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Abstract

As recommendation is essentially a comparative (or ranking) pro-
cess, a good explanation should illustrate to users why an item is
believed to be better than another, i.e., comparative explanations
about the recommended items. Ideally, after reading the explana-
tions, a user should reach the same ranking of items as the system’s.
Unfortunately, little research attention has yet been paid on such
comparative explanations.

In this work, we develop an extract-and-refine architecture to
explain the relative comparisons among a set of ranked items from a
recommender system. For each recommended item, we first extract
one sentence from its associated reviews that best suits the desired
comparison against a set of reference items. Then this extracted sen-
tence is further articulated with respect to the target user through
a generative model to better explain why the item is recommended.
We design a new explanation quality metric based on BLEU to
guide the end-to-end training of the extraction and refinement
components, which avoids generation of generic content. Exten-
sive offline evaluations on two large recommendation benchmark
datasets and serious user studies against an array of state-of-the-art
explainable recommendation algorithms demonstrate the necessity
of comparative explanations and the effectiveness of our solution.
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1 Introduction

Modern recommender systems fundamentally shape our everyday
life [1, 6, 14, 19, 28, 31, 43]. As a result, how to explain the algorithm-
made recommendations becomes crucial in building users’ trust in
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Figure 1: An illustration about the necessity of comparative
explanations. The recommended Hotel A, B, C are listed in a
descending order, with the provided explanations to justify
the ranking. But if we replace Hotel C’s explanation with
the one in the dash box, users may no longer perceive the
ranking of all three hotels.

the systems [47]. Previous research shows that explanations, which
illustrate how the recommendations are generated [22, 30] or why
the users should pay attention to the recommendations [33, 39, 46],
can notably strengthen user engagement with the system and better
assist them in making informed decisions [4, 15, 32].

When being presented with a list of recommendations, typically
sorted in a descending order, a user needs to make a choice. In
other words, the provided explanations should help users compare
the recommended items. Figure 1 illustrates the necessity of com-
parative explanations. By reading the explanations for the hotels
recommended in the figure, one can easily tell why the system
ranks them in such an order. But if the system provided the expla-
nation in the dashed box for Hotel C, it would confuse the users
about the ranking, e.g., Hotel C becomes arguably comparable to
top ranked Hotel A; but it was ranked at the bottom of the list. This
unfortunately hurts users’ trust in all three recommended hotels.

Existing explainable recommendation solutions are not opti-
mized to help users make such comparative decisions for two major
reasons. First, the explanation of a recommended item is often
independently generated without considering other items in the
recommendation list. As shown in Figure 1, one single low-quality
generation (the one in the dashed box) might hamper a user’s un-
derstanding over the entire list of recommendations. Second, the
popularly adopted neural text generation techniques are known
to be flawed of its generic content output [16, 41]. Particularly,
techniques like maximum likelihood training and sequence greedy
decoding lead to short and repetitive sentences composed of glob-
ally frequent words [42]. Such generic content cannot fulfill the
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need to differentiate the recommended items. Consider the example
shown in Figure 1 again, “the hotel is good” is a very generic ex-
planation and thus not informative. Its vague description (e.g., the
word “good”) and lacks of specificity (e.g., the word “hotel”) make it
applicable to many hotels, such that users can hardly tell the relative
comparison of the recommended items from such explanations.

In this work, we tackle the problem of comparative explana-
tion generation to help users understand the comparisons between
the recommended items. We focus on explaining how one item is
compared with another; then by using a commonly shared set of
items as references (e.g., items the user has reviewed before), the
comparisons among the recommended items emerge. For example,
if the explanations suggest item A is better than item B and item C
is worse than item B, the comparison between A and C is apparent
after reading the associated explanations. Our solution is designed
to generically work on top of other existing recommender systems.
We do not have any assumptions about how the recommendation
algorithm ranks items (e.g., collaborative filtering [31] or content-
based [3]), but only require it to provide a ranking score for each
item to our model (i.e., ordinal ranking) which reflects a user’s
preference over the recommended item. This makes our solution
readily applicable to explain plenty of effective recommendation
algorithms deployed in practice.

We design an extract-and-refine text generation architecture [12,
42] to explain the ranked items one at a time to the user, conditioned
on their recommendation scores and associated reviews. We refer to
the item to be explained in the ranked list as the target item, and user
we are explaining to as the target user. First, the model extracts one
sentence from the existing review sentences about the target item
as a prototype, with a goal to maximize the likelihood of fitting the
comparisons against the reviews written by the target user for other
reference items. Then we refine the extracted prototype through a
generative model to further polish the content for the target user. In
this two stage procedure, the extraction module exploits the content
already provided about the target item to ensure the relevance of
generated explanations (e.g., avoid mentioning features that do
not exist in the target item); and the refinement module further
improve the explanation (e.g., informativeness and diversity of
content) beyond the limitation of the existing content. We design a
new explanation quality metric based on BLEU to guide the end-to-
end training of the two modules, with a particular focus to penalize
short and generic content in generated explanations.

We compared the proposed solution with a rich set of state-
of-the-art baselines for explanation generation on two large-scale
recommendation datasets. Besides, we also conducted extensive
user studies to have the generated explanations evaluated by real
users. Positive results obtained on both offline and online exper-
iments suggested the effectiveness of comparative explanations
in assisting users to better understand the recommendations and
make more informed choices.

2 Related Work

Most explainable recommendation solutions exploit user reviews
as the source of training data. They either directly extract from re-
views or synthesize content to mimic the reviews. Extraction-based
solutions directly select representative text snippets from the target
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item’s existing reviews. For example, NARRE [7] selects the most
attentive reviews as the explanation, based on the attention that is
originally learned to enrich the user and item representations for
recommendation. CARP [20] uses the capsule network for the same
purpose. Wang et al. [40] adopt reinforcement learning to extract
the most relevant review text that matches a given recommender
system’s rating prediction. Xian et al. [45] extract attributes from
reviews to explain a set of items based on users’ preferences. How-
ever, as such solutions are restricted to an item’s existing reviews,
their effectiveness is subject to the availability and quality of ex-
isting content. For items with limited exposure, e.g., a new item,
these solutions can hardly provide any informative explanations.

