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Bandit algorithms have become a reference solution for interactive recommendation. However, as such algorithms directly interact

with users for improved recommendations, serious privacy concerns have been raised regarding its practical use. In this work, we

propose a differentially private linear contextual bandit algorithm, via a tree-based mechanism to add Laplace or Gaussian noise to

model parameters. Our key insight is that as the model converges during online update, the global sensitivity of its parameters shrinks

over time (thus named dynamic global sensitivity). Compared with existing solutions, our dynamic global sensitivity analysis allows

us to inject less noise to obtain (𝜖, 𝛿)-differential privacy with added regret caused by noise injection in 𝑂̃ (log𝑇
√
𝑇 /𝜖) . We provide

a rigorous theoretical analysis over the amount of noise added via dynamic global sensitivity and the corresponding upper regret

bound of our proposed algorithm. Experimental results on both synthetic and real-world datasets confirmed the algorithm’s advantage

against existing solutions.
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1 INTRODUCTION

Multi-armed bandit algorithms have become a reference solution for sequential decision-making; and they have been

successfully applied to a wide variety of real-world applications such as recommendation [25], display advertisement

[26], and clinical trials [13]. In each iteration of such problems, a learner selects among a set of recommendation

candidates, often referred as arms, and receives the corresponding reward after each selection. The learner’s goal is to

maximize the cumulative reward over time or equivalently to minimize regret. This requires the learner to both exploit

the currently estimated best arm and explore among the arms to improve its estimation. Contextual bandits extend

this setting to that the learner is given a context vector that encodes side information for reward estimation in each

iteration.

As bandit algorithms oftentimes directly work with user feedback, e.g., treating user clicks as reward, serious privacy

concerns have been raised [3, 33, 34, 37]. We use recommender systems equipped with bandit algorithms as an example

∗
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to illustrate its risk of privacy breach. In such a system, the algorithm chooses an item for a user, and the user decides

whether to click the recommendation based on his/her true preference. Such click feedback is used to update the bandit

model for improving its subsequent recommendations. As a result, any change in a user’s preference promptly leads to

changes in the algorithm’s output, e.g., different sequences of recommended items. User’s private information, e.g.,

his/her preference over items in this example, is thus revealed even if the click feedback is kept private. The goal

of privacy protection is to prevent the algorithm’s output from revealing a user’s private information, such as item

preferences. Real-world privacy breaches have been reported in Amazon’s recommendation system [8] and Facebook’s

advertisement system [23], where an adversary can learn considerable side information about a user solely based on

the system’s recommendation sequence.

Differential privacy [14, 16] provides a rigorous guarantee that an algorithm’s output has little dependency on

the change of input at a single data point, which limits the amount of sensitive information an adversary can infer

from the algorithm’s output. It has been widely adopted in both industry and academia. The basic idea is to add a

controlled level of noise to an algorithm’s output, such that the subsequent change in its output caused by input change

is indistinguishable from that caused by the added noise. The key is to determine the scale of the noise, which depends

on the sensitivity of the output given the change of input. However, the utility of a private algorithm decreases due to

the injected noise. Under the same privacy budget, a good private algorithm adds less noise to its output, preserving

more utility while achieving the same level of privacy.

Differential privacy has been studied in stochastic multi-armed bandits [27, 36], adversarial bandits [37], and linear

contextual bandits [28, 33]. Because differential privacy is immune to post-processing [16], the output of a bandit

algorithm (i.e., the sequence of selected arms) is differentially private once a private mechanism protects sensitive

statistics at any internal stage of the algorithm, e.g., collected rewards or estimated bandit parameters. All existing

differentially private bandit algorithms add noise to reward or context vectors [28, 33]; but they fail to realize the role of

bandit model’s convergence in achieving privacy. Because the model parameter is converging during online update, the

same reward change from the user (i.e., the input to the algorithm) will impose smaller impact to the model parameter

in the later stage, and thus leads to less change in the algorithm’s output. This property suggests that the model is less

sensitive to the change of input over time and thus less noise is needed for privacy protection in the later stage.

Based on this important observation, we first study the dynamic nature of sensitivity of the bandit model parameters

over time, which we refer to as dynamic global sensitivity analysis. We apply the tree-based mechanism [10, 15] with

dynamic global sensitivity to add Laplace noise to the model parameter of a linear UCB algorithm [25] to achieve the

same level of differential privacy, but with much less added noise compared with previous approaches. We rigorously

analyze the level of noise added by the tree-based mechanism using dynamic global sensitivity and prove the upper

regret bound of our proposed algorithm. The main contributions of this paper can be summarized as follows:

• We quantify the dynamic global sensitivity of a linear bandit model based on its convergence property. As the

model converges, it becomes less sensitive to the reward change over time, and thus less noise is needed to

obtain the same level of privacy.

• We propose a tree-based mechanism with dynamic global sensitivity analysis. We show that this mechanism

adds 𝑂 ( 1𝜖 log𝑇
√︁
log𝑇 log

1

𝜁
/𝑇 ) noise to the bandit model parameter at time 𝑇 , and with probability 1 − 𝜁 , it

achieves (𝜖, 𝛿)-differential privacy. As a result, the added regret caused by noise injection is 𝑂̃ (log𝑇
√
𝑇 /𝜖) 1.

1𝑂̃ ( ·) omits the logarithmic terms of 𝑑, 1/𝜆, 1/𝜁 , 1/𝛿

2



Dynamic Global Sensitivity for Differentially Private Contextual Bandits RecSys ’22, September 18–23, 2022, Seattle, WA, USA

• We also empirically evaluate our algorithm on both synthetic and real-world datasets and validate the algorithm’s

advantage against existing solutions.

2 RELATEDWORK

Multi-armed bandit problem was first studied in [35] and [32]. Auer et al. [5] proposed the Upper Confidence Bound

(UCB) method to solve the stochastic multi-armed bandit problem. We refer to [7, 24] for a comprehensive survey

regarding stochastic multi-armed bandits and its variants. In this paper, we focus on the linear contextual bandit

problem, where each arm is associated with a context feature vector that encodes side information. The reward is

governed by a linear function of the context vector, characterized by the corresponding model parameters. UCB-style

solution for linear contextual bandit has been popularly studied in [1, 4, 25].

Differential privacy [14] provides a formal notion to quantify the amount of information regarding to an algorithm’s

input that an adversary could obtain by observing the algorithm’s output. A common technique is to add Laplace

or Gaussian noise to the algorithm’s output. The scale of noise depends on both privacy level (𝜖, 𝛿) and sensitivity,

which is the change of algorithm’s output caused by the change of its input. Originally studied for static databases,

differential privacy was first extended to online setting for stream data in [10, 15]. Differentially private online learning

methods have been studied for online convex optimization [2, 3, 34] and bandit problems [6, 27, 28, 33, 37, 39]. The key

component of these solutions is the tree-based mechanism, which was first proposed in [10, 15] for privately releasing

sum statistics in stream data. There are some recent works studied local differential privacy for bandits [19, 31, 41] and

DP for federated/distributed bandits [11, 12]. We follow the notion of global differential privacy, and differential privacy

refers to the global notion in the rest of the paper.

