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With the rapid advance of information technology, network systems have become increasingly complex and

hence the underlying system dynamics are often unknown or difficult to characterize. Finding a good network

control policy is of significant importance to achieve desirable network performance (e.g., high throughput

or low delay). In this work, we consider using model-based reinforcement learning (RL) to learn the optimal

control policy for queueing networks so that the average job delay (or equivalently the average queue back-

log) is minimized. Traditional approaches in RL, however, cannot handle the unbounded state spaces of the

network control problem. To overcome this difficulty, we propose a new algorithm, called RL for Queueing

Networks (RL-QN), which applies model-based RL methods over a finite subset of the state space while ap-

plying a known stabilizing policy for the rest of the states. We establish that the average queue backlog under

RL-QN with an appropriately constructed subset can be arbitrarily close to the optimal result. We evaluate

RL-QN in dynamic server allocation, routing, and switching problems. Simulation results show that RL-QN

minimizes the average queue backlog effectively.
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1 INTRODUCTION

The rapid growth of information technology has resulted in increasingly complex network sys-
tems and poses challenges in obtaining explicit knowledge of system dynamics. For instance, due
to security or economic concerns, a number of network systems are built as overlay networks,
e.g., caching overlays, routing overlays, and security overlays [54]. In these cases, only the overlay
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part is fully controllable by the network administrator, while the underlay part remains uncon-
trollable and/or unobservable. The “black box” components make network control policy design
challenging.
In addition to the challenges brought by unknown system dynamics, many of the current net-

work control algorithms (e.g., MaxWeight [57] and Drift-plus-Penalty [45]) aim at stabilizing the
system. However, existing optimization methods for long-term performance metrics (e.g., queue
backlog and delay) only work for specific structures [15, 37], while the development for general
setting remains insufficient.
To overcome the above challenges, it is desirable to apply inference and learning schemes. A

natural approach is reinforcement learning (RL), which learns and reinforces a good decision
policy by interacting with the environment and receiving feedbacks. RL methods provide a frame-
work for the design of learning policies for general networks. There have been two main lines of
work on RL methods: model-free RL (e.g., Q-learning [62], policy gradient [56]) and model-based
RL (e.g., UCRL [27], PSRL [48]). In this work, we focus on the model-based approach.

1.1 Related Work

Existing methods for reducing the average job delay (or equivalently reducing the average queue
backlog) of general networks can be classified into three types: equivalent constraint, Lyapunov
drift, andMarkov decision process (MDP) [18]. However, most equivalent constraint approaches
can only be applied to single-hop networks [18]. Therefore, we focus on discussing the latter two
classes of algorithms, as they are more universal and can be applied to multi-hop network systems.
We first discuss the Lyapunov drift approach, which generally does not require learning the

dynamics for network problems with hidden dynamics. The Lyapunov drift approach has been
widely applied in numerous network control problems. For instance, in dynamic server allocation
problems, a Lyapunov-drift-based algorithm named the longest connected queue (LCQ) can
stabilize the queue backlog without knowing the underlying dynamics (e.g., arrival rates, channel
statistics) [22, 58]. For multiclass routing networks, the Backpressure algorithm was designed un-
der the Lyapunov drift framework and only requires the observation of queue backlogs [3, 46, 57].
Similarly, Lyapunov drift methods that do not require learning the network dynamics have been
proposed for switch scheduling [29, 40, 53] and inventory control problems [19, 44], and so on.
Most Lyapunov drift algorithms are shown to be throughput optimal [57], i.e., they can stabilize
the system whenever the system is stabilizable. Also, the Lyapunov drift approach usually only
requires solving a linear programming problem and does not suffer from the “curse of dimension-
ality”, which makes it applicable to large-scale queueing systems. However, without learning the
system dynamics, the Lyapunov drift approach generally cannot guarantee minimum queueing
delay. For instance, for dynamic server allocation problems, the optimal policy has only been de-
veloped for highly symmetric systems (i.e., uniform external arrival rates, uniform connectivity
probabilities, and uniform success rates) [22]. Another well-known example is switching system,
for which the Maximum Matching policy has been shown to be close to the optimal policy when
the system is in the heavy traffic regime [37]. In Sections 5.1, 5.1, and 5.4, we conduct numerical
experiments and show that our approach significantly outperforms the Lyapunov drift methods.
The MDP approach models the queueing system control problem as an MDP that aims at mini-

mizing the long-term average queue backlog. Classical algorithms to solve MDP problems include
value iteration and policy iteration [7]. Note that although the MDP approach can minimize the
average job delay, it can only be applied to networks with finite buffer size, which is unrealistic
for many practical network models. Therefore, the MDP approach fails to minimize the average
job delay of general stochastic networks and is typically applied to MDPs of small scale [65, 66]
or special structures [24, 51]. However, traditional MDP approach requires explicit knowledge of
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the network dynamics. Since the network problems studied in this work have hidden dynamics,
it is necessary to learn the dynamics when applying the MDP approach. A related field is RL. The
majority of RL algorithms apply approximations to reduce the computation complexity, including
state representation [20, 38], value function approximation [4, 28], and pruning [36]. RL methods
have been applied to a wide range of network control problems, like routing [11, 17, 50, 67], spec-
trum access [23, 43, 61], switch scheduling [13], state probing [14] and so on. Although these RL
methods achieve satisfactory performance in simulation, they lack performance guarantees.
We consider model-based RL methods, which tend to be more analytically tractable. Conven-

