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ABSTRACT

Conversational recommender systems (CRS) dynamically obtain
the users’ preferences via multi-turn questions and answers. The
existing CRS solutions are widely dominated by deep reinforcement
learning algorithms. However, deep reinforcement learning meth-
ods are often criticized for lacking interpretability and requiring a
large amount of training data to perform.

In this paper, we explore a simpler alternative and propose a
decision tree based solution to CRS. The underlying challenge in
CRS is that the same item can be described differently by different
users. We show that decision trees are sufficient to characterize the
interactions between users and items, and solve the key challenges
in multi-turn CRS: namely which questions to ask, how to rank
the candidate items, when to recommend, and how to handle user’s
negative feedback on the recommendations. Firstly, the training of
decision trees enables us to find questions which effectively narrow
down the search space. Secondly, by learning embeddings for each
item and tree nodes, the candidate items can be ranked based on
their similarity to the conversation context encoded by the tree
nodes. Thirdly, the diversity of items associated with each tree
node allows us to develop an early stopping strategy to decide
when to make recommendations. Fourthly, when the user rejects a
recommendation, we adaptively choose the next decision tree to
improve subsequent questions and recommendations. Extensive
experiments on three publicly available benchmark CRS datasets
show that our approach provides significant improvement to the
state of the art CRS methods.
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1 INTRODUCTION

Whereas traditional approaches in recommender systems infer
user preferences solely based on historical user-item interaction
data [12, 30, 31], conversational recommender systems (CRS) elicit
user preferences through interactive question answering [7, 20, 22,
39]. The traditional approaches are insufficient in adapting to the
user’s ongoing information need, since the user’s preference can
deviate over time from historical data. Moreover, users may look
for different items under different situations. For example, a user
who is looking for restaurant recommendations may seek a specific
type of food at a particular time, or may consider other factors
such as wait-time, availability of parking and etc differently when
making her choices. A CRS solution (often referred to as “agent”)
can profile the user’s current preference by the feedback collected
from its strategically planned questions [17, 36].

Earlier forms of CRS can be traced back to interactive recom-
mender systems [3, 11, 33] and critiquing-based recommender sys-
tems [24, 27, 28]. In the CRS setting proposed by Christakopoulou
et al. [5], the agent searches for the target item using a multi-armed
bandit algorithm solely in the item space, i.e., keep recommending
different items. Zhang et al. [39] expanded the domain to the at-
tribute space so that the agent needs to predict two things: what
questions to ask and then which items to recommend, i.e., a series
of questions followed by a recommendation. Li et al. [15] further
expanded the setting by deciding between asking a question or
making a recommendation at each round of interaction. As a result,
the agent can ask a series of questions about item attributes and
make several rounds of recommendations in an interleaved manner.
This is often referred to as the multi-turn CRS setting and also the
focus of our work.

Current multi-turn CRS solutions are dominated by deep rein-
forcement learning algorithms [8, 13, 14, 35]. Although encouraging
empirical performance has been reported in literature, we question
whether a simpler alternative exists and can achieve comparable or
even better performance, as the deep models are often criticized for
their lack of interpretability and high demand of training data to
perform. Intuitively, decision tree is a natural choice to construct
the questions in multi-turn CRS [26, 41], where each question nar-
rows down the candidate set of items. However, naively using a
decision tree to partition the item space for the purpose of CRS
is infeasible, because different users can view the same item dif-
ferently and thus provide distinct answers to the same question
even when they are looking for the same item. Figure 1 shows this
issue with an example in restaurant recommendation. From the
observed user-item interactions, we notice that for the same burger
shop, one user would describe it by its “low price” aspect, while
another user did not pay attention to its price aspect but focuses on
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Figure 1: Overview of user-item interaction tree in FacT-CRS.

We can learn shared embedding of user-item interaction

using the interaction tree and use it to ask questions and

recommend.

its “options” and “drive-through” service. As the partition of item
space is exclusive in a decision tree, i.e., the items are separated
into non-overlapping groups at the same level of tree nodes, if we
used the question “price” to locate the restaurant in our interactions
with the two users, we will surely fail to find the burger shop for at
least one of them.

The problem described above motivates us to instead partition
the user-item interactions: the matching between a user-item pair
during the course of CRS can be characterized by how the user
would describe the item. As a result, a path on the decision tree
groups the common descriptions about items from different users,
and different descriptions of the same item then result in different
paths on the tree. As shown in Figure 1, the burger shop is now
placed in different tree nodes to reflect the fact that different users
would describe it differently. This sheds light on the possibility of
using a decision tree for multi-turn CRS.

In this paper, we propose a rule-based solution to multi-turn
CRS, namely FacT-CRS (Factorization Tree based Conversational
Recommender System). We use user-item interactions to guide
us to build a set of decision trees, which will be referred to as
user-item interaction trees. Whereas the existing CRS methods [8,
13, 14, 35] rely on user embeddings to make recommendations,
we propose to construct user-item interaction embeddings. There
are still three main challenges remaining to address in order to
complete the solution. Firstly, how to rank the items? Clearly a
decision tree naturally forms the questions. However, as shown
in Figure 1, each node in the decision-tree may contain a varying
number of items. When the number of candidate items is more
than what we can recommend in a turn, we need to decide the
ranking of items before making a recommendation. We extend the
concept of factorization tree [26] to learn embeddings for user-item
interactions and all the candidate items while constructing the
decision trees. For all observed user-item interaction pairs located
in a tree node (i.e., the users provided the same answers to the
questions asked so far about their intended items), an embedding
vector is assigned to match against the item embeddings. During

training, the embedding vectors are learnt in a way such that the
matched items will be ranked higher for the associated user-item
pairs than those unmatched ones. At inference time, when we
decide to make a recommendation at a tree node, we will use the
corresponding interaction embedding to rank all candidate items.

