
Learning Neural Ranking Models Online from Implicit User
Feedback

Yiling Jia

University of Virginia

Charlottesville, VA, USA

yj9xs@virginia.edu

Hongning Wang

University of Virginia

Charlottesville, VA, USA

hw5x@virginia.edu

ABSTRACT
Existing online learning to rank (OL2R) solutions are limited to lin-

ear models, which are incompetent to capture possible non-linear

relations between queries and documents. In this work, to unleash

the power of representation learning in OL2R, we propose to di-

rectly learn a neural ranking model from users’ implicit feedback

(e.g., clicks) collected on the fly. We focus on RankNet and Lamb-

daRank, due to their great empirical success and wide adoption in

offline settings, and control the notorious explore-exploit trade-off

based on the convergence analysis of neural networks using neural

tangent kernel. Specifically, in each round of result serving, explo-

ration is only performed on document pairs where the predicted

rank order between the two documents is uncertain; otherwise,

the ranker’s predicted order will be followed in result ranking. We

prove that under standard assumptions our OL2R solution achieves

a gap-dependent upper regret bound of O(log2(T)), in which the

regret is defined on the total number of mis-ordered pairs over T
rounds. Comparisons against an extensive set of state-of-the-art

OL2R baselines on two public learning to rank benchmark datasets

demonstrate the effectiveness of the proposed solution.

CCS CONCEPTS
• Information systems→ Learning to rank; • Theory of com-
putation→ Regret bounds; Online learning theory.

KEYWORDS
online learning to rank, online neural ranking, explore-exploit

ACM Reference Format:
Yiling Jia and Hongning Wang. 2022. Learning Neural Ranking Models On-

line from Implicit User Feedback. In Proceedings of the ACM Web Conference
2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3485447.3512250

1 INTRODUCTION
In the past decade, advances in deep neural networks (DNN) have

made significant strides in improving offline learning to rank mod-

els [6, 37], thanks to DNN’s strong representation learning power.

But quite remarkably, most existing work in online learning to rank

(OL2R) still assume a linear scoring function [41, 46, 51]. Compared

This work is licensed under a Creative Commons Attribution International

4.0 License.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9096-5/22/04.

https://doi.org/10.1145/3485447.3512250

with linear ranking models, nonlinear models induce a more gen-

eral hypothesis space, which provides a system more flexibility and

capacity in modeling complex relationships between a document’s

ranking features and its relevance quality. Such a clear divide be-

tween the current OL2R solutions and the successful practices in

offline solutions seriously restricts OL2R’s real-world impact.

The essence of OL2R is to learn from users’ implicit feedback

on the presented rankings, which suffers from the explore-exploit

dilemma, as the feedback is known to be noisy and biased [2, 10, 24,

25]. State-of-the-art OL2R approaches employ random exploration

to obtain a trade-off, and mainstream OL2R solutions are mostly

different variants of dueling bandit gradient descent (DBGD) [51].

In particular, DBGD and its extensions [36, 41, 42, 51] were in-

herently designed for linear models, where they rely on random

perturbations to sample model variants and estimate the gradi-

ent for the model update. Given the complexity of a DNN, such

a random exploration method can hardly be effective. Oosterhuis

and de Rijke [35] proposed PDGD, which samples the next ranked

document from a Plackett-Luce model and estimates an unbiased

gradient from the inferred pairwise preference. Though PDGDwith

a neural ranker reported promising empirical results, its theoretical

property is still unknown. Most recently, Jia et al. [23] proposed to

learn a pairwise ranker online using a divide-and-conquer strategy.

Improved performance against all aforementioned OL2R solutions

was reported by the authors. However, this solution is still limited

to linear ranking functions in nature.

Turning a neural ranker online is non-trivial. While deep neural

networks can be accurate on learning given user feedback, i.e., ex-

ploitation, developing practical methods to balance exploration and

exploitation in complex online learning problems remains largely

unsolved. In essence, quantifying a neural model’s uncertainty

on new data points remains challenging. Fortunately, substantial

progress has been made to understand the representation learning

power of DNNs. Studies in [4, 7, 8, 11, 13] showed that by using

(stochastic) gradient descent, the learned parameters of a DNN are

located in a particular regime, and the generalization error bound

of the DNN can be characterized by the best function in the corre-

sponding neural tangent kernel space [22]. In particular, under the

framework of the neural tangent kernel, studies in [52, 54] proposed

that the confidence interval of the learned parameters of a DNN can

be constructed based on the random feature mapping defined by

the neural network’s gradient on the input instances. These efforts

prepare us to study neural OL2R.

In this work, we choose RankNet [6] as our base ranker for OL2R

because of its promising empirical performance in offline settings

[9]. We devise exploration in the pairwise document ranking space

and balance exploration and exploitation based on the ranker’s

431

https://doi.org/10.1145/3485447.3512250
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485447.3512250

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yiling Jia and Hongning Wang

confidence about its pairwise estimation. In particular, we con-

struct pairwise uncertainty from the tangent features of the neural

network [7, 8]. In each round of result serving, all the estimated

pairwise comparisons are categorized into two types, certain pairs

and uncertain pairs. Documents associated with uncertain pairs are

randomly shuffled for exploration, while the order among certain

pairs is preserved in the presented ranking for exploitation.

We rigorously proved that our model’s exploration space shrinks

exponentially fast as the ranker estimation converges, such that the

cumulative regret defined on the number of mis-ordered pairs has

a sublinear upper bound. As most existing ranking metrics can be

reduced to different kinds of pairwise document comparisons [48],

we also extended our solution to LambdaRank [39] to directly opti-

mize ranking metrics based on users’ implicit feedback on the fly.

To the best of our knowledge, this is the first neural OL2R solution

with theoretical guarantees. Our extensive empirical evaluations

also demonstrated the strong advantage of our model against a rich

set of state-of-the-art OL2R solutions over two public learning to

rank benchmark datasets on standard ranking metrics.

2 RELATEDWORK
Online learning to rank. We broadly group existing OL2R so-

lutions into two main categories. The first type learns the best

ranked list for each individual query separately, by modeling users’

click and examination behaviors with multi-armed bandit algo-

rithms [26, 29, 40, 55]. Typically, such solutions depend on specific

click models to decompose relevance estimation on each query-

document pair; as a result, exploration is performed on the ranking

of individual documents. For example, by assuming users examine

documents from top to bottom until reaching the first relevant docu-

ment, cascading bandit models rank documents based on the upper

confidence bound of their estimated relevance [26, 27, 31]. The sec-

ond type of solutions leverage ranking features for relevance estima-

tion, and search for the best ranker in the model space [30, 35, 51].

The most representative work is Dueling Bandit Gradient Descent

(DBGD) [42, 51]. To ensure an unbiased gradient estimate, DBGD

uniformly explores in the model space, which costs high variance

and high regret. Subsequent methods improved DBGD with more

efficient sampling strategies, such as multiple interleaving and pro-

jected gradient, to reduce variance [20, 34, 46, 47, 53].

However, almost all of the aforementioned OL2R solutions are

limited to linear models, which are incompetent to capture any

non-linear relations between queries and documents. This shields

OL2R away from the successful practices in offline learning to rank

models, which are nowadays mostly empowered by deep neural

networks [6, 37]. This clear divide hasmotivated some recent efforts.

Oosterhuis and de Rijke [35] proposed PDGD which samples the

next ranked document from a Plackett-Luce model and estimates

gradients from the inferred pairwise result preferences. Though

PDGDwith a neural ranker achieved empirical improvements, there

is no theoretical guarantee on its performance. A recent work learns

a pairwise logistic regression ranker online and reports the best

empirical results on several OL2R benchmarks [23]. Though non-

linearity is obtained via the logistic link function, its expressive

power is still limited by the manually crafted ranking features.

Theoretical analysis of neural networks. Recently, substantial
progress has been made to understand the convergence of deep

neural networks [19, 32, 33, 43, 44, 49, 50, 56, 58]. A series of recent

studies showed that (stochastic) gradient descent can find global

minimal of training loss under moderate assumptions [3, 14, 32, 57,

58]. Besides, Jacot et al. [22] proposed the neural tangent kernel

(NTK) technique, which describes the change of a DNN during

gradient descent based training. This motivates the theoretical

study of DNNs with kernel methods. Research in [4, 7, 8, 11, 13]

showed that by connecting DNN with kernel methods, (stochastic)

gradient descent can learn a function that is competitive with the

best function in the corresponding neural tangent kernel space. In

particular, under the framework of NTK, some recent work show

that the confidence interval of the learned parameters of a DNN can

be constructed based on the random feature mapping defined by the

neural network’s gradient [52, 54]. This makes the quantification

of a neural model’s uncertainty possible, and enables our proposed

uncertainty-based exploration for neural OL2R.