tional model-based RL methods like UCRL [27] and PSRL [48] only work for finite-state-space
systems, yet queueing systems are usually modeled to have unbounded buffer sizes. The work in
[34] assumes that the system has an admission control scheme to keep queue backlogs finite. The
resulting system can be modeled as an MDP with finite states, where UCRL can be applied. In
[59], the authors modify the PSRL algorithm to deal with MDPs with large state space, yet the
algorithm requires the MDP to have a finite bias span, which is unrealistic for problems that aim
at minimizing the average cost with a countably infinite state space.
In summary, existing methods either cannot guarantee optimal delay (the Lyapunov drift ap-

proach), or lack performance guarantees (heuristic RL) or can only deal with finite state spaces
(the MDP approach and theoretical RL). In this article, we aim at developing an algorithm that
achieves provable optimality for networks with countably infinite state spaces. To the best of our
knowledge, our algorithm is the first to achieve minimum average queue backlog in general net-
works with unbounded buffers. Our analysis also offers a possible roadmap to solving general
MDPs with countably infinite state spaces.

1.2 Our Contributions

We apply model-based RL to queueing networks with unbounded state spaces and unknown dy-
namics. Our approach leverages the fact that for a vast class of stable queueing systems, the proba-
bility of the queue backlog being large is relatively small. This observationmotivates us to focus on
learning control policies over a finite subset of states that the system visits with high probability.
Our main contributions are summarized as follows.

—We propose a model-based RL algorithm that can deal with unbounded state spaces. In par-
ticular, we introduce an auxiliary system with the state space bounded by a threshold U .
Our approach employs a piecewise policy: for states below the threshold, a model-based RL
algorithm is used; for all other states, a simple baseline algorithm is applied.

—We establish that the episodic average queue backlog under the proposed algorithm can be
arbitrarily close to the optimum with a large threshold U . In particular, by applying Lya-
punov analysis, we characterize the gap to the optimal performance as a function of the
threshold U . In addition, our proof technique may be of independent interest for analyzing
the convergence of other RL algorithms for queueing networks.

— Simulation results on dynamic server allocation, routing, and network switching problems
corroborate the validity of our theoretical guarantees. In particular, the proposed algorithm
effectively achieves a small average queue backlog, with the gap to optimum diminishing as
the thresholdU increases.

The article is organized as follows. In Section 2, we formulate the problem and introduce nota-
tions. Section 3 gives an outline of our approach, presents required assumptions and the proposed
algorithm. We conduct theoretical performance analysis regarding convergence and optimality of
the proposed algorithm in Section 4. We evaluate the algorithm in various settings and the numer-
ical results are given in Section 5.
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2 SYSTEMMODEL

We consider a discrete time network with the general topology of a directed graph G = (N ,L),
where N is the set of nodes and L is the set of links. Each node maintains one or more queues
for undelivered packets, and each queue has an unbounded buffer. We denote by D the number of
queues. Nodes represent the locations where data packets are generated, relayed, and/or processed
in the network. Links represent the communication links.
During each time slot, external data packets arrive at nodes where they are either processed

and then depart the system or are relayed. For relayed packets, the communication links can be
stochastic, i.e., data transmissions between nodes can fail. We assume the underlying dynamics are
partially or fully unknown. This model captures a large class of queueing networks that involve
routing, scheduling, and switching.
We suppose that the system has the Markovian property: The probability distributions of the

queue backlogs in the next time slot only depend on the current queue backlogs and the control
decision. In other words, the system can be modeled as a countable-state-space MDP M with
average cost as follows:

— State space S: the set of queue backlog vectors, i.e., S � ND .
— Action space A: the set of feasible control decisions, which are specified by the problem
setting. In this article, we only consider finite action space.

— State-transition probability p (Q ′ | Q,a): the probability of transitioning into state Q ′ from
state Q with action a. For simplicity, we assume that the magnitude that a queue backlog
can change during one time slot is upper bounded by a constantW . Let R (Q ) denote the set
of one-step reachable queue backlog vectors from stateQ .

— Cost function c (Q ): the total backlog of D queues, i.e., c (Q ) �
∑D

i=1Qi .

As discussed in Section 1.1, a large number of queueing networks have been studied extensively
and various stabilizing policies that aim at keeping the average total queue backlog finite have
been developed. Here, we take a step further to go beyond stability and our goal is to minimize
the average queue backlog.
For readers’ convenience, we summarize the notations used in this article in Table 1.

3 OUR APPROACH

Classical model-based RL fits a model of state transition kernel to observed data and then solves
the dynamic programming problem on the estimated system. The challenge of applying such an
approach to countable-state MDPs arises from both of estimating model parameters and solving
the estimated MDP, due to the fact that the state space is unbounded.

Here, we introduce an auxiliary system M̃ with a bounded state space. We only apply RL tech-
niques on the constructed bounded state space, while simply apply a known stabilizing policy π0 (cf.
Assumption 1) to the rest of the states. We show that the performance gap between the proposed

algorithm and the optimal policy can be made arbitrarily small by designing appropriate M̃.