Generation-based solutions synthesize textual explanations that
are not limited to existing reviews. One branch focuses on predict-
ing important aspects of an item (such as item features) from its
associated reviews as explanations [2, 5, 13, 35, 39]. For instance,
MTER [39] and FacT [35] predict item features that are most im-
portant for a user to justify the recommendation. They rely on
predefined text templates to deliver the predicted features. The
other branch applies neural text generation techniques to synthe-
size natural language sentences. In particular, NRT [21] models item
recommendation and explanation generation in a shared user and
item embedding space. It uses its predicted recommendation ratings
as part of the initial state for explanation generation. MRG [36]
integrates multiple modalities from user reviews, including ratings,
text, and associated images, for multi-task explanation modeling.

Our work is closely related to two recent studies, DualPC [33]
and SAER [46], which focus on strengthening the relation between
recommendations and explanations. Specifically, DualPC introduces
duality regularization based on the joint probability of explanations
and recommendations to improve the correlation between recom-
mendations and generated explanations. SAER introduces the idea
of sentiment alignment in explanation generation. However, both
of them operate in a pointwise fashion, i.e., independent explanation
generation across items. Our solution focuses on explaining the
comparisons between items. We should also emphasize our solution
is to explain the comparison among a set of recommended items,
rather than to find comparable items [9, 25].

There are also solutions exploiting other types of information
for explainable recommendation, such as item-item relation [8],
knowledge graph [44] and social network [17]. But they are clearly
beyond the scope of this work.

3 Comparative Explanation Generation

Item recommendation in essence is a ranking problem: estimate a
recommendation score for each item under a given user and rank
the items accordingly, such that the utility of the recommendations
can be maximized [18, 29]. Instead of explaining how the recom-
mendation scores are obtained, our work emphasizes on explaining
how the comparisons between the ranked items are derived.

To learn the explanation model, we assume an existing corpus
of item reviews from the intended application domain (e.g., hotel
reviews). Each review is uniquely associated with a user u and an
item c, and a user-provided rating r¥ suggesting his/her opinion
towards the item. We group the reviews associated with user u
to construct his/her profile Q,, = {(x;‘, ri‘), (xé‘, ré‘), e (XELTEDY,
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where x}' is the i-th review sentence extracted from user u’s reviews
and r} is the corresponding opinion rating. r} can be easily obtained
when the detailed aspect ratings are available [38]; otherwise off-
the-shelf sentiment analysis methods can be used for the purpose
(interested users can refer to [39, 48] for more details). As regards
cold-start for users without reviews, generic profiles can be used
instead which sample reviews from similar users clustered by other
non-review-related features, such as rating history. We create the
item profile as ¥, = {xlc, xzc, ..., X5}, Where x; is the j-th review
sentence extracted from item c’s existing reviews. Unlike the user
profile, the item profile does not include ratings. This is because
the ratings from different users are not directly comparable, as
individuals understand or use the numerical ratings differently. Our
solution is agnostic to the number of entries in user profile Q;, and
item profile ¥, in each user and item.

We impose a generative process for a tuple (x, r¥) from user u
about item ¢ conditioned on ¥, and Q. We assume when user u is
reviewing item c, he/she will first select an existing sentence from
¥, that is mostly related to the aspect he/she wants to cover about
the item. Intuitively, this can be understood as the user will first
browse existing reviews of the item to understand how the other
users evaluated this item. Then he/she will rewrite this selected
sentence to reflect his/her intended opinion and own writing style.
This can be considered as a set to sequence generation problem.
For our purpose of explanation generation, we only concern the
generation of opinionated text x. Hence, we take opinion rating r¥
as input, which leads us to the following formulation,

P(xlu,c,ré) = > Prep(elxf, r, Qu)Pexe (<51, Qu) - (1)

xj" e¥.

where Pex: (x¢|r¥, Q) specifies the probability that x¢ from item
profile ¥ will be selected by useru, and P, (x|x]‘?, ré, Q) specifies
the probability that user u will rewrite x¢ into x. We name the
resulting model Comparative Explainer, or CompExp in short.

In Eq (1), Pext(x]ﬂrg, Q) is essential to capture the compara-
tive textual patterns embedded in user u’s historical opinionated
text content. To understand this, we can simply rewrite its condi-
tion part: define Ar} = r¢ —r}, we have (r, Qy) = {(x}, Ar})}2 5
hence, Pey+ (x]? [r¥, Q) characterizes whether the sentence xj? about
item c is qualified to characterize the desired opinion difference
conditioned on user u’s historical content Q, and target rating r¥.
For example, a negative Ar{’ suggests the opinion conveyed in x;
is expected to be less positive than that in x}. On a similar note,
Prer (x|x]?, r¥, Q) quantifies if x is a good rewriting of xj? to satisfy
the desired opinion rating r¥ for item c by user u.

One can parameterize Pex (x$|r¥, Q) and P,ef(x|x]?, ré, Qu)
and estimate the corresponding parameters based on the maximum
likelihood principle over observations in Q,,. However, data like-
lihood alone is insufficient to generate high-quality explanations,
as we should also emphasize on fluency, brevity, and diversity of
the generated explanations. To realize this generalized objective,
assume a metric 7(x|u, c) that measures the quality of generated
explanation x for user u about item c, the training objective of
CompExp is set to maximize the expected quality of its generated
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explanations under 7 (x|u, c),

J= Ex~P(x|u,c, ré‘)[”(’du, c)] (2
In this work, we present a customized BLUE score specifically for
the comparative explanation generation problem to penalize short
and generic content.

Next, we dive into the detailed design of CompExp in Section
3.1, then present our metric 7(x|u, ¢) for parameter estimation in
Section 3.2 and 3.3, and finally illustrate how to estimate each
component in CompExp end-to-end in Section 3.4.