3 METHOD
In this section, we present our solution, which trains a neural rank-

ing model with users’ implicit feedback online. The key idea is to

partition the pairwise document ranking space and only explore

the pairs where the ranker is currently uncertain while exploiting

the predicted rank of document pairs where the ranker is already

certain. We rigorously prove a sublinear regret which is defined

on the cumulative number of mis-ordered pairs over the course of

online result serving.

3.1 Problem Setting
In OL2R, at round t ∈ [T], the ranker receives a query qt and its

associated Vt documents represented by a set of d-dimensional

query-document feature vectors: Xt = {xt
1
, ..., xtVt } with xti ∈ R

d
.

The ranking τt =
(
τt (1), ...,τt (Vt)

)
∈ Π([Vt]), is generated by the

ranker based on its knowledge so far, where Π([Vt]) represents the
set of all permutations and τt (i) is the rank position of document i .

The user examines the returned ranked list and provides his/her

feedback, i.e., clicks Ct = {c
t
1
, ct
2
, ..., ctVt

}, where cti = 1 if the user

clicked on document i at round t ; otherwise cti = 0. Then, the ranker

updates itself and precedes the next round. Numerous studies have

shown Ct is subject to various biases and noise, e.g., presentation

bias and position bias [2, 24, 25]. In particular, it is well-known

that non-clicked documents cannot be simply treated as irrelevant.

Following the practice in [24], we treat clicks as relative preference

feedback and assume that clicked documents are preferred over

the examined but unclicked ones. In addition, we adopt a simple

examination assumption: every document that precedes a clicked

document and the first subsequent unclicked document are exam-

ined. This approach has been widely employed and proven effective

in learning to rank [2, 35, 46]. We use ot to represent the index of

the last examined position in the ranked list τt at round t . It is
worth mentioning that our solution can be easily adapted to other

examination models, e.g., position based model [12], as we only use

the derived result preferences as model input.

As the ranker learns from user feedback while serving, cumula-

tive regret is an important metric for evaluating OL2R. In this work,

432

Learning Neural Ranking Models Online from Implicit User Feedback WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 1: At round t , the ranker is confident about its order
estimation between all the pairs expect (B,C), (C,D), (E, F).
Hence, in the ranking, the ranking orders among the certain
pairs are preserved, while the uncertain pairs are shuffled.

our goal is to minimize the following regret, which is defined by

the number of mis-ordered pairs from the presented ranked list to

the ideal one, i.e., the Kendall’s Tau rank distance,

RT = E
[∑T

t=1
rt

]
= E

[∑T

t=1
K(τt ,τ

∗
t)

]
(3.1)

whereK(τt ,τ
∗
t) = |{(i, j) : i<j,

(
τt (i)<τt (j)∧τ

∗
t (i)>τ

∗
t (j)

)
∨
(
τt (i)>τt (j)∧

τ ∗t (i)<τ
∗
t (j)

)
}|.

Remark 3.1. As shown in [48], most ranking metrics, such as

Average Rank Position (ARP) and Normalized Discounted Cumula-

tive Gain (NDCG), can be decomposed into pairwise comparisons;

hence, this regret definition connects an OL2R algorithm’s online

performance with classical rank evaluations. We consider it more

informative than “pointwise” regret defined in earlier work [26, 29].

3.2 Online Neural Ranking Model Learning
In order to unleash the power of representation learning of neural

models in OL2R, we propose to directly learn a neural ranking

model from its interactions with users. We balance the trade-off

between exploration and exploitation based on the model’s confi-

dence about its predicted pairwise rank order. The high-level idea

of the proposed solution is explained in Figure 1.

Neural Ranking Model. We focus on RankNet and LambdaRank

because of their promising performance andwide adoption in offline

settings [6]. In the following sections, we will focus on RankNet to

explain the key components of our proposed solution for simplicity,

and later we discuss how to extend the solution to LambdaRank.

We assume that there exists an unknown function h(·) that mod-

els the relevance quality of document x under the given query q as

h(x). In order to learn this function, we utilize a fully connected neu-
ral network f (x;θ) =

√
mWLϕ(WL−1ϕ(. . .ϕ(W1x)), where depth

L ≥ 2, ϕ(x) = max{x, 0}, and W1 ∈ R
m×d

, Wi ∈ R
m×m

, 2 ≤ i ≤
L − 1, WL ∈ R

m×1
, and θ = [vec(W1)

⊤, . . . , vec(WL)
⊤]⊤ ∈ Rp

with p =m+md +m2(L− 2). Without loss of generality, we assume

the width of each hidden layer is the same asm, concerning the

simplicity of theoretical analysis. We also denote the gradient of

the neural network function as g(x;θ) = ∇θ f (x;θ) ∈ Rp .
RankNet specifies a distribution on pairwise comparisons. In

particular, the probability that document i is more relevant than

document j is calculated by P(i ≻ j) = σ (f (xi ;θ) − f (xj ;θ)),
where σ (s) = 1/(1 + exp(−s)). For simplicity, we use f ti j to denote

f (xi ;θt−1) − f (xj ;θt−1). Therefore, the objective function for θ
estimation in RankNet can be derived under a cross-entropy loss be-

tween the predicted pairwise comparisons and those inferred from

user feedback till round t and a L2-regularization term centered at

Figure 2: Illustration of certain and uncertain rank orders.

the randomly initialized parameter θ0:

Lt (θ) =
∑t

s=1

∑
(i, j)∈Ωs

−(1 − ysi j) log(1 − σ (fi j))

− ysi j log(σ (fi j)) +mλ/2∥θ − θ0∥
2, (3.2)

where λ is the L2 regularization coefficient, Ωs denotes the set of

document pairs that received different click feedback at round s , i.e.
Ωs = {(i, j) : c

s
i , csj ,∀τs (i) ≤ τs (j) ≤ ot }, y

s
i j indicates whether

document i is preferred over document j in the click feedback, i.e.,

ysi j = (c
s
i − c

s
j)/2 + 1/2 [6].

The online estimation of RankNet boils down to the construc-

tion of {Ωt }
T
t=1 over time. However, the conventional practice of

using all the inferred pairwise preferences from clicks becomes

problematic in an online setting. For example, in the presence of

click noise (e.g., a user mistakenly clicks on an irrelevant docu-

ment), pairing documents would cause a quadratically increas-

ing number of noisy training instances, and therefore impose a

strong negative impact on the quality of the learned ranker and

subsequent result serving. To alleviate this deficiency, we propose

to only use independent pairwise comparisons to construct the

training set, e.g., Ωind
t = {(i, j) : cti , ctj ,∀(τt (i),τt (j)) ∈ D},

where D represents the set of disjointed position pairs, for example,

D = {(1, 2), (3, 4), ...(ot − 1,ot)}. In other words, we only use a

subset of non-overlapping pairwise comparisons for update.

Result Ranking Strategy. Another serious issue in the online col-

lected training instances is bias. As discussed before, the ranking

model is updated based on the acquired feedback from what it has

presented to the users so far, which is subject to various types of

biases, e.g., presentation bias and position bias [2, 24, 25]. Hence, it

is vital to effectively explore the unknowns to complete the ranker’s

knowledge about the ranking space, while serving users with qual-
ified ranking results to minimize regret. As our solution of result

ranking, we explore in the pairwise document ranking space with

respect to the ranker’s current uncertainty about the comparisons.

To quantify the source of uncertainty, we follow conventional

click models to assume that on the examined documents where

τt (i) ≤ ot , the obtained feedbackCt is independent from each other

given the true relevance of documents, so is their noise [17, 18, 24].

As a result, the noise in each collected preference pair becomes

the sum of noise from the clicks in the two associated documents.

Because we only use the independent pairs Ωind
t , the pairwise noise

is thus independent of each other and the history of result serving,

which leads to the following proposition.

