑︁𝑡

𝑠=1

∑︁
(𝑖, 𝑗) ∈Ω𝑠

−(1 − y𝑠𝑖 𝑗 ) log
(
1 − 𝜎 (𝑓𝑖 𝑗 )

)
− y𝑠𝑖 𝑗 log

(
𝜎 (𝑓𝑖 𝑗 )

)
+𝑚𝜆/2∥𝜽 − 𝜽0∥2, (3.1)

where 𝑓 𝑡
𝑖 𝑗

= 𝑓 (x𝑖 ;𝜽𝑡−1) − 𝑓 (x𝑗 ;𝜽𝑡−1) is the difference between

the estimated ranking scores of document 𝑖 and 𝑗 , 𝜆 is the ℓ2-

regularization coefficient, Ω𝑠 denotes the set of document pairs

that received different click feedback at round 𝑠 , i.e. Ω𝑠 = {(𝑖, 𝑗) :
𝑐𝑠
𝑖
≠ 𝑐𝑠

𝑗
,∀𝜏𝑠 (𝑖) ≤ 𝜏𝑠 ( 𝑗) ≤ 𝑜𝑡 }, y𝑠𝑖 𝑗 indicates whether document

𝑖 is preferred over document 𝑗 based on the click feedback, i.e.,

y𝑠
𝑖 𝑗

= (𝑐𝑠
𝑖
− 𝑐𝑠

𝑗
+ 1)/2 [6].

However, there is uncertainty in the estimated model 𝜽𝑡 due

to the click noise, i.e., ∥𝜽𝑡 − 𝜽 ∗∥ ≠ 0, where 𝜽 ∗ is assumed to be

the underlying ground-truth model parameter. And therefore the

model’s output ranking might be wrong because of this uncertainty.

olRankNet decides to randomize its output document rankings

where its estimation is still uncertain, which helps collect unbiased

feedback for improved model estimation subsequently. Based on

the neural tangent kernel technique, the uncertainty of olRankNet’s

estimated pairwise rank order can be analytically quantified and

upper bounded with a high probability, under the assumption that

pairwise click noise follows a 𝑅-sub-distribution [23]. This is de-

scribed in the following lemma.

Lemma 3.1. (Confidence Interval of Pairwise Rank Order in ol-

RankNet). There exist positive constants 𝐶1 and 𝐶2 such that for

any 𝛿1 ∈ (0, 1), with satisfied step size of gradient descent 𝜂, and

the neural network width𝑚, at round 𝑡 < 𝑇 , for any document pair
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(𝑖, 𝑗) under query 𝑞𝑡 , with probability at least 1 − 𝛿1,

|𝜎 (𝑓 𝑡𝑖 𝑗 ) − 𝜎 (𝑓
∗
𝑖 𝑗 ) | ≤ 𝛼𝑡 ∥g

𝑡
𝑖 𝑗/
√
𝑚∥A−1𝑡 + 𝜖 (𝑚), (3.2)

where 𝜖 (𝑚) is the approximation error from gradient descent in

neural network optimization, 𝑓 ∗
𝑖 𝑗
is the ground-truth difference be-

tween document pair (𝑖, 𝑗), g𝑠
𝑖 𝑗

= g(x𝑖 ;𝜽𝑠 ) − g(x𝑗 ;𝜽𝑠 ) with g(x;𝜽 )
as the gradient of input x with respect to the entire network param-

eters, 𝛼𝑡 = 𝐶1

(√︃
𝑅2 log(det(A𝑡 )/𝛿2

1
det(𝜆I)) +

√
𝜆𝐶2

)
with 𝐶1 and

𝐶2 as positive constants, A𝑡 =
∑𝑡−1
𝑠=1

∑
(𝑖′, 𝑗 ′) ∈Ω𝑠

1

𝑚 g𝑠
𝑖′, 𝑗 ′g

𝑠
𝑖′, 𝑗 ′
⊤ + 𝜆I.

With the constructed confidence interval of the estimated pair-

wise document rank order, olRankNet separates all the candidate

document pairs into two sets, certain rank order 𝑆𝑐𝑡 and uncertain

rank order 𝑆𝑢𝑡 . 𝑆
𝑐
𝑡 contains the document pairs where with high

probability the estimated pairwise order is correct. For example, for

document 𝑖 and 𝑗 , if the lower confidence bound of the probability

that 𝑖 is better than 𝑗 , i.e., 𝜎 (𝑓 𝑡
𝑖 𝑗
) −𝛼𝑡 ∥g𝑡𝑖 𝑗/

√
𝑚∥A−1𝑡 − 𝜖 (𝑚), is larger

than 0.5, then (𝑖, 𝑗) belongs to 𝑆𝑐𝑡 . Otherwise, the pair belongs to 𝑆𝑢𝑡 ,
which indicates that the predicted rank order can still be wrong.

When constructing the ranked list, olRankNet first builds a rank-

ing graph with all the candidate documents and the certain rank

orders in 𝑆𝑐𝑡 . Then topological sort is performed, where the certain

rank orders will be followed (i.e., exploitation), and uncertain rank

orders will be randomized (i.e., exploration). With such a ranking

strategy, olRankNet is proved to have an O(log2 (𝑇 )) cumulative

pairwise regret upper bound.

Although olRankNet has a strong theoretical foundation, its

scalability is severely limited due to the additional computation

required for constructing the confidence interval. In particular, the

covariance matrix A in Lemma 3.1 is constructed with the gradient

of the scoring function with respect to the network parameters, of

which the size 𝑝 is very large. In order to construct the confidence

interval according to Eq (3.2), the inverse of the covariance matrix

A has to be computed whenever the model is updated, which results

in an unacceptably high computational cost (around 𝑂 (𝑝3)). As a
consequence, it is practically impossible for olRankNet to be exactly

executed. In [23], approximation is employed to make olRankNet

operational in practice, e.g., only using the diagonal of A. How-
ever, there is no theoretical guarantee for such an approximation,

which unfortunately breaks the theoretical promise of olRankNet

and directly leads to an unknown gap between its theoretical and

empirical performance.

3.3 Scalable Exploration with Perturbed
Feedback

To bridge the gap, we develop an efficient and scalable strategy for

recognizing the certain and uncertain rank orders without explicitly

constructing the confidence set. And our basic idea is to leverage the

bootstrapping technique to create randomness in a neural ranker’s

output. In particular, at each round, we perturb the entire user

feedback history for 𝑁 times with noise freshly and independently

sampled from a zero-mean Gaussian distribution, and train the

corresponding neural ranker as usual. Denote model 𝜽 (𝑛) for 𝑛 ∈
[𝑁 ] as the solution of minimizing the following objective function

Figure 1: Comparison between PairRank/olRankNet and
P2LinRank/P2NeuRank

with gradient descent,

𝜽 (𝑛) =min

∑︁𝑡

𝑠=1

∑︁
(𝑖, 𝑗) ∈Ω𝑠

−
(
1 − (y𝑠𝑖 𝑗 + 𝛾

𝑠,(𝑛)
𝑖 𝑗
)
)
log

(
1 − 𝜎 (𝑓𝑖 𝑗 )

)
− (y𝑠𝑖 𝑗 + 𝛾

𝑠,(𝑛)
𝑖 𝑗
) log

(
𝜎 (𝑓𝑖 𝑗 )

)
+𝑚𝜆/2∥𝜽 − 𝜽0∥2, (3.3)

where {𝛾𝑠,(𝑛)
𝑖 𝑗
}𝑡
𝑠=1
∼ N(0, 𝜈2) are Gaussian random variables that

are independently sampled in each round 𝑡 , and 𝜈 is a hyper-

parameter that controls the strength of perturbation (and thus the

exploration) in P
2
NeurRank.