3.1 Extract-and-Refine Architecture

Our proposed model architecture for CompExp is shown in Figure
2, which in a nutshell is a fully connected hierarchical neural net-
work. The explanations for a user item pair (u, c) is generated via an
extract-and-refine process, formally described in Eq (1). Comparing
to existing pure generation-based explanation methods [21, 33, 46],
one added benefit of our solution is to ensure faithfulness of the
generated explanations: it avoids mentioning attributes that are not
relevant to the target item. To address the limitations in directly
using existing content, e.g., unaligned content style or sentiment
polarity, the refinement step further rewrites the extracted sen-
tence to make its content better fit for the purpose of comparative
explanation, e.g., improve the quality defined by 7(x|u, c).
We refer to Pext(xj? [r¥, Q) as the extractor and P,ef(x|x]?, ré, Qu)

as the refiner. Next, we will zoom into each component to discuss
its design principle and technical details.

Refiner o
&5 — T
T Explanation
Prototype ﬂ}; + Zj  Direction
Extractor
Gradient
C U
Pezt (:L']' | T Qu)
f
von Mises—Fisher distribution References
i hy 25-hi e 2l h1 .’EIIL ATIIL
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Figure 2: The extract-and-refine model architecture for
CompExp. The extractor extracts a candidate sentence from
item c’s profile as a prototype for explanation generation;
and the refiner rewrites this sentence to optimize the desired
quality metric for comparative explanation.
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3.1.1 Extractor. The extractor’s goal is to select a prototype sen-
tence x¢ from item ¢’s profile ¥, for a given opinion rating r¥ that
best satisfies the comparativeness suggested by the user profile Q.
We refer to x]? € ¥, as an extraction candidate and x} € Q as
a reference. The extractor adopts a bidirectional GRU [10] as the
universal text encoder to convert the extraction candidates and
references into continuous embedding vectors. Since the pairwise
comparison specified by Ar}* is a scalar, we use a one-hot vector
to encode it when the ratings are discrete, otherwise we use a
non-linear multi-layer perceptron (MLP) as the rating encoder.
Intuitively, in the one dimensional rating space, we can eas-
ily recover the intended sentence’s rating r¥ from the rating of
the reference sentence r} and required rating difference Ar}. As
an analogy, we consider the rating difference vector as the trans-
form direction that suggests the ideal comparative explanation
in the latent text space from a reference sentence x;‘, denoted as
f(xl!‘, Arl?‘) — hj. As aresult, h; is the text embedding vector for
the ideal comparative explanation. The extractor implements such
a transformation using an MLP taking the concatenation of the text
embedding and rating difference embedding vectors as input.
Given the desired comparative explanation h;, the extraction
candidates can be evaluated by their similarities towards h;. This
specifies a directional distribution Q(x; h;) centered on h; in the
latent text embedding space. Since cosine is a commonly used
similarity metric for text embeddings, we formulate Q(x; h;) as a
von Mises-Fisher distribution [12] over all the extraction candidates,

Q(x; hy) o forp(x; hiy i) = Cplic)ek oS:ho)

where f;,p1p(+) is the probability density function, k is the concen-
tration parameter, and Cp(k) is a normalization function about k.
Because each reference sentence x}' will suggest a different direc-
tional distribution, we extend the von Mises-Fisher distribution to
cover multiple centriods and define Pext(x]? [r¥, Q) as follows,

Pext(x;|Vg9Qu)°C Z fUMF(X;;f(X?,Ar?),K) (3)

x#eQy,

Intuitively, in Eq (3), each ideal embedding h; suggests which ex-
traction candidate better fits the comparativeness embedded in Q.
The summation over Q,, aggregates each reference sentence’s eval-
uation on candidate sentence x¢. k is kept as a hyper-parameter
which shapes the extraction probability distribution: a larger
value leads to a skewer distribution. We can use it to control the
exploration of the extraction candidates during the policy gradient
based model training, which will be introduced in Section 3.4.

3.1.2  Refiner. The objective of the refiner is to rewrite the ex-
tracted prototype to further improve the quality metric 7(x|u, c).
As we argued before, a better explanation should be more sup-
portive to the pairwise comparison required by the user profile.
Therefore, assuming the refiner successfully turns the prototype
x]? into a better framed sentence J?JC about the item c for user u,
then when we give x¢ back to the extractor together with xj?, the
extractor should prefer the revised version over the original one.
Otherwise, we should keep refining fc]c until the extractor believes it
can no longer be improved. Hence, the refiner needs to find a direc-
tion such that Pext(x; [r¥, Qu) < Pex t(ﬁ; [r¥, Qy), which is exactly
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suggested by the gradient ofPext(x]? [r¥, Q) with respect to xj?, ie.,
the fastest direction for x¢ to increase the value of Pey t(xj? [ré, Qu).
As a result, our refiner simply pushes the text embedding vector of
x]? alone this gradient direction:

zj = Vx]?Pext(x]“:Vgs Qu)

m h c
K cos(x¢, h;) i c j
OCZe ——— —cos(x%, hj)——
,~ e AR

Since the refinement step should only polish the extracted prototype
instead of dramatically changing it, we normalize the gradient
to a unit vector and restrict the step size to one in all cases, i.e.,
fc]c = x]? + zj/|zj|. At last, we include a single-layer GRU with
attention [23] as the text decoder to convert the refined text vector
fc]” to the final explanation sentence x.

Connecting these two modules together, CompExp generates ex-
planations for a ranked list of recommended items one at a time. To
understand why the generated explanations carry comparativeness,
we can consider the user’s profile Q;, as an anchor. Because all the
explanations are generated against this anchor, the comparisons

among the explanations emerge.