Secondly,when to make a recommendation? It is desirable that the
agent makes a recommendation as soon as it is confident, before the
user’s patience wears out. It motives us to make a recommendation
before exhausting the questions in the path of the interaction tree.
An appropriate turn to make a recommendation is when 1) asking
further questions does not provide much information gain, and
2) when the number of candidate items is small enough. Based
on those considerations, we propose two strategies to make early
recommendations. When building the interaction tree, we keep
track of how much information gain is achieved using the Gini
Index and we stop splitting a node if the information gain is below
a threshold. At inference time, we can make recommendations
before reaching the leaf node, when the number of unique items
associated on the node is less than a threshold.

Thirdly, how to handle a user’s negative feedback about the recom-
mended items? Online feedback is an important aspect of multi-turn
CRS where the agent should improve its action during a conver-
sation, not only when the the user answers the planned question
but also when he/she rejects a set of recommendations. When the
agent encounters a rejection, it becomes apparent that 1) the re-
jected items are not what the user is looking for, and 2) the target
item is still on the lower part of the ranked list. Based on this in-
sight, we design an adaptive feedback module to refine the inferred
interaction embeddings based on the rejected items before moving
to the next round of interaction.

To evaluate the effectiveness of FacT-CRS, we conducted ex-
tensive experiments on three benchmark CRS datasets: LastFM,
BookRec and MovieLens. The experiment results demonstrate that
FacT-CRS performed significantly better in finding the target items
for the users using fewer turns. Extensive analysis shows that FacT-
CRS improved the conversation by narrowing down the candidate
items taking user-item interaction into account and adapting to the
online feedback effectively.

2 RELATED WORKS

CRS leverages multiple turns of questions and answers to obtain
user preferences in a dynamic manner. There have been mainly
four lines of research in CRS. In the item-based approaches, the
agent keeps making recommendations based on users’ immediate
feedback. Christakopoulou et al. [5] proposed this line of research
which marked the inception of CRS. They employed multi-armed
bandit models to acquire the users’ feedback on individual items,
such that model updates itself at each turn.

Later in the question-driven setting, the domain was expanded
so that the system needed to predict two things: 1) what questions
about item attributes to ask, and 2) which items to recommend.
Note that, in this setting the system only recommends by the end of
conversation. Zhang et al. [39] proposed a model which consisted
of three stages. In the initiation stage, user initiates the conver-
sation. In the conversation stage, the system asks about the user
preferences on attributes of items. And in the final stage, the system
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recommends the items. Zou et al. [43] proposed Qrec which asks
questions in a predetermined number of times and then makes
recommendation once. In Qrec, they chose the most uncertain at-
tribute to ask (the attribute that the system has the least confidence
between positive and negative feedback). Christakopoulou et al. [4]
later studied the setting where the user can provide multiple an-
swers (for example: “choose all the attributes that you like."). There
is another approach in CRS, which synthesize natural language.
This adds personalized response to the conversation and it is appli-
cable to an even broader scope. Usually, in this approach, there is
a natural language understanding module and a natural language
generation module. This approach is beyond the scope of our work.

In this paper, we focus on the multi-turn setting of CRS, where an
agent needs to choose between asking a question or making a rec-
ommendation in each turn of conversation. Lei et al. [13] expanded
the single-turn recommendation CRS to the multi-turn setting,
where multiple questions and recommendations can be made in
one conversation until the user accepts the recommendation or
until the end of the conversation.

Reinforcement learning (RL) has been widely adopted in multi-
turn CRS, which formulates the CRS problem as a Markov Decision
Process (MDP) [19, 23, 40]. Recent works on RL-based interactive
recommendation [29, 34, 37, 42, 44] have been shown to effectively
recommend items by modeling the users’ dynamic preferences. The
objective of thesemethods is to learn an effective RL policy to decide
which items to recommend. Sun et al. [25] used a belief tracker based
on an LSTM model to determine when to recommend, but their
model was not able to handle when user rejected a recommendation.
Lei et al. [13] utilized three differentmodules: the estimationmodule
predicts user preference on items and attributes; the action module
decides whether to ask about attributes or to recommend items;
and the reflection module updates the model when there is negative
feedback. A dynamic preference model was introduced by Xu et
al. [35], where they proposed a gating mechanism to include both
positive and negative user feedback. Deng et al. [8] combined the
question selection and recommender modules. They proposed two
heuristics to reduce the candidate action space by pre-selecting
attributes and items in each turn. Zhang et al. [38] used a bandit
algorithm to select attributes and used a heuristic to decide whether
to ask questions about attributes or make recommendations. Li et
al. [16] unified attributes and items in the same space in a multi-
armed bandit setting to determine the questions, and used another
bandit model to determine when to recommend. Li et al. [15] used a
deep RL based model to decide when to make a recommendation or
which question to ask. Chu et al. [6] developed ameta reinforcement
learning based solution to handle new users in CRS.

Although RL-based models dominate modern CRS solutions, in
this paper, we explore a simpler and effective alternative based on
decision trees. The RL methods provide strong baselines to compare
the recommendation quality of our work.

3 METHODOLOGY

In this section, we first describe the problem of multi-turn conversa-
tional recommendation. Our work is motivated by finding a simple
decision tree based model to solve the challenges in multi-turn
conversational recommendation. We first explain how a decision

tree can effectively model the user-item interactions to capture the
potential matching between a user and an item, which translates
to a set of questions to filter and rank items for recommendations.
Then we describe how to adapt the user-item interaction tree in
FacT-CRS to effectively address the challenges in CRS.

