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With the rapid advance of information technology, network systems have become increasingly complex and
hence the underlying system dynamics are often unknown or difficult to characterize. Finding a good network
control policy is of significant importance to achieve desirable network performance (e.g., high throughput
or low delay). In this work, we consider using model-based reinforcement learning (RL) to learn the optimal
control policy for queueing networks so that the average job delay (or equivalently the average queue back-
log) is minimized. Traditional approaches in RL, however, cannot handle the unbounded state spaces of the
network control problem. To overcome this difficulty, we propose a new algorithm, called RL for Queueing
Networks (RL-QN), which applies model-based RL methods over a finite subset of the state space while ap-
plying a known stabilizing policy for the rest of the states. We establish that the average queue backlog under
RL-ON with an appropriately constructed subset can be arbitrarily close to the optimal result. We evaluate
RL-QN in dynamic server allocation, routing, and switching problems. Simulation results show that RL-QN
minimizes the average queue backlog effectively.
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1 INTRODUCTION

The rapid growth of information technology has resulted in increasingly complex network sys-
tems and poses challenges in obtaining explicit knowledge of system dynamics. For instance, due
to security or economic concerns, a number of network systems are built as overlay networks,
e.g., caching overlays, routing overlays, and security overlays [54]. In these cases, only the overlay

This work was funded by National Science Foundation (NSF) grants CNS-1524317 and CNS-1907905 and by Office of Naval
Research (ONR) grant N00014-20-1-2119.

Authors’ addresses: B. Liu and E. Modiano, Massachusetts Institute of Technology, Cambridge, MA 02139; emails: {bailiu,
modiano}@mit.edu; Q. Xie, University of Wisconsin-Madison, Madison, WI 53706; email: giaomin.xie@wisc.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2376-3639/2022/08-ART2 $15.00

https://doi.org/10.1145/3529375

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 7, No. 1, Article 2. Pub. date: August 2022.



https://orcid.org/0000-0002-3950-4965
https://orcid.org/0000-0003-2834-6866
https://orcid.org/0000-0001-8238-8130
https://doi.org/10.1145/3529375
mailto:permissions@acm.org
https://doi.org/10.1145/3529375

2:2 B. Liu et al.

part is fully controllable by the network administrator, while the underlay part remains uncon-
trollable and/or unobservable. The “black box” components make network control policy design
challenging.

In addition to the challenges brought by unknown system dynamics, many of the current net-
work control algorithms (e.g., MaxWeight [57] and Drift-plus-Penalty [45]) aim at stabilizing the
system. However, existing optimization methods for long-term performance metrics (e.g., queue
backlog and delay) only work for specific structures [15, 37], while the development for general
setting remains insufficient.

To overcome the above challenges, it is desirable to apply inference and learning schemes. A
natural approach is reinforcement learning (RL), which learns and reinforces a good decision
policy by interacting with the environment and receiving feedbacks. RL methods provide a frame-
work for the design of learning policies for general networks. There have been two main lines of
work on RL methods: model-free RL (e.g., Q-learning [62], policy gradient [56]) and model-based
RL (e.g., UCRL [27], PSRL [48]). In this work, we focus on the model-based approach.

1.1 Related Work

Existing methods for reducing the average job delay (or equivalently reducing the average queue
backlog) of general networks can be classified into three types: equivalent constraint, Lyapunov
drift, and Markov decision process (MDP) [18]. However, most equivalent constraint approaches
can only be applied to single-hop networks [18]. Therefore, we focus on discussing the latter two
classes of algorithms, as they are more universal and can be applied to multi-hop network systems.
We first discuss the Lyapunov drift approach, which generally does not require learning the
dynamics for network problems with hidden dynamics. The Lyapunov drift approach has been
widely applied in numerous network control problems. For instance, in dynamic server allocation
problems, a Lyapunov-drift-based algorithm named the longest connected queue (LCQ) can
stabilize the queue backlog without knowing the underlying dynamics (e.g., arrival rates, channel
statistics) [22, 58]. For multiclass routing networks, the Backpressure algorithm was designed un-
der the Lyapunov drift framework and only requires the observation of queue backlogs [3, 46, 57].
Similarly, Lyapunov drift methods that do not require learning the network dynamics have been
proposed for switch scheduling [29, 40, 53] and inventory control problems [19, 44], and so on.
Most Lyapunov drift algorithms are shown to be throughput optimal [57], i.e., they can stabilize
the system whenever the system is stabilizable. Also, the Lyapunov drift approach usually only
requires solving a linear programming problem and does not suffer from the “curse of dimension-
ality”, which makes it applicable to large-scale queueing systems. However, without learning the
system dynamics, the Lyapunov drift approach generally cannot guarantee minimum queueing
delay. For instance, for dynamic server allocation problems, the optimal policy has only been de-
veloped for highly symmetric systems (i.e., uniform external arrival rates, uniform connectivity
probabilities, and uniform success rates) [22]. Another well-known example is switching system,
for which the Maximum Matching policy has been shown to be close to the optimal policy when
the system is in the heavy traffic regime [37]. In Sections 5.1, 5.1, and 5.4, we conduct numerical
experiments and show that our approach significantly outperforms the Lyapunov drift methods.
The MDP approach models the queueing system control problem as an MDP that aims at mini-
mizing the long-term average queue backlog. Classical algorithms to solve MDP problems include
value iteration and policy iteration [7]. Note that although the MDP approach can minimize the
average job delay, it can only be applied to networks with finite buffer size, which is unrealistic
for many practical network models. Therefore, the MDP approach fails to minimize the average
job delay of general stochastic networks and is typically applied to MDPs of small scale [65, 66]
or special structures [24, 51]. However, traditional MDP approach requires explicit knowledge of
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the network dynamics. Since the network problems studied in this work have hidden dynamics,
it is necessary to learn the dynamics when applying the MDP approach. A related field is RL. The
majority of RL algorithms apply approximations to reduce the computation complexity, including
state representation [20, 38], value function approximation [4, 28], and pruning [36]. RL methods
have been applied to a wide range of network control problems, like routing [11, 17, 50, 67], spec-
trum access [23, 43, 61], switch scheduling [13], state probing [14] and so on. Although these RL
methods achieve satisfactory performance in simulation, they lack performance guarantees.

We consider model-based RL methods, which tend to be more analytically tractable. Conven-
tional model-based RL methods like UCRL [27] and PSRL [48] only work for finite-state-space
systems, yet queueing systems are usually modeled to have unbounded buffer sizes. The work in
[34] assumes that the system has an admission control scheme to keep queue backlogs finite. The
resulting system can be modeled as an MDP with finite states, where UCRL can be applied. In
[59], the authors modify the PSRL algorithm to deal with MDPs with large state space, yet the
algorithm requires the MDP to have a finite bias span, which is unrealistic for problems that aim
at minimizing the average cost with a countably infinite state space.

In summary, existing methods either cannot guarantee optimal delay (the Lyapunov drift ap-
proach), or lack performance guarantees (heuristic RL) or can only deal with finite state spaces
(the MDP approach and theoretical RL). In this article, we aim at developing an algorithm that
achieves provable optimality for networks with countably infinite state spaces. To the best of our
knowledge, our algorithm is the first to achieve minimum average queue backlog in general net-
works with unbounded buffers. Our analysis also offers a possible roadmap to solving general
MDPs with countably infinite state spaces.

1.2 Our Contributions

We apply model-based RL to queueing networks with unbounded state spaces and unknown dy-
namics. Our approach leverages the fact that for a vast class of stable queueing systems, the proba-
bility of the queue backlog being large is relatively small. This observation motivates us to focus on
learning control policies over a finite subset of states that the system visits with high probability.
Our main contributions are summarized as follows.

— We propose a model-based RL algorithm that can deal with unbounded state spaces. In par-
ticular, we introduce an auxiliary system with the state space bounded by a threshold U.
Our approach employs a piecewise policy: for states below the threshold, a model-based RL
algorithm is used; for all other states, a simple baseline algorithm is applied.

— We establish that the episodic average queue backlog under the proposed algorithm can be
arbitrarily close to the optimum with a large threshold U. In particular, by applying Lya-
punov analysis, we characterize the gap to the optimal performance as a function of the
threshold U. In addition, our proof technique may be of independent interest for analyzing
the convergence of other RL algorithms for queueing networks.

— Simulation results on dynamic server allocation, routing, and network switching problems
corroborate the validity of our theoretical guarantees. In particular, the proposed algorithm
effectively achieves a small average queue backlog, with the gap to optimum diminishing as
the threshold U increases.

The article is organized as follows. In Section 2, we formulate the problem and introduce nota-
tions. Section 3 gives an outline of our approach, presents required assumptions and the proposed
algorithm. We conduct theoretical performance analysis regarding convergence and optimality of
the proposed algorithm in Section 4. We evaluate the algorithm in various settings and the numer-
ical results are given in Section 5.
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2 SYSTEM MODEL

We consider a discrete time network with the general topology of a directed graph G = (N, L),
where N is the set of nodes and £ is the set of links. Each node maintains one or more queues
for undelivered packets, and each queue has an unbounded buffer. We denote by D the number of
queues. Nodes represent the locations where data packets are generated, relayed, and/or processed
in the network. Links represent the communication links.