3.2 Explanation Quality Metric

To train CompExp under Eq (2), we need to define the explanation
quality metric 7z (x|u, c). There is no commonly agreed offline metric
for explanation quality in the community yet. And obtaining real
user feedback is not feasible for offline model training. Currently,
most of explainable recommendation solutions [21, 33, 46] adopt
metrics measuring the overlapping content between the generated
explanations and user reviews, such as BLEU [26].

However, the BLEU metric, which is initially designed for ma-
chine translation, is problematic in explanation evaluation for at
least two important reasons. First, it is biased towards shorter sen-
tences. As a precision-based metric, BLEU overcomes the short-
length issue by introducing the brevity penalty, which down-scales
the precision when the generated length is smaller than its “best
match length” [26]. The “best match length” design is reasonable in
machine translation, because all reference sentences are valid trans-
lations covering the information contained in the source language,
regardless of their length differences. However, when using review
sentences as proxies of explanations, the reference sentences from
one review can describe totally different aspects of the same item
and vary significantly in length and information contained. Since
short-length generation benefits precision (less prone to erroneous
word choices), BLEU favors explanations exploiting the short ref-
erences as the “best match”. As a result, it pushes the models to
generate explanations that are generally much shorter than the
average sentence length in a review, and hence fails to explain the
item in details. Second, though precision-based, BLEU is incapable
to differentiate the importance of different words in a reference
sentence. Words are valued equally in machine translation, but their
impact in explanations varies significantly to users. For example, in
Figure 1, the feature and descriptive words such as “swimming pool”
and “friendly” help users better understand the target item than a
very frequent but generic word, like “hotel” and “good”. BLEU’s in-
discrimination to words unavoidably favors the explanations with
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more generic content due to their higher chance of appearance.
We later demonstrate how the BLEU metric led to both short and
generic explanations in our experiments.

To design a more appropriate metric to evaluate the explanation
quality and better guide our model training, we propose IDF-BLEU,
i.e., Inverse Document Frequency (IDF) enhanced BLEU. It intro-
duces three changes on top of BLEU to balance the important factors
in explanations: length, content overlapping, and content rarity.

First, to penalize an overly short generation, we replace the
“best match length” in the brevity factor with the average length of
sentences from all reviews,

BPlen _ emin(l—ll—;,o)
where I, and Iy is the average length of references and the length of
the explanation respectively. Second, to differentiate the importance
of different words, we introduce IDF to measure the value of n-
grams and use it to reweigh the precision in BLEU. We compute
the IDF of word g by the number of sentences where it occurs,

S
IDF(g) = log— +1
59

where S is the total number of review sentences in the training
corpus and s, is the number of sentences containing word g. We ap-
proximate the IDF of an n-gram by the largest IDF of its constituent
words. Then the clipped n-gram precision in BLEU is modified as

_ Zgnex IDF(G™) - Counteyip(g™)
P S g ex IDF(g™) - Count(g™)

where g" represents the n-gram and Count,j;,(g") is the BLEU’s
operation to calculate the count of ¢g” in sentence x while being
clipped by the corresponding maximum count in the references.
Through the reweighing, correctly predicting an informative word
becomes more rewarding than a generic word. However, it alone
cannot evaluate content rarity, since the precision-based metric
cannot punish sentences for not including rare words. Therefore,
at last, inspired by the length brevity factor in original BLEU, we
introduce a similar IDF brevity factor to punish sentences lacking
words with high IDF,

©

BP;pr = emin(l—g—;,o)

where dy is the average IDF per word dx = };ex IDF(g)/lx and
dr is corresponding average value in references. Then combining
them forms our IDF-BLEU,

N
IDF-BLEU = BP,,,, - BPipF - exp ( > log p,,) )
n=1
where wy, is BLEU’s parameter used as the weight of the n-gram
precision. We use the proposed IDF-BLEU as the quality metric
7(x|u, ¢) for CompExp training.

3.3 Hierarchical Rewards

CompExp is a fully connected neural network which can be trained
end-to-end with the gradient derived from Eq (2). However, blind
end-to-end training faces the risk that the model violates the pur-
pose of our designed extract-and-refine procedure, as the model has
a great degree of freedom to arbitrarily push the prototype x]? in the
continuous vector space to optimize Eq (2). For example, it could
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disregard the extracted prototype and generate totally irrelevant
content to the target item c in the refiner.

To enforce the extract-and-refine workflow, we introduce ad-
ditional intrinsic reward [37] for each layer respectively to regu-
larize their behaviours. Specifically, as IDF-BLEU is used to mea-
sure the explanation quality in Eq (2), we directly use the ex-
tracted sentence’s IDF-BLEU to reward the extractor, i.e., introduce
ﬂgxt(X; |u,c) = IDF -BLEU(x]?). For the refiner, we discourage it in
pushing the final generation too far away from the extracted one.
Inspired by the clipped precision in Eq (4), we propose a clipped
recall to measure how many words from the selected sentence x]‘?
are still covered in the refined sentence,

2gn exe IDF(g") - min[Count,j;,(g"), Countx(g")]
an =
" S ex; IDF(g") - Count15(g")

where Count,j;,(g™) is the clipped count of n-gram g” towards the
references like in BLEU, and Countx(g") is the count of g” in the
refined explanation x. In other words, the denominator is the proto-
type’s overlap with the target references and the numerator is the
overlap among the prototype, references, and the final explanation.
We did not use classical recall definition because it would reward the
refiner to retain the entire prototype. We only encourage the refiner
to keep the n-grams that are actually presented in the references. We
compute the refiner’s intrinsic reward by aggregating the clipped
recall over different n-grams 7, (x, x;) =exp ( 22’:1 wp log an).

(6)

We did not provide this reward to the extractor, because it biases
the extractor to short and generic candidates which are easier for
the refiner to cover.

With the hierarchical intrinsic rewards introduced for each com-
ponent, we can optimize Eq (2) by policy gradient as

Vo ~[m(xlu.c) + Aomyep(x. x7)|Ve log Pref (x]xj. 1, Qu)
+ [Asm(xlu, ©) + Aarext (x)Ve log Pext (xj|re's Qu)

where A1 to A4 are coefficients to adjust the importance of each
reward, and © stands for the model parameters in CompExp.