In the bandit setting, an adversary can observe the selected arms (not the reward). The goal of a private bandit

algorithm is to keep the sequence of reward private. In other words, a change in the reward sequence should not

lead to any sensible change in the selected arm sequence. Regarding differentially private contextual bandit, Mishra

and Thakurta [27] proposed private versions of contextual UCB and Thompson Sampling algorithms, but they did

not provide any theoretical analysis of the resulting algorithms. Neel and Roth [28] provided regret analysis for a

private LinUCB algorithm and proved the added regret introduced by their privacy mechanism is 𝑂̃ (log2.5𝑇
√
𝑇 /𝜖) to

achieve 𝜖-differential privacy. Shariff and Sheffet [33] studied the setting of making both context and reward private,

and adopted a different privacy notion of joint differential privacy [22]. However, these solutions do not directly add

noise to the bandit model itself but to the input of the model that has constant sensitivity. They thus cannot leverage

the convergence property of a bandit model. We study the dynamic nature of sensitivity of bandit model during online

update, and propose a tree-based mechanism with dynamic sensitivity to introduce less noise to the model parameter

over time. Our proposed method adds additional regret to non-private LinUCB in a scale of 𝑂̃ (log𝑇
√
𝑇 /𝜖) to achieve

(𝜖, 𝛿)-differential privacy. Pichapati et al. [30] proposed an adaptive differentially private SGD algorithm that has similar

motivation of our work, i.e., analyzing the dynamics of sensitivity to preserve more utility. But it focuses on a very

different perspective: it dynamically (adaptively) computes sensitivity on different dimensions giving the historical

gradient, while we compute the dynamic sensitivity based on model convergence.

3 METHOD

We first provide a brief overview of contextual bandit algorithms and differential privacy. We then provide the dynamic

global sensitivity analysis of bandit algorithms with a tree based mechanism. Based on it, we present our differentially

private linear contextual bandit algorithm and prove its upper regret bound.
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3.1 Preliminaries

Contextual Bandits. In a contextual bandit problem, an algorithm sequentially selects an arm 𝑎𝑡 from a candidate

pool A𝑡 = {𝑎1,𝑡 , 𝑎2,𝑡 , ..., 𝑎𝑘,𝑡 }, and receives the corresponding reward 𝑟𝑡 afterwards. Each arm 𝑎 is associated with a

context feature vector x𝑎 and its reward is governed by a function of the context feature vector and an unknown bandit

model parameter 𝜽 ∗. We made the following assumption on context generation similar to [18].

Assumption 1. Context vectors 𝐶𝑡 = {x𝑎 |𝑎 ∈ A𝑡 } are assumed to be generated i.i.d. conditioned on the past actions

{𝑎1, ..𝑎𝑡−1} and contexts {𝐶1, ..𝐶𝑡−1} from a random process 𝑋 such that E[𝑋𝑋T] is full rank, with minimal eigenvalue 𝜆0
2.

The objective of a bandit algorithm is to maximize its cumulative reward (or equivalently minimize the regret) over a

finite time horizon 𝑇 . To simplify our discussion, we assume the observed reward is a linear function of feature vector

x𝑎 and bandit model parameter 𝜽 ∗ with noise, i.e., 𝑟𝑡 = xT𝑎𝑡 𝜽
∗ + 𝛾𝑡 , where 𝛾𝑡 is a sub-Gaussian feedback noise. We

evaluate a bandit algorithm by its pseudo-regret, which is defined as

Regret(𝑇 ) =
𝑇∑︁
𝑡=1

(xT
𝑎∗𝑡
𝜽 ∗ − xT𝑎𝑡 𝜽

∗), (1)

where 𝑎∗𝑡 is the best arm according to 𝜽 ∗. The LinUCB algorithm [1, 25] is a well-studied solution for linear bandit. It

solves the bandit model parameter
ˆ𝜽 using ridge regression, i.e.,

ˆ𝜽 = A−1𝑡 b𝑡 , whereA𝑡 =
∑𝑡−1
𝑖=1 x𝑎𝑖 x

T
𝑎𝑖
+𝜆I, b𝑡 =

∑𝑡−1
𝑖=1 x𝑎𝑖 𝑟𝑖 ,

𝜆 is the L2-regularization coefficient; and Upper Confidence Bound is used to select an arm.

Differential Privacy. For a contextual bandit problem, denote 𝑆 = {𝑟1:𝑇 } as the reward sequence. 𝑆 ′ is considered

as an adjacent neighboring sequence of 𝑆 , if it only differs from 𝑆 at one point of reward 𝑟𝑖 . The output O of a bandit

algorithm is the sequence of its selected arms, i.e., {𝑎1:𝑇 }.

Definition 1 (Differential Privacy [14]). A randomized algorithmM is (𝜖, 𝛿)-differentially private if for any

adjacent neighboring sequences 𝑆, 𝑆 ′ and output O,

P (M(𝑆) ∈ O) ≤ 𝑒𝜖P
(
M(𝑆 ′) ∈ O

)
+ 𝛿

When 𝛿 = 0, we say algorithmM is 𝜖-differentially private.

Differential privacy ensures the adversary observes almost the same output of a private algorithm in a probabilistic

sense, if one input data point is changed, where the similarity between outputs is evaluated by 𝜖 and 𝛿 . Laplace and

Gaussian noise are commonly used as additive noise to protect the output, where the noise scale is related to the privacy

requirement (𝜖, 𝛿) and the global sensitivity of algorithm’s output caused by the change of input. We formally define

global sensitivity below.