The detailed procedure of P
2
NeurRank is given in Algorithm 1.

The algorithm starts by initializing the 𝑁 neural rankers. At each

round of interaction, given a query 𝑞𝑡 , for each pair of candidate

documents, 𝑁 parallel predictions about their rank order will be

generated by the set of neural rankers. If all the 𝑁 estimations

give the same prediction about the document pair’s rank order, e.g.,

𝑖 ≻ 𝑗 for document 𝑖 and document 𝑗 , then (𝑖, 𝑗) is considered as a

certain rank order (line 9 - line 13 in Algorithm 1). Otherwise, the

relation between these two documents is still uncertain and further

exploration is needed there when generating the ranked list. Once

the sets of certain and uncertain rank orders are determined, we

follow the same procedure of olRankNet to generate the ranked list

via topological sort with respect to the certain rank orders.

The key intuition for P
2
NeurRank is to utilize the variance in-

troduced in the randomly perturbed click feedback to encourage

exploration. With the injected perturbation, there are two kinds

of deviations existing in the estimated pairwise preference in each

of the 𝑁 parallel neural rankers: 1) the deviation caused by the

observation noise introduced by the click feedback; 2) the deviation

caused by the added perturbations. By properly setting the variance

parameter 𝜈 for the added perturbation, the corresponding devia-

tion will introduce enough randomness in the model estimation.

For each round of interaction, we maintain 𝑁 models and with

high probability, the minimum of the estimated pairwise preference

serves as the pessimistic estimate of the preference.

Compared to olRankNet, which requires to maintain the inverse

of the covariance matrix, P
2
NeurRank does not need any added

computation for the purpose of exploration, besides the regular

neural network updates. As a result, P
2
NeurRank greatly alleviates
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the computation burden in neural OL2R. More specifically, in each

round, the online neural ranking algorithm generally takes the

following steps: (1) predict the rank order in each document pair,

(2) generate the ranked list by topology sort via the constructed

certain and uncertain rank orders, and (3) update the model accord-

ing to the newly received click feedback. With 𝑝 representing the

total number of parameters in a neural ranker, olRankNet has the

time complexity O(𝑉𝑡𝑝 +𝑉 2

𝑡 ) for the first step. As the 𝑁 neural

models in P
2
NeurRank are independent from each other, the time

complexity of P
2
NeurRank in the first step is also O(𝑉𝑡𝑝 +𝑉 2

𝑡 )
by executing the 𝑁 ranker’s predictions in parallel. For the third

step, again by the training the 𝑁 neural rankers in parallel using

gradient descent, both P
2
NeurRank and olRankNet have the time

complexity of O(𝜏𝑝∑𝑡
𝑠=1 |Ω𝑠 |) where 𝜏 is the number of epochs

for training the neural network. The key difference lies in the

second step. olRankNet requires the inverse of covariance ma-

trix, which has the time complexity at least O(𝑝2.2373). Besides,
constructing the confidence interval for all the document pairs

has the time complexity of O(𝑉 2

𝑡 𝑝
2). While for P

2
NeurRank, find-

ing the minimum of the 𝑁 predictions for all the document pairs

costs O(𝑁𝑉 2

𝑡 ). Once the certain and uncertain rank orders are de-

termined, both algorithms require O(𝑉𝑡 + 𝐸𝑡 ) for the topological
sort, where 𝐸𝑡 represents the number of certain rank orders and

𝐸𝑡 ≤ 𝑉𝑡 . Therefore, for the second step, olRankNet has the total time

complexity as O(𝑝2.2373 +𝑉 2

𝑡 𝑝
2 +𝑉𝑡 + 𝐸𝑡 ) = O(𝑝2.2373 +𝑉 2

𝑡 𝑝
2),

while P
2
NeurRank has the time complexity as O(𝑁𝑉 2

𝑡 +𝑉𝑡 + 𝐸𝑡 ) =
O(𝑁𝑉 2

𝑡 ). As 𝑝 is oftentimes in the order of tens of thousands (if not

less), P
2
NeurRank greatly reduces the time required for perform-

ing exploration in neural OL2R. And also empirically, the number

of parallel rankers 𝑁 in P
2
NeurRank does not need to be large.

For example, in our experiments, we found 𝑁 = 2 already led to

promising performance of P
2
NeurRank comparing to olRankNet.

We want to highlight that our proposed perturbation-based ex-

ploration strategy can also be applied to linear ranking models, e.g.,

PairRank [24]. The procedure is almost the same as described in

Algorithm 1, and so is its computational advantage in linear models,

especially when the dimension of the feature vectors is large. In

our experiments, we empirically evaluated our perturbation-based

method in PairRank (named P
2
LinRank) and observed its expected

performance and computational advantages.

4 REGRET ANALYSIS
In this section, we provide the regret analysis of the proposed

exploration strategy. For better readibility, we present the analysis

of a linear ranker. According to the anlaysis in [23], under the neural

tangent technique and the convergence analysis of the gradient

descent in neural network optimization, the linear analysis can be

readily applied to the neural ranker. And we discuss the difference

between the analysis between the linear ranker and neural ranker

in the appendix.

Follow the standard assumption in [23, 24], we assume that on

the examined documents where 𝜋𝑡 (𝑖) ≤ 𝑜𝑡 , the obtained feedback

𝐶𝑡 is independent from each other given the true relevance of doc-
uments, so is their noise [15, 16, 26]. Therefore, the noise in the

inferred preference pair becomes the sum of noise from the clicks

Algorithm 1 P
2
NeurRank

1: Input: Number of rounds 𝑇 , regularization coefficient 𝜆, per-

turbation parameter 𝜈 , network width𝑚, network depth 𝐿, and

number of rankers 𝑁 .

2: Initialize 𝑁 neural network models {𝜽𝑛
0
}𝑁
𝑛=1

with𝑚 and 𝐿

3: for t = 1, ..., T do
4: 𝑆𝑐𝑡 = ∅, 𝑆𝑢𝑡 = ∅
5: 𝑞𝑡 ← receive_query(t)

6: X𝑡 = {x𝑡
1
, x𝑡

2
, . . . x𝑡

𝑉𝑡
} ← retrieve_candidate_documents(𝑞𝑡 )

7: for each document pair (𝑖, 𝑗) ∈ [𝑉𝑡 ]2 do
8: {𝜎 (𝑓 𝑛

𝑖 𝑗,𝑡
)}𝑁

𝑛=1
← get_N_estimations(x𝑡

𝑖
, x𝑡

𝑗
, {𝜽𝑛𝑡 }𝑁𝑛=1)

9: if min𝑛∈[𝑁 ] 𝜎 (𝑓 𝑛𝑖 𝑗,𝑡 ) > 1/2 or max𝑛∈[𝑁 ] 𝜎 (𝑓 𝑛𝑖 𝑗,𝑡 ) < 1/2
then

10: 𝑆𝑐𝑡 ← 𝑆𝑐𝑡 ∪ (𝑖, 𝑗)
11: else
12: 𝑆𝑢𝑡 ← 𝑆𝑢𝑡 ∪ (𝑖, 𝑗)
13: end if
14: end for
15: 𝜋𝑡 ← topological_sort(𝑆𝑐𝑡 , 𝑆

𝑢
𝑡 )

16: 𝐶𝑡 ← collect_click_feedback(𝜋𝑡 )

17: Ω𝑡 , {𝑦𝑖 𝑗 } (𝑖, 𝑗) ∈Ω𝑡
← construct_training_data(𝐶𝑡 )

18: for 𝑛 = 1, ..., 𝑁 do
19: Generate {{𝛾𝑖 𝑗 } (𝑖, 𝑗) ∈Ω𝑠

}𝑡
𝑠=1
∼ N(0, 𝜈2)

20: Set 𝜽𝑛𝑡 by the output of gradient descent for solving Eq (3.3)

with {Ω𝑠 }𝑡𝑠=1.
21: end for
22: end for

in the two associated documents. And we also only use the indepen-

dent pairs to construct Ω𝑡 as suggested in PairRank and olRankNet.