3.4 Model Training

The whole model training process can be organized into two steps:
pre-training and fine-tuning. The pre-training step aims to boot-
strap the extractor and refiner independently. To prepare the extrac-
tor to recognize the comparative relationships among sentences,
we treat every observed review sentence as the extraction target
and train the extractor to maximize its negative log-likelihood with
regard to the corresponding user and item profiles.

It is important to pre-train the refiner as a generative language
model, because it would be very inefficient to learn all the natural
language model parameters only through the end-to-end training.
However, we do not have any paired sentences to pre-train the
refiner. We borrowed the method introduced in [12, 42] to manually
craft such pairs. Specifically, for every sentence, we compute its
cosine similarity against all other sentences in the same item profile
in the latent embedding space, and select the most similar one to
pair with. Then we use this dataset to pre-train the refiner with
negative log-likelihood loss.

In the fine-tuning stage, we concatenate the pre-trained layers
and conduct the end-to-end training with policy gradient. To make



WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

Table 1: Summary of the processed datasets.

Dataset #Users #Items # Reviews Rating Range
RateBeer 6,566 19,876 2,236,278 0-20
TripAdvisor | 4,954 4,493 287,879 1-5

the policy gradient training more resilient to variance and converge
faster, it is important to have a baseline to update the model with
reward advantages instead of using the rewards directly. We apply
Monte Carlo sampling in both extractor and refiner to have multiple
explanations, and use their mean rewards as the baseline.

4 Experimental Evaluations

We demonstrate empirically that CompExp can generate improved
explanations compared to state-of-the-art explainable recommen-
dation algorithms. We conduct experiments on two different rec-
ommendation scenarios: RateBeer reviews with single-ratings [24]
and TripAdvisor reviews with multi-aspect ratings [38].

4.1 Experiment Setup

As our solution only focuses on explanation generation, it can be
applied to any recommendation algorithm of choice. In our experi-
ments, we directly use the ground-truth review ratings as the rec-
ommendation score to factor out any deviation or noise introduced
by specific recommendation algorithms. For completeness, we also
empirically studied the impact from input ratings if switched to a
real recommendation algorithm’s predictions.

4.1.1  Data Pre-Processing In the RateBeer dataset, we segment
each review into sentences, and label them with the overall ratings
from their original reviews. In the TripAdvisor dataset, there are
separate ratings for five aspects including service, room, location,
value and cleanliness. Therefore, each TripAdvisor review is ex-
pected to be a mix of a user’s opinions on these different aspects
about the item. We segment sentences in a TripAdvisor review to
different aspects using the boot-strapping method from [38] and
assign resulting sentences the corresponding aspect ratings. These
two datasets evaluate CompExp under different scenarios: overall
opinion vs., aspect-specific opinion. We also adopt the recursive
filtering [39] to alleviate the data sparsity. The statistics of the
processed datasets are summarized in Table 1.

4.1.2  Baselines We compared with three explainable recommenda-
tion baselines that generate natural language explanations, covering
both extraction-based and generation-based solutions.

- NARRE: Neural Attentional Regression model with Review-level
Explanations [7]. It is an extraction-based solution. It learns the
usefulness of the existing reviews through attention and selects
the most attentive reviews as the explanation.

- NRT: Neural Rating and Tips Generation [21]. It is a generation-
based solution. It models rating regression and content genera-
tion as a multi-task learning problem with shared latent space.
Content is generated from its neural language model component.

- SAER: Sentiment Aligned Explainable Recommendation [46].
This is another generation-based solution using multi-task learn-
ing to model rating regression and explanation generation. But
it focuses specifically on the sentiment alignment between the
predicted rating and generated explanation.
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We include three variants of CompExp to better demonstrate the
effect of each component in it:

- CompExp-Ext: the extractor of our solution. It directly uses the
selected sentences as explanations without any refinement. This
variant helps us study how the extractor works and also serves
as a fair counterpart for the other extraction-based baseline.

- CompExp-Pretrain: our model with pre-training only, which
is a simple concatenation of the separately trained extractor and
refiner without joint training. We compare it with CompExp to
show the importance of end-to-end policy gradient training.

- CompExp-BLEU: our model trained with BLEU instead of IDF-
BLEU. We create this variant to demonstrate the flaws of using
BLEU to evaluate the quality of generated explanations.

4.2 Quality of Generated Explanations

To comprehensively study the quality of generated explanations,
we employ different types of performance metrics, including IDF-
BLEU-{1, 2, 4}, BLEU-{1, 2, 4}, average sentence length, average
IDF per word, rep/l and seq_rep_2, and feature precision & recall.
Both rep/l and seq_rep_2 are proposed in [41] to evaluate content
repetition and higher values mean the content is more repetitive.
Features are items’ representative attributes that users usually care
the most [39, 45, 46], e.g., “pool” in Figure 1. The precision and recall
measure if features mentioned in the generated explanations also
appear in the user’s ground-truth review. We also include ground-
truth review sentences as a reference baseline (labeled as “Human”)
to study the differences between human and algorithm generated
content. The results are reported in Table 2.

4.2.1 IDF-BLEU over BLEU. While CompExp-BLEU topped every
BLEU category on both datasets, CompExp also led almost all IDF-
BLEU categories. This shows the effectiveness of our model design
and the importance of directly optimizing the target evaluation
metrics. To understand whether IDF-BLEU is a better metric than
BLEU in evaluating the generated explanations, we should consider
how the “ground-truth” content from real users look like, e.g., their
average length and IDF/word, which suggest how much informa-
tion is usually contained in a user-written sentence. As we can
clearly notice that Avg Length and IDF/word in CompExp-BLEU
are much smaller than Human. This suggests simply optimizing
BLEU led to much shorter and less informative content. This fol-
lows our discussion before: BLEU encourage a model to generate
less words and abuse common words to achieve high n-gram preci-
sion. CompExp-BLEU’s low feature precision and recall also reflect
its weakness in providing informative content. Therefore, the wit-
nessed “advantages” of CompExp-BLEU in BLEU most likely come
from shorter and more generic sentences, instead of really being
closer to the ground-truth content.