Definition 2 (Global Sensitivity [14]). For any adjacent neighboring sequences 𝑆, 𝑆 ′, global sensitivity of a function

𝑓 is defined as,

Δ𝑓 = max

𝑆,𝑆′
|𝑓 (𝑆) − 𝑓 (𝑆 ′) |

Since differential privacy is immune to post-processing [16], previous solutions of private linear bandits [27, 28] add

noise to

∑
𝑡 x𝑎𝑡 𝑟𝑡 to obtain privacy, which consequently makes the model parameter 𝜽𝑡 and the selected arms {𝑎𝑡 }𝑇𝑡=1

2
We discuss the impact of this assumption in next section in detail.
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Algorithm 1 Tree-based mechanism with Dynamic Global Sensitivity

1: Inputs: 𝑡,𝑇 , 𝜖, 𝛿, 𝐿, 𝜆0
2: Initialize: 𝜖 ′ = 𝜖/log

2
𝑇 , 𝛿 ′ = 𝛿/log

2
𝑇 , 𝜂𝑡 = 0

3: Let 𝑏 be the ⌈log
2
𝑇 ⌉ + 1-bit binary representation of 𝑡

4: for i = 0 to ⌈log
2
𝑇 ⌉ + 1 do

5: if 𝑏𝑖 = 1 then
6: 𝜂𝑡 = 𝜂𝑡 + Lap(

Δ
𝑡−2𝑖+1
𝜖′ )

7: end if
8: end for
9: Return noise 𝜂𝑡

private. It is obvious that global sensitivity of 𝑏𝑡 =
∑
𝑡 x𝑎𝑡 𝑟𝑡 is a constant 𝐿 for all round 𝑡 , if we assume ∥x∥2 ≤ 𝐿 and

|𝑟 | ≤ 1, without loss of generality. In other words, constant amount of noise has to be added in each round to achieve

differential privacy.

3.2 Dynamic Global Sensitivity Analysis for Tree-based Mechanism

Different from previous work, we directly add noise to the estimated bandit model parameter
ˆ𝜽𝑡 after each round of

model update. As
ˆ𝜽𝑡 converges over time, the sensitivity of it decreases consequently, which we name as dynamic global

sensitivity. We first quantify such sensitivity of
ˆ𝜽𝑡 and then discuss how to combine it with the tree-based mechanism.

Lemma 1 (Sensitivity of estimated bandit model parameter
ˆ𝜽𝑡 ). Let ˆ𝜽𝑡 and ˆ𝜽 ′𝑡 be parameter estimations of adjacent

neighboring reward sequences 𝑆 and 𝑆 ′, assuming context vectors {x1,𝑡 , ..x𝐾,𝑡 } are generated according to Assumption 1.

With probability at least 1 − 𝛿 , the dynamic global sensitivity of bandit model parameter ˆ𝜽𝑡 at time 𝑡 is bounded as,

Δ𝑡 = max

𝑆,𝑆′
∥ ˆ𝜽𝑡+1 − ˆ𝜽 ′𝑡+1∥2 ≤

2𝐿

𝜆′
(2)

where 𝜆′ = 𝜆0𝑡/4 − 8 log((𝑡 + 3)/𝛿) − 2

√︁
𝑡 log((𝑡 + 3)/𝛿) is the lower bound of minimum eigenvalue of matrix A𝑡 =∑

𝑡 x𝑎𝑡 x
T
𝑎𝑡
+ 𝜆I. 3 We use a simplified bound 𝜆′ = 𝜆0𝑡/16 when 𝑡 > 32 log(1/𝛿)/𝜆0, which gives us Δ𝑡 ≤ 32𝐿/𝜆0.

Proof Sketch. Since ˆ𝜽𝑡 = A−1𝑡
∑
𝑡 x𝑎𝑡 𝑟𝑡 , the key idea is to quantify the minimum eigenvalue of matrix A𝑡 . Here we

adopt the i.i.d. assumption of context vectors from Theorem 1 of [18] to analyze the corresponding eigen system and

the key idea is to use a concentration inequality to bound the eigenvalue.

Note that we need to avoid negative sensitivity when 𝑡 is small. It can be derived from the formula of 𝜆′ that by

choosing probability 𝛿 > 2 log(3)/(
√
1 + 2𝜆0 + 1), the sensitivity is guaranteed to be positive for small 𝑡 . For large 𝑡 , we

have shown in the lemma that the sensitivity is guaranteed to be positive when 𝑡 > 32 log(1/𝛿)/𝜆0.
Lemma 1 provides the dynamic global sensitivity analysis of estimated bandit model parameter

ˆ𝜽𝑡 . Themost important

property of it is that it is monotonically shrinking over time. This indicates less noise is needed in later stage for privacy

protection. We should emphasize that our analysis is for global sensitivity. A similar but quite different notion is local

sensitivity (and smoothed sensitivity) proposed by [29], which studies the dynamic nature of sensitivity given different

input 𝑆 , i.e., max𝑆′ |𝑓 (𝑆) − 𝑓 (𝑆 ′) |. Our dynamic sensitivity analysis is not conditioned on any reward sequence, but

based on the convergence property of bandit model parameter
ˆ𝜽𝑡 . And thus it holds for any reward sequence as input.

Remark Our Assumption 1 on the context vectors used in Lemma 1 follows [18] and is used to bound the rate of

shrinkage of the bandit model’s sensitivity. Similar assumptions are also discussed in [21] from the perspective of

3
Note that 𝜆 is the coefficient for of 𝐿2 regularization, and it not related with 𝜆0 .

5



RecSys ’22, September 18–23, 2022, Seattle, WA, USA Huazheng Wang, David Zhao, and Hongning Wang

perturbation on context vectors via a smoothed analysis. And in the appendix, we show that a similar sensitivity

analysis can easily lead to a differentially private version of algorithm proposed in [21]. In the meanwhile, we also note

that this environment assumption generally holds in practice, especially in a system with time-varying arm sets, as

extensively discussed and studied in [21]. However, even if the context vectors are generated by an adversary instead of

a random process, we can still achieve the same guarantee on the minimal eigenvalue 𝜆0 and the same result in Lemma

1 by perturbing the context vector x𝑎 with a Gaussian noise sampled from N(0, 𝜎2), such that 𝜆0 ≥ Ω(𝜎2), based on

Lemma 3.7 in [21]. In the following, we assume Assumption 1 holds if not specified. And in Corollary 1, we discuss the

impact on regret if the algorithm needs to perturb the context vector when the assumption does not hold.

The analyzed sensitivity provides us the level of noise needed for differential privacy. We present a tree-based

mechanism with dynamic global sensitivity in Algorithm 1, which takes advantage of the sublinear property of

exponential function to further reduce the amount of added noise. Basically, the idea of tree-based mechanism is to view

the sum statistics as ⌈log
2
𝑇 ⌉ + 1 partial sums. Laplace noise is added to each partial sum to achieve (𝜖 ′, 𝛿 ′)-differential

privacy where 𝜖 ′ = 𝜖/log
2
𝑇 , 𝛿 ′ = 𝛿/log

2
𝑇 . Here we follow the notion of (𝜖 ′, 𝛿 ′)-differential privacy because our

sensitivity analysis in Lemma 1 is a high probability bound and holds with probability 1 − 𝛿 ′. Based on composition

theorem of differential privacy [17, 20], the final output, the sum of (𝜖 ′, 𝛿 ′)-differentially private partial sums, is

(𝜖, 𝛿)-differentially private. The partial sums are segmented by the tree representation. We refer to [10, 15] for detailed

discussion of tree-based mechanism.