Thus, the pairwise noise satisfies the following proposition.

Proposition 4.1. For any 𝑡 ≥ 1, ∀(𝑖, 𝑗) ∈ Ω𝑡 , the pairwise feed-

back follows 𝑦𝑡
𝑖 𝑗

= 𝜎
(
𝑓 (x𝑖 ;𝜽 ∗) − 𝑓 (x𝑗 ;𝜽 ∗)

)
+ 𝜖𝑡

𝑖 𝑗
, where 𝜖𝑡

𝑖 𝑗
satis-

fies that for all 𝛽 ∈ R, E
[
exp(𝛽𝜖𝑡

𝑖 𝑗
) |
{
{𝜖𝑠

𝑖′, 𝑗 ′}𝑖′, 𝑗 ′∈Ω𝑠

}𝑡−1
𝑠=1

,Ω1:𝑡−1
]
≤

exp(𝛽2𝑅2), is an 𝑅-sub-Gaussian random variable.

To train a linear ranker, we have the scoring function 𝑓 (x;𝜽 ) =
x⊤𝜽 . And we assume that ∥x∥ ≤ 𝑃 and ∥𝜽 ∥ ≤ 𝑄 . The loss function
can be rewritten as,

L (𝑛)𝑡 (𝜽 )
=

𝑡∑︁
𝑠=−𝑑+1

∑︁
(𝑖, 𝑗) ∈Ω𝑠

−
(
y𝑠𝑖 𝑗 + 𝛾

𝑠,(𝑛)
𝑖 𝑗

)
log(𝜎 (x𝑠𝑖 𝑗

⊤𝜽 ))

−
(
1 − (y𝑠𝑖 𝑗 + 𝛾

𝑠,(𝑛)
𝑖 𝑗
)
)
log

(
1 − 𝜎 (x𝑠𝑖 𝑗

⊤𝜽 )
)
, (4.1)

where x𝑠
𝑖 𝑗

= x𝑠
𝑖
− x𝑠

𝑗
is the difference between the feature vectors of

document 𝑖 and 𝑗 , and𝑑 is the dimension of the feature vectors.With

|Ω𝑠 | = 1, x𝑠
𝑖 𝑗

=
√
𝜆ei, y𝑠𝑖 𝑗 = 0 for 𝑠 ∈ [−𝑑 + 1, 0], this loss function

can be interpreted as adding 𝑙2 regularization to the cross-entropy

loss.

Given this objective function is log-convex with respect to 𝜽 , its

solution 𝜽 (𝑛)𝑡 of ranker 𝑛 for 𝑛 ∈ [𝑁 ] is unique under the following
estimation method at each round 𝑡 ,∑︁𝑡−1

𝑠=−𝑑+1

∑︁
(𝑖, 𝑗) ∈Ω𝑠

(
𝜎 (x𝑠𝑖 𝑗

⊤𝜽 ) − (y𝑠𝑖 𝑗 + 𝛾
𝑠,(𝑛)
𝑖 𝑗
)
)
x𝑠𝑖 𝑗 + 𝜆𝜽 = 0

(4.2)
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Let 𝑔𝑡 (𝜽 ) =
∑𝑡−1
𝑠=−𝑑+1

∑
(𝑖, 𝑗) ∈Ω𝑠

𝜎 (x𝑠
𝑖 𝑗
⊤𝜽 )x𝑠

𝑖 𝑗
+ 𝜆𝜽 be the invert-

ible function such that the estimated parameter𝜽 (𝑛)𝑡 satisfies𝑔𝑡 (𝜽 (𝑛)𝑡 ) =∑𝑡−1
𝑠=−𝑑+1

∑
(𝑖, 𝑗) ∈Ω𝑠

(y𝑠
𝑖 𝑗
+ 𝛾𝑠,(𝑛)

𝑖 𝑗
)x𝑠

𝑖 𝑗
. As discussed before, there are

two kinds of deviations inside this estimation 𝜽 (𝑛)𝑡 . To analyze

their effect in the estimation, we introduce an auxiliary solution
¯𝜽𝑡

for solving the linear objective function, which satisfies 𝑔𝑡 ( ¯𝜽𝑡 ) =∑𝑡−1
𝑠=1

∑
(𝑖, 𝑗) ∈Ω𝑠

y𝑠
𝑖 𝑗
x𝑠
𝑖 𝑗
. Then, for the two solutions 𝜽 (𝑛)𝑡 and

¯𝜽𝑡 , we

have the following lemmas quantifying the deviations in the esti-

mation.

Lemma 4.2. (Deviation from observation noise). At round 𝑡 < 𝑇 ,

for any pair of document (x𝑡
𝑖
, x𝑡

𝑗
) under query 𝑞𝑡 , with probability

at least 1 − 𝛿 , we have,

|𝜎 (x𝑡𝑖 𝑗
⊤
¯𝜽𝑡 ) − 𝜎 (x𝑡𝑖 𝑗

⊤
𝜽 ∗𝑡 ) | ≤ 𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 ,

where 𝛼𝑡 = (2𝑘𝜇/𝑐𝜇 )
(√︁
𝑅2 log(det(A𝑡 )/(𝛿2 det(𝜆I))) + 𝑑

)
, A𝑡 =

𝜆I +∑𝑡−1
𝑠=1

∑
(𝑖′, 𝑗 ′) ∈Ω𝑠

x𝑖′, 𝑗 ′x⊤𝑖′, 𝑗 ′ , 𝑘𝜇 is the Lipschitz constant of the

sigmoid link function 𝜎 , 𝑐𝜇 = inf𝜽 ∈𝚯 ¤𝜎 (x⊤𝜽 ), with ¤𝜎 as the first

derivative of 𝜎 .

Accordingly, we define 𝐸𝑡 as the success event at round 𝑡 :

𝐸𝑡 =
{
∀(𝑖, 𝑗) ∈ [𝑉𝑡 ]2, |𝜎 (x𝑡𝑖 𝑗

⊤
¯𝜽𝑡 ) − 𝜎 (x𝑡𝑖 𝑗

⊤
𝜽 ∗) | ≤ 𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡

}
.

Intuitively, 𝐸𝑡 is the event that the auxiliary solution
¯𝜽𝑡 is “close”

to the optimal model 𝜽 ∗ at round 𝑡 .
As discussed before, we define the regret as the number of mis-

ordered pairs. Therefore, the key step in regret analysis is to quan-

tify the probability that an estimated preference is uncertain. Ac-

cording to Algorithm 1, the certain rank order in the perturbed

pairwise ranker is defined as follows,

Definition 4.3. (Certain Rank Order) At round 𝑡 , the rank or-

der between documents (𝑖, 𝑗) ∈ [𝑉𝑡 ]2 belongs to the set of cer-

tain rank orders 𝜔𝑐
𝑡 if and only if min𝑛∈[𝑁 ] 𝜎

(
𝑓
𝑡,(𝑛)
𝑖 𝑗

)
> 1

2
or

max𝑛∈[𝑁 ] 𝜎
(
𝑓
𝑡,(𝑛)
𝑖 𝑗

)
< 1

2
; otherwise, (𝑖, 𝑗) ∈ 𝜔𝑢𝑡 .