Proposition 3.2. For any t ≥ 1, ∀(i, j) ∈ Ωind
t , the pairwise feed-

back followsyti j = σ (h(xi)−h(xj))+ξ ti j , where ξ
t
i j satisfying that for

433

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yiling Jia and Hongning Wang

all β ∈ R, E[exp(βξ ti j)|{{ξ
s
i′j′}i′j′∈Ωind

s
}t−1s=1,Ω

ind
1:t−1] ≤ exp(β2ν2),

is a ν-sub-Gaussian random variable

Based on the property of sub-Gaussian random variables, the

proposition above can be easily satisfied in practice as long as the

pointwise click noise follows a sub-Gaussian distribution. Typically

the pointwise noise is modeled as a binary random variable related

to the document’s true relevance under the given query, which

follows a
1

2
-sub-Gaussian distribution. Let Ψt represent the set of all

possible document pairs at round t , e.g., Ψt = {(i, j) ∈ [Vt]
2, i , j}

and |Ψt | = V
2

t −Vt . Based on the objective function Eq (3.2) over

training dataset {Ωind
s }ts=1, we have the following lemma bounding

the uncertainty of the estimated pairwise rank order at round t .
Lemma 3.3. (Confidence Interval of Pairwise Rank Order). There

exist positive constants C1 and C2 such that for any δ1 ∈ (0, 1), if
the step size of gradient descent η ≤ C1(TmL +mλ)−1 and m ≥

C2max

{
λ−1/2L−3/2(log(TVmaxL

2/δ1))
3/2,T 7λ−7L21(logm)3

}
, then

at round t < T , for any document pair (i, j) ∈ Ψt under query qt ,
with probability at least 1 − δ1,

|σ (f ti j) − σ (hi j)| ≤ αt ∥gti j/
√
m∥A−1t

+ ϵ(m), (3.3)

where Vmax represents the maximum number of documents under

a query over time, hi j = h(xi) − h(xj), gsi j = g(xi ;θs) − g(xj ;θs),
At =

∑t−1
s=1

∑
(i′, j′)∈Ωind

s

1

m gsi′j′g
s
i′j′
⊤ + λI, C̄1, C̄2, C̄3 and C̄4 are

positive constants,

ϵ (m) =C̄1

(
T

7

6m−
1

6 λ−
7

6 L4
√
log(m)(1 +

√
T /λ) + (1 − ηmλ)

J
2

√
T L/λ

+T
1

6m−
1

6 λ−
1

6 L
7

2

√
log(m)S +T

2

3m−
1

6 λ−
2

3 L3
√
log(m)

)
,

αt =
(
1 + C̄2T

7

6m−
1

6

√
log(m)λ−

7

6 L4
) 1

2

· ᾱt ,

ᾱt =
(√

λC̄3 + (ν 2 log(
det(At)

δ 2

1
det(λI))

+ C̄4T
5

3m−
1

6 λ−
1

6 L4
√
log(m))

1

2

)
.

We provide the detailed proof of Lemma 3.3 in the appendix.

This lemma provides a tight high probability bound of the pairwise

rank order estimation uncertainty under RankNet. The uncertainty

caused by the variance from the pairwise observation noise is con-

trolled by αt , and ϵ(m) is the approximation error incurred in the

estimation of the true scoring function. This enables us to perform

efficient exploration in the pairwise document ranking space for

the model update. To illustrate our ranking strategy, we introduce

the following notion on the estimated pairwise preference.

Definition 3.4. (Certain Rank Order) At round t , the rank order

between documents (i, j) ∈ Ψt is in a certain rank order if and only

if σ (f ti j) −CB
t
i j >

1

2
, where CBti j = αt ∥gti j/

√
m∥A−1t

− ϵ(m) is the

width of confidence bound about the estimated pairwise rank order.

Based on Lemma 3.3, if an estimated rank order (i ≻ j) is a certain
rank order, with a high probability that the estimated preference is

consistent with the ground-truth. Hence, they should be followed

in the returned ranked list. For example, as shown in Figure 2, the

lower bound for σ (f ti j) is larger than 1/2, which indicates consis-

tency between the estimated and ground-truth order between (i, j).
But with σ (f ti′j′) −CB

t
i′j′ < 1/2, the estimated order (i ′≻j ′) is still

uncertain as the ground-truth may present an opposite order.

We use ωt to represent the set of all certain rank orders at round

t , ωt = {(i, j) ∈ Ψt : σ (f
t
i, j) −CB

t
i, j >

1

2
}. For pairs in ωt , we can

directly exploit the current estimated rank order as it is already

Algorithm 1 Online Neural Ranking Algorithm

1: Input: L2 coefficient λ, step size η, number of iterations for

gradient descent J , network widthm, network depth L.
2: Initialize θ0 = (vec(W1), . . . vec(WL)) ∈ R

p
, where for each

1 ≤ l ≤ L − 1,Wl = (W, 0; 0,W), each entry ofW is initialized

independently from N (0, 4/m); WL = (w⊤,−w⊤), where each
entry of w is initialized independently from N (0, 2/m).

3: Initialize A1 = λI
4: for t = 1, . . . ,T do
5: qt ← receive_query(t)
6: Xt = {xt

1
, · · · , xtnt } ← retrieve_documents(qt)

7: ωt ← construct_certain_rank_order_set(Xt ,θt−1,At)
8: τt ← topoloдical_sort(ωt)
9: Ct ← collect_click_f eedback(τt)

10: Ωind
t ← construct_independent_pairs(Ct)

11: Set θt to be the output of gradient descent with step size η
for J rounds on minimize Eq (3.2).

12: At+1 = At +
∑
(i, j)∈Ωind

t
gti jg

t
i j
⊤/m

13: end for

consistent with the ground-truth. But, for the uncertain pairs that

do not belong to ωt , exploration is necessary to obtain feedback for

further model update (and thus to reduce uncertainty). For example,

in the document graph shown in Figure 1, when generating the

ranked list, we should exploit the current model by preserving the

certain orders, while randomly swap the order between documents

(B, C), (C, D), (E, F) to explore (in order to conquer feedback bias).

The estimated pairwise rank order, σ (f ti j), is derived based on rel-

evance score calculated by the current neural network, i.e., f (xi ;θt−1)
and f (xj ;θt−1). Hence, as shown in Figure 1, due to the monotonic-

ity and transitivity of the sigmoid function, the document graph

constructed with the candidate documents as the vertices and the

certain rank order as the directed edges is a directed acyclic graph

(DAG). We can perform a topological sort on the constructed docu-

ment graph to efficiently generate the final ranked list. The certain

rank orders are preserved by topological sort to exploit the ranker’s

high confidence predictions. On the other hand, the topological sort

randomly chooses vertices with zero in-degree, among which there

is no certain rank orders. This naturally achieves exploration among

uncertain rank orders. In Figure 1, as document A is predicted to

be better than all the other documents by certain rank orders, it

will be first added to the ranked list and removed from the docu-

ment graph by topological sort. In the updated document graph,

both document B and C become vertices with zero in-degree as the

estimated rank order between them is still uncertain. Topological

sort will randomly choose one of them as the next document in the

ranked list, which induces exploration on the uncertain rank orders.

Two possible ranked lists are shown in the figure. As exploration is

confined to the pairwise ranking space, it effectively reduces the

exponentially sized exploration space of result ranking to quadratic.

Algorithm 1 shows the details of the proposed solution.

Extend to LambdaRank. LambdaRank directly optimizes the

ranking metric of interest (e.g., NDCG) with a modified gradient

based on RankNet [6]. For a given pair of documents, the confidence

interval of LambdaRank’s estimation can be calculated by gradi-

ents of the neural network in the same way as in RankNet (i.e., by

Lemma 3.3). However, as the objective function of LambdaRank is

434

Learning Neural Ranking Models Online from Implicit User Feedback WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

unknown, it prevents us from theoretically analyzing the resulting

online algorithm’s regret. But similar empirical improvement from

LambdaRank against RankNet known in the offline settings [6] is

also observed in our online versions of these two algorithms.

4 REGRET ANALYSIS
Our regret analysis is built on the latest theoretical studies in deep

neural networks. Recent attempts show that in the neural tangent

kernel (NTK) space, the generalization error bound of a DNN can

be characterized by the corresponding best function [4, 7, 8, 11, 13].

In our analysis, we denote the NTK matrix of all possible pairwise

document tangent features asH ⪰ λ0I, with the effective dimension

of H denoted as d̃ . Due to limited space, we leave the detailed

definition of H and d̃ in the appendix.

We define event Et as: Et =
{∀(i, j) ∈ Ψt , |σ (f

t
i j) − σ (hi j)| ≤

CBti, j
}
at round t . Et suggests that the estimated pairwise rank

order on all the candidate document pairs under query qt is close
to the ground-truth at round t . According to Lemma 3.3, it is easy

to reach the following conclusion,

Corollary 4.1. On the event Et , it holds that σ (hi j) >
1

2
if (i, j) ∈

ωt , i.e., in a certain rank order.

Based on the definition of pairwise regret in Eq (3.1), the ranker

only suffers regret as a result of misplacing a pair of documents, i.e.,

swapping a pair into an incorrect order. According Corollary 4.1,

under event Et , the certain rank order identified is consistent with

the ground-truth. As in our proposed solution, the certain rank

order is preserved by the topological sort, it is easy to verify that

regret only occurs on the document pairs with uncertain rank order.

Therefore, the key step in our regret analysis is to count the expected

number of uncertain rank orders. According to Definition 3.4, a

pairwise estimation is certain if and only if |σ (f ti j) −
1

2
| ≥ CBti, j .

Hence, we have the following lemma bounding the probability that

an estimated rank order being uncertain.