3.1 Preliminary

Multi-turn CRS. In this paper, we study the multi-turn conver-
sational recommendation problem, since it has been popularly
adopted because of its realistic setting [8, 13, 35]. In this setting,
the agent takes multiple turns to ask questions regarding item at-
tributes or make recommendations (e.g., movies, restaurants etc.).
We denote the set of items asI = {𝑖1, 𝑖2, . . . , 𝑖𝑛}, and the set of users
as U = {𝑢1, 𝑢2, . . . , 𝑢𝑚}. The set of attributes F = {𝑓1, 𝑓2, . . . , 𝑓𝑝 }
are used to describe the items. Each item is associated with a set
of predefined attributes F𝑖 . Suppose that a user 𝑢 ∈ U is in a
conversation with the CRS agent and her target item is 𝑖+ ∈ I.
Each conversation constitutes of multiple turns. At each turn 𝑡 ,
the agent needs to decide whether to ask a question or to make
a recommendation. Depending on the agent’s action, each turn
can either be 1) a question asked by the agent and followed by the
user’s answer, or 2) top-K recommendations followed by the user’s
acceptance or rejection. In the question-answer turn, the agent asks
an attribute 𝑓𝑡 ∈ F , i.e., “do you prefer attribute 𝑓𝑡 ?” In the recom-
mendation turn, the user accepts the recommendation, if the target
item 𝑖+ is contained in the top-K recommendations. Otherwise, the
user rejects the recommendation. The conversation is considered
successful, if the user accepts a recommendation. Otherwise, the
conversation fails, if the agent reaches a maximum turn limit. The
goal of CRS is to successfully recommend items to the user with
the fewest number of turns.

User-item interaction. We use the pair (𝑢, 𝑖) to denote that
user 𝑢 interacted with item 𝑖 in history. We use R to denote the set
of user-item interactions. Let the number of interaction |R | = 𝑞.
Each user-item interaction r𝑢,𝑖 ∈ {0, 1}𝑝 , where (𝑢, 𝑖) ∈ R. Here, 1
denotes that the attribute is mentioned in the interaction between
the user and item (e.g., the user uses this attribute to describe
the item), and 0 denotes that the attribute is not mentioned. An
example could be: user 𝑢 describes item 𝑖 using the terms of {𝑓1, 𝑓2},
as shown in Figure 1. Here, the interaction content r would be a 𝑝
dimensional vector description with 1 for 𝑓1, and 𝑓2 and 0 for the
remaining attributes.

3.2 User-item Interaction Tree

User-item interaction tree (or just “interaction tree” for short) is
the building block of our FacT-CRS model that we use for asking
questions, narrowing down the candidate set of items, and ranking
the candidate items. The goal of the interaction tree is to allow us
to hierarchically learn the interaction embeddings as a function of
the attributes F . We use FacT [26] to associate each interaction and
each item with a 𝑑-dimension vector. The embeddings of all the
interactions and items are respectively denoted as S ∈ R𝑞×𝑝 and
V ∈ R𝑛×𝑝 . Formally, we associate each interaction (𝑢, 𝑖) ∈ R with
an embedding s𝑢,𝑖 ∈ R𝑑 and each item 𝑖 with an embedding v𝑖 ∈ R𝑑 .
Intuitively, we want that a) the dot product s𝑇

𝑢,𝑖
v𝑖 is maximized and
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b) s𝑇
𝑢,𝑖

v𝑗 is minimized when 𝑗 ≠ 𝑖 . We achieve this using the cross-
entropy loss defined in the following,

L𝐶𝐸 (S,V,R) =
∑︁

(𝑢,𝑖 ) ∈R
log

(
1 − 𝜎

(
s𝑇𝑢,𝑖v𝑖

))
(1)

Here, 𝜎 (.) is the sigmoid function. To differentiate the relative
ordering among candidate items, we also introduce the Bayesian
Pairwise Ranking (BPR) objective [21]. The intuition is that the
items that a given user has interacted with should be scored higher
than the items the user did not interact with.We sample the negative
set D𝑛𝑒𝑔

𝑢,𝑖
for interaction (𝑢, 𝑖) by choosing 𝑖𝑛𝑒𝑔 where

(
𝑢, 𝑖𝑛𝑒𝑔

)
∉ R.

The BPR loss is calculated as in Eq. (2),

B
(
s𝑢,𝑖 ,V,D𝑛𝑒𝑔

𝑢,𝑖

)
=

∑︁
𝑖neg ∈Dneg

𝑢,𝑖

log𝜎
(
s𝑇𝑢,𝑖v𝑖 − s𝑇𝑢,𝑖v𝑖neg

)
(2)

Each node 𝑧 in the interaction tree is associated with a question
𝑓𝑧 ∈ F (i.e., “Do you prefer attribute 𝑓𝑧?”). Let us consider a subset
of all interactions R𝑧 ⊆ R. Based on the user-item interaction (𝑢, 𝑖)
content r𝑢,𝑖 , we can check whether or not a specific attribute 𝑓𝑙
is mentioned. For each attribute 𝑓𝑙 , we can partition the subset of
user-item interactions R𝑧 into two disjoint sets R𝑧+|𝑓𝑙

and R𝑧−|𝑓𝑙
as

given in Eq. (3),

R𝑧+|𝑓𝑙
=
{
(𝑢, 𝑖) | 𝑟𝑢,𝑖𝑙 = 1, r𝑢,𝑖 ∈ R𝑧

}
R𝑧−|𝑓𝑙

=
{
(𝑢, 𝑖) | 𝑟𝑢,𝑖𝑙 = 0, r𝑢,𝑖 ∈ R𝑧

} (3)

All the user-item interactions in the same node share the same
description path from the root node and thus will share the same
interaction embedding. Let R𝑧+|𝑓𝑙

and R𝑧−|𝑓𝑙
be the observed user-

item interactions in the resulting partitions, and s𝑝𝑜𝑠 , s𝑛𝑒𝑔 be the
corresponding user-item interaction embeddings in each of the
partitions. Note that s𝑝𝑜𝑠 is the shared embedding of all the user-
item interactions in R𝑧+|𝑓𝑙

and s𝑛𝑒𝑔 is the shared embedding of all
the user-item interactions in R𝑧−|𝑓𝑙

. We can find both embeddings
by solving the following optimization problem:

L(𝑓𝑙 |R𝑧) = min
s𝑝𝑜𝑠 ,s𝑛𝑒𝑔,V

L𝐶𝐸 (s𝑝𝑜𝑠 ,V,R𝑧+|𝑓𝑙
) + L𝐶𝐸 (s𝑛𝑒𝑔,V,R𝑧−|𝑓𝑙

)