4.2.2  Advantages of CompExp. There is clear performance gap be-
tween the extraction-based solutions (NARRE, CompExp-Ext) and
generation-based ones (NRT, SAER, CompExp). While generation-
based solutions largely outperformed extraction-based ones in con-
tent overlapping with ground-truth (IDF-BLEU, BLEU, feature pre-
cision and recall), they were generally very different from human
writings in terms of sentence length, use of rare words (IDF/word),
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Table 2: Explanation quality evaluated under IDF-BLEU, BLEU, average sentence length, average IDF per word, rep/l, seq_rep_2,
feature precision and recall on RateBeer and TripAdvisor datasets. Bold numbers are the best of the corresponding metrics

with p-value < 0.05.

Model 1 IDF ];LEU 4 1 BLZE v 4 Avg Length | IDF/word | rep/l | seq rep_2 precislz‘gflturerecall
RateBeer

Human / / / / / / 11.13 2.45 0.0535 0.0015 / /
NARRE 17.00 518 1.29 | 30.22  9.90 3.58 11.50 2.43 0.0643 0.0013 0.2217 0.0722
NRT 30.38 16.30 5.80 | 48.22 25.28 10.03 10.43 2.09 0.1123 0.0240 0.4563 0.1320
SAER 31.79  16.02 5.71 | 49.08 26.87 10.59 10.71 1.93 0.1146 0.0223 0.4751 0.1347
CompExp-Ext 2486 11.72 299 | 3854 18.74 598 12.10 2.36 0.0420 0.0010 0.3092 0.0929
CompExp-Pretrain | 27.59 13.44 4.19 | 4493 2153 7.95 10.55 2.07 0.1448 0.0381 0.3922 0.1123
CompExp-BLEU 2320 1455 470 | 53.45 3242 11.62 7.09 1.83 0.0266 0.0006 0.4025 0.1173
CompExp 32.36 19.55 6.95 | 49.14 29.63 11.41 10.52 2.16 0.0572 0.0057 0.4796  0.1383

TripAdvisor

Human / / / / / / 12.85 2.45 0.0604 0.0021 / /
NARRE 1197 343 159 | 2045 6.23 3.38 13.17 2.41 0.0641 0.0022 0.1733 0.1258
NRT 16.19  7.50 2.48 | 30.62 13.07 5.11 10.22 1.81 0.1277 0.0135 0.2939 0.1866
SAER 1637 7.65 235 | 31.20 13,51 4.94 10.08 1.71 0.1361 0.0141 0.3178 0.1961
CompExp-Ext 13.52 425 114 | 2212 7.30 2.66 14.70 2.39 0.0726 0.0037 0.2218 0.1553
CompExp-Pretrain | 1450 6.11 1.99 | 27.14 11.12 432 10.79 1.92 0.1177 0.0250 0.2736 0.1597
CompExp-BLEU 17.04 7.39  2.04 | 32.67 14.66 5.53 10.77 1.76 0.1597 0.0277 0.2332 0.1637
CompExp 21.35 8.01 2.16 | 31.70 12.23  4.16 13.35 2.12 0.0654 0.0053 0.3155 0.1930

and content repetition (rep/l, seq_res_2). The extraction-based so-
lutions use content provided by human, but they are limited to the
existing content. The generation-based solutions customize con-
tent for each recommendation, but suffer from common flaws of
generative models, e.g., short, dull, and repetitive. Among all the
models, CompExp achieved the best balance among all metrics. It
significantly exceeded all baselines in terms of IDF-BLEU-{1,2} and
its BLEU was only behind CompExp-BLEU. Its feature precision
and recall are competitive with SAER while leading the rest, though
SAER enjoys additional advantage from predefined feature pool of
each item as input. As a generation-based model, CompExp largely
improved the average length, word rarity, and reduced repetition
over NRT and SAER. The only exception is that CompExp-BLEU
was less repetitive in RateBeer, but it is mainly because its explana-
tions were very short in general.

4.2.3 Ablation Study. Though CompExp performed well as a whole,
it is inspiring to study if each component works as expected in the
extract-and-refine workflow. First, both CompExp-Ext and NARRE
are extraction-based with the same candidate pool, but CompExp-
Ext showed obvious advantage under most categories of IDF-BLEU
and BLEU. It suggests our extractor alone can act as a competent
solution where generation-based models do not fit, e.g., real-time
applications requiring minimum response time. The comparison
between CompExp-Ext and CompExp-Pretrain demonstrates that
the refiner is able to leverage the gradient direction to improve the
prototypes, even when the prototypes are given by an extractor
that has not been trained jointly with the refiner. At last, there are
huge gaps in all metrics between CompExp-Pretrain and CompExp
in both datasets. It is obvious that our reward design is beneficial
to both quality and diversity of the generated explanations.

4.24 Comparativeness. To verify if the generated explanations by
CompExp capture the comparative ranking of items, we study its
its output’s sensitivity to the input recommendation ratings. As a
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starting point, the ground-truth explanation perfectly aligns with
the recommendation ranking, which is derived from the ground-
truth rating. If the generated explanation carries the same ranking
of item, the generated content should be close to the ground-truth
content. As a result, if we manipulate the input recommendation
scores of items, the generated explanations should start to deviate.
The further we push the rankings apart, the further the generated
explanation should be pushed away from the ground-truth explana-
tion. We use IDF-BLEU and BLEU to measure the content similarity
and perturb the recommendation ratings with Gaussian noise. As
shown in Figure 3a, all IDF-BLEU and BLEU metrics keep decreas-
ing with the increasing amount of perturbation. In other words,
even if it is for the same user and same set of items, with differ-
ent recommendation scores assigned, CompExp would generate
different explanations to explain their relative ranking.