However, previous differentially private bandit algorithms with tree-based mechanism only protect variables that

have constant sensitivities, such as sum statistics of

∑
𝑡 x𝑎𝑡 𝑟𝑡 for contextual bandits [27, 28, 33] or sum of rewards for

non-contextual bandits [36, 37], instead of our dynamic global sensitivity. In Algorithm 1, we scale the noise of partial

sum [𝑡 − 2𝑖+1, 𝑡 − 2𝑖 + 1] with its dynamic sensitivity Δ𝑡−2𝑖+1 as shown in line 6.

We first show the privacy guarantee of Algorithm 1 and then study its utility, i.e., the total amount of noise added by

Algorithm 1.

Theorem 1 (Privacy). Algorithm 1 with dynamic global sensitivity Δ𝑖 defined in Lemma 1 is (𝜖, 𝛿)-differentially
private.

Theorem 2 (Utility). For a finite time horizon 𝑇 , at time 𝑡 , Algorithm 1 with dynamic global sensitivity of bandit

model parameter ˆ𝜽 adds 𝑂 ( 𝐿𝜖 log𝑇
√︁
log 𝑡 log 1

𝜁
/𝑡) noise with probability 1 − 𝜁 to achieve (𝜖, 𝛿)-differential privacy.

Proof Sketch. We follow the definition of differential privacy and use a similar proof as Theorem 3 of [34] to get

the privacy guarantee. The utility analysis is based on Lemma 1 and the property of sum of samples from Laplace

distributions.

All existing tree-based mechanism for private bandit solutions add noise at a scale of 𝑂 ( 𝐿𝜖 log𝑇
√︁
log 𝑡 log 1

𝜁
) based

on constant sensitivity [10] . By leveraging the dynamic global sensitivity analysis in Lemma 1, our solution adds less

noise while achieving the same level of privacy.

Moreover, our finite-time analysis assumes the knowledge of time horizon 𝑇 beforehand; but it can also be directly

extended to the infinite/unknown time horizon by replacing tree-based mechanism with the hybrid mechanism [10].

Although in this paper our focus is the contextual bandit problem, our dynamic global sensitivity analysis can also be

generalized to other settings such as online convex optimization, where we can leverage the algorithm’s convergence

property to add decreasing noise to the model parameter for better utility.

6
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Algorithm 2 Private LinUCB with Dynamic Global Sensitivity

1: Inputs: 𝜖, 𝛿, 𝜆,𝑇 , 𝐿, 𝜆0
2: Initialize: A1 ← 𝜆I, b1 ← 0
3: for 𝑡 = 1 to 𝑇 do
4: Observe context vectors 𝐶𝑡 = {x𝑎 |𝑎 ∈ A𝑡 }
5: Take action 𝑎𝑡 = argmax𝑎∈A𝑡

xT𝑎 ˆ𝜽
𝑝
𝑡 + 𝛼𝑡 ∥x𝑎 ∥A−1𝑡

6: Observe reward 𝑟𝑎𝑡
7: A𝑡+1 ← A𝑡 + x𝑎𝑡 xT𝑎𝑡
8: b𝑡+1 ← b𝑡 + x𝑎𝑡 𝑟𝑎𝑡
9: Sample noise 𝜂𝑡 ∼ TreeMechanism(𝑡, 𝜖, 𝛿)
10:

ˆ𝜽
𝑝

𝑡+1 ← A−1
𝑡+1b𝑡+1 + 𝜂𝑡

11: end for

3.3 Differentially Private LinUCB

We now provide a differentially private linear contextual algorithm built on top of the tree-based mechanism with

dynamic global sensitivity. The details of this algorithm is described in Algorithm 2. At round 𝑡 , the algorithm receives a

set of arms, with each arm associated with a context vector x𝑎 . Different from previous solutions [27, 28] that add noise

to b𝑡 =
∑
𝑡 x𝑎𝑡 𝑟𝑡 , our algorithm directly adds noise to the bandit parameter for privacy (i.e., line 10), and uses the private

model parameter
ˆ𝜽
𝑝
𝑡 for arm selection (i.e., line 5). The selected sequence of arms are proved to be (𝜖, 𝛿)-differentially

private to the reward sequence.

Claim 1. The sequence of selected arms {𝑎𝑡 : 𝑡 ∈ [1..𝑇 ]} by Algorithm 2 is (𝜖, 𝛿)-differentially private.

Proof. In line 9-10 we use Algorithm 1 to add noise and keep
ˆ𝜽
𝑝

𝑡+1 (𝜖, 𝛿)-differentially private. Because differential

privacy is post-processing invariant [16], the sequence of selected arms {𝑎𝑡 : 𝑡 ∈ [1..𝑇 ]} produced by
ˆ𝜽
𝑝
𝑡 is thus also

(𝜖, 𝛿)-differentially private. □

We now specify the confidence bound of reward estimation with
ˆ𝜽
𝑝
𝑡 , which we use for arm selection in line 5 of

Algorithm 2.

Lemma 2 (Confidence Bound). Following Assumption 1 and assuming ∥𝜽 ∗∥2 ≤ 𝑆 , with probability at least 1 − 2𝜁 ,
confidence bound of the estimated reward xT ˆ𝜽𝑝𝑡 is

CB𝑡 (x) = ∥xT ˆ𝜽𝑝𝑡 − x
T𝜽 ∗∥ ≤ 𝛼𝑡 ∥x∥A−1𝑡 (3)

where we define 𝛼𝑡 as the upper bound of ∥ ˆ𝜽𝑝𝑡 − 𝜽 ∗∥A𝑡
. We have

∥ ˆ𝜽𝑝𝑡 − 𝜽
∗∥A𝑡

≤ 𝐿

𝜖
log𝑇

√︁
log 𝑡 log( 1

𝜁
)/
√
𝑡 +

√︄
𝑑 log

1 + 𝑡𝐿2𝜆
𝜁

+
√
𝜆𝑆 (4)

Proof. Eq. (3) is obtained by the Cauchy–Schwarz inequality. To bound 𝛼𝑡 , we apply the triangle inequality:

∥ ˆ𝜽𝑝𝑡 − 𝜽 ∗∥A𝑡
≤ ∥ ˆ𝜽𝑝𝑡 − ˆ𝜽𝑡 ∥A𝑡

+ ∥ ˆ𝜽𝑡 − 𝜽 ∗∥A𝑡
, where

ˆ𝜽𝑡 is the non-private estimate of 𝜽 ∗. The first term is bounded

according to Theorem 2 under A𝑡 norm with probability at least 1 − 𝜁 . The second term is the confidence ellipsoid of

non-private LinUCB and it can be bounded by Theorem 2 of [1] with probability at least 1− 𝜁 . By taking a union bound,

the inequality holds with probability at least 1 − 2𝜁 □

Lemma 2 gives a tight construction of uncertainty regarding reward estimation xT ˆ𝜽𝑝𝑡 and model parameter estimation

∥ ˆ𝜽𝑝𝑡 − 𝜽 ∗∥A𝑡
. Note that comparing to the non-private LinUCB, the confidence bound of model estimation 𝛼𝑡 in our

7
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algorithm is relaxed by an additional term
𝐿
𝜖 log𝑇

√︁
log 𝑡 log( 1

𝜁
)/
√
𝑡 , which captures the upper bound of uncertainty

caused by the privacy-preserving noise 𝜂𝑡 introduced by Algorithm 1.