3.1 Overview

We first provide an overview of our approach and defer a detailed description of the algorithm to
Section 3.3. Our RL method operates in an episodic manner.
We apply a decaying ϵ-greedy method to decide whether an episode should conduct exploration

or exploitation. For each episode, we perform exploration (i.e., apply some random policy to collect
diverse samples) with probability ϵi , and we conduct exploitation (i.e., using current estimates of
dynamics to compute an estimated optimal policy) with probability 1 − ϵi . At the beginning of
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Table 1. Notations

D The number of queues in the queueing network
Q The D-dimensional queue backlog vector of the queueing network
Qi The queue backlog of node i

Qmax The maximum entry ofQ
R (Q ) The set of one-step reachable queue backlog vectors fromQ

W The magnitude that a queue backlog can change during one time slot
U The buffer size of the auxiliary system
M The countable-state-space MDP of the original queueing network

M̃ The MDP of the auxiliary system
S The state space ofM
S̃ The state space of M̃
A The action space ofM

p (· | ·, ·) The state-transition kernel ofM
p̃ (· | ·, ·) The state-transition kernel of M̃

π0 The known stabilizing policy of the queueing network
πrand The random policy that selects an action in A uniformly
π ∗ The stationary policy that minimizes the expected average total queue backlog ofM
π̃ ∗ The stationary policy that minimizes the expected average total queue backlog of M̃
ρ∗ The expected average queue backlog ofM when applying π ∗

ρ̃∗ The expected average queue backlog of M̃ when applying π̃ ∗

Φ̃∗ (·) The Lyapunov function with negative drift regarding π̃ ∗

β The order of Φ̃∗ (·)
Sin The set ofQ ’s with Φ̃∗ (Q ) � (U −W )β

Sout S \ Sin

pπ+π
′
(·) The stationary probability distribution inM with π applied to Sin and π ′ applied to
Sout

Eπ [·] The expection of a random variable inM with π applied to S
Eπ+π ′[·] The expection of a random variable inM with π applied to Sin and π ′ applied to

Sout

Ẽπ̃ [·] The expection of a random variable in M̃ with π̃ applied to S̃

the learning process, we tend to explore the system to collect samples, and thus ϵi is relatively
large when i is small. As the learning process goes on, we gradually obtain enough samples and
are close to the optimal policy, and thus ϵi is decreased to exploit the learned policy. The scheme
has been applied in network control [2, 23, 55] to achieve a tradeoff between exploration and
exploitation.
For an exploration episode, we apply a randomized policy πrand that takes action uniformly to

obtain samples for the estimation of state-transition probabilities inM. However, sinceM has

a countably infinite state space, we instead estimate the model for an auxiliary system M̃ with a

bounded state space. The auxiliary system M̃ has a thresholdU : the system has the same dynamics
as the real one, with the only difference that each queue has a bounded buffer sizeU . For each queue

in M̃, when its queue backlog reaches U , new packets to it will be dropped. Mathematically, the

state space of M̃ is given by S̃ � {Q ∈ S : Qmax � U } where Qmax � maxQi . The auxiliary

system M̃ shares the same action space A and cost function c (Q ) asM. With the introduction
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Fig. 1. Schemetic illustration of our approach (when D = 2).

of M̃, an exploration episode operates as in Figure 1(a): we only apply πrand to states in S̃, while
simply applying the known stabilizing policy π0 to other states.

For an exploitation episode, we first repartition the state space S due to technical reasons. We

denote by π̃ ∗ the optimal policy for M̃, and define a Lyanopuv function Φ̃∗ (·) (cf. Assumption 2).

Denoting by β the order of Φ̃∗ (·), we partition S in the following manner:

⎧⎪⎪⎨⎪⎪⎩
Sin �

{
Q : Φ̃∗

(
Q
)
� (U −W )β

}
Sout � S \ Sin

.

As illustrated in Figure 1(b), during an exploitation episode, we first compute an estimated π̃ ∗ using
the estimated dynamics obtained from exploration episodes. We then apply the estimated π̃ ∗ to
states in Sin and π0 to states in Sout throughout the episode.
We will show that the average queue backlog under our algorithm converges to the optimal

average queue backlog ρ∗ as we increase U . We divide the analysis into two stages: before and
after π̃ ∗ is learned. For the first stage, our model-based RL approach applies ϵ-greedy exploration.
We show that the proposed algorithm gradually obtains π̃ ∗ with high probability. For the second
stage, by applying drift analysis on the Markov chain, we show that when π̃ ∗ is applied for states
in Sin and π0 for states in Sout, the probability of queue backlog exceeding into Sout decays ex-
ponentially withU . In addition, wheneverQ leaves Sin, the expected accumulated queue backlog
beforeQ returns back to Sin can be upper bounded as a polynomial term inU . Together, we show
that the gap between our result and the optimal average queue backlog ρ∗ is upper bounded by
O (poly(U )/exp(U )), which diminishes as U increases.

3.2 Assumptions

Our algorithm can be applied to a broad class of network problems. To establish rigorous per-

formance guarantee, we need to impose some assumptions onM and M̃. We will discuss these
assumptions and argue that they are reasonable under many queueing networks.
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Assumption on π0:As introduced in Section 3.1, we only learn the optimal policy for an auxiliary
system with a bounded state space, while for the rest of the states, we apply a known stabilizing
policy π0 to control the queue backlog. We quantify the stability of π0 as follows:

Assumption 1. There exists a known policy π0, a Lyapunov function Φ0 : S → R+ and constants
a,α , ϵ0,B0 > 0 such that the following properties hold:

(1) Φ0 (Q ) � aQα
max for eachQ ∈ S;

(2) Eπ0 [Φ0 (Q (t + 1)) − Φ0 (Q (t )) | Q (t ) = Q] � −ϵ0 for eachQ such that Qmax � B0.

