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ABSTRACT

Existing online learning to rank (OL2R) solutions are limited to lin-
ear models, which are incompetent to capture possible non-linear
relations between queries and documents. In this work, to unleash
the power of representation learning in OL2R, we propose to di-
rectly learn a neural ranking model from users’ implicit feedback
(e.g., clicks) collected on the fly. We focus on RankNet and Lamb-
daRank, due to their great empirical success and wide adoption in
offline settings, and control the notorious explore-exploit trade-off
based on the convergence analysis of neural networks using neural
tangent kernel. Specifically, in each round of result serving, explo-
ration is only performed on document pairs where the predicted
rank order between the two documents is uncertain; otherwise,
the ranker’s predicted order will be followed in result ranking. We
prove that under standard assumptions our OL2R solution achieves
a gap-dependent upper regret bound of O(log?(T)), in which the
regret is defined on the total number of mis-ordered pairs over T
rounds. Comparisons against an extensive set of state-of-the-art
OL2R baselines on two public learning to rank benchmark datasets
demonstrate the effectiveness of the proposed solution.
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1 INTRODUCTION

In the past decade, advances in deep neural networks (DNN) have
made significant strides in improving offline learning to rank mod-
els [6, 37], thanks to DNN’s strong representation learning power.
But quite remarkably, most existing work in online learning to rank
(OL2R) still assume a linear scoring function [41, 46, 51]. Compared
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with linear ranking models, nonlinear models induce a more gen-
eral hypothesis space, which provides a system more flexibility and
capacity in modeling complex relationships between a document’s
ranking features and its relevance quality. Such a clear divide be-
tween the current OL2R solutions and the successful practices in
offline solutions seriously restricts OL2R’s real-world impact.

The essence of OL2R is to learn from users’ implicit feedback
on the presented rankings, which suffers from the explore-exploit
dilemma, as the feedback is known to be noisy and biased [2, 10, 24,
25]. State-of-the-art OL2R approaches employ random exploration
to obtain a trade-off, and mainstream OL2R solutions are mostly
different variants of dueling bandit gradient descent (DBGD) [51].
In particular, DBGD and its extensions [36, 41, 42, 51] were in-
herently designed for linear models, where they rely on random
perturbations to sample model variants and estimate the gradi-
ent for the model update. Given the complexity of a DNN, such
a random exploration method can hardly be effective. Oosterhuis
and de Rijke [35] proposed PDGD, which samples the next ranked
document from a Plackett-Luce model and estimates an unbiased
gradient from the inferred pairwise preference. Though PDGD with
a neural ranker reported promising empirical results, its theoretical
property is still unknown. Most recently, Jia et al. [23] proposed to
learn a pairwise ranker online using a divide-and-conquer strategy.
Improved performance against all aforementioned OL2R solutions
was reported by the authors. However, this solution is still limited
to linear ranking functions in nature.

Turning a neural ranker online is non-trivial. While deep neural
networks can be accurate on learning given user feedback, i.e., ex-
ploitation, developing practical methods to balance exploration and
exploitation in complex online learning problems remains largely
unsolved. In essence, quantifying a neural model’s uncertainty
on new data points remains challenging. Fortunately, substantial
progress has been made to understand the representation learning
power of DNN . Studies in [4, 7, 8, 11, 13] showed that by using
(stochastic) gradient descent, the learned parameters of a DNN are
located in a particular regime, and the generalization error bound
of the DNN can be characterized by the best function in the corre-
sponding neural tangent kernel space [22]. In particular, under the
framework of the neural tangent kernel, studies in [52, 54] proposed
that the confidence interval of the learned parameters of a DNN can
be constructed based on the random feature mapping defined by
the neural network’s gradient on the input instances. These efforts
prepare us to study neural OL2R.

In this work, we choose RankNet [6] as our base ranker for OL2R
because of its promising empirical performance in offline settings
[9]. We devise exploration in the pairwise document ranking space
and balance exploration and exploitation based on the ranker’s
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confidence about its pairwise estimation. In particular, we con-
struct pairwise uncertainty from the tangent features of the neural
network [7, 8]. In each round of result serving, all the estimated
pairwise comparisons are categorized into two types, certain pairs
and uncertain pairs. Documents associated with uncertain pairs are
randomly shuffled for exploration, while the order among certain
pairs is preserved in the presented ranking for exploitation.

We rigorously proved that our model’s exploration space shrinks
exponentially fast as the ranker estimation converges, such that the
cumulative regret defined on the number of mis-ordered pairs has
a sublinear upper bound. As most existing ranking metrics can be
reduced to different kinds of pairwise document comparisons [48],
we also extended our solution to LambdaRank [39] to directly opti-
mize ranking metrics based on users’ implicit feedback on the fly.
To the best of our knowledge, this is the first neural OL2R solution
with theoretical guarantees. Our extensive empirical evaluations
also demonstrated the strong advantage of our model against a rich
set of state-of-the-art OL2R solutions over two public learning to
rank benchmark datasets on standard ranking metrics.

2 RELATED WORK

Online learning to rank. We broadly group existing OL2R so-
lutions into two main categories. The first type learns the best
ranked list for each individual query separately, by modeling users’
click and examination behaviors with multi-armed bandit algo-
rithms [26, 29, 40, 55]. Typically, such solutions depend on specific
click models to decompose relevance estimation on each query-
document pair; as a result, exploration is performed on the ranking
of individual documents. For example, by assuming users examine
documents from top to bottom until reaching the first relevant docu-
ment, cascading bandit models rank documents based on the upper
confidence bound of their estimated relevance [26, 27, 31]. The sec-
ond type of solutions leverage ranking features for relevance estima-
tion, and search for the best ranker in the model space [30, 35, 51].
The most representative work is Dueling Bandit Gradient Descent
(DBGD) [42, 51]. To ensure an unbiased gradient estimate, DBGD
uniformly explores in the model space, which costs high variance
and high regret. Subsequent methods improved DBGD with more
efficient sampling strategies, such as multiple interleaving and pro-
jected gradient, to reduce variance [20, 34, 46, 47, 53].