During each time slot, external data packets arrive at nodes where they are either processed
and then depart the system or are relayed. For relayed packets, the communication links can be
stochastic, i.e., data transmissions between nodes can fail. We assume the underlying dynamics are
partially or fully unknown. This model captures a large class of queueing networks that involve
routing, scheduling, and switching.

We suppose that the system has the Markovian property: The probability distributions of the
queue backlogs in the next time slot only depend on the current queue backlogs and the control
decision. In other words, the system can be modeled as a countable-state-space MDP M with
average cost as follows:

— State space S: the set of queue backlog vectors, i.e., S = NP,

— Action space A: the set of feasible control decisions, which are specified by the problem
setting. In this article, we only consider finite action space.

— State-transition probability p(Q’ | Q, a): the probability of transitioning into state Q" from
state Q with action a. For simplicity, we assume that the magnitude that a queue backlog
can change during one time slot is upper bounded by a constant W. Let R(Q) denote the set
of one-step reachable queue backlog vectors from state Q.

— Cost function c(Q): the total backlog of D queues, i.e., c(Q) = 32 0.

As discussed in Section 1.1, a large number of queueing networks have been studied extensively
and various stabilizing policies that aim at keeping the average total queue backlog finite have
been developed. Here, we take a step further to go beyond stability and our goal is to minimize
the average queue backlog.

For readers’ convenience, we summarize the notations used in this article in Table 1.

3 OUR APPROACH

Classical model-based RL fits a model of state transition kernel to observed data and then solves
the dynamic programming problem on the estimated system. The challenge of applying such an
approach to countable-state MDPs arises from both of estimating model parameters and solving
the estimated MDP, due to the fact that the state space is unbounded.

Here, we introduce an auxiliary system M with a bounded state space. We only apply RL tech-
niques on the constructed bounded state space, while simply apply a known stabilizing policy m (cf.
Assumption 1) to the rest of the states. We show that the performance gap between the proposed
algorithm and the optimal policy can be made arbitrarily small by designing appropriate M.

3.1 Overview

We first provide an overview of our approach and defer a detailed description of the algorithm to
Section 3.3. Our RL method operates in an episodic manner.

We apply a decaying e-greedy method to decide whether an episode should conduct exploration
or exploitation. For each episode, we perform exploration (i.e., apply some random policy to collect
diverse samples) with probability €;, and we conduct exploitation (i.e., using current estimates of
dynamics to compute an estimated optimal policy) with probability 1 — €;. At the beginning of
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Table 1. Notations

D The number of queues in the queueing network
Q The D-dimensional queue backlog vector of the queueing network
Q; The queue backlog of node i
Omax The maximum entry of Q
R(Q) The set of one-step reachable queue backlog vectors from Q
W The magnitude that a queue backlog can change during one time slot
U The buffer size of the auxiliary system
M The countable-state-space MDP of the original queueing network
M The MDP of the auxiliary system
S The state space of M
S The state space of M
A The action space of M
p(-|+,-) The state-transition kernel of M
) The state-transition kernel of M
7y The known stabilizing policy of the queueing network
Trand The random policy that selects an action in A uniformly
*  The stationary policy that minimizes the expected average total queue backlog of M
#*  The stationary policy that minimizes the expected average total queue backlog of M
p*  The expected average queue backlog of M when applying 7*
p*  The expected average queue backlog of M when applying 7*
®*(-) The Lyapunov function with negative drift regarding 7*
B The order of ()
S The set of Q’s with ®*(Q) < (U - W)#

Sout S \ Sin
PP Thet stationary probability distribution in M with 7 applied to S and 7’ applied to
SOU

E,[-] The expection of a random variable in M with x applied to S
Ey+n[-] The expection of a random variable in M with 7 applied to S and 7’ applied to
Sout
E#[-] The expection of a random variable in M with 7 applied to S

the learning process, we tend to explore the system to collect samples, and thus ¢; is relatively
large when i is small. As the learning process goes on, we gradually obtain enough samples and
are close to the optimal policy, and thus ¢; is decreased to exploit the learned policy. The scheme
has been applied in network control [2, 23, 55] to achieve a tradeoff between exploration and
exploitation.

For an exploration episode, we apply a randomized policy 7;ang that takes action uniformly to
obtain samples for the estimation of state-transition probabilities in M. However, since M has
a countably infinite state space, we instead estimate the model for an auxiliary system M with a
bounded state space. The auxiliary system M has a threshold U: the system has the same dynamics
as the real one, with the only difference that each queue has a bounded buffer size U. For each queue
in M, when its queue backlog reaches U, new packets to it will be dropped. Mathematically, the
state space of M is given by S 2 {O € S : Omax < U} where Qnax = max Q;. The auxiliary
system M shares the same action space A and cost function ¢(Q) as M. With the introduction
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Fig. 1. Schemetic illustration of our approach (when D = 2).

of M, an exploration episode operates as in Figure 1(a): we only apply 7yang to states in S, while
simply applying the known stabilizing policy 7 to other states.

For an exploitation episode, we first repartition the state space S due to technical reasons. We
denote by 7* the optimal policy for M, and define a Lyanopuv function ®*(-) (cf. Assumption 2).
Denoting by f the order of ®*(-), we partition S in the following manner:

St 2 {0: 0" (Q) < (U- W)}
Sout & g \ Sin :

As illustrated in Figure 1(b), during an exploitation episode, we first compute an estimated 7* using
the estimated dynamics obtained from exploration episodes. We then apply the estimated 7* to
states in S™ and 7, to states in S°U* throughout the episode.

We will show that the average queue backlog under our algorithm converges to the optimal
average queue backlog p* as we increase U. We divide the analysis into two stages: before and
after 7* is learned. For the first stage, our model-based RL approach applies e-greedy exploration.
We show that the proposed algorithm gradually obtains 7* with high probability. For the second
stage, by applying drift analysis on the Markov chain, we show that when 7" is applied for states
in 8™ and 7, for states in S°, the probability of queue backlog exceeding into S° decays ex-
ponentially with U. In addition, whenever Q leaves S'", the expected accumulated queue backlog
before Q returns back to S™ can be upper bounded as a polynomial term in U. Together, we show
that the gap between our result and the optimal average queue backlog p* is upper bounded by
O(poly(U)/exp(U)), which diminishes as U increases.

3.2 Assumptions

Our algorithm can be applied to a broad class of network problems. To establish rigorous per-
formance guarantee, we need to impose some assumptions on M and M. We will discuss these
assumptions and argue that they are reasonable under many queueing networks.
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Assumption on 7y: As introduced in Section 3.1, we only learn the optimal policy for an auxiliary
system with a bounded state space, while for the rest of the states, we apply a known stabilizing
policy mp to control the queue backlog. We quantify the stability of 7z, as follows:

AsSUMPTION 1. There exists a known policy my, a Lyapunov function ®, : S — R, and constants
a, o, €y, By > 0 such that the following properties hold:

(1) ©o(Q) < aQf,y foreach Q € S;
(2) Ex [Po(Q(t + 1)) = @o(Q(2)) | Q(t) = Q] < —€ for each Q such that Qmax > Bo.

The requirement of MDP respecting Lyapunov function under a stable policy is not restric-
tive. For a stabilizable stochastic network, there exists a policy 7, under which the corresponding
Markov chain is positive recurrent. Moreover, the property of positive recurrence is known to be
equivalent to the existence of the so-called Lyapunov function [41]. These observations motivate
us to focus on MDPs that satisfy Assumption 1. In practice, for stabilizable networks, numerous
stable policies have been proposed, including dynamic server allocation problems [5, 15, 58], mul-
ticlass routing networks [9, 10, 26, 32, 33], switch scheduling [29, 53, 58], and inventory control
[19, 44], which all satisfy Assumption 1.

Assumption on 7*: From the outline of performance analysis in Section 3.1, we need to show
that the probability of queue backlog entering S°' decays exponentially with respect to U. We
therefore make a natural assumption on the stability property of 7. This assumption is necessary
for the proof of Lemma 2. For clarity, we use E;[-] to denote the expectation with respect to the
randomness of the auxilary system M under the policy 7 (to distinguish from E[-] for M).

ASSUMPTION 2. There exist a Lyapunov function S - R, and constants f > 1, by, bs, B*, € >
0, such that for any U > 0, the following properties hold:

(1) Qhux < *(Q) < b1 Qhuux for each Q € S

(2) maxgrep()|(Q") — &(Q)| < ba(Qhax + Q') for each Q € S;

() B# [0 (Q(t + 1)) — &*(Q(t)) | O(t) = O] < —&" - Q2. for each Q € S such that Qmax > B*.

The assumption is natural in the sense that optimal policies are stable and thus are likely to
have good Lyapunov drift properties. For instance, if P*(Q) = 2?21 w;Q?% has a negative drift for
each Q satisfying >, Q; > B, one can easily show that @ - 02, < d*(Q) < P o) - Qs
maxgser(Q) d*(Q’) - d* (Q)) < wW- (2?:1 ®;) * (Omax + Ol.x), and has a negative drift for each
O with Omay > B. Possible methods to analyze Lyapunov drift properties from queueing stability
can be found in [42].

Assumption on communication properties: Existing model-based RL algorithms with perfor-
mance guarantees usually require the “diameter” (i.e., the upper bound for the shortest first hitting
time between any two states) of the MDP to be finite [27]. However, it is unrealistic to assume the
MDP diameter to be finite when the state space is unbounded. Instead, we make the following as-
sumption (this assumption is used in the proof of Lemma 1) where Tp_, o/ denotes the first hitting
time from Q to Q’.