+ 𝜆𝐵𝑃𝑅
©­­«

∑︁
(𝑢,𝑖 ) ∈R𝑧+|𝑓𝑙

B
(
s𝑢,𝑖 ,V, 𝐷

𝑛𝑒𝑔

𝑢,𝑖

)
+

∑︁
(𝑢,𝑖 ) ∈R𝑧−|𝑓𝑙

B
(
s𝑢,𝑖 ,V, 𝐷

𝑛𝑒𝑔

𝑢,𝑖

)ª®®¬
+ 𝜆𝑠

(
∥s𝑝𝑜𝑠 ∥2 + ∥s𝑛𝑒𝑔 ∥2

)
(4)

where 𝜆𝐵𝑃𝑅 is a coefficient that controls the trade-off between cross-
entropy loss and BPR loss, ∥ .∥ is the L2 regularization to reduce
model complexity, and 𝜆𝑠 is the regularization coefficient.

An optimal attribute split would partition the user-item inter-
action subset R𝑧 , where the embeddings in each disjoint group
minimize the loss as given by Eq. (4). We can find the optimal at-
tribute 𝑓𝑧 by exhaustively searching through the attribute set F
using Eq. (5):

𝑓𝑧 = arg min
𝑓𝑙 ∈F

L(𝑓𝑙 |R𝑧) (5)

We build the interaction tree by recursively splitting each parti-
tion until the maximum depth 𝐻𝑚𝑎𝑥 is reached. Once constructed,
the user-item interaction tree allows us to infer the interaction

embedding for a new interaction at inference time by following the
tree structure.

Candidate items. Each node in the user-item interaction tree
maintains a subset of observed interactions. Since each interaction
is a user-item pair, the items in the interaction set of that node form
the candidate items for recommendation. Formally, given the subset
of interaction R𝑧 at node 𝑧, the candidate set of items is given by:

I𝑧 = {𝑖 | (𝑢, 𝑖) ∈ R𝑧 } (6)

Recommendation score. Suppose, after traversing the user-
item interaction tree, the inferred interaction embedding is s𝑡 . The
recommendation score of each candidate item at turn 𝑡 can be
readily computed as:

𝑤I
𝑡 (𝑖) = s𝑇𝑡 v𝑖 (7)

3.3 FacT-CRS: User-item Interaction Tree for

Conversational Recommendation

Successfully solving the multi-turn CRS problem requires address-
ing the following four problems: namely, 1) which questions to ask,
2) how to rank the candidate items, 3)when to recommend, and 4) how
to handle user’s negative feedback on the recommendations. Based
on our construction of interaction tree described in Section 3.2, the
first two questions are partially addressed. And in this section, we
mainly focus on the remaining two key questions, based on the
structure of a decision tree.

3.3.1 Which questions to ask and how to rank the candidate items?
User-item interaction tree is learnt to optimize the questions to be
asked based on user feedback, i.e., following the paths on the tree
to narrow down the search space. However, given the maximum
depth of a trained decision tree is fixed, we cannot ask more than
𝐻𝑚𝑎𝑥 questions using one tree. For our model to generalize, we
need to ask an arbitrary number of questions. Random forest [2] is
an ensemble learning method that provides a feasible way to solve
this challenge by creating multiple trees. We build a random forest
of 𝑁 user-item interaction trees. We can build the interaction trees
in parallel so that each interaction tree in the forest considers a
maximum of 𝑓𝑚𝑎𝑥 attributes where 𝑓𝑚𝑎𝑥 ≤ 𝑞. These attributes are
randomly sampled from the complete attribute set F . We use 𝜏 𝑗
to denote the 𝑗𝑡ℎ interaction tree and T to denote the set of all
interaction trees, therefore an interaction forest. We will discuss
how to leverage these multiple trees to realize multi-turn CRS in
Section 3.3.3.

As each tree node is associated with an interaction embedding
vector, once the agent decides to make a recommendation, it will
use Eq (7) to compute the ranking scores of all candidate items and
return the top-K items as the recommendation of this turn.

3.3.2 When to recommend? The interaction tree gives us a natural
way to decide when to recommend, i.e., when reaching the leaf node
of the tree. But this restricts us to ask at most𝐻𝑚𝑎𝑥 questions before
we can start a recommendation turn. However, an important goal
of conversational recommender systems is to minimize the number
of interactions with the user. In this case, it is desirable to make
a recommendation when the agent is “confident” about the item
to be recommended. Hence, the question becomes: how to make
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an early recommendation? We use the following two strategies to
recommend early.
• During training (pruning): When building each user-item inter-
action tree, we stop splitting a node when the items in that node
is “homogeneous”, i.e., most of the interactions are about only a
few items. We use Gini Index [9] for this purpose. Suppose, for
an internal node 𝑧 in an interaction tree, the set of items from the
user-item interaction R𝑧 is I𝑧 as given by Eq. (6). We calculate Gini
Index of node 𝑧 as:

𝐺𝑧 = 1 −
(
|I𝑧 |
|R𝑧 |

)2
(8)

If the Gini Index of a node is greater than a predetermined threshold
𝛾 , we stop further splitting that node.
• During testing (EarlyRec): At inference time, a small number of
items in a node is a strong indication that it is time to recommend.
If we encounter a node in the user-item interaction tree that has no
more than 𝜂 items, we can make an early recommendation. Let the
set of items in that node be I𝑧 . Then, if |I𝑧 | ≤ 𝜂, we make an early
recommendation. If strictly |I𝑧 | ≤ 𝐾 , then we can include all the
items in I𝑧 in the recommendation. We rank all the items ∈ I\I𝑧
using the scoring function in Eq. (7). The remaining 𝐾 − |I𝑧 | items
with the highest scores are included in the top-K recommendation.