However, almost all of the aforementioned OL2R solutions are
limited to linear models, which are incompetent to capture any
non-linear relations between queries and documents. This shields
OL2R away from the successful practices in offline learning to rank
models, which are nowadays mostly empowered by deep neural
networks [6, 37]. This clear divide has motivated some recent efforts.
Oosterhuis and de Rijke [35] proposed PDGD which samples the
next ranked document from a Plackett-Luce model and estimates
gradients from the inferred pairwise result preferences. Though
PDGD with a neural ranker achieved empirical improvements, there
is no theoretical guarantee on its performance. A recent work learns
a pairwise logistic regression ranker online and reports the best
empirical results on several OL2R benchmarks [23]. Though non-
linearity is obtained via the logistic link function, its expressive
power is still limited by the manually crafted ranking features.
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Theoretical analysis of neural networks. Recently, substantial
progress has been made to understand the convergence of deep
neural networks [19, 32, 33, 43, 44, 49, 50, 56, 58]. A series of recent
studies showed that (stochastic) gradient descent can find global
minimal of training loss under moderate assumptions [3, 14, 32, 57,
58]. Besides, Jacot et al. [22] proposed the neural tangent kernel
(NTK) technique, which describes the change of a DNN during
gradient descent based training. This motivates the theoretical
study of DNNs with kernel methods. Research in [4, 7, 8, 11, 13]
showed that by connecting DNN with kernel methods, (stochastic)
gradient descent can learn a function that is competitive with the
best function in the corresponding neural tangent kernel space. In
particular, under the framework of NTK, some recent work show
that the confidence interval of the learned parameters of a DNN can
be constructed based on the random feature mapping defined by the
neural network’s gradient [52, 54]. This makes the quantification
of a neural model’s uncertainty possible, and enables our proposed
uncertainty-based exploration for neural OL2R.

3 METHOD

In this section, we present our solution, which trains a neural rank-
ing model with users’ implicit feedback online. The key idea is to
partition the pairwise document ranking space and only explore
the pairs where the ranker is currently uncertain while exploiting
the predicted rank of document pairs where the ranker is already
certain. We rigorously prove a sublinear regret which is defined
on the cumulative number of mis-ordered pairs over the course of
online result serving.

3.1 Problem Setting

In OL2R, at round ¢t € [T], the ranker receives a query g; and its
associated V; documents represented by a set of d-dimensional
query-document feature vectors: Xy = {x{, x%,t} with x§ e R4,
The ranking 7; = (¢(1), ..., 7s(V¢)) € II([V¢]), is generated by the
ranker based on its knowledge so far, where II([V;]) represents the
set of all permutations and 7;(i) is the rank position of document i.

The user examines the returned ranked list and provides his/her
feedback, i.e., clicks C; = {c{, cé, ...,c‘t,t}, where cit =1 if the user
clicked on document i at round ¢; otherwise cl.t = 0. Then, the ranker
updates itself and precedes the next round. Numerous studies have
shown C; is subject to various biases and noise, e.g., presentation
bias and position bias [2, 24, 25]. In particular, it is well-known
that non-clicked documents cannot be simply treated as irrelevant.
Following the practice in [24], we treat clicks as relative preference
feedback and assume that clicked documents are preferred over
the examined but unclicked ones. In addition, we adopt a simple
examination assumption: every document that precedes a clicked
document and the first subsequent unclicked document are exam-
ined. This approach has been widely employed and proven effective
in learning to rank [2, 35, 46]. We use o; to represent the index of
the last examined position in the ranked list 7; at round ¢. It is
worth mentioning that our solution can be easily adapted to other
examination models, e.g., position based model [12], as we only use
the derived result preferences as model input.

As the ranker learns from user feedback while serving, cumula-
tive regret is an important metric for evaluating OL2R. In this work,
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estimation between all the pairs expect (B,C),(C, D), (E, F).
Hence, in the ranking, the ranking orders among the certain
pairs are preserved, while the uncertain pairs are shuffled.

our goal is to minimize the following regret, which is defined by
the number of mis-ordered pairs from the presented ranked list to
the ideal one, i.e., the Kendall’s Tau rank distance,

Ry =E [Z; n|=E [Z; Ko, 7)| (3.1)

where K(z;, 7)) = {(,)) : i<, (ze (D) <re(DATF D> )V (2 (D) >7 (A

rt(i)<t; ().

Remark 3.1. As shown in [48], most ranking metrics, such as
Average Rank Position (ARP) and Normalized Discounted Cumula-
tive Gain (NDCG), can be decomposed into pairwise comparisons;
hence, this regret definition connects an OL2R algorithm’s online
performance with classical rank evaluations. We consider it more
informative than “pointwise” regret defined in earlier work [26, 29].

3.2 Online Neural Ranking Model Learning

In order to unleash the power of representation learning of neural
models in OL2R, we propose to directly learn a neural ranking
model from its interactions with users. We balance the trade-off
between exploration and exploitation based on the model’s confi-
dence about its predicted pairwise rank order. The high-level idea
of the proposed solution is explained in Figure 1.
Neural Ranking Model. We focus on RankNet and LambdaRank
because of their promising performance and wide adoption in offline
settings [6]. In the following sections, we will focus on RankNet to
explain the key components of our proposed solution for simplicity,
and later we discuss how to extend the solution to LambdaRank.
We assume that there exists an unknown function A(-) that mod-
els the relevance quality of document x under the given query q as
h(x). In order to learn this function, we utilize a fully connected neu-
ral network f(x;0) = VmWd(W_14(. .. $»(W1x)), where depth
L > 2, #(x) = max{x,0}, and W; € RMXd W; € RMXM 9 < i <
L-1,W; € R and 0 = [vec(W)T,...,vec(W)T]T € R?
with p = m+md +m?(L - 2). Without loss of generality, we assume
the width of each hidden layer is the same as m, concerning the
simplicity of theoretical analysis. We also denote the gradient of
the neural network function as g(x; 0) = Vq f(x; 0) € RP.
RankNet specifies a distribution on pairwise comparisons. In
particular, the probability that document i is more relevant than
document j is calculated by P(i > j) = o(f(xi;6) — f(x;;0)),
where o(s) = 1/(1 + exp(—s)). For simplicity, we use fls to denote
f(xi;0:-1) — f(xj;0;-1). Therefore, the objective function for
estimation in RankNet can be derived under a cross-entropy loss be-
tween the predicted pairwise comparisons and those inferred from
user feedback till round ¢ and a L2-regularization term centered at

433

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

Estimated Pairwise Preference
10 [

CBfrjr

0.5 /’

Lower Confidence Bound

CBfiy

Document Pair (i, j) Document Pair (', j’)

Figure 2: Illustration of certain and uncertain rank orders.

the randomly initialized parameter 6y:

L:(6) = Zzzl Z(i,]’)ng —(1- y?j) log(1 - o(fij))
- y;; log(a(fij)) + mA/2]16 — 601, (3.2)

where A is the L2 regularization coefficient, Q¢ denotes the set of
document pairs that received different click feedback at round s, i.e.
Qs ={(i,)): ¢} # c;, Vrs(i) < 75(j) < o}, yfj indicates whether
document i is preferred over document j in the click feedback, i.e.,
yfj =(cf - cjs.)/z +1/2 [6].