AssuMPTION 3. There exist constants ¢,y > 0, such that for any U > 0 and every Q,Q’ € S,
min £ [To-o| <cllQ”-QllY.
where 7 is a policy that can be applied to S.

In other words, Assumption 3 states that there exists a policy 7 such that the first hitting time
between two states Q and Q’ in S is a polynomial function of [|Q” — Qll;. We emphasize that
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the constant y is independent of the value of U. Indeed, with larger U’s, E [To— '] might grow
larger, since the trajectory from Q to Q” are more likely to be longer. However, it is possible that
the increment is bounded. For instance, certain M/G/1 queueing systems [52] and random walk
models [30] have constant y’s even if the state space is unbounded. Directly verifying Assumption 3
might be computationally difficult. Theorem 11.3.11 from [42] offers a drift analysis approach for
justifying Assumption 3.

We remark that the maximum first passage time of the MDP plays an essential role in analyzing
the RL algorithms in infinite-horizon average-reward MDPs. Existing related works either use
MDP diameter [27, 68], or span [6, 21, 49], or mixing time [1, 47, 63] to characterize the maximum
first passage time of the MDP, where these metrics serve as coefficients in the gap to the optimum.
The analysis in our article also relies on the assumption of reasonable bounds for the maximum
first passage time. It would be of great interest to establish performance guarantees under relaxed
assumptions.

Assumption on error tolerance: As the learning process proceeds, ideally the estimation for M
becomes increasingly accurate. However, it is unrealistic for us to obtain the exact M. Therefore,
we assume that if the estimates for the state-transition kernels are accurately enough (i.e., within
a certain error bound), the optimal policy to the estimated M is the same as 7*. The assumption
is stated as follows.

ASSUMPTION 4. There exists a Ap > 0, such that for any MDP M’ with the same state space, action
space and cost function as M, if for each Q € S and each a € A, we have

I ¢10.@) -5 (10.a) <ap,

then the optimal policy for M’ is the same as the optimal policy * for M.

In this article, we focus on network control problems with finite action space. For many net-
works, when the dynamics (e.g., exogenous arrival rates, service rates, and channel capacities)
vary slightly, the optimal policies remain the same. For instance, if the arrival rates of the switch-
ing networks vary yet remain heavy loads, Maximum Matching still remains a close-to-optimal
policy [37].

3.3 Algorithm

We propose an algorithm called RL for Queueing Networks (RL-QN). RL-ON operates in an
episodic manner: at the beginning of episode k, we uniformly draw a real number & € [0,1] to
decide whether to explore or exploit during this episode. The length of each episode depends on
the observations.

—Ifé<e = ¢k (where ¢ € (0,1] can be tuned to control the exploration frequency), we
perform exploration during this episode. For states in S, we apply the randomized policy
Trand. FOr states in S\ 3 we apply 7.

—If & > ¢, we enter the exploitation stage. We first calculate sample means to estimate the
state-transition function p of M. We then apply value iteration on the estimated system M
to obtain an estimated optimal policy 7. During this episode, we apply 7; for states in S™
and m, otherwise.

— When the number of visits to states in S™ exceeds Ly = L-Vk (where L is a positive constant
and can be tuned to adjust the sampling rate), RL-QN enters episode k + 1 and repeat the
process above.
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ALGORITHM 1: The RL-ON algorithm
1: Input: A, U>W,0<{<1,L>0,K>0
2: for episodes k < 1,2,...,K do
3. Set Ly « L-Vk, e « Nk and uniformly draw ¢ € [0, 1].
4 if £ < ¢, then
5: Set

(0) = Trand (Q), fOI‘QES
Q) = 7 (Q), forQ e S\ S

6: else
7: For each Q,Q’ € Sanda € A, let Pe(Q’ | Q.a) = P(Q.a,Q')N(Q, a) for N(Q,a) > 0
and pr(Q’ | O, a) = Y|R(Q)| otherwise.

8: Solve the estimated MDP Mj. and obtain the estimated optimal policy T
9: Set )
7(0) = {Il'k (Q), forQ eS8 N
m (Q), for Q € S°

10:  endif

11:  while visits to states in S™ is smaller than L do

12: Take the action a; = m (Q(¢)) for the real system.

13: Observe the next state Q(t + 1).

14: if O(t) € S then

15: Increase N (Q(t), a;) by 1.

16: Increase P(Q(t), a;, min{U, Q}) by 1.

17: end if

18: P —1t+1.

19:  end while

20: end for

21: Output: estimated optimal policy 7

The details are presented in Algorithm 1. We use min{U, Q} to denote a vector with the ith
coordinate being min{U, Q;}.

4 PERFORMANCE ANALYSIS

We analyze the performance of our algorithm from both exploration and exploitation perspectives,
under Assumptions 1-4. We first prove that RL-QN can learn 7* within finite episodes with high
probability, which implies that RL-QN explores different states sufficiently to obtain an accurate
estimation of M (cf. Theorem 1). We then show that RL-QN exploits the estimated optimal policy
and achieves a performance close to the optimal result of p* (cf. Theorem 2).

In this article, we focus on MDPs such that all states are accessibleNfrom each other under the
following policies: (@) 7rand + 7o : applying 7yand to S and 7y to S\ S; (b) 7* + 7y : applying 7*
to S™ and 7y to S°; and (c) 7* : applying (a truncated version of) 7* to S in M. That is, the
corresponding Markov chains under the above policies are irreducible.

4.1 Convergence to the Optimal Policy

The following theorem states that, with arbitrarily high probability, RL-QN learns 7* within a
finite number of episodes.
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THEOREM 1. Suppose Assumption 4 holds. For each § € (0, 1), there exists k* < co such that RL-QN

learns 7t* (i.e. ;. = ") within k* episodes with probability at least 1 — 6.

Proor. We give the detailed proof in Appendix A. Let us now sketch the main steps in our
analysis. By analyzing the mixing property of the underlying Markov chain of applying mang to S
and 5 to S\ 3 we first show that there exists a constant K, such that for episode k > K, we are
able to obtain ©(Vk) samples for each (Q, a) pair.

We then use a result in [64] to compute the number of samples required for each (Q, a) pair to

ensure 77; = 7*, under Assumption 4. Finally, we show that by choosing the exploration probability

of e = Nk, exploration episodes occur infinitely often, which implies that we can reach the
number of required exploration episodes within finite number of episodes. ]

Theorem 1 indicates that RL-QN explores (i.e., samples) state-transition functions of each state-
action pair (Q, a) in M sufficiently.

4.2 Gap to Optimum

Theorem 1 states the sufficient exploration aspect of RL-QN. In RL, the tradeoff between explo-
ration and exploitation is of significant importance to the algorithm performance. In this section,
we show that RL-QN also exploits the learned policy such that the episodic average queue backlog
is bounded and can get arbitrarily close to p*, the optimal average queue backlog of M, as we
increase U.

We denote the timestep at the end of episode k by t; and the actual length of episode k by L7,
ie., L;C~ =t} — tg—y with o = 0. We use ﬁ]ic“ to represent the policy applied to S™ during epigode k
and p”*™(-) to denote the stationary distribution of states when applying 7 to states in S™ and
1 to states in S°U.

By Theorem 1, RL-QN learns 7% with high probability. Note that as the exploration probability
decays by 1/Vk, the probability of utilizing the learned policy converges to 1 as the episodes in-
crease. Hence, the episodic average queue backlog when ﬂ]icn = 7" constitutes a large proportion of
the overall expected average queue backlog. Therefore, the key step to upper bound the expected
average queue backlog is to upper bound the episodic average queue backlog when zr]icn =7*. We
prove that it can be upper bounded with respect to p*, the optimal average queue backlog of M,
as stated in Lemma 1. We first define Sti)]é as the set of states in S™ that is possible to exit into S°"
at the next time slot, i.e., Stifé 2 {Q € 8™ : R(Q) NS°Ut £ 0.

LEMMA 1. Under Assumptions 1-3, we have

Ziit 121’ Qi(t) - = :
kh_l)lolo Eit*+7ro k—1+L;< _ ,0* +pn +119 (Sll)le) o) (U1+max{2a,y}) )

Proor. We first define the accumulated regret regarding p* for a given episode k with n,ic“ =
7t as Nk (X Qi(t) — p*). We then define Sllr‘} £ Sin Sé’:i and decompose the expected

t=tp_q1+1
accumulated regret into three parts according to state position: (i) Q € Sii;‘, (i) QO € Sli)ré, and
(iii) Q € S°.

For the first part (i), we use Bellman equation analysis to show that, every time Q enters Sl‘rrl‘
from Sli)‘é and returns back to S]ij‘:l, the expected accumulated regret is upper bounded by the span of
the solutions to the Bellman equations. We then use Proposition 5.5.1 in [7] to obtain a polynomial
upper bound for the span of the solution to the Bellman equation under Assumption 3.

The second part (ii) is trivially upper bounded by DU.
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For the third part (iii), we prove that the time it takes to return back S™ is polynomial in U under
Assumption 1 (using techniques as the proof of Theorem 1.1 in Chapter 5 of [12]). Therefore, by
Theorem 6.3.4 in [25], every time Q enters S°" from Séré and returns back to Sli)‘é, the incurred
expected accumulated regret is upper bounded by a polynomial function of U.