Lemma4.2. Withη,m satisfying the same conditions in Lemma 3.3,

with δ1 ∈ (0, 1/2) defined in Lemma 3.3, and δ2 ∈ (0, 1/2), such that

for t ≥ t ′ = O(log(1/δ2)+ log(1/δ1)), under event Et , the following
holds with probability at least 1 − δ2:

∀(i, j) ∈ Ψt , P((i, j) < ωt) ≤ Cu log(1/δ1)
(∆min − 2ϵ (m))2

∥gti j /
√
m ∥2

A−1t
,

whereCu = 8ν2k2µ/c
2

µ with kµ and cµ as the Lipschitz constants for

the sigmoid function, ∆min = min

t ∈T ,(i, j)∈Ψt
|σ (hi j)−

1

2
| represents the

smallest gap of pairwise difference between any pair of documents

under the same query over time.

Remark 4.3. With m satisfying the condition in Lemma 3.3, and

setting the corresponding η and J = Õ(TL/λ), ϵ(m) = O(1) can be

achieved. More specifically, there exists a positive constant c such
that ∆min − 2ϵ(m) = c∆min.

Lemma 4.2 gives us a tight bound for an estimated pairwise order

being uncertain. Intuitively, it targets to obtain a tighter bound on

the uncertainty of the neural model’s parameter estimation com-

pared to the bound determined by δ1 in Lemma 3.3. With this bound,

the corresponding confidence interval will exclude the possibility of

flipping the estimated rank order, i.e., the lower confidence bound

of this pairwise estimation is above 0.5.

In each round of result serving, as the model θt will not change
before the next round starts, the expected number of uncertain rank

orders, denoted as E[Ut], can be estimated by the summation of

the uncertain probabilities over all possible pairwise comparisons

under the query qt , e.g., E[Ut] =
1

2

∑
(i, j)∈Ψt P((i, j) < ωt). Denote

pt as the probability that the user examines all documents in τt at
round t , and let p∗ = min1≤t ≤T pt be the minimal probability that

all documents in a query are examined over time. We present the

upper regret bound as follows.

Theorem 4.4. With δ1 and δ2 defined in Lemma 3.3, 4.2, η, m
satisfying the same conditions in Lemma 3.3, there exist positive

constants {Cri }
2

i=1 that with probability at least 1 − δ1, the T -step
regret is bounded by:

RT ≤R′ + (Cr
1
log(1/δ1)d̃ log(1 +TVmax/λ) +Cr

2
)(1 − δ2)/(∆2

min
p∗)

where R′ = t ′V 2

max
+ (T − t ′)δ2V

2

max
, with t ′ and Vmax defined in

Lemma 4.2. By choosing δ1 = δ2 = 1/T , the expected regret is at

most O(d̃ log2(T)).

Proof Sketch. The detailed proof is provided in the appendix.

We only provide the key ideas behind our regret analysis here. The

regret is first decomposed into two parts. First, R′ represents the
regret when Lemma 4.2 does not hold, in which the regret is out of

our control. We use the maximum number of pairs associated with a

query over time, i.e.,V 2

max
, to upper bound it. The second part corre-

sponds to the cases when Lemma 4.2 holds. Then, the instantaneous

regret at round t can be bounded by rt = E
[
K(τt ,τ

∗
t)

]
≤ E[Ut], as

only the uncertain rank orders would induce regret. □

In this analysis, we provide a gap-dependent regret upper bound,

where the gap ∆min characterizes the intrinsic difficulty of sorting

the Vt candidate documents at round t . Intuitively, when ∆min is

small, e.g., comparable to the network’s resolution ϵ(m), many ob-

servations are needed to recognize the correct rank order between

two documents. As the matrix At only contains information from

examined document pairs, our algorithm guarantees that the cu-

mulative pairwise regret of the examined documents until round

t ({1 : os }
t
s=1) to be sub-linear, while the regret in the leftover

documents ({os + 1 : Vs }
t
s=1) is undetermined. We adopt a com-

monly used technique that leverages the probability that a ranked

list is fully examined to bound the regret on those unexamined doc-

uments [27, 28, 31]. This probability is a constant independent ofT .
It is worth noting that our algorithm does not need the knowledge

of p∗ for model learning or result ranking; it is solely used for the

regret analysis to handle the partial observations. From a practical

perspective, the ranking quality of documents ranked below os for
s ∈ [T] does not affect users’ online experience, as the users do
not examine them. Hence, if we only count regret in the examined

documents, RT does not need to be scaled by p∗

Remark 4.5. Our regret is defined over the number of mis-ordered

pairs, which is the first pairwise regret analysis for a neural OL2R
algorithm. Existing OL2R algorithms optimize their own metrics

(e.g., utility function as defined in [51]), which can hardly link to

any conventional ranking metrics. As shown in [48], most classical

ranking evaluation metrics, such as NDCG, are based on pairwise

document comparisons. Our regret analysis connects our OL2R

solution’s theoretical property with such metrics, which is also

confirmed in our empirical evaluations.

435

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yiling Jia and Hongning Wang

5 EXPERIMENTS
In this section, we empirically compare our proposed models with

an extensive list of state-of-the-art OL2R algorithms on two large

public learning to rank benchmark datasets.

Reproducibility Our entire codebase, baselines, analysis, and ex-

periments can be found on Github
1
.

5.1 Experiment Setup
Datasets.We experiment on two publicly available learning to rank

datasets, Yahoo! Learning to Rank Challenge dataset [9], which

consists of 292,921 queries and 709,877 documents represented

by 700 ranking features, and MSLR-WEB10K [38], which contains

30,000 queries, each having 125 documents on average represented

by 136 ranking features. Both datasets are labeled on a five-grade

relevance scale: from not relevant (0) to perfectly relevant (4). We

followed the train/test/validation split provided in the datasets to

make our results comparable to the previously reported results.

Non-linearity analysis. Most of the existing OL2R models as-

sume that the expected relevance of a document under the given

query can be characterized by a linear function in the feature space.

However, such an assumption often fails in practice, as the poten-

tially complex non-linear relations between queries and documents

are ignored. For example, classical query-document features are

usually constructed in parallel to the design and choices of ranking

models. As a result, a lot of correlated and sometimes redundant

features are introduced for historical reasons; and the ranker is

expected to handle it. For instance, the classical keyword matching

based features, such as TF-IDF, BM25 and language models, are

known to be highly correlated [15]; and the number of in-links is

also highly related to the PageRank feature.

To verify this issue, we performed a linear discriminative analy-

sis (LDA) [5] on both datasets. The technique of LDA is typically

used for multi-class classification that automatically performs di-

mensionality reduction, providing a projection of the dataset that

can best linearly separate the samples by their assigned class. We

provide the entire labeled dataset for the algorithm to learn the

separable representation. We set the reduced dimension to be two

to visualize the results. In Figure 3, we can clearly observe that a

linear model is insufficient to separate the classes in both datasets.

Figure 3: LDA results on both datasets

User interaction simulation. For reproducibility, user clicks are
simulated via the standard procedure for OL2R evaluations [35].

At each round, a query is uniformly sampled from the training set

for result serving. Then, the model determines the ranked list and

returns it to the user. User click is simulated with a dependent click

model (DCM) [18], which assumes that the user will sequentially

1
https://github.com/HCDM/OnlineLearningToRank

scan the list and make click decisions on the examined documents.

In DCM, the probabilities of clicking on a given document and

stopping examination are both conditioned on the document’s true

relevance label. We employ three different model configurations to

represent three different types of users, for which details are shown

in Table 1. Basically, we have the perfect users, who click on all

relevant documents and do not stop browsing until the last returned

document; the navigational users, who are very likely to click on

the first encountered highly relevant document and stop there; and

the informational users, who tend to examine more documents, but

sometimes click on irrelevant documents, such that contributing

a significant amount of noise in their click feedback. To reflect

presentation bias, all models only return the top 10 ranked results.

Table 1: Configuration of simulated click models.

Click Probability Stop Probability

R 0 1 2 3 4 0 1 2 3 4

per 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0

nav 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9

inf 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

Baselines. We list the OL2R solutions used for our empirical com-

parisons below. And we name our proposed model as olRankNet

and olLambdaRank in the experiment result discussions.

• ϵ-Greedy [21]: At each position, it randomly samples an un-

ranked document with probability ϵ or selects the next best

document based on the currently learned RankNet.

• Linear-DBGD and Neural-DBGD [51]: DBGD uniformly sam-

ples a direction from the entire model space for exploration and

model update. We apply it to both linear and neural rankers.

• Linear-PDGDandNeural-PDGD [35]: PDGD samples the next

ranked document from a Plackett-Luce model and estimates gra-

dients from the inferred pairwise preferences. We also apply it

to both linear and neural network rankers.

• PairRank [23]: This is a recently proposed OL2R solution based

on a pairwise logistic regression ranker. As it is designed for

logistic regression, it cannot be used for learning a neural ranker.