Now we provide a gap-independent regret bound of Algorithm 2 in following theorem.

Theorem 3 (Regret Bound). Following Assumption 1, the pseudo-regret of Algorithm 2 up to time 𝑇 can be bounded
by,

𝑅𝑒𝑔𝑟𝑒𝑡 (𝑇 ) ≤2 ©­«
√︄
𝑑 log

1 +𝑇𝐿2𝜆
𝜁

+
√
𝜆𝑆

ª®¬
√︂
𝑑𝑇 log (𝜆 + 𝐿𝑇

𝑑
)

+
(
2

3
1.5𝐿

𝑒1.5𝜆0𝜖
log( 1

𝜁
)
√︂
𝑑𝑇 log (𝜆 + 𝐿𝑇

𝑑
) + 32 log(1/𝛿)/𝜆0

)
(5)

with probability at least 1 − 2𝜁 .

Proof Sketch. We rewrite the cumulative regret of LinUCB defined in Eq. (1) by

∑𝑇
𝑡=1 2CB𝑡 (x𝑎𝑡 ), using the definition

of confidence bound and UCB arm selection strategy in line 5 of Algorithm 2. We apply the Cauchy-Schwarz inequality

to bound

∑
𝑡 𝛼𝑡 and

∑
𝑡 ∥x𝑎𝑡 ∥A−1𝑡 . According to Eq. (4) in Lemma 2, we can separate the bound of 𝛼𝑡 into two terms: one

is the confidence bound of the original LinUCB and the other is the bound of injected noise. We use Lemma 11 of [1] to

bound

∑
𝑡 ∥x𝑎𝑡 ∥A−1𝑡 .

The first term of regret in Theorem 3 is the same as the regret of non-private LinUCB, which is caused by its parameter

estimation uncertainty and exploration in arm selection. The second term is the added regret introduced for privacy

based on dynamic global sensitivity. The private LinUCB algorithm in [28] adds noise to b𝑡 and incurs additional regret

in the order of 𝑂̃ (log2.5𝑇
√
𝑇 /𝜖) to achieve 𝜖-differential privacy, while our algorithm introduces additional regret in the

order of 𝑂̃ (log𝑇
√
𝑇 /𝜖) to achieve (𝜖, 𝛿)-differential privacy ignoring logarithmic terms. The dependency of additional

regret on 𝛿 is 𝑂 (log(1/𝛿)). We note that our method leverages the convergence of parameter estimation to inject less

noise; and since it is a high probability analysis, the relaxed (𝜖, 𝛿)-differential privacy notion is required. Later, we also

validate our theoretical analysis of the regret reduction in our empirical evaluations. We currently cannot prove if our

regret is optimal with respect to T, since the lower bound of the differentially private linear bandit problem is still an

open problem. We note the lower bound discussed in [33] is not applicable, because their privacy definition includes

context and it is different from ours that focuses on the privacy of reward. We consider deriving the lower bound of this

problem as an important future direction.

In general, the regret bound of contextual bandits could be categorized into gap-independent bound and gap-

dependent bound. Our provided analysis is for a gap-independent bound and it is dominated by the term 𝑂 (
√
𝑇 )

after ignoring the logarithmic terms. The gap-dependent regret bound of a bandit algorithm is usually in the order of

𝑂 (log𝑇 /𝜇
1,𝑘 ), where 𝜇1,𝑘 is the minimal reward difference between the best arm and any sub-optimal arm 𝑘 . We leave

the analysis of gap-dependent bound of our proposed algorithm as future work.

Note that Algorithm 2 takes 𝐿 and 𝜆0 as input. From a theoretical perspective, the knowledge of the maximum

L2-norm of context features 𝐿 is a commonly made assumption in linear bandits, which is required to derive important

model parameters such as the size of confidence ellipsoid 𝛼𝑡 in LinUCB [1]. From a practical view, one can normalize

the context feature vectors or observe them ahead of the time to empirically estimate 𝐿 and 𝜆0.

When the context vectors are not generated from the required random process with minimal eigenvalue 𝜆0, we can

add an additional Gaussian perturbation on the context to achieve this condition similar to the idea in Kannan et al.

[21]. This leads to the following auxiliary result.

8
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(a) Cumulative regret on

simulation data.

(b) Cumulative reward on LastFM.

(c) Parameter estimation error on

simulation data.

Fig. 1. Regret and parameter estimation quality on simulation and real-world dataset.

Corollary 1. Following the assumptions in Lemma 1 and 2 about the context vectors, by perturbing every context
vector x𝑎 with 𝑧 ∼ N(0, 𝜎2I), Algorithm 2 is (𝜖, 𝛿)-differentially private. The pseudo-regret of Algorithm 2 up to time 𝑇
can be bounded by

𝑅𝑒𝑔𝑟𝑒𝑡 (𝑇 ) ≤2

√︃
𝑑 log 1+𝑇𝐿2𝜆

𝜁
+
√
𝜆𝑆

𝜎2

√︂
𝑑𝑇 log (𝜆 + 𝐿𝑇

𝑑
)

+
(
2

3
1.5𝐿

𝑒1.5𝜎2𝜖
log( 1

𝜁
)
√︂
𝑑𝑇 log (𝜆 + 𝐿𝑇

𝑑
) + 32 log(1/𝛿)/𝜎2

)
(6)

with probability at least 1 − 2𝜁 .

Here we notice that if we do not have the assumption on the generation of context vectors, while instead perturbing

the context vectors to guarantee Lemma 1, the regret would be larger than the one in Theorem 3, especially when

variance 𝜎2 is small. However note that the order of the regret in 𝑇 is still the same. The proof of this corollary can be

found in the appendix.

4 EXPERIMENT

We performed empirical evaluations of our proposed private LinUCB with dynamic global sensitivity (denoted as

Private LinUCB-DGS) against two baseline algorithms:

• LinUCB [25]: it selects an arm based on its upper confidence bound of the estimated reward with given context

vectors. As a non-private algorithm, LinUCB does not inject any noise to its parameter estimation.