The detailed proof is given in Appendix B. O

We then proceed to upper bound p™ *7 (Si%), as stated in the following lemma.

LEmMMA 2. Under Assumption 2, we have
p (853) = Olexal-0).

Proor. We show that under Assumption 2, we can construct a linear Lyapunov function with
a negative drift for states with large Qpax. By applying similar techniques as Lemma 1 in [8], we
establish an upper bound for the tail probability of Lyapunov values, which decays exponentially.
The detailed proof is given in Appendix C. O

With Theorem 1, Lemmas 1 and 2, we establish the following main result of this article.

THEOREM 2. Suppose Assumptions 1-4 hold. When applying RL-QN to M, the asympototic
episodic average queue backlog is upper bounded as follows:

Ik i i(t 1+max{2a,y}
Zt:tk_lJrl,Z Qi(1) < +O(U v ) (1)

lim E
L exp (U)

k—co

Proor. With Lemmas 1 and 2, we show that when k — oo, for each episode with n,ic“ = ¥
the expected average queue backlog is upper bounded by * + O(U*max2%:¥}/exp(U)). We next
show that the expected average queue backlog contributed by episodes where Jrlic“ # 7 becomes
negligible as k — co. By applying similar techniques as the proof of Lemmas 1 and 2, we then
obtain that p* = p* + O(U"/exp (U)).

The detailed proof is given in Appendix D. O

Theorem 2 provides an upper bound on the performance guarantee of RL-QN with respect to the
threshold parameter U: by increasing U, the long-term episodic average queue backlog approaches
p* exponentially fast. Recall that the episodic length L} increases to co as k — co. We conjecture
that the same upper bound hold for the overall average queue backlog regarding the time horizon
T,ie.,

im
T—oo T

E [ tT:1 i Qi(t)] . [y 1+max(2a,y)

We note that the result of Theorem 2 does not imply Equation (2) directly. A rigorous proof of the
conjecture (2) seems difficult with current techniques. We leave as an interesting future direction
to investigate if Equation (2) holds.

4.3 Complexity Analysis

Here, we present the complexity analysis. Our algorithm requires solving an estimated MDP for
each exploitation episode. Since episode k has length of at least L - Vk, and

K
Z«/E>
k=1
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we have that given a time horrzon T, the number of episodes is upper bounded as
2
3T\?

Kr<|—| .

It has been shown that to solve a general MDP, the time complexity is at least polynomial in the
size of the state space [35]. The concrete time complexity depends on the solution method and its

parameters. In our setting, the state space S'* has a size of @(U™). Therefore, the time complexity

of our algorithm is
2
O((T/L) 5. poly(UN)).

Therefore, for a given system with fixed number of nodes, the time complexity grows at most
polynomially in the threshold U. When applying our algorithm to problems of larger scales (larger
N), the complexity suffers from “curse of dimensionality”. However, our algorithm remains compu-
tationally feasible in practice for the following reasons. First, although the “curse of dimensionality”
persists, our algorithm substantially simplifies the original MDP with unbounded state space to an
MDP with finite state space. For instance, the system in Section 5.1 cannot be optimized by tradi-
tional methods but is optimized efficiently under our algorithm. Second, we only require solving
the estimated MDP sparsely, i.e., no more than (3T/2L)%* times. Choosing a relatively large L can
greatly reduce the time complexity. Third, solving the MDP is independent of other steps of our
algorithm, which allows us to employ appropriate methods to solve MDPs according to different
application scenarios, computational capacities and performance requirements. For instance, since
we aim at optimizing the average cost of the MDP, undiscounted value iteration/policy iteration
methods should be applied. However, we apply discounted methods in our numerical experiments
and obtain the same solution with significantly less computation time. Also, we may utilize the
special structure of the MDP [24, 31] or apply approximation methods [16, 17, 60] to alleviate
the computational cost. Our numerical results in Section 5.1 further validates the conclusion and
shows that our algorithm is computationally feasible in practice.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of RL-QN for three classes of queueing systems: server
allocation, routing, and switching.

5.1 Server Allocation (Two Nodes)

We consider a dynamic server allocation problem: exogenous packets arrive to two nodes accord-
ing to Bernoulli process with rate A; and A,, respectively. At each time slot, the central server
selects one node to serve. The head of line job in the selected queue i completes the required ser-
vice and leaves the system with probability p;. The system model and parameters are illustrated
in Figure 2.
According to [58], whenever the condition

A A

—+ =<1,

p1 P2
is satisfied, one stabilizing policy is to always serve the node with the longest queue (LQ). There-
fore, we can use LQ policy as my. To evaulate whether this problem satisfies Assumption 3, we
apply 7 to the truncated state space S with U = 10 and simulate the system to collect the hitting
times, as shown in Figure 3. We can see that as the state distance grows, the average first hitting
time grows sublinearly, which is obviously upper bounded by linear growth and thus indicates
that Assumption 3 is satisfied. Moreover, our numerical experiments show that our algorithm can
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Fig. 4. Average queue backlog under different policies for the server allocation model with two nodes.

optimize the average queue backlog for various settings even if we cannot provably verify Assump-
tion 3. Therefore, the applicability of our algorithm may not be sensitive to Assumption 3, which
helps to show that our algorithm is practical.

We simulate RL-QN for U = 5, U = 10, and U = 20. The results are shown in Figure 4. To obtain
a lower bound on the average queue backlog, we assume that the system dynamics, i.e., arrival
rates and success rates, are known. We then optimize the MDP and obtain its average queue back-
log. This average queue backlog is guaranteed to be a lower bound since, in practice, the system
dynamics are unknown and errors that occur during the learning process can downgrade the per-
formance. From Figure 4, we see that the LQ policy stabilizes the queue backlog, yet its average
queue backlog is far from the lower bound. All of our RL-QN methods outperform zy. When U = 5,
the average queue backlog converges to 2.38, while for U = 10 and U = 20, the average queue back-
log becomes 2.24. This indicates that RL-QN achieves better performance with a larger threshold
parameter U, as implied by Theorem 2. Moreover, since the cases with U = 10 and U = 20 achieve
similar performance, it is very likely that in practice a small U achieves satisfactory performance,
which makes our algorithm more computationally feasible.

We then study the time complexity of our algorithm. We apply three different MDP solvers
in our algorithm: value iteration, relative value iteration, and policy iteration, all with discount
factor 0.99. Figure 5 shows the relationship between the relative computation time (i.e., the actual
computation time of RL-QN divided by the actual computation time of LQ) and the average queue
backlog. Even when U = 20, the computation time is less than three times of the LQ policy, which
shows that increasing U has relatively small impact on the computation time. From Figure 6, we
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see that the average queue backlog drops significantly even with a relatively small U. The average
queue backlog is reduced by 23.1% when U = 8, while the computation time is only 1.17 times of
the traditional non-ML LQ policy. Therefore, our algorithm is computationally efficient in practice.

5.2 Server Allocation (10 Nodes)

We then consider a dynamic server allocation problem with greater scale: exogenous packets arrive
to ten nodes according to Bernoulli process with rate A;, i = 1,..., 10 respectively. At each time
slot, the central server selects one node to serve. The head of line job in the selected queue i
completes the required service and leaves the system with probability p;. The system model and
parameters are illustrated in Figure 7.

As discussed in Section 3.1, if we directly apply classical methods to solve the estimated MDP,
the computational complexity is at least ©(U"), which grows exponentially with the number of
nodes N. Therefore, for the ten-node dynamic server allocation model, we prefer to utilize the
special structures of the MDP or apply approximation methods to reduce the computational cost.

It has been shown in [15] that when all nodes are always connected to the central server, the
policy to minimize the average job delay is to serve the node with the largest service rate p; among
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Fig. 8. Simulation results for the server allocation model with 10 nodes.

all non-empty nodes. Therefore, for each exploitation episode, instead of solving the estimated
MDP M with classical methods, we directly obtain the optimal solution: serving the node with
the largest estimated p; among all non-empty nodes. We emphasize that our algorithm does not
depend on how the estimated MDPs are solved. The above computational trick utilizes the special
structure of the server allocation model to speed up the computation, and other techniques for
efficiently solving the MDPs can also potentially be employed.

The results are shown in Figure 8. From the figure, we observe that RL-QN outperforms LQ.
The LQ reaches an average queue backlog of 7.6, while RL-ON reaches 7 when U = 5. When U is
beyond 10, RL-QN reaches an average queue backlog of 6, which is close to the optimal result.

5.3 Routing

We consider a simple routing problem: exogenous packets arrive at the source node s according
to Bernoulli process with rate A = 0.85. Nodes 1 and 2 are two intermediate nodes and can serve
at most one packet during each time slot, with probability p; and p,, respectively. Node d is the
destination node. At each time slot, node s has to choose betweenroutess - 1 — dands —» 2 — d
to transit new exogenous packets. Specifically, the system model and parameters are shown in
Figure 9.

The parameters (p;, p2) are queue-dependent here:

(0.9,0.1), Q,(t) <5
(0.1,0.9), Qy(t) >5

(p1.p2) = {

For each A < 0.9, an intuitive stabilizing policy is to always use the fixed path s — 1 — d, while
never choose s — 2 — d. Therefore, we can use the policy that always routes throughs - 1 — d
as my. However, it is possible that we could split the external arrivals into the two routes to fully
utilize the service capacities of both nodes 1 and 2, and achieve better performance.