The requirement of MDP respecting Lyapunov function under a stable policy is not restric-
tive. For a stabilizable stochastic network, there exists a policy π0 under which the corresponding
Markov chain is positive recurrent. Moreover, the property of positive recurrence is known to be
equivalent to the existence of the so-called Lyapunov function [41]. These observations motivate
us to focus on MDPs that satisfy Assumption 1. In practice, for stabilizable networks, numerous
stable policies have been proposed, including dynamic server allocation problems [5, 15, 58], mul-
ticlass routing networks [9, 10, 26, 32, 33], switch scheduling [29, 53, 58], and inventory control
[19, 44], which all satisfy Assumption 1.

Assumption on π̃ ∗: From the outline of performance analysis in Section 3.1, we need to show
that the probability of queue backlog entering Sout decays exponentially with respect to U . We
therefore make a natural assumption on the stability property of π̃ ∗. This assumption is necessary

for the proof of Lemma 2. For clarity, we use Ẽπ̃ [·] to denote the expectation with respect to the

randomness of the auxilary system M̃ under the policy π̃ (to distinguish from E[·] forM).

Assumption 2. There exist a Lyapunov function Φ̃∗ : S̃ → R+ and constants β � 1,b1,b2, B̃
∗, ϵ̃∗ >

0, such that for any U > 0, the following properties hold:

(1) Q
β
max � Φ̃∗ (Q ) � b1Q

β
max for eachQ ∈ S̃;

(2) maxQ ′ ∈R (Q )
���Φ̃∗ (Q ′) − Φ̃∗ (Q )��� � b2 (Q

β−1
max +Q

′β−1
max ) for eachQ ∈ S̃;

(3) Ẽπ̃ ∗[Φ̃
∗ (Q (t + 1)) − Φ̃∗ (Q (t )) | Q (t ) = Q] � −ϵ̃∗ ·Qβ−1

max for eachQ ∈ S̃ such that Qmax � B̃∗.

The assumption is natural in the sense that optimal policies are stable and thus are likely to

have good Lyapunov drift properties. For instance, if Φ̃∗ (Q ) =
∑D

i=1ωiQ
2
i has a negative drift for

eachQ satisfying
∑D

i=1Qi � B, one can easily show that ωmin ·Q2
max � Φ̃∗ (Q ) � (

∑D
i=1ωi ) ·Q2

max,

maxQ ′ ∈R (Q )
���Φ̃∗ (Q ′) − Φ̃∗ (Q )��� � W · (∑D

i=1ωi ) · (Qmax + Q
′
max), and has a negative drift for each

Q with Qmax � B. Possible methods to analyze Lyapunov drift properties from queueing stability
can be found in [42].

Assumption on communication properties: Existing model-based RL algorithms with perfor-
mance guarantees usually require the “diameter” (i.e., the upper bound for the shortest first hitting
time between any two states) of the MDP to be finite [27]. However, it is unrealistic to assume the
MDP diameter to be finite when the state space is unbounded. Instead, we make the following as-
sumption (this assumption is used in the proof of Lemma 1) whereTQ→Q ′ denotes the first hitting
time fromQ toQ ′.

Assumption 3. There exist constants c,γ > 0, such that for any U > 0 and everyQ,Q ′ ∈ S̃,

min
π̃
Ẽπ̃

[
TQ→Q ′

]
� c‖Q ′ −Q ‖γ1 ,

where π̃ is a policy that can be applied to S̃ .

In other words, Assumption 3 states that there exists a policy π̃ such that the first hitting time

between two states Q and Q ′ in S̃ is a polynomial function of ‖Q ′ − Q ‖1. We emphasize that
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the constant γ is independent of the value of U . Indeed, with larger U ’s, Ẽπ̃ [TQ→Q ′] might grow
larger, since the trajectory from Q to Q ′ are more likely to be longer. However, it is possible that
the increment is bounded. For instance, certain M/G/1 queueing systems [52] and random walk
models [30] have constantγ ’s even if the state space is unbounded. Directly verifyingAssumption 3
might be computationally difficult. Theorem 11.3.11 from [42] offers a drift analysis approach for
justifying Assumption 3.
We remark that the maximum first passage time of the MDP plays an essential role in analyzing

the RL algorithms in infinite-horizon average-reward MDPs. Existing related works either use
MDP diameter [27, 68], or span [6, 21, 49], or mixing time [1, 47, 63] to characterize the maximum
first passage time of the MDP, where these metrics serve as coefficients in the gap to the optimum.
The analysis in our article also relies on the assumption of reasonable bounds for the maximum
first passage time. It would be of great interest to establish performance guarantees under relaxed
assumptions.

Assumption on error tolerance: As the learning process proceeds, ideally the estimation for M̃
becomes increasingly accurate. However, it is unrealistic for us to obtain the exact M̃. Therefore,
we assume that if the estimates for the state-transition kernels are accurately enough (i.e., within

a certain error bound), the optimal policy to the estimated M̃ is the same as π̃ ∗. The assumption
is stated as follows.

Assumption 4. There exists a Δp > 0, such that for any MDP M̃′ with the same state space, action

space and cost function as M̃, if for eachQ ∈ S̃ and each a ∈ A, we have���p̃ (· | Q,a) − p̃ ′ (· | Q,a)���1 � Δp,

then the optimal policy for M̃′ is the same as the optimal policy π̃ ∗ for M̃.