4.2.5 Predicted Ratings. Motivated by the findings in Figure 3a, we
further study how CompExp is influenced by a real recommendation
algorithm’s predicted ratings. We employed the neural collaborative
filtering [14] and used its predicted ratings in CompExp’s train-
ing and testing. The result is plotted in Figure 3b. Compared with
previous randomly perturbed ratings, the predicted ratings bring
very limited changes to the explanations. This confirms our exper-
iment results based on ground-truth ratings can fairly represent
CompExp’s performance in real-world usage scenarios.

5 User Study

We have three research questions to answer in user study: 1) does
users’ judgement toward explanation quality aligns more with IDF-
BLEU than BLEU; 2) do users find our comparative explanations
more helpful than the baselines’; and 3) can users better perceive
the comparative ranking from our explanations than the baselines’.
To answer these three research questions, we design two user study
tasks based on RateBeer dataset using Amazon Mechanical Turk.
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Figure 3: (a) Impact of noise in recommendation ratings on
BLEU and IDF-BLEU. (b) Change in BLEU and IDF-BLEU
with algorithm’s predicted ratings.

Table 3: Cohen’s kappa coefficient of explanation quality be-
tween the human judgements and BLEU & IDF-BLEU.

1 2 4
BLEU 0.2936 0.3114 0.2814

IDF-BLEU | 0.3452 0.3396  0.3152

0.0094 0.0071

K

Paired t-test | 0.0001

Table 4: Up-vote rate of explanations’ helpfulness.

CompExp SAER  NRT  NARRE
Up-vote Rate 43.79% 37.27% 35.61% 30.61%
Paired t-test / 0.0182  0.009 0

The first task studies the first two research questions together.
Specifically, we shuffle explanations from different models about
the same recommended item and ask the participants to compare
them, and then select the most helpful ones. To help participants
evaluate the explanation quality, we include the original user re-
view as the item description, towards which they can judge if the
explanation are accurate or informative. For each recommended
item, we ask participants to answer the following question after
reading its description and candidate explanations:

“Which of the following explanations best describe the characteris-
tics of the given beer and help you the most to understand why you
should pay attention to the recommendation?”

In this experiment, we collected 660 user responses.

The results are presented in Table 3 and 4. In Table 3, we used
Cohen’s kappa coefficient to compare IDF-BLEU and BLEU’s agree-
ment with users’ responses. For each test case, we pair explanations
that the participants chose as helpful with the rest to form a set of
explanation pairs. Then we use IDF-BLEU-{1,2,4} and BLEU-{1,2,4}
to identify the helpful one in each pair. The kappa coefficient shows
that IDF-BLEU aligns significantly better with users’ judgment in
all three subcategories under paired t-test. Table 4 shows the help-
fulness vote on each model and the paired t-test results of CompExp
against other baselines. The helpfulness vote on CompExp is signif-
icantly higher than others, which suggests strong user preference
over its generated explanations.

The second task addresses the last research question, i.e., if a
user is able to perceive the ranking of recommended items from the
explanations. In this task, we randomly paired items of different
ratings and asked participants to identify which item is better by
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Table 5: Agreement rate between actual ranking and the
users perceived ranking of paired items based on the pro-
vided explanations.

GT CompExp SAER  NRT
Agreement Rate | 72.29% 57.27% 56.25% 53.14%

reading the provided explanations. We then evaluated the agree-
ment rate between participants’ choices and the actual ranking. In
particular, given the explanations of a model, the participants were
required to answer the following question:

“After reading the explanations for recommended items, which item
would you like to choose? You are expected to judge the quality of
the items based on the provided explanations.”

We chose SAER and NRT as baselines. Besides, we also include the
ground-truth sentences from the actual user reviews as a reference.
We collected 200 responses for each model.

Table 5 reports the agreement rates between the actual ranking
and the ranking perceived by the participants. CompExp’s agree-
ment rate is slightly higher than NRT and SAER, but it is far below
the Ground-Truth. The Ground-Truth’s high agreement rate quan-
titatively confirms that the original user provided review sentences
are highly comparative. This observation supports our choice of
training the comparative explanation generation from paired user
review sentences. And it also suggests there is still a performance
gap in comparativeness for learning-based solutions to bridge. And
an improved objective for optimization, e.g., include quantified
pairwise comparativeness, might be a promising direction.

6 Conclusion and Future Work

In this paper, we studied the problem of comparative explanation
generation in explainable recommendation. The objective of our
generated explanations is to help users understand the comparative
item rankings provided in a recommender system. We develop a
neural extract-and-refine architecture to generate such comparative
explanations, with customized metrics to penalize generic and use-
less content in the generated explanations. Both offline evaluations
and user studies demonstrated the effectiveness of our solution.

This work starts a bright new direction in explainable recommen-
dation. Our current solution only focuses on explanation generation,
by assuming a perfect recommendation algorithm (i.e., we directly
used the ground-truth opinion ratings in our experiments). It is
important to improve our model by co-design with a real recom-
mendation algorithm, whose recommendation score is expected
to be noise and erroneous. In addition, we still heavily depend on
existing review content to guide explanation generation. It will be
more meaningful to introduce actual user feedback in this process,
i.e., interactive optimization of explanation generation.
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Table 6: Case study of the explanations generated by different models.

NRT flavor of chocolate, roasted malt, and light smoke.
SAER aroma of caramel, caramel, and citrus.

CompExp | aroma of caramel, malt, and alcohol.

Model Sample 1 Sample 2
Human aroma of caramel, cherry, raisins, and florals. pours clear yellow body with a small white head.
NARRE the finish is dry and ashy. not bad, if one is looking for a refreshing, light wheat beer.

CompExp-Ext | sweet aroma with toasted malt, caramel and alcohol notes. | pours a hazy golden with a small white head.

the beer is a hazy yellow-orange color.
medium body, watery texture, and carbonation.

pours a hazy yellow body with a small white head.