According to the definition, and the deviations caused by the

observation noise and the pseudo noise, we have the following

lemma quantifying the probability of an estimation being uncertain.

Lemma 4.4. There exist positive constants 𝑐 , 𝐶1 and 𝐶2, that with

𝑡 ′ =
(
𝐶1

√
𝑑+𝐶2

√
log(1/𝛿)+(𝑃2𝑅𝑘𝜇 )/(

√
𝜆𝑐𝜇Δmin)

𝜆min (Σ)

)
2

+ 2𝑘𝜇𝑃

𝑐𝜇Δmin

(√︁
𝑅2 log(1/𝛿)+

√
𝜆𝑄

)
, 𝛿 ∈ (0, 1), for round 𝑡 ≥ 𝑡 ′, with probability at least 1 − 𝛿 ,

event𝐸𝑡 holdswith𝛼𝑡 defined in Lemma 4.2, with𝑁 ≥ log𝛿/log(1−
exp(−𝛽2)/(4

√
𝜋𝛽)), where 𝛽 =

𝑘2

𝜇𝛼
2

𝑡

𝑐2𝜇𝜈
2
, for a document pair (𝑖, 𝑗) that

𝑖 ≻ 𝑗 for the given query, the probability that the estimated pair-

wise preference is uncertain is upper bounded as P
(
(𝑖, 𝑗) ∈ 𝜔𝑢𝑡

)
≤

2𝑁𝜈2𝑘2

𝜇 ∥x𝑡𝑖 𝑗 ∥2A−1𝑡
𝑐2𝜇𝑐

2Δ2

min

, where Δmin = min

𝑡 ∈𝑇,(𝑖, 𝑗) ∈[𝑉𝑡 ]2
|𝜎 (x𝑡

𝑖 𝑗
⊤𝜽 ∗) − 1

2
| rep-

resenting the smallest gap of pairwise difference between any pair

of documents associated to the same query over time (across all

queries).

The detailed proof is provided in the appendix. This lemma pro-

vides the upper bound of the probability that an estimated pairwise

preference is uncertain. The key idea is to analyze the concentra-

tion and anti-concentration property of the deviation caused by the

pseudo noise. In particular, the deviation caused by the pseudo noise

𝛾 , and the ensemble of 𝑁 rankers should be sufficiently large so that

for document pairs (𝑖, 𝑗), the maximum estimated pairwise pref-

erence, max𝑛∈[𝑁 ] 𝜎 (x𝑡𝑖 𝑗
⊤𝜽 (𝑛)𝑡 ) is optimism to trigger exploration.

On the other hand, with more observations, the probability of being

uncertain will be shrinking with the concentration property of the

pseudo noise.

Following the assumption in [23, 24, 31], denote 𝑝𝑡 as the proba-

bility that the user examines all documents in 𝜏𝑡 at round 𝑡 , and let

𝑝∗ = min1≤𝑡 ≤𝑇 𝑝𝑡 be the minimal probability that all documents in

a query are examined over time. The regret of the proposed model

can be upper bounded as follows.

Theorem 4.5. Assume pairwise query-document feature vector

x𝑡
𝑖 𝑗

under query 𝑞𝑡 , where (𝑖, 𝑗) ∈ [𝑉𝑡 ]2 and 𝑡 ∈ [𝑇 ], satisfies
Proposition 1. With 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 , the
𝑇 -step regret of the proposed model is upper bounded by:

𝑅𝑇 ≤𝑅′ +
1

𝑝∗
2𝑑𝑉max𝐶 log

(
1 + 𝑜max𝑇𝑃

2

2𝑑𝜆

)
where 𝑅′ = 𝑡 ′𝑉max,𝑉max represents the maximum number of docu-

ment associated with the same query over time, and 𝑡 ′ is defined
in Lemma 4.4, and 𝑤 =

∑𝑇
𝑠=𝑡 ′

(
(𝑉 2

max
− 2𝑉max)𝑃2/𝜆min (A𝑠 )

)
, and

By choosing 𝛿1 = 𝛿2 = 1/𝑇 , we have the expected regret at most

𝑅𝑇 ≤ 𝑂 (𝑑 log2 (𝑇 )).
We provide the detailed proof in the appendix. According to

the pairwise exploration strategy, the regret only comes from the

document pairs that are uncertain, e.g., random shuffling will be

conducted to perform the exploration.With the quantified uncertain

probability in Lemma 4.4, the pairwise regret can be upper bounded

accordingly.

In neural rankers, the neural network approximation error should

be considered in addition to the deviations caused by the noise. Ac-

cording to the analysis in [25], the variance of the added noise

should be set according to the deviations caused by both the obser-

vation noise and the approximation error. Based on the theoretical

analysis in [23], by properly setting the width of the neural network

and the step size of gradient descent, the model with a neural ranker

will still have a sublinear regret.

5 EXPERIMENT
In this section, we empirically compare our proposed model with

an extensive list of state-of-the-art OL2R algorithms on two large

public learning to rank benchmark datasets.

5.1 Experiment Setup
5.1.1 Dataset. We experimented on the Yahoo! Learning to Rank

Challenge dataset [9], which consists of 292,921 queries and 709,877

documents represented by 700 ranking features, andMSLR-WEB10K

[42], which contains 10,000 queries, each having 125 documents

on average represented by 136 ranking features. Both datasets are

labeled on a five-grade relevance scale: from not relevant (0) to

perfectly relevant (4). These two datasets are the most popularly

used in literature for evaluating OL2R algorithms. We followed

the train/test/validation split provided in the datasets to perform

the cross-validation to make our results comparable to previously

reported results.
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Figure 2: Offline performance of linear OL2R on two benchmark datasets.
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Figure 3: Online performance of linear OL2R on two benchmark datasets.

5.1.2 User interaction simulation. A standard simulation setting

for the user clicks is adopted in our experiment [24, 40], which is

the most popularly used procedure for OL2R evaluations. At each

round, a query is uniformly sampled from the training set. The

model will then generate a ranked list and return it to the user.

Dependent click model (DCM) [16] is applied to simulate user be-

haviors, which assumes that the user will sequentially scan the

ranked list and make click decisions on the examined documents.

In DCM, the probabilities of clicking on a given document and

stopping the subsequent examination are both conditioned on the

document’s true relevance label. Three different model configura-

tions are employed in our experiments to represent three different

types of users. The details are shown in Table 1. In particular, perfect
users will click on all relevant documents and do not stop browsing

until the last returned document; navigational users are very likely

to click on the first encountered highly relevant document and stop

there; and informational users tend to examine more documents,

but sometimes click on irrelevant documents, which contribute a

significant amount of noise in the click feedback. To reflect the

presentation bias, all the models only return the top 10 ranked

results.

Table 1: Configuration of simulated click models.