• olLambdaRank GT: At each round, we estimate a new Lamb-

daRank model with ground-truth relevance labels of all the pre-

sented queries. This serves as the skyline in all our experiments.

Hyper-Parameter Tuning. MSLR-WEB10K and Yahoo Learning

to Rank dataset are equally partitioned into five folds, of which

three parts are used for for training, one part for validation and and

one part test. We did cross validation on each dataset. For each fold,

the models are trained on the training set, and the hyper-parameters

are selected based on the performance on the validation set.

In the experiment, a two-layer neural network with widthm =
100 is applied for all the neural rankers. We did a grid search for

olRankNet and olLambdaRank for regularization parameter λ over

{10−i }4i=1, exploration parameter α over {10−i }4i=1, learning rate

over {10−i }3i=1. The same set of parameter tuning is applied for

PairRank, except the model is directly optimized with L-BFGS. The

model update in PDGD and DBGD is based on the optimal settings

in their original paper. The hyper-parameters for PDGD and DBGD

are the update learning rate and the learning rate decay, for which

we performed a grid search for learning rate over {10−i }3i=1, and

the learning rate decay is set as 0.999977.

436

Learning Neural Ranking Models Online from Implicit User Feedback WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 4: Offline performance on two benchmark datasets under three different click model configurations.

5.2 Experiment Results
Offline performance. The offline performance is evaluated in an

“online” fashion: the newly updated ranker is immediately evaluated

on a hold-out testing set against its ground-truth labels. This mea-

sures how rapidly an OL2R model improves its ranking quality, and

it is an important metric about users’ instantaneous satisfaction.

This can be viewed as using one portion of traffic for online model

update, while serving another portion with the latest model. We

use NDCG@10 to assess the ranking quality, and we compare all

algorithms over three click models and two datasets. For olRankNet

and olLambdaRank, since it is computationally expensive to store

and operate on a complete At matrix, we only used its diagonal ele-

ments as an approximation. We fixed the total number of iterations

T to 5000. The experiments are executed for 10 times with different

random seeds and the averaged results are reported in Figure 4.

We can clearly observe that our proposed online neural ranking

models achieved significant improvement compared to all baselines.

Under different click models, both linear and neural DBGD per-

formed the worst. This is consistent with previous findings: DBGD

depends on interleave tests to determine the update direction in the

model space. But such model-level feedback cannot inform the opti-

mization of any rank-based metric. Moreover, with a neural ranker,

random exploration becomes very ineffective. PDGD consistently

outperformed DBGD under different click models. However, its

document sampling based exploration limits its learning efficiency,

especially when users only examine a small portion of documents,

e.g., the navigational users. It is worth noting that in the original

paper [35], PDGD with a neural ranker outperformed linear ranker

after much more interactions, e.g., 20000 iterations. Our proposed

solutions with only 5000 iterations already achieved better perfor-

mance than the best results reported for PDGD, which demonstrates

the encouraging efficiency of our proposed OL2R solution. Com-

pared to PairRank, our neural rankers had a worse start at the begin-

ning. We attribute it to the limited training samples available at the

initial rounds, i.e., the network parameters were not well estimated

yet. But the neural model enables non-linear relation learning and

quickly leads to better performance than the linear models when

more observations arrive. Compared to olRankNet, olLambdaRank

directly optimizes the evaluation metrics, e.g., NDCG@10, with

corresponding gradients. We can observe similar improvements

from LambdaRank compared to RankNet as previously reported in

offline settings. It is worth noting that though the improvement of

olRankNet and olLambdaRank compared to PairRank is not as large

as their improvement against other baselines in the figure, small

improvement in the performance metric often means a big leap for-

ward in practice as most real-world systems serve millions of users,

where even a small percentage improvement can be translated into

huge utility gain to the population.

Online performance. In OL2R, in addition to the offline evalua-

tion, the models’ ranking performance during online result serving

should also be considered, as it reflects user experience during

model update. Sacrificing users experience for model training will

compromise the goal of OL2R. We adopt the cumulative Normalized

Discounted Cumulative Gain to assess models’ online performance.

For T rounds, the cumulative NDCG is calculated as

Cumulative NDCG =
∑T

t=1
NDCG(τt) · γ (t−1),

which computes the expected utility a user receives with a proba-

bility γ that he/she stops searching after each query [35]. Following

the previous work [35, 46], we setγ = 0.9995. Figure 5 shows the on-

line performance of the proposed online neural ranking model and

all the other baselines. It is clear to observe that DBGD-based mod-

els have a much slower convergence and thus have worse online

performance. Compared to the proposed solution, PDGD showed

consistently worse performance, especially under the navigational

and informational click models with a neural ranker. We attribute

this difference to the exploration strategy used in PDGD: PDGD’s

sampling-based exploration can introduce unwanted distortion in

the ranked results, especially at the early stage of online learning.

We should note the earlier stages in cumulative NDCG plays a much

more important role due to the strong shrinking effect of γ .
Our proposed models demonstrated significant improvements

over all baseline methods on both datasets under three different

click models. Such improvement indicates the effectiveness our un-

certainty based exploration, which only explores when the ranker’s

pairwise estimation is uncertain. Its advantage becomes more ap-

parent in this online ranking performance comparison, as an overly

437

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yiling Jia and Hongning Wang

Figure 5: Online performance on two datasets under three different click model configurations.

Figure 6: Ratio of certain rank orders at Top-10 positions
over the rounds of online model update.

aggressive exploration in the early stage costs more in cumulative

NDCG. We can also observe the improvement of olLambdaRank

compared to olRankNet in this online evaluation, although the dif-

ference is not very significant. The key reason is also the strong dis-

count applied to the later stage of model learning: olLambdaRank’s

advantage in directly optimizing the rank metric becomes more

apparent in the later stage, as suggested by the offline performance

in Figure 4. At the beginning of model learning, both models are

doing more explorations and therefore the online performance got

more influenced by the number of document pairs with uncertain

rank orders, rather than those with certain rank orders.

Shrinkage of the number of uncertain rank orders. To further
verify the effectiveness of the exploration strategy in our proposed

online neural ranking model, we zoom into the trace of the number

of identified certain rank orders under each query during online

model update. As the model randomly shuffles the uncertain rank

orders to perform the exploration, a smaller ratio of uncertain rank

orders is preferred to reduce the regret, especially at the top ranked

positions. Figure 6 reports the ratio of certain rank orders among all

possible document pairs at top-10 positions in our olRankNet model.

We can clearly observe that the certain rank orders quickly reach

a promising level, especially on the Yahoo dataset. This confirms

our theoretical analysis about the convergence of the number of

uncertain rank orders. Comparing the results under different click

models, we can observe that the convergence under navigational

click model is slower. We attribute it to the limited feedback ob-

served during the online interactions, because the stop probability

is much higher in the navigational click model.

6 CONCLUSION
Existing OL2R solutions are limited to linear models, which have

shown to be incompetent to capture the potential non-linear re-

lations between queries and documents. Motivated by the recent

advances in the theoretical deep learning, we propose to directly

learn a neural ranker on the fly. During the course of online learn-

ing, we assess the ranker’s pairwise rank estimation uncertainty

based on the tangent features of the neural network. Exploration

is performed only on the pairs where the ranker is still uncertain;

and for the rest of pairs we follow the predicted rank order. We

prove a sub-linear upper regret bound defined on the number of

mis-ordered pairs, which directly links the proposed solution’s

convergence with classical ranking evaluations. Our empirical ex-

periments support our regret analysis and demonstrate significant

improvement over several state-of-the-art OL2R solutions.

Our effort sheds light on deploying powerful offline learning to

rank solutions online and directly optimizing rank-based metrics,

e.g., RankNet and LambdaRank. Furthermore, our solution can be

readily extended to more recent and advanced neural rankers (e.g.,

those directly learn from query-document pairs without manually

constructed features). On the other hand, computational efficiency

is a practical concern for online algorithms. Our current solution

requires gradient descent on the online collected training instances,

which is undeniably expensive. We would like to investigate the

feasibility of online stochastic gradient descent and its variants, in

the setting of continual learning, which would greatly reduce the

computational complexity of our solution.

ACKNOWLEDGMENTS
This paper is based upon the work supported by the National Sci-

ence Foundation under grant IIS-1553568 and IIS-2128019, and

Google Faculty Research Award.

REFERENCES
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. 2011. Improved algo-

rithms for linear stochastic bandits. In Advances in Neural Information Processing
Systems. 2312–2320.

438

Learning Neural Ranking Models Online from Implicit User Feedback WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

[2] Eugene Agichtein, Eric Brill, and Susan Dumais. 2006. Improving web search

ranking by incorporating user behavior information. In Proceedings of the 29th
ACM SIGIR. ACM, 19–26.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. 2019. A convergence theory for

deep learning via over-parameterization. In International Conference on Machine
Learning. PMLR, 242–252.