The online estimation of RankNet boils down to the construc-
tion of {Q f}thl over time. However, the conventional practice of
using all the inferred pairwise preferences from clicks becomes
problematic in an online setting. For example, in the presence of
click noise (e.g., a user mistakenly clicks on an irrelevant docu-
ment), pairing documents would cause a quadratically increas-
ing number of noisy training instances, and therefore impose a
strong negative impact on the quality of the learned ranker and
subsequent result serving. To alleviate this deficiency, we propose
to only use independent pairwise comparisons to construct the
training set, e.g., Qf"d = {(i,)) : cit # cjt., Y(;:(i), 74(j)) € D},
where D represents the set of disjointed position pairs, for example,
D = {(1,2),(3,4),...(or — 1,0¢)}. In other words, we only use a
subset of non-overlapping pairwise comparisons for update.
Result Ranking Strategy. Another serious issue in the online col-
lected training instances is bias. As discussed before, the ranking
model is updated based on the acquired feedback from what it has
presented to the users so far, which is subject to various types of
biases, e.g., presentation bias and position bias [2, 24, 25]. Hence, it
is vital to effectively explore the unknowns to complete the ranker’s
knowledge about the ranking space, while serving users with qual-
ified ranking results to minimize regret. As our solution of result
ranking, we explore in the pairwise document ranking space with
respect to the ranker’s current uncertainty about the comparisons.

To quantify the source of uncertainty, we follow conventional
click models to assume that on the examined documents where
7:(i) < o4, the obtained feedback C; is independent from each other
given the true relevance of documents, so is their noise [17, 18, 24].
As a result, the noise in each collected preference pair becomes
the sum of noise from the clicks in the two associated documents.
Because we only use the independent pairs Qi”d , the pairwise noise
is thus independent of each other and the history of result serving,
which leads to the following proposition.

Proposition 3.2. For any t > 1, V(i,j) € Q;"d, the pairwise feed-
back follows yl?j = O'(h(xi)—h(Xj))+§itj, where §fj satisfying that for



WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

all f € B, Blexp(BELUES )y coma} T QI ] < exp(6242),
is a v-sub-Gaussian random variable

Based on the property of sub-Gaussian random variables, the
proposition above can be easily satisfied in practice as long as the
pointwise click noise follows a sub-Gaussian distribution. Typically
the pointwise noise is modeled as a binary random variable related
to the document’s true relevance under the given query, which
follows a %-sub-Gaussian distribution. Let ¥; represent the set of all
possible document pairs at round ¢, e.g., ¥; = {(i,j) € [V¢]%.i # j}
and |¥;| = Vt2 — V;. Based on the objective function Eq (3.2) over
training dataset {Q é”d }£=1, we have the following lemma bounding
the uncertainty of the estimated pairwise rank order at round ¢.
Lemma 3.3. (Confidence Interval of Pairwise Rank Order). There
exist positive constants C; and Cy such that for any 6; € (0, 1), if
the step size of gradient descent < C1(TmL + mA)™! and m >
Cp max {A_I/ZL_3/2(log(TVmaxLz/él))S/z, T7A7 71?1 (log m)3}, then
at round ¢ < T, for any document pair (i, j) € ¥; under query q;,
with probability at least 1 — §,

lo(f;) = o(hij)l < al‘”gfj/\/Z”A;l + e(m), (3.3)
where Vinax represents the maximum number of documents under
a query over time, h;; = h(x;) — h(xj), gfj = g(xi;05) — g(xj;0s),
A = ﬁ;i Z(ir’j/)egénd %gf,j,gf,j,T + AL Gy, Cy, C3 and Cy are
positive constants,

e(m) =Gy (TEm™# 275 1*iog(m)(1 + T/) + (1 - nmA)ETL/A
+Tom™s A’%L% Vlog(m)S + T% m% A’%Lsx/log(m)),

1
ar :(1 + C’ZT% mé \/log(m)/T% L4) *ay,
a1 =(VACs + (v 1og( 5? Zt:t?ﬁ)) + CaT ™8 275 ' foglm))? ).

We provide the detailed proof of Lemma 3.3 in the appendix.
This lemma provides a tight high probability bound of the pairwise
rank order estimation uncertainty under RankNet. The uncertainty
caused by the variance from the pairwise observation noise is con-
trolled by a;, and e(m) is the approximation error incurred in the
estimation of the true scoring function. This enables us to perform
efficient exploration in the pairwise document ranking space for
the model update. To illustrate our ranking strategy, we introduce
the following notion on the estimated pairwise preference.
Definition 3.4. (Certain Rank Order) At round ¢, the rank order
between documents (i, j) € ¥; is in a certain rank order if and only
ifo(fl.g.) - Cij > 1, where CBgJ. = at||g§j/\/m||A;1 — e(m) is the
width of confidence bound about the estimated pairwise rank order.

Based on Lemma 3.3, if an estimated rank order (i > j) is a certain
rank order, with a high probability that the estimated preference is
consistent with the ground-truth. Hence, they should be followed
in the returned ranked list. For example, as shown in Figure 2, the
lower bound for o ( fls) is larger than 1/2, which indicates consis-
tency between the estimated and ground-truth order between (i, ).
But with U(fl.fj,) - CB;.‘,J., < 1/2, the estimated order (i’>}") is still
uncertain as the ground-truth may present an opposite order.

We use w; to represent the set of all certain rank orders at round
t,wp = {(i,j) € ¥; : U(fifj) - CBf,j > %} For pairs in w;, we can
directly exploit the current estimated rank order as it is already
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Algorithm 1 Online Neural Ranking Algorithm

1: Input: L2 coefficient A, step size 1, number of iterations for
gradient descent J, network width m, network depth L.

2: Initialize 8y = (vec(Wy),...vec(Wp)) € RP, where for each
1<1<L-1,W;=(W,0;0,W), each entry of W is initialized
independently from N(0,4/m); W = (w',-w"), where each
entry of w is initialized independently from N(0, 2/m).

. Initialize A; = Al

cfort=1,...,T do

qr « receive_query(t)

Xr = {xi, e ,xﬁt} « retrieve_documents(q;)

wy < construct_certain_rank_order_set(Xy, 0;-1,Ar)

7 « topological_sort(w;)

Ct « collect_click_feedback(z;)

10: Q;"d « construct_independent_pairs(Cy)

11:  Set 0; to be the output of gradient descent with step size n

for J rounds on minimize Eq (3.2).