In this article, we focus on network control problems with finite action space. For many net-
works, when the dynamics (e.g., exogenous arrival rates, service rates, and channel capacities)
vary slightly, the optimal policies remain the same. For instance, if the arrival rates of the switch-
ing networks vary yet remain heavy loads, Maximum Matching still remains a close-to-optimal
policy [37].

3.3 Algorithm

We propose an algorithm called RL for Queueing Networks (RL-QN). RL-QN operates in an
episodic manner: at the beginning of episode k , we uniformly draw a real number ξ ∈ [0, 1] to
decide whether to explore or exploit during this episode. The length of each episode depends on
the observations.

— If ξ � ϵk � �/
√
k (where � ∈ (0, 1] can be tuned to control the exploration frequency), we

perform exploration during this episode. For states in S̃, we apply the randomized policy

πrand. For states in S \ S̃, we apply π0.
— If ξ > ϵk , we enter the exploitation stage. We first calculate sample means to estimate the

state-transition function p̃ of M̃. We then apply value iteration on the estimated system M̃k

to obtain an estimated optimal policy π̃ ∗
k
. During this episode, we apply π̃ ∗

k
for states in Sin

and π0 otherwise.
—When the number of visits to states inSin exceeds Lk = L ·

√
k (where L is a positive constant

and can be tuned to adjust the sampling rate), RL-QN enters episode k + 1 and repeat the
process above.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 7, No. 1, Article 2. Pub. date: August 2022.



RL-QN: A Reinforcement Learning Framework for Optimal Control of Queueing Systems 2:9

ALGORITHM 1: The RL-QN algorithm

1: Input: A,U >W , 0 < � � 1, L > 0, K > 0
2: for episodes k ← 1, 2, . . . ,K do

3: Set Lk ← L ·
√
k , ϵk ← �/

√
k and uniformly draw ξ ∈ [0, 1].

4: if ξ � ϵk then

5: Set

πk (Q ) =
⎧⎪⎨⎪⎩πrand

(
Q
)
, forQ ∈ S̃

π0
(
Q
)
, forQ ∈ S \ S̃

.

6: else

7: For each Q,Q ′ ∈ S̃ and a ∈ A, let p̃k (Q
′ | Q,a) = P̃ (Q,a,Q ′)/N (Q,a) for N (Q,a) > 0

and p̃k (Q
′ | Q,a) = 1/��R (Q )�� otherwise.

8: Solve the estimated MDP M̃k and obtain the estimated optimal policy π̃ ∗
k
.

9: Set

πk (Q ) =
⎧⎪⎨⎪⎩π̃
∗
k

(
Q
)
, forQ ∈ Sin

π0
(
Q
)
, forQ ∈ Sout

.

10: end if

11: while visits to states in Sin is smaller than Lk do

12: Take the action at = πk
(
Q (t )
)
for the real system.

13: Observe the next stateQ (t + 1).

14: if Q (t ) ∈ S̃ then

15: Increase N
(
Q (t ),at

)
by 1.

16: Increase P̃ (Q (t ),at ,min{U ,Q }) by 1.
17: end if

18: t ← t + 1.
19: end while

20: end for

21: Output: estimated optimal policy π̃ ∗K

The details are presented in Algorithm 1. We use min{U ,Q } to denote a vector with the ith
coordinate being min{U ,Qi }.

4 PERFORMANCE ANALYSIS

We analyze the performance of our algorithm from both exploration and exploitation perspectives,
under Assumptions 1–4. We first prove that RL-QN can learn π̃ ∗ within finite episodes with high
probability, which implies that RL-QN explores different states sufficiently to obtain an accurate

estimation of M̃ (cf. Theorem 1). We then show that RL-QN exploits the estimated optimal policy
and achieves a performance close to the optimal result of ρ∗ (cf. Theorem 2).

In this article, we focus on MDPs such that all states are accessible from each other under the
following policies: (a) πrand + π0 : applying πrand to S̃ and π0 to S \ S̃; (b) π̃ ∗ + π0 : applying π̃ ∗

to Sin and π0 to Sout; and (c) π ∗ : applying (a truncated version of) π ∗ to S̃ in M̃. That is, the
corresponding Markov chains under the above policies are irreducible.

4.1 Convergence to the Optimal Policy

The following theorem states that, with arbitrarily high probability, RL-QN learns π̃ ∗ within a
finite number of episodes.
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Theorem 1. Suppose Assumption 4 holds. For each δ ∈ (0, 1), there exists k∗ < ∞ such that RL-QN
learns π̃ ∗ (i.e. π̃ ∗

k∗ = π̃ ∗) within k∗ episodes with probability at least 1 − δ .

Proof. We give the detailed proof in Appendix A. Let us now sketch the main steps in our

analysis. By analyzing the mixing property of the underlying Markov chain of applying πrand to S̃
and π0 to S \ S̃, we first show that there exists a constant K0 such that for episode k � K0, we are

able to obtain Θ(
√
k ) samples for each (Q,a) pair.

We then use a result in [64] to compute the number of samples required for each (Q,a) pair to
ensure π̃ ∗

k
= π̃ ∗, under Assumption 4. Finally, we show that by choosing the exploration probability

of ϵk = �/
√
k , exploration episodes occur infinitely often, which implies that we can reach the

number of required exploration episodes within finite number of episodes. �

Theorem 1 indicates that RL-QN explores (i.e., samples) state-transition functions of each state-

action pair (Q,a) in M̃ sufficiently.