We simulate RL-QN for U = 10. The results are plotted in Figure 10, which shows that RL-QN
outperforms the fixed path stabilizing policy and converges to the optimum quickly.

5.4 Switching

We consider a 2 X 2 input-queued switch as illustrated in Figure 11. Data packets arriving at input i
destined for output j are stored at input port i, in queue Q; ;, thus there are four queues in total. We
consider the case where the new data packets are arriving at queue (i, j) at rate A; j for 1 < i,j < 2,
according to a Bernoulli process. That is, for each time slot, the number of packets arriving at queue
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Q;,j is a Bernoulli random variable with mean A; ;. The server then selects a matching between
the inputs and outputs to transmit packets. If input i is connected with output j, then a buffered
packet is removed from the input queue Q; ; and sent to output j.

According to [39], whenever the condition that 3}; A; j < 1, 3; A; j < 1is satisfied, the Maximum
Matching algorithm, which selects the matching that maximizes the total queue backlog of the
connected channels is stabilizing; hence, we use it as 7.
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We implement the simulation for U = 5 under two different settings of arrival traffic. The results
are shown in Figure 12. When A1 1 = 1,2 = 0.4, 11 = 0.2, A22 = 0.1, we can see that our algorithm
outperforms the stabilizing policy 7y and converges to 7 + 9. When A1 1 = A2 = Ap1 = Ag2 =
0.49, the system is under heavy traffic. In [37], it was shown that the Maximum Matching policy
7 is close to the optimal policy that minimizes the average queue backlog. Our simulation result
(Figure 12(b)) indicates that our algorithm achieves comparable performance as the near-optimal
policy .

6 CONCLUSION

In this work, we apply a model-based RL framework to general queueing networks with un-
bounded state spaces. We propose the RL-QN algorithm, which applies an e-greedy exploration
scheme. By leveraging Lyapunov analysis, we show that the average queue backlog of the pro-
posed approach can get arbitrarily close to the optimal average queue backlog under the optimal
policy. The proposed RL-QN algorithm requires the knowledge of a stable policy. An interesting
future direction is to investigate this problem when such information is not available.

APPENDICES
A PROOF OF THEOREM 1

In this section, we prove Theorem 1. As outlined in Section 4.1, our proof consists of three steps,
which are presented in the subsections to follow.

A.1 Sufficient Exploration for SxA

For each (Q,a) € S X A, we denote by Ni(Q, a) the number of times that (Q, a) is encountered
during episode k. For simplicity, we use 7 to denote the policy applied to S during episode k and

P4 (.) to denote the stationary distribution of states when applying /g to states in S and 7,
to states in S \S. The following lemma illustrates that after a certain number of episodes, 7yand
samples each (Q, a) € SxA sufficiently with a relatively large probability (e.g., greater than 1/2).

LEMMA 3. Under the setting of Theorem 1 and Algorithm 1, there exists Ko > 0 such that for each
k > K,,

pr I M@0 p(Q)

NOeSVac AL >
Le oA TR ES e

Do =

Proor. Here, we only consider the episodes that 77y = 74,4. (That is, in this proof episode k is
understood as the episode in which the pohcy Trand 1 executed for the kth time.) Recall that under
the policy that applies 7,454 to states in S and 7o to states in S\S the corresponding Markov chain
is positive recurrent. For each Q € S, define Niand (Q) as the number of times that Q is visited
during episode k. For an irreducible positive recurrent Markov chain a on countable state space,
we have the mixing property that for every Q € S,

rand
lim N"L—(Q) = prand () w.p.1. 3)
k

k—o0

Note that under 7,ng + 79, for every Q € S we take each a € A with equal probability 1/|A|.
According to strong law of large number, we have

(L S T @
koo Nrand (Q) |ﬂ| P-Los

for every Q € S and a € A.
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Since both Equations (3) and (4) converge to constants, the multiplication rule for limit holds.
That is, for every Q € S and a € A, we have

NEQ@) NP Q) NP(.a)

lim - - .
S L )
CNQ)  NP(Q.a)
= lim - - lim 1
k—o0 Lk k—oo lean (Q)
prand (Q)

= w.p.1.
|Al
Note that almost sure convergence implies convergence in probability. Hence, for each (Q, a) €
S X A and €, & > 0, there exists a finite constant such that for each k larger than the constant,

Nrand R rand
ko (Q.a)  prnd (Q) >el<e
I A

Pr

Since L;c > Lj, we have

N _pm Q)| o, [NEQa_p(Q)
Ly A1 [

I 24|

< Pr

Niand(Q, a) ~ prand (Q) N prand (Q)
L, A 2l Al |

By setting € = p™ (Q) /(2| A|), & = 1(2|S|1A|) and taking a union bound over S and A, we have
that there exists some constant K, < oo such that for each k > K,

Nrand( , (,l) rand N 5 1
QD ™ Q) 6 e Sandvae < —=—[8] 171 = .
L 2|A| 2[S|1A| 2
We complete the proof. |

A.2 Sample Requirement for Learning 7"

Define R = MaXg e § 4eq |~ﬂ (0, a)|. We have the following lemma on the numbeNr of samples
required for each (Q,a) € S,a € A to estimate the model of the auxiliary system M sufficiently
accurate.

LEmMA 4. Given § > 0, if for each (Q, a) € S x A, the number of samples N(Q, a) satisfies

2 2R (U +1)P|A|
-log s
(Ap)? Y

N(Q,a) >

then with probability at least 1 — g, the optimal solution of the estimated truncated MDP is exactly

*

/.

Proor. Our proof is based on the following lemma from [64].

LEMMA 5 (THEOREM 2.1 IN [64]). For a probability distribution p over ny distinct events, we obtain
the empirical distribution p based on ny samples from p. Then the L'— deviation between p and p is
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upper bounded as

npe

2
Pr {”P() _13()”1 > 6} < (2™ —2) exp (_T)

In our case, for a given (Q, a) € S X A, the true distribution over next state R(Q) is given by
P (- | O, a). We denote the empirical distribution by p (- | O, a). Note that |R (Q)| < R. We set

S _2 | 241U + 1)P|A|
ny =z (Ap)z og 5 .

By Lemma 5, we have that for each (Q, a) € Sx A,

el Y @ 10.0-pQ 10.) > ap

log

(Ap)? 2 2R (U + 1)) A
2 (Ap)? 5

< (ZR—Z)-eXp(—
1)
< ——.
2(U + 1)P|4A|

Taking a union bound over each Q € S and a € A, we obtain

Pr {there exists (Q, a) € S x A such that Hﬁ (-10,a)-p(- 10, a)”l > Ap}

)

1)
< ——— (U + 1P |Al = =
2(U + 1)P|A| U+ D= 2

This completes the proof. O

A.3 Proof of Theorem 1

We are now ready to prove Theorem 1.

ProoF. Define k* as the number of required episodes for RL-QN to learn 77*. Based on Lemmas 3
and 4, we show that as the learning process proceeds, each (Q,a) € S X A will be sampled
sufficiently to learn the optimal policy for M. We define the event

P (Q) - Lk

2] ,VQeS,aeﬂ}.

B = {k > Ko, T = Trand> Nk(Q, a) >

When By is true, at least p (Q) LVKy/(2|.A|) samples are obtained for each (Q, a). Therefore,
a sufficient condition to obtain the required number of samples for each (Q, a) as Lemma 4 is that
By occurs for

* A

2R+1(U l)Dlﬂl
4| A log Z-DIA
LVK,(Ap)? - ming, g p (Q)

times.
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We denote by m* the number of episodes needed for By to occur for J* times. Define Eg, k, .. «,
as the event that for episodes k = ki, ks, . . ., kj, the event By does NOT occur. For n > 1, we have

Pr{m" > Ky + J* + n}

Pr {from episode Ky to Ky + J* + n — 1, Bg. does not occur for at least n times}

Pr U Eky k..o
Ko<k <ky <<k, <Ko+]J*+n—-1

Pr {Ek1,kz,...,kn}' (5)

Ko<ki<ky<---<kp<Ko+J*+n-1

N

By applying Lemma 3, we have that for each k > K,

1 4
Pr{Bi} > 3 Pr {ﬂrand is selected at episode k} =—.

2vk

Therefore, for any Ky < ky < ky < -+ <k, < Ko+ J*+n—1, we have

n [ f n
PriE < 1-——=)<(1- . 6
*{Bh kb <H( sz_i)<( zm) ©
Inserting Equation (6) into (5) yields
* [ n
Pr{m" > Ko+ J" +n} < (] :n).(l— ZW)
_ Um0 ¢ !
- J*! 2VKo + J*+n—-1
A Y P '
JH! NKo+ ] +n—1
J* +n)) B nt
< J! eXp( 2 K0+]*+n—1) @
U n @I+ -4 (K + ] 1)) ®
7 (n€)2) +
4’2 4 - (Ko +J)Y 1
< ]*y L p2)r+4 ’ E’

where Equation (7) follows from the fact that for x € (0,1), 1—x < e™ and Equation (8) is obtained
by the fact that exp(u) = X5 (u)*/k! > u?/ +4/(2]* + 4)! holds for u > 0.
We then have

[

B[] <E[m]=) Pr{m">i)=Ky+J'+ ) Pr{m’ >Ko+J +n)
i=1 n=1
a2 A (K + )Y S 1
Ko+ J' + (J+)£o+]) 1
JE1 . 2T+ £ n2
”2.4]*+2.(2]*+4)!_(K +J*)2]*+2 K .
— 2 K(J").
6 J*! - 2]+

IA

IA

Ko+ J +
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By Markov’s inequality, we have
e < B _2K0Y)

1 ) ©)

with probability at least 1 — /2.
By taking a union bound over the events of Lemma 4 and Equation (9), we have that with
probability at least 1 — §,

L2 LomEe a2 ]+ 4) - (K + )
k <5(K0+] + 6 1 (T ,

which completes the proof. O

B PROOF OF LEMMA 1

This section is devoted to the proof of Lemma 1.