122 App1 = A + Z(i,j)GQ;'nd gfjgij/m

13: end for

W 2 N > don

consistent with the ground-truth. But, for the uncertain pairs that
do not belong to w;, exploration is necessary to obtain feedback for
further model update (and thus to reduce uncertainty). For example,
in the document graph shown in Figure 1, when generating the
ranked list, we should exploit the current model by preserving the
certain orders, while randomly swap the order between documents
(B, C), (C, D), (E, F) to explore (in order to conquer feedback bias).
The estimated pairwise rank order, o( f&) is derived based on rel-
evance score calculated by the current neural network, i.e., f(x;; 0;-1)
and f(xj; 0s—1). Hence, as shown in Figure 1, due to the monotonic-
ity and transitivity of the sigmoid function, the document graph
constructed with the candidate documents as the vertices and the
certain rank order as the directed edges is a directed acyclic graph
(DAG). We can perform a topological sort on the constructed docu-
ment graph to efficiently generate the final ranked list. The certain
rank orders are preserved by topological sort to exploit the ranker’s
high confidence predictions. On the other hand, the topological sort
randomly chooses vertices with zero in-degree, among which there
is no certain rank orders. This naturally achieves exploration among
uncertain rank orders. In Figure 1, as document A is predicted to
be better than all the other documents by certain rank orders, it
will be first added to the ranked list and removed from the docu-
ment graph by topological sort. In the updated document graph,
both document B and C become vertices with zero in-degree as the
estimated rank order between them is still uncertain. Topological
sort will randomly choose one of them as the next document in the
ranked list, which induces exploration on the uncertain rank orders.
Two possible ranked lists are shown in the figure. As exploration is
confined to the pairwise ranking space, it effectively reduces the
exponentially sized exploration space of result ranking to quadratic.
Algorithm 1 shows the details of the proposed solution.
Extend to LambdaRank. LambdaRank directly optimizes the
ranking metric of interest (e.g., NDCG) with a modified gradient
based on RankNet [6]. For a given pair of documents, the confidence
interval of LambdaRank’s estimation can be calculated by gradi-
ents of the neural network in the same way as in RankNet (i.e., by
Lemma 3.3). However, as the objective function of LambdaRank is
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unknown, it prevents us from theoretically analyzing the resulting
online algorithm’s regret. But similar empirical improvement from
LambdaRank against RankNet known in the offline settings [6] is
also observed in our online versions of these two algorithms.

4 REGRET ANALYSIS

Our regret analysis is built on the latest theoretical studies in deep
neural networks. Recent attempts show that in the neural tangent
kernel (NTK) space, the generalization error bound of a DNN can
be characterized by the corresponding best function [4, 7, 8, 11, 13].
In our analysis, we denote the NTK matrix of all possible pairwise
document tangent features as H > A¢l, with the effective dimension
of H denoted as d. Due to limited space, we leave the detailed
definition of H and d in the appendix.

We define event E; as: E; = {V(i,j) € ¥y, |o( 15) - o(hij)| <
CB; j} at round t. E; suggests that the estimated pairwise rank
order on all the candidate document pairs under query g; is close
to the ground-truth at round ¢. According to Lemma 3.3, it is easy
to reach the following conclusion,

Corollary 4.1. On the event E;, it holds that o(h;;) > % if (i, )) €
Wy, i.e., in a certain rank order.

Based on the definition of pairwise regret in Eq (3.1), the ranker

only suffers regret as a result of misplacing a pair of documents, i.e.,
swapping a pair into an incorrect order. According Corollary 4.1,
under event E;, the certain rank order identified is consistent with
the ground-truth. As in our proposed solution, the certain rank
order is preserved by the topological sort, it is easy to verify that
regret only occurs on the document pairs with uncertain rank order.
Therefore, the key step in our regret analysis is to count the expected
number of uncertain rank orders. According to Definition 3.4, a
pairwise estimation is certain if and only if |o( fli -3l > CBf,j.
Hence, we have the following lemma bounding the probability that
an estimated rank order being uncertain.
Lemma 4.2. With , m satisfying the same conditions in Lemma 3.3,
with 81 € (0, 1/2) defined in Lemma 3.3, and 82 € (0, 1/2), such that
fort > t’ = O(log(1/62) +1log(1/61)), under event E;, the following
holds with probability at least 1 — ,:

Vi, J) € e Bl ) ¢ aop) < ——21080/O0

— = ||g} 2
S o — 2e(my? 1B Vil

where Cy, = 8v2kl‘21/cl21 with k;, and ¢, as the Lipschitz constants for

the sigmoid function, Apin = min  |o(hij) - % | represents the

teT,(i,j)eY,
smallest gap of pairwise difference between any pair of documents
under the same query over time.
Remark 4.3. With m satisfying the condition in Lemma 3.3, and
setting the corresponding n and J = 5(TL//1), e(m) = O(1) can be
achieved. More specifically, there exists a positive constant ¢ such
that Apin — 2e(m) = ¢Amin.

Lemma 4.2 gives us a tight bound for an estimated pairwise order
being uncertain. Intuitively, it targets to obtain a tighter bound on
the uncertainty of the neural model’s parameter estimation com-
pared to the bound determined by §; in Lemma 3.3. With this bound,
the corresponding confidence interval will exclude the possibility of
flipping the estimated rank order, i.e., the lower confidence bound
of this pairwise estimation is above 0.5.
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In each round of result serving, as the model 8; will not change

before the next round starts, the expected number of uncertain rank
orders, denoted as E[U;], can be estimated by the summation of
the uncertain probabilities over all possible pairwise comparisons
under the query g, e.g., E[U;] = % 2, j)ew, P((,j) ¢ o). Denote
pr as the probability that the user examines all documents in 7; at
round t, and let p* = min; <;<T p; be the minimal probability that
all documents in a query are examined over time. We present the
upper regret bound as follows.
Theorem 4.4. With §; and &7 defined in Lemma 3.3, 4.2, n, m
satisfying the same conditions in Lemma 3.3, there exist positive
constants {C] ?:1 that with probability at least 1 — &1, the T-step
regret is bounded by:

Ry <R +(C] 10g(1/51)glog(1 + TVimax/A) + C5)(1 - 62)/(Afmnp*)

where R = t'V2,, + (T — t')82V2,4, with t’ and Vipax defined in
Lemma 4.2. By choosing §; = §2 = 1/T, the expected regret is at
most O(d log?(T)).