3.3.3 How to handle online negative feedback? Handling negative
feedback or recommendation rejection is an important challenge
in CRS. When the user rejects a recommendation, it provides us
a strong signal to improve the subsequent questions and recom-
mendations. To effectively handle negative feedback from a user’s
rejected recommendations, we approach this problem in three steps:
retaining information from previously asked user-item interaction
trees, effectively choosing the next user-item interaction tree, and
updating the predicted user-item interaction embedding.
• Retaining information from the previously asked user-item inter-
action trees. We need to move to a new user-item interaction tree
when the user rejects our recommendation.
Suppose, at turn 𝑡 , we have asked questions from the set of in-
teraction trees T𝛼

𝑡 , and we have obtained the set of user-item in-
teraction embeddings S𝛼

𝑡 . We keep the conversation history by
updating the inferred interaction embedding to be the mean of
the visited user-item interaction embeddings S𝛼

𝑡 . As a result, the
updated interaction embedding at turn 𝑡 becomes:

s𝑡 =
1

|S𝛼
𝑡 |

∑︁
s𝑗 ∈S𝛼

𝑡

s𝑗 (9)

• Choosing the next user-item interaction tree. Assume that we
have finished traversing an interaction tree and made a recommen-
dation. If the user rejects, how do we select the next tree? One
way is to randomly pick an unvisited tree. However, we believe
that we can do better by using the following strategy. Since the
predicted interaction embedding is expected be close to the target
interaction embedding, we propose to move to the closest tree first.
Suppose, at turn 𝑡 , we have asked questions from the set of T𝛼

𝑡

user-item interaction trees, and have asked the set of attributes
F 𝛼
𝑡 ⊆ F . Based on Eq. (9), let the current inferred user-item in-

teraction embedding be s𝑡 . We traverse the remaining user-item
interaction trees in parallel by using only the attributes in F 𝛼

𝑡 , i.e,
the attributes we already know the answers to. Assume that we get

the interaction embedding 𝑠′
𝑗
from the remaining interaction tree

𝜏 𝑗 ∈ T\T𝛼
𝑡 . We score each of the remaining tree 𝜏 𝑗 according to

how similar the corresponding interaction embedding s′
𝑗
is to the

current interaction embedding s′𝑡 , as given by Eq. (10),

𝑤T
𝑡 (𝜏 𝑗 ) = s′𝑗

𝑇 s (10)

Using this closest tree first strategy, we choose the user-item inter-
action tree 𝜏 𝑗 with the highest similarity score as the next tree to
continue the conversation.
• Updating the predicted user-item interaction embedding. We first
identify the set of items that cause the failure and then update the
inferred interaction embedding accordingly. Assume at turn 𝑡 we
make a recommendation using the interaction embedding s𝑡 , which
the user rejected. We denote this set of recommended items as I𝑟 .
We use the following two strategies to handle online feedback: 1)
As I𝑟 was rejected by the user, we update the predicted user-item
interaction embedding to penalize the items in I𝑟 . 2) Since the
target item is still expected to have high scores, we promote the
items in the next top-K set. Based on s𝑡 , denote the next 𝐾 highest
scoring items as set I𝑝 .
Combining both strategies, we update the user-item interaction
embedding after a rejected recommendation as follows:

s𝑡+1 = s𝑡 +
𝛼𝑝

|I𝑝 |
∑︁
𝑖∈I𝑝

v𝑖 −
𝛼𝑛

|I𝑟 |
∑︁
𝑖∈I𝑟

v𝑖 (11)

Here, 𝛼𝑟 and 𝛼𝑝 are hyper-parameters that respectively determine
how much we penalize the items in I𝑟 and how much we promote
the next top-ranked items I𝑝 . Algorithm 1 presents the inference
steps of a single conversation session.

4 EXPERIMENTS

To evaluate the effectiveness of FacT-CRS in solving the challenges
in CRS, we perform quantitative experiments guided by the follow-
ing research questions (RQ):
• RQ1. Can a rule-based method i.e., FacT-CRS, achieve better
performance than the state-of-the-art RL-based methods in the
multi-turn CRS setting?

• RQ2.Howmuch improvement does early recommendation strat-
egy offer compared to asking questions from the entire interac-
tion tree?

• RQ3. Is online update of inferred interaction embedding useful
in making better recommendations?

4.1 Dataset

We evaluate the recommendation quality of FacT-CRS on three
benchmark datasets used in multi-turn CRS.
• LastFM [1] is a dataset for music artist recommendation. Lei
et al. [13] pruned the users with fewer than 10 reviews [12, 21]
to reduce data sparsity, and processed the original attributes by
combining synonyms and removing low frequency attributes.
They categorized the original attributes into 33 coarse-grained
attributes.

• BookRec [18] This is a book recommendation dataset filtered
by removing low frequency TF-IDF attributes and keeping the
top 35 attributes.
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Algorithm 1 Inference in FacT-CRS

Require: Interaction Forest T , interaction content r𝑢,𝑖 ∈ {0, 1}𝑝 ;
Ensure: Outcome of conversation, either Success or Failure;
1: Current tree T𝑡 selected via cross-validation;
2: Visited trees T𝛼

𝑡 = {};
3: Asked attributes F 𝛼

0 = {};
4: Inferred interaction embeddings S𝛼

0 = {};
5: for turn 𝑡 = 1, 2, . . . ,𝑇 do

6: From T𝑡 ask 𝑓𝑧 , and get I𝑧 , s𝑧 ;
7: while 𝑓𝑧 in F 𝛼

𝑡 do

8: From T𝑡 ask 𝑓𝑧 , and get I𝑧 , s𝑧 ;
9: end while

10: F 𝛼
𝑡 = F 𝛼

𝑡−1 ∪ {𝑓𝑧 };
11: if |I𝑧 | ≥ 𝜂 and 𝑧 is not leaf node then
12: continue;
13: end if

14: Get s𝑡 from S𝑡 = S𝛼
𝑡−1 ∪ {s𝑧 } via Eq. (9);

15: I𝑟 = top-K items using s𝑡 and I𝑧 via Eq. (7);
16: if User accepts I𝑟 then
17: return Success;
18: else

19: Update s𝑡 via Eq. (11);
20: for each remaining tree 𝜏 𝑗 ∈ T\T𝛼

𝑡 do

21: answer questions in F 𝛼
𝑡 and get s′

𝑗
;

22: end for

23: T𝑡+1 = highest scoring tree via Eq. (10);
24: end if

25: end for

26: return Failure

• MovieLens [10] is a movie recommendation dataset filtered by
keeping top 35 attributes according to their TF-IDF scores.
The statistics of the datasets are shown in Table 1. We randomly

split the users into disjoint groups of 8:1:1 for training, validation
and testing users. The code and data used in the experiments are
available at https://github.com/HCDM/XRec.