4.2 Gap to Optimum

Theorem 1 states the sufficient exploration aspect of RL-QN. In RL, the tradeoff between explo-
ration and exploitation is of significant importance to the algorithm performance. In this section,
we show that RL-QN also exploits the learned policy such that the episodic average queue backlog
is bounded and can get arbitrarily close to ρ∗, the optimal average queue backlog of M, as we
increaseU .
We denote the timestep at the end of episode k by tk and the actual length of episode k by L′

k
,

i.e., L′
k
= tk − tk−1 with t0 � 0. We use π in

k
to represent the policy applied to Sin during episode k

and pπ̃+π0 (·) to denote the stationary distribution of states when applying π̃ to states in Sin and
π0 to states in Sout.

By Theorem 1, RL-QN learns π̃ ∗ with high probability. Note that as the exploration probability

decays by 1/
√
k , the probability of utilizing the learned policy converges to 1 as the episodes in-

crease. Hence, the episodic average queue backlog when π in
k
= π̃ ∗ constitutes a large proportion of

the overall expected average queue backlog. Therefore, the key step to upper bound the expected
average queue backlog is to upper bound the episodic average queue backlog when π in

k
= π̃ ∗. We

prove that it can be upper bounded with respect to ρ̃∗, the optimal average queue backlog of M̃,
as stated in Lemma 1. We first define Sin

bd
as the set of states in Sin that is possible to exit into Sout

at the next time slot, i.e., Sin
bd
� {Q ∈ Sin : R (Q ) ∩ Sout � ∅}.

Lemma 1. Under Assumptions 1–3, we have

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

∑
i Qi (t )

L′
k

⎤⎥⎥⎥⎥⎥⎦ = ρ̃∗ + pπ̃
∗+π0
(
Sin
bd

)
· O
(
U 1+max{2α,γ }

)
.

Proof. We first define the accumulated regret regarding ρ̃∗ for a given episode k with π in
k
=

π̃ ∗ as
∑tk

t=tk−1+1
(
∑

i Qi (t ) − ρ̃∗). We then define Sin
in � S

in \ Sin
bd

and decompose the expected

accumulated regret into three parts according to state position: (i) Q ∈ Sin
in , (ii) Q ∈ S

in
bd
, and

(iii)Q ∈ Sout.
For the first part (i), we use Bellman equation analysis to show that, every time Q enters Sin

in

fromSin
bd
and returns back toSin

bd
, the expected accumulated regret is upper bounded by the span of

the solutions to the Bellman equations. We then use Proposition 5.5.1 in [7] to obtain a polynomial
upper bound for the span of the solution to the Bellman equation under Assumption 3.
The second part (ii) is trivially upper bounded by DU .
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For the third part (iii), we prove that the time it takes to return backSin is polynomial inU under
Assumption 1 (using techniques as the proof of Theorem 1.1 in Chapter 5 of [12]). Therefore, by
Theorem 6.3.4 in [25], every time Q enters Sout from Sin

bd
and returns back to Sin

bd
, the incurred

expected accumulated regret is upper bounded by a polynomial function ofU .
The detailed proof is given in Appendix B. �

We then proceed to upper bound pπ̃
∗+π0 (Sin

bd
), as stated in the following lemma.

Lemma 2. Under Assumption 2, we have

pπ̃
∗+π0
(
Sin
bd

)
= O (exp(−U )).

Proof. We show that under Assumption 2, we can construct a linear Lyapunov function with
a negative drift for states with large Qmax. By applying similar techniques as Lemma 1 in [8], we
establish an upper bound for the tail probability of Lyapunov values, which decays exponentially.
The detailed proof is given in Appendix C. �

With Theorem 1, Lemmas 1 and 2, we establish the following main result of this article.

Theorem 2. Suppose Assumptions 1–4 hold. When applying RL-QN to M, the asympototic

episodic average queue backlog is upper bounded as follows:

lim
k→∞
E

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

∑
i Qi (t )

L′
k

⎤⎥⎥⎥⎥⎥⎦ ≤ ρ∗ + O ��U
1+max{2α,γ }

exp (U )
�� . (1)

Proof. With Lemmas 1 and 2, we show that when k → ∞, for each episode with π in
k
= π̃ ∗,

the expected average queue backlog is upper bounded by ρ̃∗ + O (U 1+max{2α,γ }/exp(U )). We next
show that the expected average queue backlog contributed by episodes where π in

k
� π̃ ∗ becomes

negligible as k → ∞. By applying similar techniques as the proof of Lemmas 1 and 2, we then
obtain that ρ̃∗ = ρ∗ + O (U 1+γ/exp (U )).
The detailed proof is given in Appendix D. �

Theorem 2 provides an upper bound on the performance guarantee of RL-QNwith respect to the
threshold parameterU : by increasingU , the long-term episodic average queue backlog approaches
ρ∗ exponentially fast. Recall that the episodic length L′

k
increases to ∞ as k → ∞. We conjecture

that the same upper bound hold for the overall average queue backlog regarding the time horizon
T , i.e.,

lim
T→∞

E

[∑T
t=1

∑
i Qi (t )

]
T

≤ ρ∗ + O ��U
1+max{2α,γ }

exp (U )
�� . (2)

We note that the result of Theorem 2 does not imply Equation (2) directly. A rigorous proof of the
conjecture (2) seems difficult with current techniques. We leave as an interesting future direction
to investigate if Equation (2) holds.