[4] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and

Ruosong Wang. 2019. On exact computation with an infinitely wide neural net.

In Advances in Neural Information Processing Systems.
[5] Suresh Balakrishnama and Aravind Ganapathiraju. 1998. Linear discriminant

analysis-a brief tutorial. Institute for Signal and information Processing 18, 1998

(1998), 1–8.

[6] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.

[7] Yuan Cao and Quanquan Gu. 2019. Generalization Bounds of Stochastic Gradient

Descent for Wide and Deep Neural Networks. In Advances in Neural Information
Processing Systems.

[8] Yuan Cao and Quanquan Gu. 2020. Generalization Error Bounds of Gradient

Descent for Learning Over-parameterized Deep ReLU Networks. In the Thirty-
Fourth AAAI Conference on Artificial Intelligence.

[9] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview.

In Proceedings of the Learning to Rank Challenge. 1–24.
[10] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. 2012. Large-

scale validation and analysis of interleaved search evaluation. ACM TOIS 30, 1
(2012), 6.

[11] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. 2019. How Much Over-

parameterization Is Sufficient to Learn Deep ReLU Networks? arXiv preprint
arXiv:1911.12360 (2019).

[12] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An ex-

perimental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining. 87–94.

[13] Amit Daniely. 2017. SGD learns the conjugate kernel class of the network. In

Advances in Neural Information Processing Systems. 2422–2430.
[14] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. 2019. Gradient

Descent Provably Optimizes Over-parameterized Neural Networks. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=

S1eK3i09YQ

[15] Hui Fang, Tao Tao, and ChengXiang Zhai. 2004. A formal study of information

retrieval heuristics. In Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval. 49–56.

[16] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. 2010. Para-

metric bandits: The generalized linear case. In Advances in Neural Information
Processing Systems. 586–594.

[17] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael Taylor, Yi-Min Wang,

and Christos Faloutsos. 2009. Click chain model in web search. In Proceedings of
the 18th WWW. 11–20.

[18] Fan Guo, Chao Liu, and Yi Min Wang. 2009. Efficient multiple-click models in

web search. In Proceedings of the 2nd WSDM. 124–131.

[19] Boris Hanin and Mark Sellke. 2017. Approximating Continuous Functions by

ReLU Nets of Minimal Width. arXiv preprint arXiv:1710.11278 (2017).
[20] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2012. Estimating

interleaved comparison outcomes from historical click data. In Proceedings of the
21st CIKM. 1779–1783.

[21] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Balancing ex-

ploration and exploitation in listwise and pairwise online learning to rank for

information retrieval. Information Retrieval 16, 1 (2013), 63–90.
[22] Arthur Jacot, Franck Gabriel, and Clément Hongler. 2018. Neural tangent ker-

nel: Convergence and generalization in neural networks. In Advances in neural
information processing systems. 8571–8580.

[23] Yiling Jia, Huazheng Wang, Stephen Guo, and Hongning Wang. 2021. Pairrank:

Online pairwise learning to rank by divide-and-conquer. In Proceedings of the
Web Conference 2021. 146–157.

[24] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.

2005. Accurately interpreting clickthrough data as implicit feedback. In Proceed-
ings of the 28th ACM SIGIR. ACM, 154–161.

[25] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,

and Geri Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and

query reformulations in web search. ACM TOIS 25, 2 (2007), 7.
[26] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. 2015. Cas-

cading bandits: Learning to rank in the cascade model. In ICML. 767–776.
[27] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. 2015. Combi-

natorial cascading bandits. In NIPS. 1450–1458.
[28] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. 2015. Tight

regret bounds for stochastic combinatorial semi-bandits. In Artificial Intelligence
and Statistics. 535–543.

[29] Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. 2018. Toprank:

A practical algorithm for online stochastic ranking. In NIPS. 3945–3954.

[30] Shuai Li, Tor Lattimore, and Csaba Szepesvári. 2018. Online learning to rank

with features. arXiv preprint arXiv:1810.02567 (2018).

[31] Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. 2016. Contextual

Combinatorial Cascading Bandits.. In ICML, Vol. 16. 1245–1253.
[32] Shiyu Liang and R Srikant. 2016. Why deep neural networks for function approx-

imation? arXiv preprint arXiv:1610.04161 (2016).
[33] Haihao Lu and Kenji Kawaguchi. 2017. Depth Creates No Bad Local Minima.

arXiv preprint arXiv:1702.08580 (2017).
[34] Harrie Oosterhuis and Maarten de Rijke. 2017. Balancing speed and quality in

online learning to rank for information retrieval. In Proceedings of the 26th 2017
ACM CIKM. 277–286.

[35] Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable unbiased online

learning to rank. In Proceedings of the 27th ACM CIKM. 1293–1302.

[36] Harrie Oosterhuis, Anne Schuth, and Maarten de Rijke. 2016. Probabilistic

multileave gradient descent. In European Conference on Information Retrieval.
Springer, 661–668.

[37] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael

Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan

Wolf. 2019. Tf-ranking: Scalable tensorflow library for learning-to-rank. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2970–2978.

[38] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets.

arXiv:1306.2597 [cs.IR]

[39] C Quoc and Viet Le. 2007. Learning to rank with nonsmooth cost functions.

Proceedings of the Advances in Neural Information Processing Systems 19 (2007),
193–200.

[40] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse

rankings with multi-armed bandits. In ICML. 784–791.
[41] Anne Schuth, Harrie Oosterhuis, Shimon Whiteson, and Maarten de Rijke. 2016.

Multileave gradient descent for fast online learning to rank. In Proceedings of the
9th ACM WSDM. 457–466.

[42] Anne Schuth, Floor Sietsma, Shimon Whiteson, Damien Lefortier, and Maarten

de Rijke. 2014. Multileaved comparisons for fast online evaluation. In Proceedings
of the 23rd ACM CIKM. ACM, 71–80.

[43] Matus Telgarsky. 2015. Representation benefits of deep feedforward networks.

arXiv preprint arXiv:1509.08101 (2015).
[44] Matus Telgarsky. 2016. Benefits of depth in neural networks. arXiv preprint

arXiv:1602.04485 (2016).
[45] Roman Vershynin. 2010. Introduction to the non-asymptotic analysis of random

matrices. arXiv preprint arXiv:1011.3027 (2010).

[46] Huazheng Wang, Sonwoo Kim, Eric McCord-Snook, QingyunWu, and Hongning

Wang. 2019. Variance Reduction in Gradient Exploration for Online Learning to

Rank. In SIGIR 2019. 835–844.
[47] HuazhengWang, Ramsey Langley, Sonwoo Kim, Eric McCord-Snook, and Hongn-

ing Wang. 2018. Efficient exploration of gradient space for online learning to

rank. In SIGIR 2018. 145–154.
[48] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.

2018. The LambdaLoss Framework for Ranking Metric Optimization. In CIKM
’18. ACM, 1313–1322.

[49] Dmitry Yarotsky. 2017. Error bounds for approximations with deep ReLU net-

works. Neural Networks 94 (2017), 103–114.
[50] Dmitry Yarotsky. 2018. Optimal approximation of continuous functions by very

deep ReLU networks. arXiv preprint arXiv:1802.03620 (2018).
[51] Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information

retrieval systems as a dueling bandits problem. In ICML. 1201–1208.
[52] Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. 2020. Neural

Thompson Sampling. arXiv preprint arXiv:2010.00827 (2020).

[53] Tong Zhao and Irwin King. 2016. Constructing reliable gradient exploration for

online learning to rank. In Proceedings of the 25th ACM CIKM. 1643–1652.

[54] Dongruo Zhou, Lihong Li, and Quanquan Gu. 2020. Neural contextual bandits

with UCB-based exploration. In International Conference on Machine Learning.
PMLR, 11492–11502.

[55] Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton,

Csaba Szepesvari, and Zheng Wen. 2017. Online learning to rank in stochastic

click models. In ICML 2017. 4199–4208.
[56] Difan Zou, Yuan Cao, Dongruo Zhou, andQuanquanGu. 2019. Stochastic gradient

descent optimizes over-parameterized deep ReLU networks. Machine Learning
(2019).

[57] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. 2020. Gradient descent

optimizes over-parameterized deep ReLU networks. Machine Learning 109, 3

(2020), 467–492.

[58] Difan Zou and Quanquan Gu. 2019. An Improved Analysis of Training Over-

parameterized Deep Neural Networks. In Advances in Neural Information Pro-
cessing Systems.

439

https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=S1eK3i09YQ
https://arxiv.org/abs/1306.2597

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yiling Jia and Hongning Wang

A PROOF OF LEMMA 3.3
Before we provide the detailed proofs, we first assume that there are

nt possible documents to be evaluated during the model learning

until round t . It is easy to conclude that nt =
∑t
s=1Vs ≤ tVmax.