Table 1: Summary of datasets.

LastFM BookRec MovieLens
# Users 1,801 1,891 3,000
# Items 7,432 4,343 5,974
# Interactions 72,040 75,640 120,000
# Attributes 33 35 35

4.2 Experiment Settings

4.2.1 User simulator. Conversational recommendation is a dy-
namic process for user preference elicitation. Similar to [8, 13, 14, 25,
35, 39], we created a user-simulator to enable the CRS training and
testing. In each conversational session, an observed user-item pair
(𝑢, 𝑖) is first selected.We call the item 𝑖 the target item or the ground-
truth item for that conversation. Previous simulators [8, 13, 14, 35]
assume that all of item 𝑖’s attributes F𝑖 is the oracle set of attributes
preferred by the user in this session. This means that all users
will respond in the same way to the selected item. This setting is,

however, unrealistic, because in reality, every user may not equally
value every attribute of an item. Hence, this design eliminates the
potential of personalized responses.

We design a user-based simulator that can handle user-specific
feedback in each conversation round in the following way. Each
item 𝑖 is associated with a set of attributes F𝑖 , and each user 𝑢
has a preferred attribute set F𝑢 . F𝑖 and F𝑢 are uniformly sampled
for each item 𝑖 and user 𝑢 before the simulation starts. For a user-
item interaction pair (𝑢, 𝑖), our simulator only accepts (responds
“Yes" to) an attribute 𝑓𝑙 if and only if it is mentioned in F𝑖 ∩ F𝑢 ;
otherwise it will respond “No”. We set the maximum turn limit in a
conversation to 10. The user leaves the conversation after the turn
limit is reached. We set K = 10, so that we are limited to recommend
only 10 items in a recommendation turn.

4.2.2 Evaluation Metrics. Following [8, 13, 14, 25, 35, 39], we use
success rate and average turn as evaluation metrics. We use the
success rate at turn T (SR@T) to measure the ratio of successful
conversations. In an interaction where user 𝑢 interacted with item
𝑖+, we call 𝑖+ the ground-truth or the target item. A session of
conversation is successful if the agent can identify the ground-truth
item.We also report the average turns (AT) needed to end the round
of conversation. The number of turns in a failed conversation is set
to the the maximum turn limit T. The quality of recommendation is
greater for larger SR@T, whereas the conversation is more efficient
and to the point for smaller AT.

4.2.3 Implementation Details. We performed the training of FacT-
CRS on the training users, and tuned the hyper-parameters of our
model on the validation set of users. The best model was chosen
based on the validation success rate. The testing users were used to
obtain the final reported performance for comparison. We fixed the
embedding dimension 𝑑 = 40, 𝜆𝐵𝑃𝑅 = 10−3, 𝛼𝑝 = 10−3, 𝛼𝑛 = 10−2,
and 𝐺𝑧 = 0.996. The depth of the interaction tree was chosen as 7.

4.2.4 Baselines. We evaluated the performance of FacT-CRS and
compared with the following state-of-the-art multi-turn CRS base-
lines [8, 13, 14, 32, 35].
• Max Entropy (MaxE) [32]: In this method, the CRS agent
chooses either an attribute to ask or top ranked items to rec-
ommend in a probabilistic way. The agent asks the attribute with
the maximum entropy based on the past conversation history.

• EAR [13]: This is a three stage approach for multi-turn CRS: the
estimation stage builds a predictive model to estimate user pref-
erence based on both items and attributes, the action stage learns
a policy to decide whether to ask about attributes or make a rec-
ommendation, and reflection stage updates the recommendation
model based on online user feedback.

• FPAN [35]: This extends EAR by dynamically revising user em-
beddings based on users’ feedback. The relationship between
attribute-level and item-level feedback signals are used to iden-
tify the specific items and attributes that causes the rejection of
an item.

• SCPR [14]: It models CRS as an interactive path reasoning prob-
lem on a knowledge graph. It leverages target user’s preferred
attributes by following user feedback to traverse attribute graph.
Using the knowledge graph enables it to reduce the search space
of candidate attributes.
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Table 2: Performance Comparison of different CRS models on three datasets. * represents the best performance among the

baselines. The improvement over baseline is calculated against the best baseline values.

MaxE EAR FPAN SCPR UNI FacT-CRS Improvement over baseline*

LastFM SR@10 0.137 0.428 0.508∗ 0.432 0.441 0.719 41.53%
AT 9.71 8.62 8.08∗ 8.70 8.52 6.65 17.69%

BookRec SR@10 0.206 0.320 0.397∗ 0.329 0.358 0.438 10.33%
AT 9.64 9.01 8.31∗ 9.11 9.00 8.23 0.96%

MovieLens SR@10 0.262 0.552 0.589 0.545 0.596∗ 0.692 16.10%
AT 9.46 7.98 7.81∗ 7.89 8.01 6.57 15.87%

• UNICORN [8]: This method integrates the conversation and
recommendation components into a unified RL solution. UNI-
CORN develops a dynamic weighted graph based RL method to
learn a policy for selecting the action at each conversation turn.
It pre-selects attributes and items to simplify the RL training.
All these methods rely on reinforcement learning models and

pretrained user embeddings. To adopt them to new users at testing
time, we use use the mean embedding of the train users.

4.3 Overall Performance

To answer RQ1, we first evaluate the recommendation quality of
FacT-CRS in terms of success rate (SR@T) and average turn AT.
A good CRS agent should be able to realize items which are more
relevant to a user’s preference and rank them higher in a result list.