• Private LinUCB [28]: it adds noise to b𝑡 using the tree-based mechanism with a constant sensitivity parameter,

and incurs additional regret at the order of 𝑂̃ (log2.5𝑇
√
𝑇 /𝜖).

• Experiment setup. In our simulation-based study, we generate a size-𝐾 (𝐾 = 1000) arm pool A, in which each

arm 𝑎 is associated with a 𝑑-dimensional (𝑑 = 10) feature vector x𝑎 ∈ R𝑑 with ∥x𝑎 ∥2 ≤ 1. Similarly, we create a set of

ground-truth bandit parameters 𝜽 ∗ ∈ R𝑑 with ∥𝜽 ∗∥2 ≤ 1, which are not disclosed to the learners. Each dimension of

both x𝑎 and 𝜽 ∗ is drawn from a uniform distribution𝑈 (0, 1). At each round 𝑡 , a randomly-sampled decision set with 10

arms from A are disclosed to the learners for selection. The ground-truth reward 𝑟𝑎 is corrupted by Gaussian noise

𝛾 ∼ 𝑁 (0, 𝜎2) before giving back to the learners and the standard deviation 𝜎 is set to 0.5.
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(a) Effect of privacy level 𝜖 .
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Fig. 2. Detailed empirical analysis of privacy-preserving mechanism for LinUCB.

We also experimented on a real-world dataset extracted from the music streaming service website Last.fm
4
. The

LastFM datasets is published by the HetRec 2011 workshop
5
. This dataset contains 1,892 users and 17,632 items (artists).

We used the information of “listened artists” of each user to create payoffs of recommendation candidates: if a user

listened to an artist at least once, the payoff is 1, otherwise 0. Following the settings in [9, 38, 40], we extracted the

context features of artists and pre-processed the dataset in order to fit them into a contextual bandit setting. Specifically,

we create a TF-IDF feature vector using associated tags (6,036 tags in total), which uniquely represents the context of

that artist. PCA is used to reduce the dimensionality of the feature vectors to 𝑑 = 25. For a particular user 𝑖 , we generate

the candidate arm pool with size |A𝑡 | = 25 by first sampling one item from those non-zero reward candidate in user 𝑖’s

past history, and then randomly fulfill the other 24 from those zero-reward candidates from this user.

Notice that both synthetic data and real-world data met Assumption 1. In synthetic data, the context features are

sampled from a uniform distribution. For the LastFM dataset, the context vectors are generated by retaining the first

25 principal components of the original 6,036-dimension TD-IDF representation of items, which means the minimum

eigenvalue of E[xxT] is lower bounded.
• Regret comparison. We first show the regret on simulation and real-world dataset in Figure 1 (a) and (b). As in the

real-world dataset we do not have an oracle policy, we instead report each learning algorithm’s cumulative reward for

comparison. We set the privacy level 𝜖 = 2 and 𝛿 = 0.1 in the following experiments as default. On the LastFM dataset,

we report the reward ratio normalized by the reward collected from a random policy; and the resulting performance

curve is thus the higher the better. We observe that the non-private LinUCB performs better than its two private

variants, since no noise is injected to LinUCB’s model estimation. Our private LinUCB-DGS performs much better

than private LinUCB on both datasets, as less noise is added .These results support our theoretical analysis that with

dynamic global sensitivity, our algorithm adds additional regret in the order of 𝑂̃ (log𝑇
√
𝑇 /𝜖). Note that because the

privacy notion are different in private LinUCB and our private LinUCB-DGS, here we focus on comparing the utility of

these algorithms with the same 𝜖 .

• Parameter estimation quality. Figure 1 (c) shows the parameter estimation quality of the three bandit algorithms,

i.e., the L2 difference between the estimated bandit parameter
ˆ𝜽
𝑝
𝑡 and the ground-truth parameter 𝜽 ∗. Compared with

private LinUCB, our model parameter
ˆ𝜽𝑝 converges faster, which explains its improved performance in regret. We also

notice that the convergence of private LinUCB oscillates more seriously. This is because private LinUCB injects noise

4
http://www.last.fm

5
http://grouplens.org/datasets/hetrec-2011
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with a larger variance (as we always introduce zero-mean Laplace noise) to model estimation. As a result, its quality of

model parameters estimation varies significantly during online update, which directly leads to its worse regret.

• Effect of privacy level 𝜖. In Figure 2 (a), we show the regret of our algorithm with different privacy parameter 𝜖 . We

vary 𝜖 from 0.5 to 5. From the results, we notice a clear trade-off between the required privacy level 𝜖 and the resulting

regret. Stronger privacy requirement (i.e., a smaller 𝜖) requires the privacy mechanism to inject more noise, which

results in larger regret. This result also supports our theoretical analysis that in our solution is in the order of 𝑂 ( 1𝜖 ).
• Sensitivity in arm selection. We now evaluate the algorithm’s sensitivity to reward changes, which is exactly what

differential privacy intends to protect in a bandit algorithm. Specifically, we fix the sequence of context and arms and

only change reward feedback on one particular arm. Note that the feedback noise in simulation is also fixed for all

arms ahead of time in this experiment. We compare how many arms are selected differently after the reward change

by a bandit algorithm. In our simulation based study, we run each algorithm 500 iterations and change the reward at

iteration {0, 100, 200} by increasing the original reward by 0.5. For experiment on LastFM, we run 5,000 iterations, and

flip reward on the selected item at iteration {0, 1000, 2000}. We run private LinUCB-DGS and private LinUCB-DGS for 5

times and report the mean and standard deviation. We run LinUCB just one time as it is a deterministic algorithm.

From Figure 2 (b) and (c) we can observe that the number of changed arms in our solution is clearly smaller than its

non-private counterpart, which suggests that private LinUCB-DGS is less sensitive to reward change comparing to

original LinUCB. Private LinUCB has a similar number of changed arms than ours in average but with a larger variance.

This suggests less stable utility provided by the private LinUCB solution. We also notice that when the reward change

happens later, the change in all algorithms’ arm selection gets smaller, which supports our motivation of dynamic

sensitivity analysis that the algorithm’s output is less sensitive to its input in the later stage.

5 CONCLUSIONS & FUTUREWORK

In this paper, we first studied the dynamic nature of sensitivity of linear bandit models and presented a dynamic global

sensitivity analysis of such an algorithm under the tree based mechanism, which leads to reduced noise addition for

differential privacy. We then developed and analyzed a differentially private linear bandit algorithm based on the concept

of dynamic global sensitivity. Our private linear bandit algorithm injects additional regret caused by privacy-preserving

mechanism in 𝑂̃ (log𝑇
√
𝑇 /𝜖) while guarantees (𝜖, 𝛿)-differential privacy. Experimental results on both synthetic and

real-world datasets demonstrated the advantage of our algorithm and supported our theoretical analysis.