Click Probability Stop Probability

R 0 1 2 3 4 0 1 2 3 4

per 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0

nav 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9

inf 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

5.1.3 Baselines. We list the OL2R solutions used for our empir-

ical comparisons below. We performed the experiments on both

linear and neural rankers to show the general effectiveness of our

proposed exploration strategy. For convenience of reference, in the

experiment discussion, we name our model with a linear ranker as

P
2
LinRank

• 𝜖-Greedy (linear and neural) [19]: At each rank position

from top to bottom, it randomly samples an unranked docu-

ment with probability 𝜖 or selects the next best document

based on the currently learned ranker.
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Figure 4: Offline performance of neural OL2R on two benchmark datasets.
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Figure 5: Online performance of neural OL2R on two benchmark datasets.

• DBGD (linear and neural) [54]: DBGD uniformly sam-

ples a direction in the entire model space for exploration

and model update. Its convergence is only proved for linear

rankers, though empirically previous studies also applied it

to neural rankers.

• PDGD (linear and neural) [40]: PDGD samples the next

ranked document from a Plackett-Luce model and estimates

gradients from the inferred pairwise preferences. The only

known theoretical property about PDGD is its estimated

gradient is unbiased, but how this unbiased gradient leads

model training is still unknown.

• PairRank [24]: PairRank learns a pairwise logistic regres-

sion ranker online and explores by divide-and-conquer in the

pairwise document ranking space. The training of PairRank

is known to converge with a sublinear regret defined on the

cumulative number of misordered document pairs.

• PairRank-Diag: This is a variant of PairRank where the

diagonal approximation of its covariance matrix is used to

calculate the required confidence interval.

• olRankNet [23]: olRankNet is an extension of PairRankwith
a neural ranker, where the confidence interval is constructed

via the neural tangent kernel. It inherits good theoretical

properties from PairRank.

• olRankNet-Diag: This is a variant of olRankNet, where the
diagonal approximation of the covariance matrix is applied

to calculate the confidence interval.

5.1.4 Hyper-Parameter Tuning. MSLR-WEB10K dataset is equally

partitioned into five folds, while Yahoo Learning to Rank dataset is

equally partitioned into two folds. We performed cross validation

on each dataset. For each fold, the models are trained on the training

set, and the hyper-parameters are tuned based on the performance

on the validation set.

In our experiments, for all the neural rankers, a two layer neural

network with width𝑚 = 100 is applied. We did a grid search in

olRankNet, PairRank, PairRank-Diag for its regularization parame-

ter 𝜆 over {10−𝑖 }4
𝑖=1

, exploration parameter 𝛼 over {10−𝑖 }4
𝑖=1

. For

parameter estimation in all neural rankers, we did a grid search

for learning rate over {10−𝑖 }3
𝑖=1

for gradient descent. PairRank and

PairRank-Diag are directly optimized with L-BFGS. The model up-

date in PDGD and DBGD is based on the optimal settings in their

original paper (i.e., the exploration step size and learning rate). The

hyper-parameters for PDGD and DBGD are the update learning
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Figure 6: Comparison among neural rankers

rate and the learning rate decay, for which we performed a grid

search for learning rate over {10−𝑖 }3
𝑖=1

, and the learning rate decay

is set to 0.999977. For P
2
NeurRank and P

2
LinRank, we have an extra

hyper-parameter 𝑁 , which is searched over {2, 5, 10}. We fixed the

total number of iterations 𝑇 to 5000. The experiments are executed

for 10 times with different random seeds and the averaged results

are reported in this paper.

5.1.5 Evaluations. To evaluate an OL2R model, we report both the

offline and online performance during the interactions. The offline

performance is evaluated in an “online” fashion where the newly

updated ranker is evaluated on a hold-out testing set against its

ground-truth relevance labels. This measures how fast an OL2R

model improves its ranking quality. Such setting can be viewed as

using one portion of the traffic for model update, while serving an-

other portion with the latest model. NDCG@10 is used to assess the

ranking performance. In addition to the offline evaluation, we also

evaluate the models’ online result serving quality. This reflects user

experience during the interactions and thus should be seriously

considered. Sacrificing user experience for model training will com-

promise the goal of OL2R. We adopt the cumulative Normalized

Discounted Cumulative Gain to assess models’ online performance.

For 𝑇 rounds, the cumulative NDCG is calculated as

Cumulative NDCG =
∑︁𝑇

𝑡=1
NDCG(𝜏𝑡 ) · 𝛾 (𝑡−1) ,

which computes the expected utility a user receives with a proba-

bility 𝛾 that he/she stops searching after each query [40]. Following

the previous work [23, 24, 40, 48, 49], we set 𝛾 = 0.9995.

5.2 Experiment Results
5.2.1 Offline and online performance. We first compare our pro-

posed model with the baselines using a linear ranker. The results

are reported in Figure 2 and 3. For P
2
LinRank, we reported the

best performance with 𝑁 = 2 and 𝑁 = 5. We can clearly observe

P
2
LinRank maintained PairRank’s strong advantage over other

OL2R solutions, including 𝜖-Greedy, DBGD, and PDGD, in both

online and offline evaluations across three click models. It is also

obvious that a straightforward perturbation of model’s output, i.e.,

𝜖-Greedy, basically led to the worst OL2R performance, although it

is often the default choice for exploration in online learning.

Figure 7: P2NeurRank with variance 𝜈2 = 0.1

Figure 8: P2NeurRank with variance 𝜈2 = 0.01

More importantly, PairRank with a diagonal approximated co-

variance matrix showed serious degradation in its ranking perfor-

mance, especially its online performance. For example, on MSLR-

Web10K dataset, PairRank with diagonal approximation was even

worse than PDGD in the online evaluation under both perfect and

informational click models. This means an approximated covari-

ance matrix cannot accurately measure the ranker’s estimation

uncertainty. Furthermore, this inaccuracy’s impact is not deter-

ministic: under perfect feedback, the seriously degenerated online

performance together with mild decrease in offline performance

suggest the model over explored; but under informational feedback,

both online and offline performance dropped, which suggests in-

sufficient estimation. This demonstrates the complication of using

approximations in OL2R solutions, which loses all theoretical guar-

antees in the original analysis. As a result, it also strongly suggests

olRankNet might not be optimal in practice, given the diagonal

approximation employed to make its computation feasible. This

will be demonstrated in our experiments next.

It is worth noting that P
2
LinRank with 𝑁 = 2 already exhibits

faster convergence than PairRank, and simply increasing 𝑁 does

not necessarily further improve the model’s performance. This

result is very promising: as the only computational overhead in

our perturbation-based exploration strategy is to estimate 𝑁 − 1
additional rankers, the actual added cost in practice is minimum

when 𝑁 = 2. Similar observation is also obtained when applied to

neural rankers.

In Figure 4 and 5, we report the results obtained on the neural

rankers. First of all, olRankNet and P
2
NeurRank still showed signif-

icant improvement over other OL2R solutions, including 𝜖-Greedy,

DBGD, MGD and PDGD. This means the pairwise exploration im-

plemented in olRankNet is still effective for neural OL2R. The most

important finding in this experiment is that P
2
NeurRank outper-

formed olRankNet, where𝑚 = 100 for the neural network structure.

As we have repeatedly mentioned, though enjoying nice theoreti-

cal advantages, in practice it is impossible to use the required full

covariance matrix to compute the confidence interval in olRankNet,

the diagonal approximation creates an unknown gap from its theo-

retical guarantee to practical performance. In Figure 6, we compare

the offline performance of P
2
NeurRank with𝑚 = 100, olRankNet

with𝑚 = 100, and neural models with simpler neural structures
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Figure 9: Efficiency comparison

under the perfect click model. The results demonstrate that for the

models with 16 × 16 neural network, the diagonal approximation

hurts the performance compared to using the full covariance matrix.