We report the results of our experiments in Table 2. FacT-CRS
consistently outperformed all baselines by a good margin on all
datasets. FPAN performed better than the others among the base-
lines. We note that although it uses the same general structure as
EAR, FPAN is able to generalize better on the new user because
it updates the user embeddings dynamically with the user pro-
vided positive and negative feedback on attributes and items by
two gated modules, which enables adaptive item recommendation.
Although EAR is effective in handling large action space in CRS,
its performance is limited by the separation of its conversation and
recommendation components. UNICORN performs relatively better
in this case through its usage of action selection strategy.

However, since all the baselines rely on user-level embedding,
they cannot perform well on new test users. By hierarchically clus-
tering the user-item interactions and exploiting the related user-
item interactions, the interaction embeddings estimated by FacT-
CRS more effectively capture the current preference of the user,
even in new users. This enables its good empirical performance in
our evaluation.

We also investigated how FacT-CRS compares to other baselines
at each turn of the conversations. To investigate this, we compared
the recommendation probability and success rate between FacT-
CRS and FPAN on the LastFM dataset. As shown in Figure 2, FPAN
can start recommending earlier, but when the user rejects a recom-
mendation, it tries to recommend more items, instead of identifying
the cause of failure by asking more questions.

In comparison, FacT-CRS handles the negative feedback more
effectively. It asks more clarifying questions before making another
recommendation. FacT-CRS first tries to identify the negative items
and then uses Eq. (11) to update the predicted user-item interac-
tion embedding, and then moves on to the next tree. This allows

Figure 2: (Left) Ratio of recommendation and recommenda-

tion success rate at each turn on LastFM dataset (FacT-CRS vs

FPAN). (Right) Ratio of recommendation and recommenda-

tion success rate at each turn on LastFMdataset for FacT-CRS

at depth 3 and 7.

FacT-CRS to subsequently ask better questions, and make better
recommendations.

4.3.1 Impact from tree depth. Figure 2 (right) shows the perfor-
mance of FacT-CRS with different depths of its interaction trees.
For smaller depth (at depth 3), FacT-CRS starts recommending early
and more frequently. However, at the same time it compromises
the success rate. For larger depth (depth 7), FacT-CRS asks more
questions before making a recommendation. From the figure we
see that the recommendation success rate improves by asking more
questions.

4.4 Ablation Study

In this section, we evaluate the effect of each individual compo-
nent of FacT-CRS by removing that component and evaluating the
remaining model.

4.4.1 Impact of Candidate Items in User-item Interaction Tree. Ev-
ery node in the user-item interaction tree is associated with a set of
user-item pairs. If we are ready to recommend at a node in the user-
item interaction tree (usually near the leaf node), we check which
items are in those user-item pairs. Then we rank those items based
on the predicted user-item interaction embedding. This enables us
to significantly narrow down the candidate set of items. Without
this component, we would have to rank all the items each time us-
ing Eq. (7) to make a recommendation. Table 3 reports our model’s
performance without taking into account the candidate items. The
candidate item set selection design is a vital part of FacT-CRS. As
Table 3 shows, this is an effective way to make our recommenda-
tions much better by narrowing down the candidate set of items.
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Table 3: Effect of Candidate Items in User-item Interaction

Tree.

LastFM BookRec MovieLens
SR@10 AT SR@10 AT SR@10 AT

FacT-CRS 0.719 6.65 0.438 8.23 0.692 6.57
w/o Candidate 0.578 8.36 0.195 9.50 0.493 8.51

Also, the early recommendation component of FacT-CRS relies on
the size of the candidate items to decide when to recommend.

Figure 3: Histogram of the number of items in leaf nodes

in a user-item interaction tree for (left) LastFM and (right)

BookRec datasets.

To understand why using the items in the leaf nodes of the user-
item interaction tree is important, we plot the histogram of the
number of unique items in the leaf node of a user-item interaction
tree. Figure 3 shows the results for LastFM and BookRec datasets.
As we can see, most of the leaf nodes have very few (< 20) items.
Hence, the leaf nodes work well to cluster and narrow down the
correct candidate list of items. This also empirically verifies our
initial assumption that using the shared attributes to cluster the
user-item interactions and subsequently learning the embeddings
enhance the quality of the embeddings.

Figure 4: Histogram of the number of different leaf nodes

each item appears in the user-item interaction tree for (left)

Last FM and (right) BookRec datasets.

On the other hand, we also check how scattered each item is
among the user-item interaction tree by recording how many differ-
ent leaf nodes contain the same item. Figure 4 shows the histogram
of the number of leaf nodes each item is spread across. This figure
demonstrates that the locations of most items are quite concen-
trated. By combining the findings from Figure 3 and 4, we find that
using the shared attributes to group items according to user-item in-
teractions, FacT-CRS can effectively find a good subset of candidate
items containing a small number of items.

Table 4: Ablation study of main components of FacT-CRS.

LastFM BookRec MovieLens
SR@10 AT SR@10 AT SR@10 AT

FacT-CRS 0.719 6.65 0.438 8.23 0.692 6.57
¬ RF 0.349 8.30 0.117 9.52 0.223 8.73

¬ EarlyRec 0.410 9.68 0.201 9.81 0.436 9.68
¬ OnlineFeed 0.704 6.58 0.350 8.46 0.595 6.53

4.4.2 Impact of Random Forest (RF). Random forest provides a key
feature of multi-turn CRS by allowing us to ask more questions
after encountering a rejection. Without RF, the number of questions
we can ask at most is the maximum depth of the tree 𝐻𝑚𝑎𝑥 . We
evaluate the significance of RF, by evaluating a single interaction
tree built from the complete attribute set F . Table 4 shows that it
contributes the most among all components. By allowing FacT-CRS
to ask an arbitrary number of questions and to recommend multiple
times, this component makes the user-item interaction tree suitable
for multi-turn CRS setting.