One important property of bandit algorithms is their intrinsic noise/randomness introduced by exploration, such as

the stochastic sampling of arms in Thompson Sampling and EXP3. Less explicit noise should be needed for differential

privacy, because of such intrinsic randomness of an algorithm’s output, e.g., free privacy. We plan to take advantage of it

for better balancing privacy and utility in bandit algorithms. In addition, as we mentioned before our proposed dynamic

global sensitivity analysis is not only limited to linear bandit algorithms. It is meaningful to explore its application in a

broader context, such as logistic bandits and online convex optimization. We also notice that the lower bound of the

differentially private linear bandit problem that protects privacy of reward is currently still an open problem, and it is

important to investigate this lower bound to show the optimality of a private linear bandit algorithm.
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APPENDIX

Missing Proofs

In this section, we provide the detailed proofs of the lemma and theorems discussed in our paper.

Proof of Lemma 1. For any neighbouring reward sequences {𝑆, 𝑆 ′} that only differ at the data point 𝑗 , i.e., 𝑟𝑖 = 𝑟
′
𝑖

when 𝑖 ≠ 𝑗 , denote A𝑡 = 𝜆I +
∑𝑡
𝑖=1 x𝑎𝑖 x

T
𝑎𝑖
, we have,

∥ ˆ𝜽𝑡+1 − ˆ𝜽 ′𝑡+1∥2

=∥(𝜆I +
𝑡∑︁
𝑖=1

x𝑎𝑖 x
T
𝑎𝑖
)−1

𝑡∑︁
𝑖=1

x𝑎𝑖 𝑟𝑖 − (𝜆I +
𝑡∑︁
𝑖=1

x𝑎𝑖 x
T
𝑎𝑖
)−1

𝑡∑︁
𝑖=1

x𝑎𝑖 𝑟
′
𝑖 ∥2

=∥A−1𝑡 x𝑎𝑖 (𝑟 𝑗 − 𝑟 ′𝑗 )∥2

≤2𝐿𝜆𝑚𝑎𝑥 (A−1𝑡 )

≤ 2𝐿

𝜆𝑚𝑖𝑛 (A𝑡 )
𝜆𝑚𝑖𝑛 (·) denotes the minimal eigenvalue of the input matrix. The third step is because of the assumption ∥x∥2 ≤ 𝐿 and

∥𝑟 ∥ ≤ 1. To analyze the eigenvalue of A𝑡 , we adopt the assumption from Theorem 1 of Gentile et al. [18] that context

vectors {x1,𝑡 , ..x𝐾,𝑡 } are i.i.d. conditioned on the algorithm’s past actions and observed context. Based on Theorem

1 of [18], 𝜆′ = 𝜆0𝑡/4 − 8 log((𝑡 + 3)/𝛿) − 2
√︁
𝑡 log((𝑡 + 3)/𝛿) and 𝜆′ = 𝜆0𝑡/16 when 𝑡 > 32 log(1/𝛿)/𝜆0. Thus we have

𝜆𝑚𝑖𝑛 (A𝑡 ) ≥ 𝜆0𝑡/16 when 𝑡 > 32 log(1/𝛿)/𝜆0. Substitute it back to the inequality and we finish the proof of Lemma

1. □

Proof of Theorem 1. We can rewrite the estimatedmodel parameter
ˆ𝜽𝑡 as sum statistics using the Sherman–Morrison

formula by

ˆ𝜽𝑡+1 = (A𝑡 + x𝑎𝑡 xT𝑎𝑡 )
−1 (b𝑡 + x𝑎𝑡 𝑟𝑎𝑡 )

= A−1𝑡 b𝑡 + ΔA𝑡
b𝑡 + A−1𝑡 x𝑎𝑡 𝑟𝑎𝑡 + ΔA𝑡

x𝑎𝑡 𝑟𝑎𝑡

= ˆ𝜽𝑡 + ΔA𝑡
b𝑡 + A−1𝑡 x𝑎𝑡 𝑟𝑎𝑡 + ΔA𝑡

x𝑎𝑡 𝑟𝑎𝑡

:= ˆ𝜽𝑡 + Δ( ˆ𝜽𝑡 )

where ΔA𝑡
=

A−1𝑡 x𝑎𝑡 x
T
𝑎𝑡
A−1𝑡

1+xT𝑎𝑡 A
−1
𝑡 x𝑎𝑡

. Note that we do not actually need to store nor calculate the partial sum in the tree; but

we only use the tree mechanism to sample noise for each partial sum, which makes our implementation efficient. We

notice that not saving partial sums on the tree makes our algorithm fail to satisfy the definition of pan privacy [15].

However if needed, one can always explicitly maintain a tree for Δ( ˆ𝜽𝑡 ) to achieve pan privacy, with a price of added

computational cost.

For partial sum

∑𝑗
𝑡=𝑖

Δ( ˆ𝜽𝑡 ), i.e., ˆ𝜽 𝑗 − ˆ𝜽𝑖 , its sensitivity is bounded by
ˆ𝜽 𝑗 − ˆ𝜽 ′

𝑗
and further bounded by Δ 𝑗 as discussed

in Lemma 1. According to the definition of differential privacy, the partial sum is (𝜖 ′, 𝛿 ′) -differentially private if we

add Lap( Δ𝑗

𝜖′ ) noise with our sensitivity bound that holds with probability at least 1 − 𝛿 ′.
We note that the incremental part Δ( ˆ𝜽𝑡 ) depends on not only incoming (x𝑎𝑡 , 𝑟𝑎𝑡 ), but also the historical statistics

summarized in A𝑡 . A similar problem also occurs in differentially private online convex optimization problem, where

the current gradient depends on the choice of past gradients. We refer to Theorem 3 of [34], which uses the advanced
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composition theorem, to prove that the composition of (𝜖 ′ = 𝜖/(log𝑇 ), 𝛿 ′ = 𝛿/(log𝑇 ), )-differentially private partial

sums achieves (𝜖, 𝛿)-differential privacy. □

We clarify the analogy of problem structure between privacy of Online Convex Optimization (OCO) discussed in [34]

and privacy of contextual bandits as follows: our Δ𝜃 could be viewed similarly as gradient in OCO, which is protected

by private sum statistics releasing. In OCO, gradient depends on current loss and historical evaluated parameters

{𝑤𝑡 }𝑇𝑡=1, while in contextual bandits Δ𝜃 depends on current reward and historical pulled arms {𝑥𝑡 }𝑇𝑡=1. An arm pulled

in contextual bandits is analogous to parameter evaluated in OCO, and thus similar arguments and analysis apply.