Proor SKETCH. The detailed proof is provided in the appendix.
We only provide the key ideas behind our regret analysis here. The
regret is first decomposed into two parts. First, R’ represents the
regret when Lemma 4.2 does not hold, in which the regret is out of
our control. We use the maximum number of pairs associated with a
query over time, i.e., V2, to upper bound it. The second part corre-
sponds to the cases when Lemma 4.2 holds. Then, the instantaneous
regret at round ¢ can be bounded by r; = E[K(Tt, Tt*)] < E[U;], as
only the uncertain rank orders would induce regret. O

In this analysis, we provide a gap-dependent regret upper bound,

where the gap Ani, characterizes the intrinsic difficulty of sorting
the V; candidate documents at round t. Intuitively, when Apjy is
small, e.g., comparable to the network’s resolution €(m), many ob-
servations are needed to recognize the correct rank order between
two documents. As the matrix A; only contains information from
examined document pairs, our algorithm guarantees that the cu-
mulative pairwise regret of the examined documents until round
t({1: os }5:1) to be sub-linear, while the regret in the leftover
documents ({os + 1 : Vs} § ;) is undetermined. We adopt a com-
monly used technique that leverages the probability that a ranked
list is fully examined to bound the regret on those unexamined doc-
uments [27, 28, 31]. This probability is a constant independent of T
It is worth noting that our algorithm does not need the knowledge
of p* for model learning or result ranking; it is solely used for the
regret analysis to handle the partial observations. From a practical
perspective, the ranking quality of documents ranked below o for
s € [T] does not affect users’ online experience, as the users do
not examine them. Hence, if we only count regret in the examined
documents, Ry does not need to be scaled by p*
Remark 4.5. Our regret is defined over the number of mis-ordered
pairs, which is the first pairwise regret analysis for a neural OL2R
algorithm. Existing OL2R algorithms optimize their own metrics
(e.g., utility function as defined in [51]), which can hardly link to
any conventional ranking metrics. As shown in [48], most classical
ranking evaluation metrics, such as NDCG, are based on pairwise
document comparisons. Our regret analysis connects our OL2R
solution’s theoretical property with such metrics, which is also
confirmed in our empirical evaluations.
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5 EXPERIMENTS

In this section, we empirically compare our proposed models with
an extensive list of state-of-the-art OL2R algorithms on two large
public learning to rank benchmark datasets.

Reproducibility Our entire codebase, baselines, analysis, and ex-
periments can be found on Github !.

5.1 Experiment Setup

Datasets. We experiment on two publicly available learning to rank
datasets, Yahoo! Learning to Rank Challenge dataset [9], which
consists of 292,921 queries and 709,877 documents represented
by 700 ranking features, and MSLR-WEB10K [38], which contains
30,000 queries, each having 125 documents on average represented
by 136 ranking features. Both datasets are labeled on a five-grade
relevance scale: from not relevant (0) to perfectly relevant (4). We
followed the train/test/validation split provided in the datasets to
make our results comparable to the previously reported results.
Non-linearity analysis. Most of the existing OL2R models as-
sume that the expected relevance of a document under the given
query can be characterized by a linear function in the feature space.
However, such an assumption often fails in practice, as the poten-
tially complex non-linear relations between queries and documents
are ignored. For example, classical query-document features are
usually constructed in parallel to the design and choices of ranking
models. As a result, a lot of correlated and sometimes redundant
features are introduced for historical reasons; and the ranker is
expected to handle it. For instance, the classical keyword matching
based features, such as TF-IDF, BM25 and language models, are
known to be highly correlated [15]; and the number of in-links is
also highly related to the PageRank feature.

To verify this issue, we performed a linear discriminative analy-
sis (LDA) [5] on both datasets. The technique of LDA is typically
used for multi-class classification that automatically performs di-
mensionality reduction, providing a projection of the dataset that
can best linearly separate the samples by their assigned class. We
provide the entire labeled dataset for the algorithm to learn the
separable representation. We set the reduced dimension to be two
to visualize the results. In Figure 3, we can clearly observe that a
linear model is insufficient to separate the classes in both datasets.

LDA of MSLR-WEB10K dataset LDA of Yahoo dataset

0 w0 0 5% 3 2 4 o 1 2 3

Figure 3: LDA results on both datasets

400

User interaction simulation. For reproducibility, user clicks are
simulated via the standard procedure for OL2R evaluations [35].
At each round, a query is uniformly sampled from the training set
for result serving. Then, the model determines the ranked list and
returns it to the user. User click is simulated with a dependent click
model (DCM) [18], which assumes that the user will sequentially

Uhttps://github.com/HCDM/OnlineLearning ToRank

436

Yiling Jia and Hongning Wang

scan the list and make click decisions on the examined documents.
In DCM, the probabilities of clicking on a given document and
stopping examination are both conditioned on the document’s true
relevance label. We employ three different model configurations to
represent three different types of users, for which details are shown
in Table 1. Basically, we have the perfect users, who click on all
relevant documents and do not stop browsing until the last returned
document; the navigational users, who are very likely to click on
the first encountered highly relevant document and stop there; and
the informational users, who tend to examine more documents, but
sometimes click on irrelevant documents, such that contributing
a significant amount of noise in their click feedback. To reflect
presentation bias, all models only return the top 10 ranked results.

Table 1: Configuration of simulated click models.

Click Probability Stop Probability
R 0 1 2 3 4 0 1 2 3 4
per 00 02 04 08 10 |00 00 00 0.0 00
nav 005 03 05 07 09 |02 03 05 07 09
inf 04 06 07 08 09 [01 02 03 04 05

Baselines. We list the OL2R solutions used for our empirical com-
parisons below. And we name our proposed model as olRankNet
and olLambdaRank in the experiment result discussions.

e ¢-Greedy [21]: At each position, it randomly samples an un-
ranked document with probability € or selects the next best
document based on the currently learned RankNet.
Linear-DBGD and Neural-DBGD [51]: DBGD uniformly sam-
ples a direction from the entire model space for exploration and
model update. We apply it to both linear and neural rankers.
Linear-PDGD and Neural-PDGD [35]: PDGD samples the next
ranked document from a Plackett-Luce model and estimates gra-
dients from the inferred pairwise preferences. We also apply it
to both linear and neural network rankers.

PairRank [23]: This is a recently proposed OL2R solution based
on a pairwise logistic regression ranker. As it is designed for
logistic regression, it cannot be used for learning a neural ranker.
olLambdaRank GT: At each round, we estimate a new Lamb-
daRank model with ground-truth relevance labels of all the pre-
sented queries. This serves as the skyline in all our experiments.
Hyper-Parameter Tuning. MSLR-WEB10K and Yahoo Learning
to Rank dataset are equally partitioned into five folds, of which
three parts are used for for training, one part for validation and and
one part test. We did cross validation on each dataset. For each fold,
the models are trained on the training set, and the hyper-parameters
are selected based on the performance on the validation set.

In the experiment, a two-layer neural network with width m =
100 is applied for all the neural rankers. We did a grid search for
olRankNet and olLambdaRank for regularization parameter A over
{1077},
over {107 ?:1. The same set of parameter tuning is applied for
PairRank, except the model is directly optimized with L-BFGS. The
model update in PDGD and DBGD is based on the optimal settings
in their original paper. The hyper-parameters for PDGD and DBGD
are the update learning rate and the learning rate decay, for which
we performed a grid search for learning rate over {107} ?:1, and
the learning rate decay is set as 0.999977.

exploration parameter « over {107 }?:1, learning rate
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Figure 4: Offline performance on two benchmark datasets under three different click model configurations.