As proved in our theoretical analysis, P
2
NeurRank enjoys the same

theoretical regret guarantee as olRankNet; but because it does not

need to endure the approximation, all its nice theoretical proper-

ties are preserved in its actual implementation. Compared to the

results obtained in linear models, we have good reasons to believe

olRankNet with full covariance matrix could perform even better,

but with a much larger (if not infeasible) computational overhead.

Again the impact from the number of parallel rankers one needs

to maintain for perturbation-based exploration in P
2
NeurRank is

still not sensitive. As shown in both Figure 4 and 5, 𝑁 = 2 gave

us the most promising empirical performance, with the minimum

added computational overhead. This is a strongly desired property

for applying P
2
NeurRank in practice.

5.2.2 Zoom into P2NeurRank. In this experiment, we provide de-

tailed analysis on P
2
NeurRank. P

2
NeurRank has only two hyper-

parameters, in addition to those inherited from olRankNet, i.e., the

number of parallel rankers 𝑁 and the scaled of pesudo noise 𝜈2.

In Figure 7 and 8, we report the online and offline performance of

P
2
NeurRank with varying value of 𝑁 for a fixed variance scale 𝜈2

of the added noise. We can clearly observe that with a larger noise

scale, e.g., 𝜈 = 0.1, setting 𝑁 = 2 gives the best performance, com-

paring to 𝑁 = 5 and 𝑁 = 10. When the added noise scale is small,

e.g., 𝜈 = 0.01, setting 𝑁 = 10 demonstrates better performance than

those with fewer number of models. This indicates that the variance

of the added noise 𝜈 and the number of parallel rankers 𝑁 together

control the exploration in P
2
NeurRank. A larger variance scale, e.g.,

𝜈 = 0.1, together with too many models, e.g., 𝑁 = 10, lead to more

aggressive exploration and less effective model training. A smaller

variance, e.g., 𝜈 = 0.01, together with fewer models might not lead

to sufficient exploration for model update, which also leads to worse

performance. Therefore, in practice, the value of 𝜈 and 𝑁 should be

carefully handled to perform effective exploration. And considering

the added computational overhead, using fewer parallel rankers

with larger scale of added noise should be a preferred solution.

5.2.3 Efficiency comparison. In this section, we compare the run-

ning time of our proposed P
2
NeurRank and the olRankNet models.

We performed the experiments on a NVIDIA GeForce RTX 2080Ti

graphical card. As discussed before, with complex neural networks,

e.g., 𝑚 = 100, it is impossible to perform the inverse of the full

covariance matrix due to both high space and time complexity.

Therefore, to compare running time, we perform the experiments

on the MSLR-Web10K dataset using a simpler neural network with

𝑚 = 16, where the perfect click model is adopted to generate the

clicks. The result is reported in Figure 9. We compare the olRankNet

with a full covariance matrix, olRankNet with diagonal covari-

ance matrix, P
2
NeurRank with N=2 and P

2
NeurRank with N = 1.

For P
2
NeurRank, no extra computation is required for exploration.

Therefore, the running time of P
2
NeurRank with N = 1 can be

viewed as the time used for the model training. We can clearly

notice the big gap between the running time of olRankNet with

full covariance matrix and P
2
NeurRank with N = 1, which indicates

the computational overhead caused by constructing the confidence

interval with the full covariance matrix. Using diagonal approxima-

tion greatly reduces the total running time. However, according to

our previous discussion, there is no theoretical performance guar-

antee for such an approximation, and our empirical results show

that the diagonal approximation often leads to decreased perfor-

mance in both offline and online evaluations. On the other hand,

P
2
NeurRank with N=2 takes slightly more time than olRankNet

with diagonal approximation, while the empirical performance is

significantly better (shown in Figure 2 and Figure 6). Besides, in

practice, the 𝑁 models can be trained in parallel, which will fur-

ther reduce the running time. This demonstrate the feasibility and

advantage of our proposed OL2R model in real applications.

6 CONCLUSION
In this work, we developed a provable efficient exploration strategy

for neural OL2R based on bootstrapping. Previous solutions for

the purpose either do not have theoretical guarantees [40, 54] or

are too expensive to be exactly implemented in practice [23]. Our

solution has an edge on both sides: it is proved to induce a sublinear

upper regret bound counted over the number of mis-ordered pairs

during online result serving, and its added computational overhead

is feasible. Our extensive empirical evaluations demonstrate that

our perturbation-based exploration unleashes the power of neural

rankers in OL2R, with minimally added computational overhead

(e.g., oftentimes only one additional ranker is needed to introduce

the required exploration). And our perturbation-based exploration

is general and can also be used in linear models when the input

feature dimension is very large.

Our current theoretical analysis depends on gradient descent

over the entire training set for model update in each round, which

is still expensive and should be further optimized. We would like

to investigate the possibility of more efficient model update, e.g.,

online stochastic gradient descent or continual learning, and the

corresponding effect on model convergence and regret analysis. In

addition, how to generalize our neural ranker architecture to more

flexible choices, e.g., recurrent neural networks and Transformers,

is another important direction of our future work.
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A APPENDIX
A.1 Proof of Lemma 4.2

Proof. According to the definition of 𝑔𝑡 (𝜽 ) in Section 4, we

have the following equation for the auxiliary solution
¯𝜽𝑡 ,

𝑔𝑡 ( ¯𝜽𝑡 ) =
𝑡−1∑︁

𝑠=−𝑑+1

∑︁
(𝑖, 𝑗) ∈Ω𝑠

y𝑠𝑖 𝑗x
𝑠
𝑖 𝑗

Then, to bound the deviation caused by the observation noise, we

have the following derivations for any input x

|𝜎 (x⊤ ¯𝜽𝑡 ) − 𝜎 (x⊤𝜽 ∗) | ≤ 𝑘𝜇 |x⊤ ( ¯𝜽𝑡 − 𝜽 ∗) |

=𝑘𝜇 |x⊤G−1𝑡 (𝑔𝑡 ( ¯𝜽𝑡 ) − 𝑔𝑡 (𝜽 ∗)) | ≤
𝑘𝜇

𝑐𝜇
|x⊤A−1𝑡 (𝑔𝑡 ( ¯𝜽𝑡 ) − 𝑔𝑡 (𝜽 ∗)) |

≤
𝑘𝜇

𝑐𝜇
∥x∥A−1𝑡 ∥𝑔𝑡 (

¯𝜽𝑡 ) − 𝑔𝑡 (𝜽 ∗)∥A−1𝑡

The first inequality is due to the Lipschitz continuity of the logistic

function. As logistic function is continuously differentiable, the

second equality is according to the Fundamental Theorem of Calcu-

lus, where G𝑡 =
∑𝑡−1
𝑠=1

∑
(𝑖, 𝑗) ∈Ω𝑠

¤𝜎 (x𝑠
𝑖 𝑗
⊤𝜽 )x𝑠

𝑖 𝑗
x𝑠
𝑖 𝑗
⊤ + 𝜆I. In the third

inequality, A𝑡 =
∑𝑡−1
𝑠=1

∑
(𝑖, 𝑗) ∈Ω𝑠

x𝑠
𝑖 𝑗
x𝑠
𝑖 𝑗
⊤ + 𝜆I. And this inequality

holds as G𝑡 ≻ 𝑐𝜇A𝑡 , with 𝑐𝜇 = inf𝜽 ∈𝚯 ¤𝜎 (x⊤𝜽 ).
Next, we will bound ∥𝑔𝑡 ( ¯𝜽𝑡 ) − 𝑔𝑡 (𝜽 ∗)∥A−1𝑡 .