Proof of Theorem 2. To bound the total amount of noise 𝜂𝑡 added by our tree mechanism, we first state the property

of sum of independent Lapalace distributions (also stated in Lemma 2.8 of [10]):

Lemma 3. With probability 1 − 𝜁 , sum of independent Lapalace distributions Lap(𝑎𝑖 ) is bounded by 𝑂 (
√︃∑

𝑖 𝑎
2

𝑖
log

1

𝜁
)

Let 𝑏 be the ⌈log
2
𝑇 ⌉ + 1-bit binary representation of 𝑡 . The noise introduced by tree-based mechanism with dynamic

global sensitivity can be bounded by

𝜂𝑡 =
∑︁
𝑏𝑖=1

Lap(
Δ𝑡−2𝑖+1
𝜖 ′

)

=
∑︁
𝑏𝑖=1

Lap(
Δ𝑡−2𝑖+1 log𝑇

𝜖
)

≤ log

1

𝜁

√︄
log

2𝑇

𝜖2

(
Δ2

1

2
𝑡 ′+1 + Δ

2

3

4
𝑡 ′+1 + Δ

2

7

8
𝑡 ′+1 + ... + Δ

2

𝑡 ′)
)

≤ 32𝐿

𝜆0
log

1

𝜁

log𝑇

𝑡𝜖

√︄(
( 2
1

)2 + ( 4
3

)2 + ...
)

=
32𝐿

𝜆0
log

1

𝜁

log𝑇

𝑡𝜖

√︄(
(1 + 1

1

)2 + (1 + 1

3

)2 + ...
)

≤ 32𝐿

𝜆0
log

1

𝜁

log𝑇

𝑡𝜖

√︁
2 log 𝑡 + 2

where 𝑡 ′ > 𝑡 is the smallest number that is the power of 2 after 𝑡 . The last inequality holds because there are at most

log 𝑡 terms in the summation, and ( 1
1
)2 + ( 1

3
)2 + .. is upper bounded by 2. As a result, we conclude that the added noise

𝜂𝑡 is in the order of 𝑂 ( 𝐿𝜖 log𝑇
√︁
log 𝑡 log 1

𝜁
/𝑡) with probability 1 − 𝜁 . □

Proof of Theorem 3. We first bound the one-step regret at time 𝑡 as,

regret(𝑡) = xT
𝑎∗𝑡
𝜽 ∗ − xT𝑎𝑡 𝜽

∗ //Definition of regret

≤ xT
𝑎∗𝑡

ˆ𝜽
𝑝
𝑡 + CB𝑡 (x𝑎∗𝑡 ) − x

T
𝑎𝑡
𝜽 ∗ //Definition of confidence bound

≤ xT𝑎𝑡
ˆ𝜽
𝑝
𝑡 + CB𝑡 (x𝑎𝑡 ) − x

T
𝑎𝑡
𝜽 ∗ //Arm selection strategy

≤ 2CB𝑡 (x𝑎𝑡 )

13
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The pseudo-regret up to time 𝑇 is thus bounded by,

Regret(𝑇 ) =
𝑇∑︁
𝑡=1

𝑟𝑒𝑔𝑟𝑒𝑡 (𝑡)

≤
𝑇∑︁
𝑡=1

2CB𝑡 (x𝑎𝑡 )

= 2

𝑇∑︁
𝑡=1

𝛼𝑡 ∥x𝑎𝑡 ∥A−1𝑡

≤ 2

𝑇∑︁
𝑡=1

(
∥ ˆ𝜽𝑝𝑡 − ˆ𝜽𝑡 ∥A𝑡

+ ∥ ˆ𝜽𝑡 − 𝜽 ∗∥A𝑡

)
∥x𝑎𝑡 ∥A−1𝑡

≤ 2

√√√
𝑇∑︁
𝑡=1

∥ ˆ𝜽𝑡 − 𝜽 ∗∥2A𝑡

𝑇∑︁
𝑡=1

∥x𝑎𝑡 ∥2A−1𝑡
+ 2

√√√
𝑇∑︁
𝑡=1

∥𝜂𝑡 ∥2A𝑡

𝑇∑︁
𝑡=1

∥x𝑎𝑡 ∥2A−1𝑡

≤ 2

√√√
𝑇 ∥ ˆ𝜽𝑇 − 𝜽 ∗∥2A𝑇

𝑇∑︁
𝑡=1

∥x𝑎𝑡 ∥2A−1𝑡
+ 2

√√√
𝑇 max

𝑡 ′
∥𝜂𝑡 ′ ∥2A𝑡′

𝑇∑︁
𝑡=1

∥x𝑎𝑡 ∥2A−1𝑡

In the fourth step, we separate the upper bound of 𝛼𝑡 into two terms, among which one is the confidence bound of

the original LinUCB and the other is the bound of injected noise. The fifth step follows the Cauchy–Schwarz inequality.

Using Lemma 11 of [1], we have

∑
𝑡 ∥x𝑎𝑡 ∥2A−1𝑡

≤
√︃
𝑑 log (𝜆 + 𝐿𝑇

𝑑
). The bound of ∥ ˆ𝜽𝑇 − 𝜽 ∗∥2A𝑇

≤
√︃
𝑑 log 1+𝑇𝐿2𝜆

𝜁
+
√
𝜆𝑆

follows self-normalized bound for martingales of Lemma 9 in [1]. We bound max𝑡 ′ ∥𝜂𝑡 ′ ∥2A𝑡′
when 𝜆 ≥ 𝜆0𝑡/16, i.e.,

𝑡 > 32 log(1/𝛿)/𝜆0, by taking the derivative of
log

1.5 𝑡√
𝑡

and find its maximum value at 𝑡 = 𝑒3, since it is a concave

function. Substitute it back and we get its bound of
3
1.5

𝑒1.5
. The regret for 𝑡 ≤ 32 log(1/𝛿)/𝜆0 is at most 32𝐿 log(1/𝛿)/𝜆0.

Combining all these terms together, we prove the regret bound of our developed private LinUCB based on global

dynamic sensitivity analysis. □

Proof of Corollary 1. When every context vector x is perturbed by Gaussian noise 𝑧 ∼ N(0, 𝜎2), E[(x+𝑧) (x+𝑧)T]
has minimal eigenvalue 𝜆0 where 𝜆0 ≥ Ω(𝜎2). Thus Lemma 1 and 2 hold, and the privacy guarantee directly follows

Theorem 1. Following Lemma 3.3 in [21], we have ∥ ˆ𝜽𝑇 − 𝜽 ∗∥2A𝑇
≤

√︃
𝑑 log 1+𝑇𝐿2𝜆

𝜁
+
√
𝜆𝑆

𝜎2
. Plug the result into the analysis

of Theorem 3 and we have the regret bound. □
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