5.2 Experiment Results

Offline performance. The offline performance is evaluated in an
“online” fashion: the newly updated ranker is immediately evaluated
on a hold-out testing set against its ground-truth labels. This mea-
sures how rapidly an OL2R model improves its ranking quality, and
it is an important metric about users’ instantaneous satisfaction.
This can be viewed as using one portion of traffic for online model
update, while serving another portion with the latest model. We
use NDCG@10 to assess the ranking quality, and we compare all
algorithms over three click models and two datasets. For olRankNet
and olLambdaRank, since it is computationally expensive to store
and operate on a complete A; matrix, we only used its diagonal ele-
ments as an approximation. We fixed the total number of iterations
T to 5000. The experiments are executed for 10 times with different
random seeds and the averaged results are reported in Figure 4.
We can clearly observe that our proposed online neural ranking
models achieved significant improvement compared to all baselines.
Under different click models, both linear and neural DBGD per-
formed the worst. This is consistent with previous findings: DBGD
depends on interleave tests to determine the update direction in the
model space. But such model-level feedback cannot inform the opti-
mization of any rank-based metric. Moreover, with a neural ranker,
random exploration becomes very ineffective. PDGD consistently
outperformed DBGD under different click models. However, its
document sampling based exploration limits its learning efficiency,
especially when users only examine a small portion of documents,
e.g., the navigational users. It is worth noting that in the original
paper [35], PDGD with a neural ranker outperformed linear ranker
after much more interactions, e.g., 20000 iterations. Our proposed
solutions with only 5000 iterations already achieved better perfor-
mance than the best results reported for PDGD, which demonstrates
the encouraging efficiency of our proposed OL2R solution. Com-
pared to PairRank, our neural rankers had a worse start at the begin-
ning. We attribute it to the limited training samples available at the
initial rounds, i.e., the network parameters were not well estimated
yet. But the neural model enables non-linear relation learning and
quickly leads to better performance than the linear models when
more observations arrive. Compared to olRankNet, olLambdaRank
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directly optimizes the evaluation metrics, e.g., NDCG@10, with
corresponding gradients. We can observe similar improvements
from LambdaRank compared to RankNet as previously reported in
offline settings. It is worth noting that though the improvement of
olRankNet and olLambdaRank compared to PairRank is not as large
as their improvement against other baselines in the figure, small
improvement in the performance metric often means a big leap for-
ward in practice as most real-world systems serve millions of users,
where even a small percentage improvement can be translated into
huge utility gain to the population.

Online performance. In OL2R, in addition to the offline evalua-
tion, the models’ ranking performance during online result serving
should also be considered, as it reflects user experience during
model update. Sacrificing users experience for model training will
compromise the goal of OL2R. We adopt the cumulative Normalized
Discounted Cumulative Gain to assess models’ online performance.
For T rounds, the cumulative NDCG is calculated as

T
Cumulative NDCG = Zm NDCG(z;) -y,

which computes the expected utility a user receives with a proba-
bility y that he/she stops searching after each query [35]. Following
the previous work [35, 46], we set y = 0.9995. Figure 5 shows the on-
line performance of the proposed online neural ranking model and
all the other baselines. It is clear to observe that DBGD-based mod-
els have a much slower convergence and thus have worse online
performance. Compared to the proposed solution, PDGD showed
consistently worse performance, especially under the navigational
and informational click models with a neural ranker. We attribute
this difference to the exploration strategy used in PDGD: PDGD’s
sampling-based exploration can introduce unwanted distortion in
the ranked results, especially at the early stage of online learning.
We should note the earlier stages in cumulative NDCG plays a much
more important role due to the strong shrinking effect of y.

Our proposed models demonstrated significant improvements
over all baseline methods on both datasets under three different
click models. Such improvement indicates the effectiveness our un-
certainty based exploration, which only explores when the ranker’s
pairwise estimation is uncertain. Its advantage becomes more ap-
parent in this online ranking performance comparison, as an overly
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Figure 6: Ratio of certain rank orders at Top-10 positions
over the rounds of online model update.

aggressive exploration in the early stage costs more in cumulative
NDCG. We can also observe the improvement of olLambdaRank
compared to olRankNet in this online evaluation, although the dif-
ference is not very significant. The key reason is also the strong dis-
count applied to the later stage of model learning: olLambdaRank’s
advantage in directly optimizing the rank metric becomes more
apparent in the later stage, as suggested by the offline performance
in Figure 4. At the beginning of model learning, both models are
doing more explorations and therefore the online performance got
more influenced by the number of document pairs with uncertain
rank orders, rather than those with certain rank orders.
Shrinkage of the number of uncertain rank orders. To further
verify the effectiveness of the exploration strategy in our proposed
online neural ranking model, we zoom into the trace of the number
of identified certain rank orders under each query during online
model update. As the model randomly shuffles the uncertain rank
orders to perform the exploration, a smaller ratio of uncertain rank
orders is preferred to reduce the regret, especially at the top ranked
positions. Figure 6 reports the ratio of certain rank orders among all
possible document pairs at top-10 positions in our olRankNet model.
We can clearly observe that the certain rank orders quickly reach
a promising level, especially on the Yahoo dataset. This confirms
our theoretical analysis about the convergence of the number of
uncertain rank orders. Comparing the results under different click
models, we can observe that the convergence under navigational
click model is slower. We attribute it to the limited feedback ob-
served during the online interactions, because the stop probability
is much higher in the navigational click model.

Existing OL2R solutions are limited to linear models, which have
shown to be incompetent to capture the potential non-linear re-
lations between queries and documents. Motivated by the recent
advances in the theoretical deep learning, we propose to directly
learn a neural ranker on the fly. During the course of online learn-
ing, we assess the ranker’s pairwise rank estimation uncertainty
based on the tangent features of the neural network. Exploration
is performed only on the pairs where the ranker is still uncertain;
and for the rest of pairs we follow the predicted rank order. We
prove a sub-linear upper regret bound defined on the number of
mis-ordered pairs, which directly links the proposed solution’s
convergence with classical ranking evaluations. Our empirical ex-
periments support our regret analysis and demonstrate significant
improvement over several state-of-the-art OL2R solutions.

Our effort sheds light on deploying powerful offline learning to
rank solutions online and directly optimizing rank-based metrics,
e.g., RankNet and LambdaRank. Furthermore, our solution can be
readily extended to more recent and advanced neural rankers (e.g.,
those directly learn from query-document pairs without manually
constructed features). On the other hand, computational efficiency
is a practical concern for online algorithms. Our current solution
requires gradient descent on the online collected training instances,
which is undeniably expensive. We would like to investigate the
feasibility of online stochastic gradient descent and its variants, in
the setting of continual learning, which would greatly reduce the
computational complexity of our solution.
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A PROOF OF LEMMA 3.3

Before we provide the detailed proofs, we first assume that there are
n; possible documents to be evaluated during the model learning
until round t. It is easy to conclude that ny = Zt Vs < tVimax.