Proor. We only discuss an episode k with Jr]ic“ = 7" here.
We define Y% (Zi Qi(t) - /3*) as the regret of episode k. Let t; and ;" denote the first and

t=tp_1+1
last time slot such that Q(t) € S, for ¢ € {tx_y, ..., f}. For the simplicity, we first include the
regret incurred at time step t;_; into the episodic regret analysis and subtract it in the end.

We decompose average episodic regret as follows:

St (B0t - 5Y)

llm E;}*+”0 7
S (Tt - 5)
= lim E,}uﬂo k 7 + (10)
=1 sk ~k sk
Y, (20 =) + 2, (20 Qi) = 57) = (24 Qiten) = 5°)
lim Ej-yn, s (11)
—00 k

. A . . ’ 7”0 in bd out
Upper bound of Equation (10): We partition the time slots from ¢, to t” into 7,", 7,°® and 7,°*",

which denote the set of time slots that Q(¢) is in Sii:ll, Slif:i, and S°", respectively.

To analyze the regret associated with ‘7:“, we define an “in process” unit as the process that

O(t) leaves Sli)ré, enters Siir‘]‘,
process during 7, can be decomposed into multiple “in process” units. An “in process” unit is
said to start from Q" € S if Q™ is its last state before entering S;'. We use N (Q™) to denote
the number of times that an “in process” unit starts from Q™. The accumulated regret during the

ith “in process” unit starting from Q™ is denoted by Rikrjl.(Qi“).

stays in S} for some time and finally returns back to S{%. Then, the

Similarly, we define “out process” units to decompose 7,°*'. An “out process” unit is said to start
from Q° € &}y if Q° is its last state before entering S°'. We define NY"'(Q°") and Ry} (Q°")
in similar manners.
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Now we can further decompose Equation (10) as follows:

Nm Qin . X
Zt t/ (2 Ql(t) ) ZQ'"ES'" _ ( )R}zl (an)
lim Ejz+yp, i = lim Eze iy, L’ + (12)
k—oo & k—oo k
Noul Q ut
ZQ“teS‘“ kL ( ) out (Qout)
lim B, L; + (1)

[ e (26 Qilt) - 57)

Ly

(14)

lim Ejzeyp,
—00

For Equation (12), we use Y,ic“l. (Q™) to denote the length of the time interval between the starting

time of the ith and (i + 1)—th “in process” units that start from Q™. By the Markovian property
of the system, for a given Q™, Y,".(Q™)’s are i.i.d. and Rln (Q™)’s are also i.i.d. Then according to

the renewal reward theorem, for every Q™ € Si*  we have

bd’
Nin Qi“ i i ., in in
lim E A )R’zi (07) | _ Erem [R (0 )] (15)
T+ 710 N = .
k—oo L
k A [Yln Qm ]

Note that we inherently use the fact that as k — oo, L;< — 00 since L;( > LVk.
However, it is not straightforward to compute Ez+ [Y]inl(Qi“)] directly. Note that every time

when an “in process” unit starting from Q™ occurs, Q™ must be visited. Therefore, we have the

bound that for every Q™ € Sl‘)'&,

1 < 1 =pfr*+7r0 (Qin>_ (16)
Bty [Ylicnl (Qin)] Es i, [Interval between visits to Qin]

By inserting Equations (15) and (16) into Equation (12), we have

Buesy 57, (07)

Jim B | < 3 (07 Br R (07)]
‘ Qnesty
< pﬁ'*+r[o ( ];13) . max Bt [lenl (Q)] (17)

QeS)
We provide an upper bound for max . s Ej- 4, [R,(Q)], as stated in the following lemma
(see Appendix B.1 for the proof).

LEMMA 6. Under Assumptions 1-3, we have

max Bieir, [RY, (Q)] < DU,
QeS

For Eqaution (13), by following a similar argument, we have that

) t out
S ponegn ShE @) pa (o o
ocuteSh L;< k,i ( ) <p7l' +10 ( ll)fcll) . Q‘tf‘g’;Eﬂ . [Rout (Q)] (18)

Nout (cht

hm E;f*"'ﬂ'o
k—0co
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The following lemma gives an upper bound for maxg sin Esim [RET‘I(Q)] (see Appendix B.2
for the proof).

LEMMA 7. Under Assumptions 1-3, we have

zaZDU2a+l
max B 121 0)] < 22
Qe 60

For Eqaution (14), since under 7* + 7y, the Markov chain is positive recurrent, we have that

Spern (2:Qi(0) - 5) s |
Jim Berory | = < (DU =37 fim Beny || <9707 (S5) - PU-

(19)

By combining Equations (17)—(19), Lemmas 6 and 7, we upper bound Equation (10) as follows:

S, (20 - 5)

Ly

< pfr*+7z0 (S[l)r(li) .0 (U1+max[2a,y]) ) (20)

lim Ejz+yp,
—00

Upper bound of Equation (11): From the episode termination criteria of RL-QN, we have
O(tr_1) € S™If Q(tr 1) € Sll;é, we have that f; = t;_;, and therefore have that

-1
*+7r0 Z (Z Qz(t) ) | Q(tk 1) € de =0.

t=tp_q i

If O(tk-1) € Sl‘r’l1 then fromt =ty tot =t — 1, Q(t) € ,Sl‘r‘l1 By applying techniques in the
proof of Lemma 6, we have

-1
Ejeir, Z (Z Qi(t *) | O(tx-1) € Sll;l < cDUM™Y,

t=tp_q i

Therefore, we have

-1
Bt Z (ZQi(t)—ﬁ*) < DU, (21)

t=tp_1 i

Since we also have that Q(#x) € Sin, by following a similar argument, we have

Ejtetm, Z (Z Qit N*) < cDU'™Y. (22)

t=t+1\ i
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By combining Equations (21) and (22), together with the fact that L, > Ly, we have an upper
bound for Equation (11) as follows:

S, (200 = 57) + ik (260i0) = 7) = (21 Qilti) = 57)

llm Eﬁ*+ﬂo
k—co

Ly

1 11 133

< Jim FBrn | 2 | Q0P+ 25 | 2,005 7| 20t =
=l \ t=+1\ i

2cDUMY 4 p*

< lim =P _, (23)
k—o0 L- \/E
By summing up Equations (20) and (23), we complete the proof. ]

B.1 Proof of Lemma 6

Proor. From Proposition 5.5.1 in [7], when applying 7* to M, there exists a function h* : S — R
such that the following Bellman equation holds:

FR@ =)0+ ) p(Q104(Q) h(Q).  vQes™ (24)

Q'eSin
By the construction of M in Section 3, for each Q € Siirrll, Q' € S™™and a € A, we have
p(Q 10,7 (Q) =p(Q"10.# (Q)).

Therefore, for each Q € Sl‘r‘l1 Equation (24) can be rewritten as

FrRQ) =20+ ), p(Q10.4(Q) k(Q). (25)

Q; eSin

Fix an Q € §}7}, we now analyze R (Q) We denote the start and end time slot of this “in

process” unit as t; and f,, respectlvely. Note that Q(t) € Sllr'l‘ for t € [ts,t.]. Using Equation (25),
we have

Eﬁ*+ﬂ'o [R}El (Q ]

5(3a-#]106-1-

t=ts i

Bism [Z (i (@) ~E [ @+ 1) 100)]) 1 0t = 1) = Q}

B [ (Q(1)) =B [ (Q(te + 1) 1 Q)] 1 Q(ts = 1) = 0]

t=tg

te—1
+ Baen | ) (W@ + 1) ~E[A'(Q( + 1) 1 Q)] ) 1 0t = 1) = Q]

iy [B°(Q(t)) = B (Q(te + 1)) | Q(ts — 1) = Q). (26)
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On the other hand, for each (Q, Q") € S xS, by following the analysis for the proof of Propo-
sition 5.5.1 in [7], we can upper bound h* (Q”) — h* (Q) as follows:

Toor
h(Q') -k (Q) = minE, QZQ [Z Qi(t) - p* @ minE; [Too| - DU 4 cDUM™Y | (27)
” =1 i T

where (a) comes from the fact that }; Q;(t) < DU for Q € S, and the second inequality (b) holds
under Assumption 3. By inserting Equation (27) into Equation (26), we complete the proof. O
B.2 Proof of Lemma 7

ProoF. Fix an Q € S
Omax < U — W. We denote the length of this “out process” unit as 7. We then have

o [R2(Q)] < Eirimy [D+ (U =W + W7) - 7] = DU=W)Ee ., [1]+DWEj- e, [77] . (28)

we now turn to analyze Ri“;(QA). From the definition of S™, we have

where the inequality comes from the fact that the backlog of each queue can be no larger
than (U — W + Wr) during this “out process” unit. We upper bound Ej+,,[7] and Bz« [7%]
separately.