∥𝑔𝑡 ( ¯𝜽𝑡 ) − 𝑔𝑡 (𝜽 ∗)∥A−1𝑡

=∥
𝑡−1∑︁

𝑠=−𝑑+1
y𝑠𝑖 𝑗x

𝑠
𝑖 𝑗 − 𝜎 (x

𝑠
𝑖 𝑗
⊤𝜽 ∗)x𝑠𝑖 𝑗 ∥A−1𝑡

≤∥
0∑︁

𝑠=−𝑑+1
𝜎 (x𝑠𝑖 𝑗

⊤𝜽 ∗)x𝑠𝑖 𝑗 ∥A−1𝑡 + ∥
𝑡−1∑︁
𝑠=1

𝜖𝑠𝑖 𝑗x
𝑠
𝑖 𝑗 ∥A−1𝑡

≤𝑑 + 𝑅

√︄
log( det(A𝑡 )

𝛿2 det(𝜆I)
)

The first equality is based on the definition of function 𝑔𝑡 , and ¯𝜽𝑡 .
The last inequality is according to the self-normalized bound for

martingales in [1]. This completes the proof. □

A.2 Proof of Lemma 4.4
Proof. According to Lemma 4.2, with probability at least 1 − 𝛿 ,

event 𝐸𝑡 defined in Section 4 occurs. Under event 𝐸𝑡 , for document

pair (𝑖, 𝑗) satisfying 𝑖 ≻ 𝑗 for the given query (e.g., 𝜎 (x𝑡
𝑖 𝑗
⊤𝜽 ∗) > 1

2
),

we first analyze the probability that at least one estimate𝜎 (x𝑡
𝑖 𝑗
⊤𝜽 (𝑛)𝑡 ) >

1

2
for 𝑛 ∈ [𝑁 ], e.g., P(max𝑛∈[𝑁 ] 𝜎 (x𝑡𝑖 𝑗

⊤𝜽 (𝑛)𝑡 )) >
1

2
. For simplic-

ity, in the following analysis, we use 𝜎
(𝑛)
𝑡 , 𝜎𝑡and 𝜎

∗
to present

𝜎

(
x𝑡
𝑖 𝑗
⊤𝜽 (𝑛)𝑡

)
, 𝜎

(
x𝑡
𝑖 𝑗
⊤
¯𝜽𝑡
)
and 𝜎

(
x𝑡
𝑖 𝑗
⊤𝜽 ∗

)
respectively.

P( max

𝑛∈[𝑁 ]
𝜎
(𝑛)
𝑡 ≥ 1

2

) = 1 −
𝑁∏
𝑛=1

P(𝜎 (𝑛)𝑡 <
1

2

)

For any 𝑛 ∈ [𝑁 ], we have the following bound for P(𝜎 (𝑛)𝑡 < 1

2
) .

P(𝜎 (𝑛)𝑡 <
1

2

) ≤P(𝜎 (𝑛)𝑡 < 𝜎∗)

=P(𝜎 (𝑛)𝑡 − 𝜎𝑡 < 𝜎∗ − 𝜎𝑡 )

≤P(𝜎 (𝑛)𝑡 − 𝜎𝑡 < 𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 )

≤P(𝑐𝜇x𝑡𝑖 𝑗
⊤ (𝜽𝑡 − ¯𝜽 ) < 𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 )

≤P(𝑐𝜇x𝑡𝑖 𝑗
⊤G−1𝑡 (𝑔𝑡 (𝜽𝑡 ) − 𝑔𝑡 ( ¯𝜽 )) < 𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 )

≤P(
𝑐𝜇

𝑘𝜇
x𝑡𝑖 𝑗
⊤A−1𝑡 (𝑔𝑡 (𝜽𝑡 ) − 𝑔𝑡 ( ¯𝜽 )) < 𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 )

=P(𝑈 (x𝑡𝑖 𝑗 ) <
𝑘𝜇

𝑐𝜇
𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 )

where𝑈 (x𝑡
𝑖 𝑗
) = x𝑡

𝑖 𝑗
⊤A−1𝑡 (𝑔𝑡 (𝜽𝑡 ) − 𝑔𝑡 ( ¯𝜽 )). According to the defini-

tion of
¯𝜽𝑡 , we know that,

𝑈 (x𝑡𝑖 𝑗 ) = x𝑡𝑖 𝑗
⊤A−1𝑡

𝑡−1∑︁
𝑠=−𝑑+1

𝛾𝑠𝑖 𝑗x
𝑠
𝑖 𝑗

It is easy to obtain that E[𝑈 (x𝑡
𝑖 𝑗
)] = 0 with E[𝛾] = 0. And the

variance of𝑈 (x𝑡
𝑖 𝑗
) is,

𝑉𝑎𝑟 [𝑈 (x𝑡𝑖 𝑗 )] =𝜈
2x𝑡𝑖 𝑗
⊤A𝑡 (

𝑡−1∑︁
𝑠=−𝑑+1

x𝑠𝑖 𝑗x
𝑠
𝑖 𝑗
⊤)A𝑡x𝑡𝑖 𝑗

=𝜈2x𝑡𝑖 𝑗
⊤A−1𝑡 (𝜆I +

𝑡−1∑︁
𝑠=1

x𝑠𝑖 𝑗x
𝑠
𝑖 𝑗
⊤)A−1𝑡 x𝑡𝑖 𝑗

=𝜈2∥x𝑡𝑖 𝑗 ∥
2

A−1𝑡

Therefore, we have𝑈 (x𝑡
𝑖 𝑗
) ∼ N (0, 𝜈2∥x𝑡

𝑖 𝑗
∥2
A−1𝑡
), and the probability

can be upper bounded as,

P(𝑈 (x𝑡𝑖 𝑗 ) <
𝑘𝜇

𝑐𝜇
𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 ) =1 − P(𝑈 (x

𝑡
𝑖 𝑗 ) >

𝑘𝜇

𝑐𝜇
𝛼𝑡 ∥x𝑡𝑖 𝑗 ∥A−1𝑡 )

≤1 − exp(−𝛽2)
4

√
𝜋𝛽

where 𝛽 =
𝑘𝜇𝛼𝑡
𝑐𝜇𝜈

. By chaining all the inequalities, we have that with

𝑁 ≥ log𝛿/log(1 − exp(−𝛽2)/(4
√
𝜋𝛽)), with probability at least

1 − 𝛿 , P(max𝑛∈[𝑁 ] 𝜎
(𝑛)
𝑡 ≥ 1

2
).