We also assume that there are n’ ¢ document pairs in the training
dataset. As we only use the independent observed pairs, it is easy
to verify that n‘? < Zé:l 0:/2 < kt/2.

Following Definition 4.1 in [54], we define the neural tangent ker-
nel matrix H of the n7 query-document features {x;} i1, across T
rounds. We also adopt the same assumption on the context {x;}" h
and the kernel matrix H with Assumption 4.2 in [54]. As the in-
put {xl ; are based on manually crafted ranking features, such
assumptlons can be easily satisfied. Equipped with this assump-
tion, it can be verified that with 6y initialized as in Algorithm 1,
f(xi;6p) = 0forany i € [n;]. It is also well known that the sigmoid
function o is continuously differentiable, Lipschitz with constant
k, =1/4and ¢, = inf& > 0.

In order to prove Lemma 3.3, we need the following lemmas, in
addition to the technical lemmas, Lemma 5.1, Lemma B.2, Lemma
B.3, Lemma B.4, Lemma B.5 and Lemma B.6 from [54]. The first
lemma is based on the generalized linear bandit [16] and the analysis
of linear bandit in [1]. For Lemma A.2 and Lemma A.3, we adopt it
from the original paper based on our pairwise cross-entropy loss,
and covariance matrix A; on the pairwise feature vectors.
Lemma A.1. For any ¢ € [T], with J; defined as the solution of
the following equation,

-1
Do Z(i,j)eog'"d("“g?}'o’ Y- yig +mAy =0

Then, with the pairwise noise §isjsatisfying Proposition 3.2, for any

(A1)

(i, ) € ¥;, with probability at least 1 — d;, we have,

INRIO° ~ 00~ F)ll5, < c;2(y/v2 log(det(A,))/ (5% det(AD) + VAS)

Lemma A.2. There exist constants {Ci}?zl
6 > 0,if for all t € [T], n and m satisfy

Jnf [(mA) 2 Cym™2L73 2 [log(n, L2 /6)1P/,
Vb [(m2) < Gy min {L™°[log m] /2, (m(An)*L™8(n}) ™ (log m)™)*/*},
n < C3(mA+ nf mL)7}, mé > Cy4/log mL7/2(nf)7/6/1’7/6(1 + nf/)t),

then with probability at least 1 — 6, [|6; — 6|z < Z,Ian/(m/I) and

6o — Pe llz <Csm™23\flog mL"/2(n?)"/°A77/5(1 +

+(1- qm/l)f/zwlnp/(m)t).

> 0 such that for any

> 0 such that for any

6. - ny /2)

Lemma A.3. There exist constants {C€
d > 0, if m satisfies that

CEm3 2L 2 log(npL2/8)1? <t < CSL”

i=1

*[log m]*/2

with 7 as the upper bound of ||@ — 6|, then with probability at
least 1 — §, for any ¢ € [T], we have

Al < A+ C5nPL,

A: —Asllr < CEnPAlo (m)r1/3L4,
I Il 41y Viog
det(A det(A - -1/6p
8 de t((/ti)) J det((/llt)) < (:56(’11;)5/3/1 1e log(m)m e
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where A; = + AL The constants

{CE , can be constructed based on the constants in the technical
lemmas Lemma B.4, B.5 and B.6 from [54].

Z(z L j)eqind mgl ]'gl]

ProOOF oF LEMMA 3.3. We first bound the estimated pairwise or-
der based on the Lipschitz continuity:

| (£t 00-1) = £k 0,-1)) = o (hix!) — h(xD)|
Skulf(xfi 0:-1) —f(X§; 0;-1) — (h(xﬁ) - h(xj))‘
According to Lemma 5.1 in [54] and f(x;60p) = 0, we have,
Fxt:001) ~ hlxt) =f(xk: 0,1) — £ (xt: 60) — (g(x: 0,-1). 1 — 60)
+(g(x}:0,-1), 01-1 — 6y) — (g(x%;6,-1), 0 — 6p)
+(g(x}3 0r-1), 6" — 60) — (g(x]: 60), 6" — 6o).
Based on the triangle inequality, we have,
[t 00-1) - £xt: 00-) = (et = )|
<| g5 0,-1) - ks 01-1), 011 - 07))
410" = 60l (gt 0r-1) = gx! 00z + llgxts 0r-1) — (xS 60l
POk 000) = £t 00) — (80,1, 641 60)
45 00-1) = FOxt: 00) = (@S5 0,-1), 011 = 00)]

<2Ct 33 \mlog m + 2CE S\flog mr 3 L3VmL + ‘(gfj, 6;1— 9*)),

where Clt and Cé are positive constants, S is the upper bound of

VhTHh. The last inequality is due to Lemma 5.1, Lemma B.4, Lemma
B.5, Lemma B.6 in [54], with 7 as the upper bound of ||@ — 6g||2.

Now we start to bound the last term (gfj, ;-1 — 0%)|.

<&ty 011 = 0% < (gl 0" = 00 = F)1 + gt 11611 — 6 — 7t

(A2)
For the first term, we have the following analysis.
I(gi;» 0" — 60— 7o)l
S”gfj/\%”A*I 1+ 1A = Arll2/DIIVm(O" — 60 = 1) Ia,
<1+ Clm T logmE(702=7/6 - |\m(8" - 6y~ F)lIa, el

where the first inequality is due to the fact that x' Px < x' Qx -
IIPll2/Amin(Q), and Amin(As) = A, the third inequality is based on
Lemma B.3 in [54] with ||A; — A;|l2 < ||As — A¢||. According to
Lemma A.1, with probability 1 — §;, we have

[Vm(6* -
Sc;Z(\/vZ log(det(A;))/(8? det(AL)) + CLm~1/6+/log mL4t5/32=1/6 + V2S),

6o — y)lla,

where the inequality is based on Lemma B.3. For the second term
of Eq (A.2), it can be bounded according to Lemma B.5 in [54] and
Lemma A.2. By chaining all the inequalities, with ||§ — 6y|| < 7 <

2‘12n€ /(mA), and the satisfied m and 5, we complete the proof. O

B PROOFS OF LEMMA 4.2

The following lemma is derived from random matrix theory. We
adapted it from Equation (5.23) of Theorem 5.39 from [45].
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Lemma B.1. Let M € RNV*? be a matrix whose rows M; are inde-
pendent sub-Gaussian isotropic random vectors in R? with parame-
ter p, namely E[exp(g] ;, (M;=E[M;])/vm] < exp(p?llgs /Vml|*/2)
for any gy » € RP. Then, there exist positive universal constants
Cy and C; such that, for every t > 0, the following holds with prob-
ability at least 1 — 2exp(—Czt?), where v = p(C1\/p/_N + t/VN):
| %MTM = I || < max{v, v?}.