4.3 Complexity Analysis

Here, we present the complexity analysis. Our algorithm requires solving an estimated MDP for

each exploitation episode. Since episode k has length of at least L ·
√
k , and

K∑
k=1

√
k �

2

3
K

3
2 ,
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we have that given a time horrzon T , the number of episodes is upper bounded as

KT �
(
3T

2L

) 2
3

.

It has been shown that to solve a general MDP, the time complexity is at least polynomial in the
size of the state space [35]. The concrete time complexity depends on the solution method and its
parameters. In our setting, the state space Sin has a size of Θ(U N ). Therefore, the time complexity
of our algorithm is

O
((
T/L
) 2

3 · poly
(
U N
))
.

Therefore, for a given system with fixed number of nodes, the time complexity grows at most
polynomially in the thresholdU . When applying our algorithm to problems of larger scales (larger
N ), the complexity suffers from “curse of dimensionality”. However, our algorithm remains compu-
tationally feasible in practice for the following reasons. First, although the “curse of dimensionality”
persists, our algorithm substantially simplifies the original MDP with unbounded state space to an
MDP with finite state space. For instance, the system in Section 5.1 cannot be optimized by tradi-
tional methods but is optimized efficiently under our algorithm. Second, we only require solving
the estimated MDP sparsely, i.e., no more than (3T/2L)2/3 times. Choosing a relatively large L can
greatly reduce the time complexity. Third, solving the MDP is independent of other steps of our
algorithm, which allows us to employ appropriate methods to solve MDPs according to different
application scenarios, computational capacities and performance requirements. For instance, since
we aim at optimizing the average cost of the MDP, undiscounted value iteration/policy iteration
methods should be applied. However, we apply discounted methods in our numerical experiments
and obtain the same solution with significantly less computation time. Also, we may utilize the
special structure of the MDP [24, 31] or apply approximation methods [16, 17, 60] to alleviate
the computational cost. Our numerical results in Section 5.1 further validates the conclusion and
shows that our algorithm is computationally feasible in practice.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of RL-QN for three classes of queueing systems: server
allocation, routing, and switching.

5.1 Server Allocation (Two Nodes)

We consider a dynamic server allocation problem: exogenous packets arrive to two nodes accord-
ing to Bernoulli process with rate λ1 and λ2, respectively. At each time slot, the central server
selects one node to serve. The head of line job in the selected queue i completes the required ser-
vice and leaves the system with probability pi . The system model and parameters are illustrated
in Figure 2.
According to [58], whenever the condition

λ1
p1
+
λ2
p2
< 1,

is satisfied, one stabilizing policy is to always serve the node with the longest queue (LQ). There-
fore, we can use LQ policy as π0. To evaulate whether this problem satisfies Assumption 3, we

apply π0 to the truncated state space S̃ withU = 10 and simulate the system to collect the hitting
times, as shown in Figure 3. We can see that as the state distance grows, the average first hitting
time grows sublinearly, which is obviously upper bounded by linear growth and thus indicates
that Assumption 3 is satisfied. Moreover, our numerical experiments show that our algorithm can
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Fig. 2. System model of the dynamic server

allocation model with two nodes.
Fig. 3. Simulation results for the dynamic server

allocation model of two nodes.

Fig. 4. Average queue backlog under different policies for the server allocation model with two nodes.

optimize the average queue backlog for various settings even if we cannot provably verify Assump-
tion 3. Therefore, the applicability of our algorithm may not be sensitive to Assumption 3, which
helps to show that our algorithm is practical.
We simulate RL-QN for U = 5, U = 10, and U = 20. The results are shown in Figure 4. To obtain

a lower bound on the average queue backlog, we assume that the system dynamics, i.e., arrival
rates and success rates, are known. We then optimize the MDP and obtain its average queue back-
log. This average queue backlog is guaranteed to be a lower bound since, in practice, the system
dynamics are unknown and errors that occur during the learning process can downgrade the per-
formance. From Figure 4, we see that the LQ policy stabilizes the queue backlog, yet its average
queue backlog is far from the lower bound. All of our RL-QNmethods outperform π0. When U = 5,
the average queue backlog converges to 2.38, while for U = 10 and U = 20, the average queue back-
log becomes 2.24. This indicates that RL-QN achieves better performance with a larger threshold
parameterU , as implied by Theorem 2. Moreover, since the cases with U = 10 and U = 20 achieve
similar performance, it is very likely that in practice a small U achieves satisfactory performance,
which makes our algorithm more computationally feasible.

We then study the time complexity of our algorithm. We apply three different MDP solvers
in our algorithm: value iteration, relative value iteration, and policy iteration, all with discount
factor 0.99. Figure 5 shows the relationship between the relative computation time (i.e., the actual
computation time of RL-QN divided by the actual computation time of LQ) and the average queue
backlog. Even whenU = 20, the computation time is less than three times of the LQ policy, which
shows that increasing U has relatively small impact on the computation time. From Figure 6, we
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Fig. 5. The relationship betweenU and the

relative computation time.
Fig. 6. The relationship between the relative compu-

tation time and the average queue backlog.

Fig. 7. System model of the dynamic server allocation model with 10 nodes.

see that the average queue backlog drops significantly even with a relatively smallU . The average
queue backlog is reduced by 23.1% when U = 8, while the computation time is only 1.17 times of
the traditional non-ML LQ policy. Therefore, our algorithm is computationally efficient in practice.