We also assume that there are n
p
t document pairs in the training

dataset. As we only use the independent observed pairs, it is easy

to verify that n
p
t ≤

∑t
s=1 ot /2 ≤ kt/2.

Following Definition 4.1 in [54], we define the neural tangent ker-

nel matrix H of the nT query-document features {xi }
nT
i=1 across T

rounds. We also adopt the same assumption on the context {xi }
nT
i=1

and the kernel matrix H with Assumption 4.2 in [54]. As the in-

put {xi }
nT
i=1 are based on manually crafted ranking features, such

assumptions can be easily satisfied. Equipped with this assump-

tion, it can be verified that with θ0 initialized as in Algorithm 1,

f (xi ;θ0) = 0 for any i ∈ [nt]. It is also well known that the sigmoid

function σ is continuously differentiable, Lipschitz with constant

kµ = 1/4 and cµ = inf Ûσ > 0.

In order to prove Lemma 3.3, we need the following lemmas, in

addition to the technical lemmas, Lemma 5.1, Lemma B.2, Lemma

B.3, Lemma B.4, Lemma B.5 and Lemma B.6 from [54]. The first

lemma is based on the generalized linear bandit [16] and the analysis

of linear bandit in [1]. For Lemma A.2 and Lemma A.3, we adopt it

from the original paper based on our pairwise cross-entropy loss,

and covariance matrix At on the pairwise feature vectors.

Lemma A.1. For any t ∈ [T], with γ̂t defined as the solution of

the following equation,∑t−1

s=1

∑
(i, j)∈Ωinds

(σ (⟨gs,0i j , γ ⟩) − y
s
i j)g

s,0
i j +mλγ = 0 (A.1)

Then, with the pairwise noise ξ si j satisfying Proposition 3.2, for any

(i, j) ∈ Ψt , with probability at least 1 − δ1, we have,

∥
√
m(θ ∗ − θ0 − γ̂t) ∥Āt ≤ c

−2
µ (

√
ν 2 log(det(Āt))/(δ 2

1
det(λI)) +

√
λS)

Lemma A.2. There exist constants {C̄i }5i=1 > 0 such that for any

δ > 0, if for all t ∈ [T], η andm satisfy√
npt /(mλ) ≥ C̄1m−3/2L−3/2[log(nt L2/δ)]3/2,√
npt /(mλ) ≤ C̄2 min

{
L−6[logm]−3/2,

(
m(λη)2L−6(npt)

−1(logm)−1
)
3/8}

,

η ≤ C̄3(mλ + nptmL)−1,m
1

6 ≥ C̄4

√
logmL7/2(npt)

7/6λ−7/6(1 +
√
npt /λ),

then with probability at least 1 − δ , ∥θt − θ0 ∥2 ≤ 2

√
2npt /(mλ) and

∥θt − θ0 − γ̂t ∥2 ≤C̄5m−2/3
√
logmL7/2(npt)

7/6λ−7/6(1 +
√
npt /λ)

+ (1 − ηmλ)J /2
√
npt /(mλ).

Lemma A.3. There exist constants {Cϵ
i }

5

i=1 > 0 such that for any

δ > 0, ifm satisfies that

Cϵ
1
m−3/2L−3/2[log(nT L

2/δ)]3/2 ≤ τ ≤ Cϵ
2
L−6[logm]−3/2

with τ as the upper bound of ∥θ − θ0∥, then with probability at

least 1 − δ , for any t ∈ [T], we have

∥At ∥2 ≤ λ +Cϵ
3
npt L,

∥Āt − At ∥F ≤ Cϵ
4
npt

√
log(m)τ 1/3L4,���� log det(Āt)

det(λI)
− log

det(At)
det(λI)

���� ≤ Cϵ
5
(npt)

5/3λ−1/6
√
log(m)m−1/6L4

where Āt =
∑t−1
s=1

∑
(i′, j′)∈Ωind

s

1

m g0i′j′g
0

i′j′
⊤
+ λI. The constants

{Cϵ
i }

5

i=1 can be constructed based on the constants in the technical

lemmas, Lemma B.4, B.5 and B.6 from [54].

Proof of Lemma 3.3. We first bound the estimated pairwise or-

der based on the Lipschitz continuity:���σ (f (xti ;θt−1) − f (xtj ;θt−1)) − σ (h(xti) − h(xtj))���
≤kµ

���f (xti ;θt−1) − f (xtj ;θt−1) − (
h(xti) − h(x

t
j)

)���
According to Lemma 5.1 in [54] and f (x;θ0) = 0, we have,

f (xti ;θt−1) − h(x
t
i) =f (x

t
i ;θt−1) − f (x

t
i ;θ0) − ⟨g(x

t
i ;θt−1), θt−1 − θ0 ⟩

+ ⟨g(xti ;θt−1), θt−1 − θ0 ⟩ − ⟨g(x
t
i ;θt−1), θ

∗ − θ0 ⟩

+ ⟨g(xti ;θt−1), θ
∗ − θ0 ⟩ − ⟨g(xti ;θ0), θ

∗ − θ0 ⟩.

Based on the triangle inequality, we have,���f (xti ;θt−1) − f (xtj ;θt−1) − (
h(xti) − h(x

t
j)

)���
≤

���⟨g(xti ;θt−1) − g(xtj ;θt−1), θt−1 − θ ∗ ⟩���
+ ∥θ ∗ − θ0 ∥2

(
∥g(xti ;θt−1) − g(x

t
i ;θ0) ∥2 + ∥g(x

t
j ;θt−1) − g(x

t
j ;θ0) ∥2

)
+

���f (xti ;θt−1) − f (xti ;θ0) − ⟨g(xti ;θt−1), θt−1 − θ0 ⟩���
+

���f (xtj ;θt−1) − f (xtj ;θ0) − ⟨g(xtj ;θt−1), θt−1 − θ0 ⟩���
≤2C t

1
τ 4/3L3

√
m logm + 2C t

2
S
√
logmτ 1/3L3

√
mL +

���⟨gti j , θt−1 − θ ∗ ⟩���,
where Ct

1
and Ct

2
are positive constants, S is the upper bound of

√
h⊤Hh. The last inequality is due to Lemma 5.1, LemmaB.4, Lemma

B.5, Lemma B.6 in [54], with τ as the upper bound of ∥θ − θ0∥2.

Now we start to bound the last term

���⟨gti j ,θt−1 − θ∗⟩���.���⟨gti j , θt−1 − θ ∗ ⟩��� ≤ | ⟨gti j , θ ∗ − θ0 − γ̂t ⟩ | + ∥gti j ∥ ∥θt−1 − θ0 − γ̂t ∥
(A.2)

For the first term, we have the following analysis.

| ⟨gti j , θ
∗ − θ0 − γ̂t ⟩ |

≤ ∥gti j /
√
m ∥A−1t

√
(1 + ∥At − Āt ∥2/λ) ∥

√
m(θ ∗ − θ0 − γ̂t) ∥Āt

≤

√
1 +C t

3
m
−1
6

√
logmL4t 7/6λ−7/6 · ∥

√
m(θ ∗ − θ0 − γ̂t) ∥Āt ∥

1

√
m

gti j ∥A−1t
,

where the first inequality is due to the fact that x⊤Px ≤ x⊤Qx ·
∥P∥2/λmin(Q), and λmin(Āt) ≥ λ, the third inequality is based on

Lemma B.3 in [54] with ∥At − Āt ∥2 ≤ ∥At − Āt ∥F . According to
Lemma A.1, with probability 1 − δ1, we have

∥
√
m(θ ∗ − θ0 − γ̂t) ∥Āt

≤c−2µ (
√
ν 2 log(det(At))/(δ 2

1
det(λI)) +C t

4
m−1/6

√
logmL4t 5/3λ−1/6 +

√
λS),

where the inequality is based on Lemma B.3. For the second term

of Eq (A.2), it can be bounded according to Lemma B.5 in [54] and

Lemma A.2. By chaining all the inequalities, with ∥θ − θ0∥ ≤ τ ≤

2

√
2n

p
t /(mλ), and the satisfiedm and η, we complete the proof. □

B PROOFS OF LEMMA 4.2
The following lemma is derived from random matrix theory. We

adapted it from Equation (5.23) of Theorem 5.39 from [45].

440

Learning Neural Ranking Models Online from Implicit User Feedback WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Lemma B.1. Let M ∈ RN×p be a matrix whose rows Mi are inde-

pendent sub-Gaussian isotropic random vectors in Rp with parame-

ter ρ, namelyE[exp(g⊤i′j′(Mi−E[Mi])/
√
m] ≤ exp(ρ2∥gi′j′/

√
m∥2/2)

for any gi′j′ ∈ Rp . Then, there exist positive universal constants
C1 andC2 such that, for every t ≥ 0, the following holds with prob-

ability at least 1 − 2exp(−C2t
2),where υ = ρ(C1

√
p/N + t/

√
N):

∥ 1

N M⊤M − Ip ∥ ≤ max{υ,υ2}.