PRrROOF OF LEMMA 4.2. At initialization, DNNs are equivalent to

Gaussian processes in the infinite-width limit. With ¥ = E[g(l)] g?jT]

as the second moment matrix, define Z = Y 2X, where X is a ran-
dom vector drawn from the same distribution v. Then Z is isotropic,
namely E[ZZT] = Ip. Define D = o Z(l, 7)eqind A i JZ3) s where
Z?,j, = Z’l/zgf;](.),. It is trivial to have D = =Y/2(A, — AD="!/2. From
Lemma B.1, we know that for any I, with probability at least 1 —
2exp(=C212), Amin(D) > ny — C10%n; — 61/nr, where o is the sub-
Gaussian parameter of Z, which is upper-bounded by =712 =
Amin(X), and ny = 2;} |Q§"d| represents the number of pairwise
observations so far. Thus, we can rewrite the above inequality which
holds with probability 1—8; as Ayin(D) > ny —A;lin(Z)(Cl ng+I\ny),
and: Apin(Ar—AD) = min, ege x T ZV2DEY2x > Apin(S)ne—Cing—
Con/n; log(1/82)

Under event E;, based on the definition of w; in Section 3, we
know that for any document i and j at round t, (i, j) ¢ w; if and only
if o( t) CBt < 1/2and a(ft) CBt < 1/2.For alogistic function,
we know that o(s)=1-o0(— s) Therefore according to Lemma 3.3,
we can conclude that (i, j) ¢ w; if and only if |0'(flS) -1/2| < Cij;
and accordingly, (i, j) € w;, when |0'(fl.§.) -1/2| > CBl?j. According
to the discussion above, at round ¢, we have the probability that
the estimated preference between document i and j in an uncertain
rank order, ie., (i, ) ¢ wy,

B((i, ) # 1) <P (Amin = |0(f5) — o (k)| < CBL) .
Based on Lemma 3.3, the probability can be further bounded by
B (Amin = 10(£5) - o (k)| < CBY,)

<P(||W,||A;1 > %(M _ at})

IIgf.j/\/EI |A71
where W, = 3/_ 12(1' 7)eqind §, 83 i . For the right-hand side, we
know that /Imm(At) mln(At) + ”At At ” mm(At AI) + A+

lA; — A;|l . With some positive constants {C”}l pfort > ¢ =
(CH + CY\flog(1]83) + CLVimax)* + Clog(1/81) + C¥ , as ny > t, we
have n; — n; (C}* + Ci+/log(1/82) + C¥ Vmax) > Citlog(1/6;) + C¥ .
Hence, when ¢ > ¢, the right-hand side of the inequality is positive.
Therefore, we have:

Cu log(1/81) ,
(Amm |o’(fu o’(h )| < CB ) < m”gu/\/»“
This completes the proof. O
C PROOF OF THEOREM 4.4
Lemma C.1. There exist positive constants {C i};—; such that for

any 8 € (0,1),if m > G max {T7A77L% (log m)3, nTLé(log(TVmaxLz/5))3/2},

and n < C;(TmL + mA)~!, with probability at least 1 — §, we have

T ‘ detAr ~
Zt:l Z(i’.j')em “gi'j'/\/a”A_l < 2log det AI < dlog(1 + TV /A) 41
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where d is defined as the effective dimension of H.

Proor oF THEOREM 4.4. With §; and , defined in the previous
lemmas, we have with probability at least 1 — 81, the T-step regret
is upper bounded as:

T
R <t/ s Vi + (T = )& Vi +(1=8) ) 1e (C1)

When event E; and the event defined in Lemma 3.3 both occur, the
instantaneous regret at round ¢ is bounded by r; = E[K (s, 74 )] <
E[U;], where Uy denotes the number of uncertain rank orders under
the ranker at round ¢. As the ranked list is generated by topolog-
ical sort on the certain rank orders, the random shuffling only
happens between the documents that are in uncertain rank or-
ders, which induce regret in the proposed ranked list. In each
round of result serving, as the model 6; would not change un-
til the next round, the expected number of uncertain rank orders
can be estimated by summing the uncertain probabilities over all
possible pairwise comparisons under the current query g, e.g.,
E[Ut] = 1/2 3, j)ew, P((i,)) ¢ w¢). Based on Lemma 4.2, the cu-
mulative number of mis-ordered pairs can be bounded by the prob-
ability of observing uncertain rank orders in each round, which
shrinks with more observations become available over time,

T T o
E[ Zs:t’ Ut] SE[l/Z Zs=t’ Z(i’,j/)e‘!’s P((l/’ ],) ¢ b_)t)]
T
SE[ Zs:t' Z(i/,k’)e\vs C"u log(1/5l)||gl’.,j, ”12\;1 /Arznin] .

Because A; only contains information of observed document pairs
so far, our algorithm guarantees the number of mis-ordered pairs
among the observed documents in the above inequality is upper
bounded. To reason about the number of mis-ordered pairs in those
unobserved documents (i.e., from o; to L; for each query q;), we
leverage the constant p*, which is defined as the minimal probability
that all documents in a query are examined over time,

B[ Zt:t’ Z(i'.j’)e% “glt"j’/\/a”A?l]
<D TEBL Y Do e, 180 Nl {0 = Vi)

Besides, we only use the independent pairs, Q;"d to update the
model and the corresponding A; matrix. Therefore, to bound the
regret, we rewrite the above equation as:

T ¢ 2
B1D v D yrews 180 NI
t

1 Bijr s ng’kTAzlg]t"k
<E Zt:ﬂ Z(i’,j’)e!zi"d L Hﬁ it * Zke[w]\{i&j’} T m

T 2 2 g2
<E |} (Z(i,yj,)mindu||gl,,/f o1 +2C5 Vi L /Ammmt))

t=t’

where the last inequality is due to Lemma B.6 in [54]. According
to the analysis of Apin(Ay) and Apin(A;), the convergence rate the
above upper bound is faster than the self-normalized term. Hence,
by chaining all the inequalities, we have with probability at least
1 — 81, the regret satisfies,

Ry <R + (1 = 8,)C¥ 1og(1/81)(w + Vinax(d log(1 + TV, /A) + 1)/AZ, )
"+ (C log(1/81)d log(1 + TV, /A) + CF)(1 = 82)/ (AL, 0")
where {Cl.r}?:1 are positive constants, R’ = t'V2, + (T —t")82V2 .
By choosing d; = §2 = 1/T, the theorem shows that the expected
regret is at most Rt < O(d logz(T)). ]
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