4.4.3 Impact of Early Recommendation (EarlyRec). For RQ2, we
study the contribution of the EarlyRec strategy. To minimize the
number of interactions with the user, we make an early recom-
mendation if the candidate set of items at the current node is small
enough. As we can see from Table 4, EarlyRec has significant impact
on minimizing the average turn (AT). By recommending early, this
component also helps the agent understand if it is on the right track,
and allows the agent to make necessary corrections that improve
future recommendations.

4.4.4 Impact of Handling Online Negative Feedback (OnlineFeed).
To answer RQ3, we study the effectiveness of our online feedback
method. The online feedback component updates the current in-
ferred interaction embedding, when the user rejects recommenda-
tions made by the agent. As we can see from Table 4, this strategy
contributes to better recommendation quality. OnlineFeed compo-
nent first tries to identify the items responsible for the rejected
recommendations, and corrects the predicted user-item interaction
embedding to move towards the potential set of items that contains
the target item. This allows FacT-CRS to choose the next interaction
tree more efficiently.

4.5 Case Study

Weperformed the following case studies to analyze the performance
of our model and to identify where we can further improve.

4.5.1 Failed Conversations. We paid special attention to the failed
conversations to get a better understanding of why a conversa-
tion fails. On all three datasets, we report the average number of
mentioned attributes in the failed interaction and compare it to
successful interactions. Table 5 summarizes the mean and standard
deviation of this results. As we can see, the average number of
mentioned attributes in the failed conversations is smaller than
the average number of mentioned attributes in the corresponding
complete datasets.

We next look at the conversations FacT-CRS failed where the
interaction contained at least 𝑝𝑛 number of attributes in Table 6.
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Table 5: Mean 𝜇 and standard deviation 𝜎 of number of men-

tioned attributes in the interaction for successful, failed, and

all conversations.

LastFM BookRec MovieLens
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Successful 5.65 1.13 5.60 1.09 4.37 1.01
Failed 5.15 1.16 5.06 0.99 4.02 0.91
All 5.51 1.15 5.30 1.07 4.26 1.00

Table 6: SR@10 of FacT-CRS when at least 𝑝𝑛 number of

attributes confirmed in the interaction.

Min # attributes 𝑝𝑛 LastFM BookRec MovieLens
3 0.721 0.438 0.729
4 0.751 0.496 0.765
5 0.783 0.573 0.830
6 0.826 0.644 0.882

Our experiments show that for greater values of 𝑝𝑛 , it becomes
increasingly likely that FacT-CRS can successfully recommend the
target item. This gives us the basic insight of why a conversation
fails. Since the attributes mentioned in the failed conversations are
very few, our model can not find sufficient information to infer
which particular item the user is looking for.

4.5.2 Identified Attributes. Figure 5 shows the success rate of con-
versations with different interaction length 𝑝𝑛 and the number of
attributes 𝑝𝑘 identified by FacT-CRS. Note that 𝑝𝑘 > 𝑝𝑛 is not
possible, i.e., FacT-CRS cannot identify more attributes than the
total number of attributes associated with an interaction. Also,
𝑝𝑘 < 𝑇 , since any CRS agent can ask at most𝑇 − 1 questions. When
𝑝𝑘 ≤ 𝑝𝑛 , the white cells in Figure 5 refer to the events that are
possible but did not occur. For example, on the BookRec dataset,
when the number of attributes in an interaction is 9 (i.e., 𝑝𝑛 = 9),
FacT-CRS always identified at least 3 attributes (𝑝𝑘 ≥ 3). When
more attributes are identified (left to right in Figure 5), it is more
likely that the conversation will be successful. Similarly, when the
user mentions more attributes in an interaction (top to bottom),
FacT-CRS is likely to identify more attributes and subsequently the
conversations are more likely to be successful.

Our solution provides good predictive accuracy as well as mini-
mizes the inputs required from the user. Our model outperforms the
existing RL-based baselines on LastFM, BookRec and MovieLens
datasets, which demonstrates the robustness of our model.

5 CONCLUSION

Multi-turn CRS is a dynamic approach to elicit the current user pref-
erence by asking a series of questions andmaking recommendations
accordingly. Existing approaches in conversational recommender
system rely heavily on reinforcement learning based policy learn-
ing, whose performance however strongly depends on the amount
of training data.

In this paper, we proposed an alternative to the reinforcement
learning methods and demonstrated multi-turn CRS are addressable
by decision trees. To generalize a decision tree for multi-turn CRS,

Figure 5: SR@10 of the number of attributes identified (cor-

rectly asked) by FacT-CRS for different interaction length

on (left) LastFM and (right) BookRec datasets.

we addressed four key challenges inmulti-turn CRS:which questions
to ask, how to rank the items, when to recommend, and how to handle
the user’s rejection. We proposed building an user-item interaction
tree that is able to identify different description of a certain item.
The interaction tree naturally provides a way to ask questions. To
effectively rank the items, we learned the embeddings of user-item
interactions. For this purpose, we used a decision tree based method
called the factorization tree [26], which allows us to narrow down
the candidate set of items by asking questions. By leveraging the
random forest, we extended factorization tree to multi-turn CRS.
We solved the challenge of when to recommend, by recommending
when the candidate item set is small enough. Making corrections to
the interaction embedding after encountering a rejection enables
us to effectively handle the users’ online rejection. We extensively
experimented on three benchmark CRS datasets, and compared
FacT-CRS’s performance with existing RL-based state-of-the-art
solutions. The experimental results demonstrate that FacT-CRS
outperforms on all three datasets by successfully asking questions
and identifying the target items in fewer number of turns.

Our exploration in FacT-CRS sheds light on simple alternatives
for multi-turn CRS. Though effective in our extensive evaluations,
our solution still contains several empirically set hyper-parameters,
such as the tree depth and number of trees. It is important for us
to eliminate such hyper-parameters via automated tuning. In addi-
tion, currently we handle the conversations independently, even if
they were from the same user. As our future work, it is important
for us to study how to leverage observations from the same user
or about the same item to further facilitate the conversation and
recommendation.
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