Upper bound of Ej;-, ,, [7]: We use the following lemma from [12].

LEMMA 8 (THEOREM 1.1 IN CHAPTER 5 OF [12]). For an irreducible Markov chain with countable
state space, if there exists € > 0, a finite state set ¥ and a nonnegative Lyapunov function ® (-), such
that E[®(Q(t+1)) | O(t) = Q] < oo foreachQ ¢ ¥ and E[®(Q(t+1))—P(O(t)) | O(t) = Q] < —€
for each Q ¢ ¥, we then have that for each Q ¢ F, E[To_#] < ®(Q)fe, where To_, is the first
hitting time of the set & when starting from state Q.

We can interpret 7 as the hitting time of the set S™ when the Markov chain starts from state
Q € S8°" . From the selection of U in Algorithm 1, each state in S°* has negative Lyapunov drift
regarding ®y. Also, from Assumption 1, the value of Lyapunov function &, for the beginning state
of the “out process” unit can be upper bounded as a(U — W + W)“* = aU“. By Lemma 8, it follows
that

aU%

€o

iy [1] € =— £ Ty (29)

Upper bound of Ej+. ,[7%]: We use the following lemma from [25].

LEMMA 9 (THEOREM 6.3.4 IN [25]). In a Markov chain with a countable state space, for a nonempty

state set B, and a state s, if there exists a constant C such that E[Tsg] < C - F] 4, then forp > 1,

we have E[Tf_}B] Sp!-CP-F; o where F, o = Pri{s; € B | sy =s}+ X, ,Pr{isi € B,...,5p1 ¢
B,s, € B|sy=s}.

In our case, under 7* + 7y, the Markov chain is positive recurrent. Thus, for each Q € S°* and
each Q' € 8™, we have F; o =1L Note that F; is upper bounded by 1 since it is a probability.

’Sin
Also, F*Q,Si" > Fy o» We thus have F*Q,Si" = 1. Therefore, E[r] < Ty = Tj - F*Q,Sin’ By applying
Lemma 9, we have that
Eirom [12] <2- T3  Fpy gn =215 (30)
Inserting Equations (29) and (30) into Equation (28) gives
. 2 ZDU2a+1
Bt [R;“{ (Q)] < D(U = W)Ty + 2DWT < 2D(U - W + W)TE = a—z

’ €

0
which completes the proof. O
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C PROOF OF LEMMA 2

Proor. For the ease of exposition, we first define a “linear” Lyapunov function ®’(-) as

1
5* B in
& (0) = o (Q)]”, forQesS ’
U-Ww, for Q € S°*
which has the following properties (see Appendix C.1 for the proof).

LEMMA 10. Under Assumption 2, there exist constants V,e’ > 0 such that for each U > W, the
following properties hold:

(1) Foreach Q € S, MaXg: e () [@(Q) - (Q)| < V;
(2) For each Q € 8™ such that Quay > B*, we have
Esoem [ (Q(t+1)) =@ (Q(1) | Q1) = Q] < —¢'.

With Lemma 10, we obtain the following properties on the distribution of ®’(-) (see Appen-
dix C.2 for the proof).

LEMMA 11. Suppose Assumption 2 holds. Definem* = [(U+V - W — b;/ﬂé*)/(ZV)J , we then have
that form =1,2,...,m",
P ({Q eS": 0 (Q)>U-W-(2m— 1)V})
Vv
< =
V+e*
Lemma 11 implies that

P ({Q eS": 9 (Q) > U—W—V})

P ({Q €S™:0(Q)>U-W-(2m+ 1>V}) ‘

A

V+e* V+e*
Note that our goal is to obtain the stationary probability of the state being in S{)‘E. Recall that
S £{0:9"(Q) < (U-W)P| and S} £ {Q € 8™ : R(Q) N S # 0}. Therefore,

max @ (Q') > (U - W)~, YO e Sin.
Q'R (Q) (0> ) Q€ S

By the definition of ®" and Lemma 10, we have ® (Q) > U — W — V. Therefore,
Shc{oes™:a'(Q)>U-w-V,
and the following inequality holds

pﬁ*+n0 (Sll)ré) Sp;f*wro ({Q c S (0) > U—W—V}) < (V-‘:E*) .

By taking natural logarithm on both sides and applying the fact that log(1 + x) > x/(1 + x) for
x > 0, we have

~k

log p +7m0 (S,i:i) < -m"log (1 + V) <-m"- — =

E"‘*
Yre S0

U+v-w-b'"p
2V

which completes the proof. ]
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C.1 Proof of Lemma 10

ProOF. Consider a fixed Q € S™. From the definition of S™ and W, we have maXg ek ()
QL. < U.Hence Q' € S for each Q’ € R (Q). By the definition of function '(-), we have

Eiin, (@ (Q(t+1)) =@ (Q(1) | Q(1) = Q]

- [ @]+ Y Q107 @) () (31)
0’eR(Q)
Note that

> p(e1e.7©) @ (@)
Q’eR(Q)

=Y e1ew@)-|¥ (Q’)]%
Q’eR(Q)NSn

+ D p(Q107WQ) U-W)
Q’eR(Q)NSout
< X serer©)-|a(e)]

0’eR(Q)

(32)

where the inequality comes from the fact that [®*(Q)]VF > U - W for Q" € S,
Combining Equations (31) and (32) yields

Eiin, (@ (Q(t+1)) =@ (Q(1)) | Q1) = Q]

< By [(cb* @ +1))7 1 0(t) = 0

- (¥ ()7
(a)

B+ [0 @+ 1) 100 = 0])" - (# (©))

N

R ——

=l

5 (B= [ e+ ) 10w = 0] - (©))

@ b
~sk -1 1
— 5 € 'Qmax S ——F— € =—€,

p B
where (a) follows from Jensen’s inequality, (b) holds because f(x) = x!/# is concave and thus
fy) — f(x) < f'(x)(y — x), (c) and (d) come from Assumption 2.
Next we discuss the upper bound of maxX o e (o) |®(Q’) — @ (Q)].
If Q, Q' € 8™ with Quuay = 0 or Q. = 0, we have |®/(Q’) - & (Q)| < b)/Pw.

If 0,0’ € 8™ with Qpay > 0 and QJ,, > 0, we have ®'(Q’) = (&)*(Q'))% and @’ (Q) =
(é*(Q))%. Note that for the concave function f(x) = x'/#, it holds that

£ W) = F()] < max{ f/(x). £/ @)} |y - |-
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Without losing generality, we assume that Q; .. > Omayx. Thus

1_
ﬁl

@ (Q) - (©)] < max{ (@), (&7 ()" s} |8 (€7) -4 Q)

(a)
<

max

1
’B . Qﬁ;; /B Omax ﬁ
where (a) follows from Assumption 2.
If 0, Q" € 8°", from the definition of ®’(-), we have
IfQ € 8", Q" € 8°, we have

, p-1
2b,0ft < 2 (1 L ) <aawy @)

o' (Q) - @' (Q)] =0.

1 L 1
’ ’ ’ = B o ’ P o B
¥ (0) - (©|=U-w- [ @] <& (¢)]" - [¢ @]
which can be upper bounded in the same way as Equation (33). The case of Q € S°, Q" € S
has the same upper bound.
Therefore, we have that for each Q and each Q" € R (Q),

o’ (Q') - (Q)‘ < max {b?W, %(1 + W)ﬁ_l} 2.

C.2 Proof of Lemma 11

Proor. We define a series of Lyapunov functions: @, (Q) £ max{U - W —2mV,d’ (Q)},VQ €
S, where m = 1,2, ..., m". Note that ®,,(-) is finite. Since the Markov chain under policy 7* + 7
is positive recurrent, the mean drift of ®,, in steady-state must be 0, i.e.,

Eiry [Om (Q(t +1)) = @ (Q(1))] = 0.

Define A®,, (Q) £ Ejvipy [P (Ot + 1)) — D,y (O(2)) | O(t) = Q] as the conditional mean drift
of @,,. Next, we decompose the mean drift of @,,:

0= Eivsm [P (Q(t +1)) = @ (Q(1) ]
307 (Q) - Ay (Q)

QeS

= 2 P77 (Q) - ADy, (Q) (34)
QeS8 (Q)<U-W-(2m+1)V

+ 2 P (0) - Ay, (Q) (35)
QeSM:U-W-(2m+1)V <& (Q)<U-W-(2m-1)V

+ >, P (Q) - Ay (Q) (36)
QeS8 (Q)>U-W-(2m-1)V

b3 pT(Q) - A0, (0). (37)
Qesout

The key here is to derive the upper bounds of the A®,, (Q)’s in Equations (34)—-(37) separately,
so that we could analyze the stationary probability of the corresponding regions.