Proof of Lemma 4.2. At initialization, DNNs are equivalent to

Gaussian processes in the infinite-width limit. With Σ = E[g0i jg
0

i j
⊤
]

as the second moment matrix, define Z = Σ−1/2X, where X is a ran-

dom vector drawn from the same distributionv . Then Z is isotropic,

namely E[ZZ⊤] = Ip . Define D =
∑t−1
s=1

∑
(i′, j′)∈Ωinds

Zsi′j′Z
s⊤
i′j′ , where

Zsi′j′ = Σ−1/2gs,0i′j′ . It is trivial to have D = Σ−1/2(Āt − λI)Σ−1/2. From
Lemma B.1, we know that for any l , with probability at least 1 −

2exp(−C2l
2), λmin(D) ≥ nt −C1σ

2nt −σ
2l
√
nt , where σ is the sub-

Gaussian parameter of Z, which is upper-bounded by ∥Σ−1/2∥ =
λmin(Σ), and nt =

∑t−1
s=1 |Ω

ind
s | represents the number of pairwise

observations so far. Thus, we can rewrite the above inequality which

holds with probability 1−δ2 as λmin(D) ≥ nt−λ
−1
min
(Σ)(C1nt+l

√
nt),

and: λmin(Āt−λI) = minx ∈Bp x
⊤Σ1/2DΣ1/2x ≥ λmin(Σ)nt−C1nt−

C2

√
nt log(1/δ2)

Under event Et , based on the definition of ωt in Section 3, we

know that for any document i and j at round t , (i, j) < ωt if and only
ifσ (f ti j)−CB

t
i j ≤ 1/2 andσ (f tji)−CB

t
ji ≤ 1/2. For a logistic function,

we know that σ (s) = 1 − σ (−s). Therefore, according to Lemma 3.3,

we can conclude that (i, j) < ωt if and only if |σ (f ti j) − 1/2| ≤ CBti j ;

and accordingly, (i, j) ∈ ωt , when |σ (f
t
i j) − 1/2| > CBti j . According

to the discussion above, at round t , we have the probability that

the estimated preference between document i and j in an uncertain

rank order, i.e., (i, j) < ωt ,

P
(
(i, j) < ωt

)
≤ P

(
∆min − |σ (f ti j) − σ (h

t
i j) | ≤ CB

t
i j

)
.

Based on Lemma 3.3, the probability can be further bounded by

P
(
∆min − |σ (f ti j) − σ (h

t
i j) | ≤ CB

t
i j

)
≤P

(
∥Wt ∥A−1t

≥
cµ
2kµ

((∆min − 2ϵ (m))
| |gti j /

√
m | |A−1t

− αt
))

.

where Wt =
∑t
s=1

∑
(i′, j′)∈Ωinds

ξ si′j′g
s
i′j′ . For the right-hand side, we

know that λmin(At) ≥ λmin(Āt) + ∥At − Āt ∥ ≥ λmin(Āt − λI) + λ +
∥At − Āt ∥ . With some positive constants {Cui }

5

i=1, for t ≥ t ′ =(
Cu
1
+ Cu

2

√
log(1/δ2) + Cu

3
Vmax

)
2

+ Cu
4
log(1/δ1) + Cu

5
, as nt > t , we

have nt −
√
nt

(
Cu
1
+ Cu

2

√
log(1/δ2) + Cu

3
Vmax

)
> Cu

4
log(1/δ1) + Cu

5
.

Hence, when t ≥ t ′, the right-hand side of the inequality is positive.
Therefore, we have:

P
(
∆min − |σ (f ti j) − σ (h

t
i j) | ≤ CB

t
i j

)
≤

Cu log(1/δ1)
(∆min − 2ϵ (m))2

∥gti j /
√
m ∥2

A−1t
.

This completes the proof. □

C PROOF OF THEOREM 4.4
Lemma C.1. There exist positive constants {Ci }2i=1 such that for

anyδ ∈ (0, 1), ifm ≥ C̄2 max

{
T 7λ−7L21(logm)3, n6

T L
6(log(TVmaxL2/δ))3/2

}
,

and η ≤ C̄1(TmL +mλ)−1, with probability at least 1 − δ , we have∑T

t=1

∑
(i′, j′)∈Ωt

∥gti′j′/
√
m ∥A−1t

≤ 2 log

detAT
det λI

≤ d̃ log(1 +TV 2

max
/λ) + 1

where d̃ is defined as the effective dimension of Ĥ.

Proof of Theorem 4.4. With δ1 and δ2 defined in the previous

lemmas, we have with probability at least 1 − δ1, the T -step regret

is upper bounded as:

RT ≤ t ′ ∗V 2

max
+ (T − t ′)δ2V 2

max
+ (1 − δ2)

∑T

t=t ′
rt (C.1)

When event Et and the event defined in Lemma 3.3 both occur, the

instantaneous regret at round t is bounded by rt = E
[
K(τs ,τ

∗
s)

]
≤

E[Ut], whereUt denotes the number of uncertain rank orders under

the ranker at round t . As the ranked list is generated by topolog-

ical sort on the certain rank orders, the random shuffling only

happens between the documents that are in uncertain rank or-

ders, which induce regret in the proposed ranked list. In each

round of result serving, as the model θt would not change un-

til the next round, the expected number of uncertain rank orders

can be estimated by summing the uncertain probabilities over all

possible pairwise comparisons under the current query qt , e.g.,
E[Ut] = 1/2

∑
(i, j)∈Ψt P((i, j) < ωt). Based on Lemma 4.2, the cu-

mulative number of mis-ordered pairs can be bounded by the prob-

ability of observing uncertain rank orders in each round, which

shrinks with more observations become available over time,

E
[∑T

s=t ′
Ut

]
≤E

[
1/2

∑T

s=t ′

∑
(i′, j′)∈Ψs

P((i′, j′) < ωt)
]

≤E
[∑T

s=t ′

∑
(i′,k′)∈Ψs

Cu
6
log(1/δ1) ∥gti′j′ ∥

2

A−1t
/∆2

min

]
.

Because At only contains information of observed document pairs

so far, our algorithm guarantees the number of mis-ordered pairs

among the observed documents in the above inequality is upper

bounded. To reason about the number of mis-ordered pairs in those

unobserved documents (i.e., from ot to Lt for each query qt), we
leverage the constantp∗, which is defined as theminimal probability

that all documents in a query are examined over time,

E
[∑

t=t ′

∑
(i′, j′)∈Ψt

∥gti′j′/
√
m ∥A−1t

]
≤p∗−1E

[∑
t=t ′

∑
(i′, j′)∈Ψt

∥gti′j′/
√
m ∥A−1t

1{ot = Vt }
]

Besides, we only use the independent pairs, Ωind
t to update the

model and the corresponding At matrix. Therefore, to bound the

regret, we rewrite the above equation as:

E

[∑T

t=t ′

∑
(i′, j′)∈Ψt

∥gti′j′/
√
m ∥2

A−1t

]
≤E


∑T

t=t ′

∑
(i′, j′)∈Ωindt

©­«Lt ∥
gti′j′
√
m
∥2
A−1s
+

∑
k∈[Vt]\{i′, j′}

2gti′k
⊤A−1t gtj′k
m

ª®¬


≤E

[∑T

t=t ′

(∑
(i′, j′)∈Ωindt

Lt ∥gti′j′/
√
m ∥2

A−1s
+ 2Cz

3
V 2

max
L2/λmin(At)

)]
where the last inequality is due to Lemma B.6 in [54]. According

to the analysis of λmin(At) and λmin(Āt), the convergence rate the
above upper bound is faster than the self-normalized term. Hence,

by chaining all the inequalities, we have with probability at least

1 − δ1, the regret satisfies,

RT ≤R′ + (1 − δ2)Cu
6
log(1/δ1)(w +Vmax(d̃ log(1 +TV 2

max
/λ) + 1)/∆2

min
)

≤R′ + (Cr
1
log(1/δ1)d̃ log(1 +TV 2

max
/λ) +Cr

2
)(1 − δ2)/(∆2

min
p∗)

where {Cri }
2

i=1 are positive constants, R
′ = t ′V 2

max
+ (T − t ′)δ2V

2

max
.

By choosing δ1 = δ2 = 1/T , the theorem shows that the expected

regret is at most RT ≤ O(d̃ log2(T)). □

441

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Setting
	3.2 Online Neural Ranking Model Learning

	4 Regret Analysis
	5 Experiments
	5.1 Experiment Setup
	5.2 Experiment Results

	6 Conclusion
	Acknowledgments
	References
	A Proof of Lemma 3.3
	B Proofs of Lemma 4.2
	C Proof of Theorem 4.4