Therefore, under event𝐸𝑡 , with𝑁 ≥ log𝛿/log(1−exp(−𝛽2)/(4
√
𝜋𝛽)),

based on the definition of 𝜔𝑢𝑡 in Section 3.2, we know that for docu-

ment 𝑖 and 𝑗 at round 𝑡 , (𝑖, 𝑗) ∈ 𝜔𝑐
𝑡 if and only ifmin𝑛∈[𝑁 ] 𝜎

(
x𝑡
𝑖 𝑗
⊤𝜽 (𝑛)𝑡

)
>

1

2
. For simplicity, in the following analysis, we use 𝜎

(𝑛)
𝑡 , 𝜎𝑡 and 𝜎

∗
to

present 𝜎

(
x𝑡
𝑖 𝑗
⊤𝜽 (𝑛)𝑡

)
, 𝜎

(
x𝑡
𝑖 𝑗
⊤
¯𝜽𝑡
)
and 𝜎

(
x𝑡
𝑖 𝑗
⊤𝜽 ∗

)
respectively. Then

the probability of being uncertain can be bounded as,

P
(
(𝑖, 𝑗) ∈ 𝜔𝑢𝑡

)
= 1 − P

(
min

𝑛∈[𝑁 ]
𝜎
(𝑛)
𝑡 > 1/2

)
=1 −

𝑁∏
𝑛=1

P
(
𝜎
(𝑛)
𝑡 > 1/2

)
= 1 −

(
P
(
𝜎
(𝑛)
𝑡 > 1/2

) )𝑁
Based on the definition of Δmin, 𝜎

∗ − 1/2 ≥ Δmin and 𝜎∗ −𝜎𝑡 ≤ 𝐶𝐵.
And according to the random matrix theory and Lemma 2 in [24],

Topic 7: Efficiency SIGIR ’22, July 11–15, 2022, Madrid, Spain

544



when 𝑡 > 𝑡 ′, Δmin − 𝐶𝐵 > 0 which can be viewed as a constant

𝑐Δmin. Therefore, we have the following inequalities,

P
(
𝜎
(𝑚)
𝑡 > 1/2

)
= P

(
𝜎
(𝑚)
𝑡 − 𝜎∗ + 𝜎∗ − 𝜎𝑡 + 𝜎𝑡 > 1/2

)
≥P

(
𝜎𝑡 − 𝜎 (𝑚)𝑡 < Δmin −𝐶𝐵

)
= 1 − 1

2

P
(
|𝜎𝑡 − 𝜎 (𝑚)𝑡 | ≥ Δmin −𝐶𝐵

)
≥1 − 1

2

P
(
𝑘𝜇 |𝑈 (𝑥) | ≥ Δmin −𝐶𝐵

)
≥ 1 − exp(−

𝑐2𝜇𝑐
2Δ2

min

2𝑘2𝜇𝜈
2∥𝑥 ∥2

A−1𝑡

)

Let 𝐵 =
𝑐2𝜇𝑐

2Δ2

min

2𝑘2

𝜇𝜈
2 ∥𝑥 ∥2

A−1𝑡

, we have the probability of being uncertain

rank order upper bounded as,

P
(
(𝑖, 𝑗) ∈ 𝜔𝑢𝑡

)
≤1 −

(
1 − exp(−𝐵))

)𝑁
=1 − exp𝑁 log(1 − exp(−𝐵))
≤ − 𝑁 log(1 − exp(−𝐵)) ≤ −𝑁 log exp(−1/𝐵))

Therefore, P
(
(𝑖, 𝑗) ∈ 𝜔𝑢𝑡

)
≤ min

{
1,

2𝑁𝑘2

𝜇𝜈
2 ∥𝑥𝑖,𝑗 ∥2A−1𝑡

𝑐2𝜇𝑐
2Δ2

min

}
. This com-

pletes the proof. □

A.3 Proof of Theorem 4.5
Proof. Once the certain and uncertain rank orders are deter-

mined, our proposed model will generate the ranked list by topo-

logical sort with respect to the certain rank orders. Therefore,

the regret only comes from the uncertain rank orders. In each

round of result serving, as the model 𝜽𝑡 would not change until

the next round, the expected number of uncertain rank orders, 𝑈𝑡 ,

can be estimated by summing the uncertain probabilities over all

possible pairwise comparisons under the current query 𝑞𝑡 , e.g.,

E[𝑈𝑡 ] = 𝑉𝑡 (𝑉𝑡−1)
2
P((𝑖, 𝑗) ∈ 𝜔𝑢𝑡 ).

Based on Lemma 4.4, the cumulative number of mis-ordered

pairs can be bounded by the probability of observing uncertain

rank orders in each round, which shrinks with more observations

become available over time,

E
[∑︁𝑇

𝑠=𝑡 ′
𝑈𝑡

]
≤E

[ 1
2

∑︁𝑇

𝑠=𝑡 ′

∑︁
(𝑖, 𝑗) ∈[𝑉𝑡 ]2

2𝑁𝑘2𝜇𝜈
2∥x𝑠

𝑖 𝑗
∥2
A−1𝑠

𝑐2𝜇𝑐
2Δ2

min

]
.

As A𝑡 only contains information of observed document pairs so

far, the number ofmis-ordered pairs among the observed documents

is guaranteed to be upper bounded. To reason about the number of

mis-ordered pairs in those unobserved documents (i.e., from 𝑜𝑡 to𝑉𝑡
for each query 𝑞𝑡 ), we leverage the constant 𝑝

∗
, which is defined as

the minimal probability that all documents in a query are examined

over time,

E
[∑︁𝑇

𝑡=𝑡 ′

∑︁
(𝑖, 𝑗) ∈[𝑉𝑡 ]2

∥x𝑡𝑖 𝑗 ∥A−1𝑡
]

=E
[∑︁𝑇

𝑡=𝑡 ′

∑︁
(𝑖, 𝑗) ∈[𝑉𝑡 ]2

∥x𝑡𝑖 𝑗 ∥A−1𝑡 × E
[
𝑝−1𝑡 1{𝑜𝑡 = 𝑉𝑡 }

] ]
≤𝑝∗−1E

[∑︁𝑇

𝑡=𝑡 ′

∑︁
(𝑖, 𝑗) ∈[𝑉𝑡 ]2

∥x𝑡𝑖 𝑗 ∥A−1𝑡 1{𝑜𝑡 = 𝑉𝑡 }
]

Besides, we only use the independent pairs Ω𝑡 to update the

model and the corresponding A𝑡 matrix. Therefore, to bound the

regret, the pairs can be divided into two parts based onwhether they

are belonging to the observed set Ω𝑡 . Then, we have the following

inequalities,∑︁𝑇

𝑠=𝑡 ′

∑︁
(𝑖, 𝑗) ∈Ω𝑠

∑︁
𝑘∈[𝑉𝑡 ]\{𝑖, 𝑗 }

2x𝑠
𝑖𝑘
⊤A−1𝑠 x𝑠

𝑗𝑘

≤
∑︁𝑇

𝑠=𝑡 ′
(𝑉 2

max
− 2𝑉max)𝑃2/𝜆min (A𝑠 ) .

And for the pairs belonging to the {Ω𝑠 }𝑇𝑠=1, based on Lemma 10

and Lemma 11 in [1], we have,∑︁𝑇

𝑠=𝑡 ′

∑︁
(𝑖, 𝑗) ∈Ω𝑠

(𝑉𝑡 − 1)∥x𝑠𝑖 𝑗 ∥
2

A−1𝑠
≤ 2𝑑𝑉max log(1 +

𝑜max𝑇𝑃
2

2𝑑𝜆
)

Then, chaining all the inequalities, we have when event 𝐸𝑡 hap-

pens, the regret can be upper bounded as,

𝑅𝑇 ≤𝑅′ +
∑︁𝑇

𝑠=𝑡 ′
𝑟𝑠 ≤ 𝑅′ +

1

𝑝∗
2𝑑𝑉max𝐶 log(1 + 𝑜max𝑇𝑃

2

2𝑑𝜆
)

where 𝐶 = 2𝑁𝑘2𝜇𝜈
2/𝑐2𝜇𝑐2Δ2

min
, 𝑅′ = 𝑡 ′𝑉max, with 𝑡

′
defined in

Lemma 4.4. This completes the proof. □
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