A Model Implementation Details

In the section, we will share our technical choices of some important
components and hyper-parameter values in CompExp.

CompExp’s extractor adopts a single text encoder to obtain uni-
versal sentence representations for reviews from both user and item
profile. The text encoder’s architecture follows the self-attentive net-
work presented in [11], where the attention mechanism aggregates
the hidden states of a bi-directional GRU. The GRU is of a single
layer with hidden state size of 300. For the input word embeddings,
we bootstrap their initial values with GloVe 6B of 300 dimensions
[27] and allow them to be further updated during training.

As we discussed before, our proposed solution is able to handle
both continuous and discrete ratings, but in this work, we assume
recommendation ratings are discrete. Therefore, our implementa-
tion applies a rating embeddings to map the one-hot vector of rating
difference into its latent representation. These rating embeddings
are randomly initialized and learned through the back-propagation
during the training process. We set the embedding size to 16. For
the following latent space transformation f(x¥,Ar}') — h;, we
use a 2-layer MLP with Tanh as the activation function, whose
intermediate and final output sizes are both 300.

The final text decoder inside CompExp’s refiner is another single
layer GRU with hidden size of 300. The text encoder from the extrac-
tor and this decoder together actually forms a sequence-to-sequence
model [34] whose input is the chosen prototype sentence. So our
extract-and-refine process can be viewed as multiple sequence en-
coders run in parallel, while only one of them can connect to the
sequence decoder. Additionally, the text decoder also adopts the
attention layer proposed in [23]. We find that paying attention to
the extracted prototype during the refining process is beneficial to
the clipped recall defined in Eq (6).

Since this work focuses on studying the problem of comparative
explanation, the above techniques are enough for us to demon-
strate the effectiveness of our proposed solution. The architecture
of CompExp itself does not hold any assumptions about the imple-
mentation of the discussed sub-components. They can be replaced
with other state-of-the-art models to further boost the performance.

B Model Training Details

In the section, we will discuss the techniques we used to train
CompExp and the corresponding hyper-parameters.

To train the extractor, we need to batch multiple user profiles
and item profile respectively. However, the sizes of the profiles vary
a lot. When we batch the profiles with all their reviews, the batch
will end with many paddings to ensure every profile within the
batch has the same size. These paddings waste lots of computing
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resources and heavily slow down the training process. So instead
of using all the reviews, we define a max limit. For a profile larger
than the limit, we will randomly sample a subset based on the limit.
Larger limit usually leads to better training results since the model
have more references and candidates to leverage. We set the limit
to 10 for both user and item based on our computing capacity and
we also found the improvement beyond it is marginal.

The value of x from Eq (3) is critical to the training since it
balances the exploration and exploitation in the policy gradient.
Smaller values flatten the extraction distribution and hence force
the model to explore more extraction candidates, but this tends
to delay the convergence and cause very unstable results. On the
other hand, larger values concentrate the distribution and reduce
the search space, but then the model may miss more appropriate
candidates and lose the meaning of the joint training. Based on our
tests, we find 3 is the most balanced value.

IDF-BLEU is the main reward in the policy gradient training, but
we used unconventional n-gram weights. Following the original
design of BLEU, IDF-BLEU keeps the individual weight for each
type of n-gram precision, i.e., w, in Eq (5). The weights we used
for unigram to 4-gram are {0.8, 0.2, 0, 0}. Usually, the weights are
equally distributed among all the available n-grams. For example,
BLEU-2 has the weight of 0.5 for both unigram and bigram; sim-
ilarly, IDF-BLEU-4 applies a unified weight of 0.25 from unigram
to 4-gram. However, the precision of different n-grams are not al-
ways compatible with each other as objectives and the model has
to make trade-offs. For example, we found using IDF-BLEU-4 as
reward sacrifice unigram and bigram precision in exchange for 4-
gram precision. As a result, it only slightly benefits the IDF-BLEU-4
in evaluation but leads IDF-BLEU-{1,2} to decline. Therefore, we
decided this customized weights to only focus on unigram and
bigram. There are two reasons. First, correctly generating trigrams
and 4-grams in explanations is quite difficult so such overlaps will
not be very frequent anyway. Instead of betting for some dull 4-
grams, it is more valuable to cover the interested features which
are often just unigrams. Second, higher precision of unigram and
bigram still contribute to IDF-BLEU-4 in evaluation according to its
definition. But they may not always compensate the negligence of
other n-grams. This explains why CompExp has a less competitive
IDF-BLEU-4 in TripAdvisor meanwhile leading the rest in Table 2.

C Case Study

Groups of example explanations generated by CompExp and other
baselines are shown in Table 6. The ground-truth explanations
are given for reference denoted as Human. Comparing NARRE
and CompExp-Ext shows the value of modeling comparativeness in
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users provided historical content. Sentences extracted by CompExp-
Ext are much closer to the ground-truth than NARRE’s. Comparing
CompExp-Ext and CompExp shows the effectiveness our rewriting
module in improving the explanation quality, especially in writ-
ing style and wording. For example, in Sample 1, the extracted
explanation correctly covers the attribute “aroma” and “caramel”,
but its sentence structure is different from the ground-truth’s. The
refined explanation keeps the two correct attributes and improves
the sentence structure. In Sample 2, while the extractor picks a
sentence almost the same as the ground-truth, the refiner further
changes the word “golden” to “yellow”, which better reflects the
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user’s preference in wording. However, both samples also suggest
our refiner can be further improved in personalized feature revi-
sion. For example, in Sample 2, the end explanation inherits "hazy"
from the extracted prototype while the item looks "clear” instead
for the target user. Same for "malt" and "alcohol" vs., "cherry" and
"raisins" in Sample 1. Obviously, these features are subjective and
the target user hold a different opinion from the author of the ex-
tracted sentence. It would be a promising future direction to better
personalize subjective features while still maintain the relevance
and faithfulness to other objective facts given by the extraction.
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