For Q € {Q €SN (Q) SU-W-(2m+ 1)V}: Given Q(t) = Q, together with the definition
of V,we have that ®’ (Q(t + 1)) S U-W—-(2m+1)V+V = U-W —-2mV and thus ®,, (Q(¢t + 1)) =
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D, (O(t)) = U =W — 2mV. Therefore, we have
A2, (Q) = 0. (38)

For Q € {QeS™:U-W-(@2m+1)V <® (Q) <U-W - (2m—1)V}: Given Q(t) = Q, by
analyzing all the possible relationships among @ (Q(t)), ®’ (Q(t + 1)) and U — W —2mV, it is not
hard to verify that

@ (Q(t +1)) = @ (Q(1))] <

which gives us that

@ (Q(t +1) =@ (Q)| <V,

APy, (Q) < V. (39)

For Q € {Q eS": ' (Q)>U-W-(2m- l)V}: Given Q(t) = Q, we have @' (Q(t + 1)) >
U-W-02m-1)V-V =U-W - 2mV, which indicates A®,, (Q) = A®’ (Q). Since Qmax >
@’ (Q)/bi/ﬁ >({U-W-(2m*- l)V/)bi/ﬁ > B*, by applying Lemma 10, we have

A, (Q) = AV (Q) < €', (40)
For Q € S°: Since ®,, (Q) has reached maximum, the drift conditioned on Q(t) = Q cannot be
positive, i.e.,
AD,, (Q) <0. (41)
By inserting Equations (38)-(41) into Equations (34)—(37), respectively, we have that
0<p™ ™™ (QeS™:U-W=(2m+1)V<® (Q) <U-W-(2m-1)V) V-
P (QeSM W (Q)>U-W=(2m-1)V)- &,
which is equivalent to the statement in Lemma 11 after simple algebraic calculations. O

D PROOF OF THEOREM 2

In this section, we prove Theorem 2. The proof is build on Theorem 1 and Lemmas 1-2.

Proor. By combining Lemmas 1 and 2, we have that

) Z;itk—l+1 (Z, Qi(t) - ﬁ*) 0 . U 1+max{2a,y}
lim E : | =it =0l ——— ).
L, exp(U)

k—o0

Thus there exists a k; < oo such that when k > ky,

t’i ;0i(t) = p* ) 1+max{2a,y} 1+max{2a,y}
E thtk—ﬁ'l (Z Q() p) |7Tm=ﬁ'*]—0<U ) 1 O(U ) (42)

L k ) |52 U
k p exp (U)

To analyze the overall expected queue backlog, we need to further consider three possible cases
where 7" # 7" for some k > k*:

(i) We have not learned 7* at k = k*, which happens with probability at most § according to
Theorem 1; )
(ii) We have learned 7 when k = k*, but obtain some bad samples and fail to estimate M in
following episodes with probability at most §/2 (according to Lemma 4);
(iii) 7Tyang may be selected as 7, which occurs with probability £/Vk.
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By taking union bound over the above three events, we have that

Pr{n}f;&ﬁ*}<5+é+ek=§+i, Yk > k. (43)
2 2 Vk
During episode k, the number of visits to S™ is Ly, and the associated expected regret is upper
bounded by L DU. Additionally, the Markov chain can enter S out from S™ at most Ly times, and
each time the associated expected regret is uniformly upper bounded by O(U*?%) from Lemma 7.
Therefore, we have

E [Zik"k-lﬂ (Zi00-5") | 7t % 7% < b BY +L£ o[u) -p =0 (U). (1)
k

’ k
Lk

By combining Equations (42)-(44), for each k > k, = max{k", k;}, we can upper bound the
overall expected episodic regret as follows:

S (2 Qi) = 57) . [grmatey) —
E I <Pr{ﬂk=ﬂ}-OW +Pr{7rk;t7r}-0(U )
1+max{2a,y} 1+2a
<0 vemer +6UEE 4 v . (45)
exp(U) vk
By taking § = exp(-U), we have
S 50 Qul0) timaxi2a.y)
lim B | 2586 2 0 54 0 v, (46)
k—oo L;C exp(U)

We now have the overall expected queue backlog in comparison to p*. The following lemma
states the relationship between p* and p* (see Appendix D.1 for the proof).

LEMMA 12. Under the setting of Theorem 2, we have
Ul+y
" =pt+ O ——— .
rr (exp(U))

By replacing p* in Equation (46) with p* using Lemma 12, we have an upper bound for the
overall expected queue backlog as follows:

173
k 0 (t 1+max{2a,y}
hm E Ztitkil"—l,ZlQ ( ) S p* +O<U—>s
k—oo L exp(U)
which completes the proof. ]

D.1 Proof of Lemma 12

As defined in Table 1, p* is the average total queue backlog when applying 7* to M, while p* is

the average total queue backlog when applying 7* to M. To bridge the gap between p* and p*, we

define the average queue backlog when applying (a truncated version of) 7™ to M as p(r™).
Since 7* is the optimal policy to M, we have

pr < plr’). (47)

Next we compare p(7*) and p*. The analysis follows a similar argument as that for Lemmas 1
and 2.
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We partition the state space of M, ie., S, into S™and S £ S\S™, We define 7™ and 7 °"* as
the set of time slots that Q(¢) is in S and Seut, respectively. We then can decompose the expected
average regret under the (truncated) policy 7* with respect to p* as follows:

i B [2L, zT 0 -p')|
i Ej- [Zte‘f’in (f Qi(t) - p*)] i s [Zte(fout (TZ Qi(t) - p*)] s

Bounding the first term in Equation (48): Similar to the analysis in Lemma 1, we define “in
process” units as the process that Q(t) leaves SO, enters S, stays in S™ for some time and
finally returns back to S°Ut. Then, the process during 77 can be decomposed into multiple “in
process” units. An “in process” unit is said to start from Q if Q is its last state before entering into
S (ie. Q€ S"“t) The accumulated regret during the ith “in process” unit that starts from Q is
denoted by R; Q).

We use p™ () to denote the stationary distribution of states when applying 7* to M. By applying
renewal theorem analysis as in the proof of Lemma 1, we have that

lim Eﬁ* [Zterﬁn (Zi e P*)] < ﬁ”* (Sout) - max IFE;:* [Rl (Q)] . (49)

T—co T Qe Sout

Bounding the second term in Equation (48): Since the total queue backlog in M is upper
bounded by DU, we simply have that

Eﬁ'* teFout i Vi -p* 7ou
B (200D sl

T—oo0 T T—oo0

=p" (S™)-DU. (50)

Bounding Ej;- [R1(Q)] in Equation (49): According to Bellman’s equation, when applying 7*
to M, there exists h*(-) such that the for every Q € S, we have p* + h* (Q) = >, 0; +
YoesP (Q’ | O, * (Q)) - h* (Q’). Note that Bellman’s equation might not have solutions for
countably infinite state space MDP (see Section 5.6 in Volome 2 of [7]). For simplicity, we assume
the existence of h*(-).

When applying 7* to M, using the definition of S™ we have that for each Q € S™, Q' € S and
ae A, pQ | Q,7*(Q)) = p(Q" | Q,7*(Q)). Therefore, for each Q € S, we have p* + h*(Q) =
2i Qi+ Xoes P(Q"1 Q. 7°(Q)) - B (Q).

Following a similar argument as Lemma 6, we obtain
Eﬁ.* [INQI (Q)] < CDUH—Y. (51)

Bounding p”™ (S°"): The proof follows the same line of argument as that for Lemma 2. Denote
by ®*(-) the Lyanopuv function in Assumption 2 for U = co. We consider a new Lyapunov func-

tion ®’(Q) £ [@*(Q)]%, for each Q € S. We define a mapping TR : § — S to represent the
packet dropping scheme in the bounded system. In particular, TR(Q) £ {min{U, Q;}}7,. Note that
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O*(TR(Q)) < ®*(Q),YQ € S. We then have that
Eqe [ (Q(t+1)) -9 (Q(1) | Q1) = Q]

=@+ Y (e 10x©) [0 (0)]
Q’eR(Q)nSn

), r(@1er@): [CD* (1= (Q'))]

Q’eR(Q)NSow
< 2 |[or @+ )] - [o @] 10w =0

We now can apply the analysis from the proof of Lemma 10 to show show that there exist constants
V, €’ > 0 such that for any U > 0, the following properties hold:

(1) ForeachQ € S, maxg, e () &’ (Q') =& (Q)| < V;
(2) For each Q € 8™ with Oy > B*, we have E,-[®'(Q(t + 1)) — &' (Q(1)) | O(t) = Q] < —€'.

|-

=

We define m* = [(U+V - W — bll/ﬁé*)/(ZV)J and consider a series of Lyapunov functions
®, (Q) £ max{U — W — 2mV,d’ (Q)} with m = 1,2,...,m*. We decompose S into three sets:

{0e8:9(Q) <U-W-(2m+1)V}
{0eS:U-W-(@m+1)V <& (Q) <U-W-(2m-1)V}.
{0e8:¥(Q)>U-W-(2m-1V|
By following the analysis for Equations (38)-(40), we can bound the drifts in these regions, respec-
tively, and show that
V-pT (QeS: ¥ (Q)>U-W-(2m+1)V)
V 4+ € ’
where m = 1,2, ..., m*. Similar to Lemma 2, we obtain that 15”*(3"‘”) = exp(-U).

Inserting Equation (51) into Equations (49) and (50), together with Equation (47), gives

E %1, % Qi) o ( Uy )

7 (QeS: ¥ (Q)>U-W-(2m-1)V) <

~ 3k < ~ * — l' -
pr<plr) T T exp (U)

which completes the proof.
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