5.2 Server Allocation (10 Nodes)

We then consider a dynamic server allocation problemwith greater scale: exogenous packets arrive
to ten nodes according to Bernoulli process with rate λi , i = 1, . . . , 10 respectively. At each time
slot, the central server selects one node to serve. The head of line job in the selected queue i
completes the required service and leaves the system with probability pi . The system model and
parameters are illustrated in Figure 7.
As discussed in Section 3.1, if we directly apply classical methods to solve the estimated MDP,

the computational complexity is at least Θ(U N ), which grows exponentially with the number of
nodes N . Therefore, for the ten-node dynamic server allocation model, we prefer to utilize the
special structures of the MDP or apply approximation methods to reduce the computational cost.
It has been shown in [15] that when all nodes are always connected to the central server, the

policy to minimize the average job delay is to serve the node with the largest service rate pi among
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Fig. 8. Simulation results for the server allocation model with 10 nodes.

all non-empty nodes. Therefore, for each exploitation episode, instead of solving the estimated

MDP M̃k with classical methods, we directly obtain the optimal solution: serving the node with
the largest estimated pi among all non-empty nodes. We emphasize that our algorithm does not
depend on how the estimated MDPs are solved. The above computational trick utilizes the special
structure of the server allocation model to speed up the computation, and other techniques for
efficiently solving the MDPs can also potentially be employed.
The results are shown in Figure 8. From the figure, we observe that RL-QN outperforms LQ.

The LQ reaches an average queue backlog of 7.6, while RL-QN reaches 7 when U = 5. When U is
beyond 10, RL-QN reaches an average queue backlog of 6, which is close to the optimal result.

5.3 Routing

We consider a simple routing problem: exogenous packets arrive at the source node s according
to Bernoulli process with rate λ = 0.85. Nodes 1 and 2 are two intermediate nodes and can serve
at most one packet during each time slot, with probability p1 and p2, respectively. Node d is the
destination node. At each time slot, node s has to choose between routes s → 1→ d and s → 2→ d
to transit new exogenous packets. Specifically, the system model and parameters are shown in
Figure 9.
The parameters (p1,p2) are queue-dependent here:

(p1,p2) =
⎧⎪⎨⎪⎩(0.9, 0.1), Q2 (t ) � 5

(0.1, 0.9), Q2 (t ) > 5
.

For each λ < 0.9, an intuitive stabilizing policy is to always use the fixed path s → 1→ d , while
never choose s → 2→ d . Therefore, we can use the policy that always routes through s → 1→ d
as π0. However, it is possible that we could split the external arrivals into the two routes to fully
utilize the service capacities of both nodes 1 and 2, and achieve better performance.
We simulate RL-QN for U = 10. The results are plotted in Figure 10, which shows that RL-QN

outperforms the fixed path stabilizing policy and converges to the optimum quickly.

5.4 Switching

We consider a 2 × 2 input-queued switch as illustrated in Figure 11. Data packets arriving at input i
destined for output j are stored at input port i, in queueQi, j , thus there are four queues in total. We
consider the case where the new data packets are arriving at queue (i, j ) at rate λi, j for 1 ≤ i, j ≤ 2,
according to a Bernoulli process. That is, for each time slot, the number of packets arriving at queue

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 7, No. 1, Article 2. Pub. date: August 2022.



2:16 B. Liu et al.

Fig. 9. System model of the routing

network with two nodes. Fig. 10. Simulation results of the routing networkwith

two nodes.

Fig. 11. System model of a 2 × 2 input-queued cell-switch.

Fig. 12. Simulation results for the input-queued switch model.

Qi, j is a Bernoulli random variable with mean λi, j . The server then selects a matching between
the inputs and outputs to transmit packets. If input i is connected with output j, then a buffered
packet is removed from the input queue Qi, j and sent to output j.
According to [39], whenever the condition that

∑
i λi, j < 1,

∑
j λi, j < 1 is satisfied, theMaximum

Matching algorithm, which selects the matching that maximizes the total queue backlog of the
connected channels is stabilizing; hence, we use it as π0.
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We implement the simulation forU = 5 under two different settings of arrival traffic. The results
are shown in Figure 12.When λ1,1 = λ1,2 = 0.4, λ2,1 = 0.2, λ2,2 = 0.1, we can see that our algorithm
outperforms the stabilizing policy π0 and converges to π̃ ∗ + π0. When λ1,1 = λ1,2 = λ2,1 = λ2,2 =
0.49, the system is under heavy traffic. In [37], it was shown that the Maximum Matching policy
π0 is close to the optimal policy that minimizes the average queue backlog. Our simulation result
(Figure 12(b)) indicates that our algorithm achieves comparable performance as the near-optimal
policy π0.

6 CONCLUSION

In this work, we apply a model-based RL framework to general queueing networks with un-
bounded state spaces. We propose the RL-QN algorithm, which applies an ϵ-greedy exploration
scheme. By leveraging Lyapunov analysis, we show that the average queue backlog of the pro-
posed approach can get arbitrarily close to the optimal average queue backlog under the optimal
policy. The proposed RL-QN algorithm requires the knowledge of a stable policy. An interesting
future direction is to investigate this problem when such information is not available.

APPENDICES

A PROOF OF THEOREM 1

In this section, we prove Theorem 1. As outlined in Section 4.1, our proof consists of three steps,
which are presented in the subsections to follow.

A.1 Sufficient Exploration for S̃ × A
For each (Q,a) ∈ S̃ × A, we denote by Nk (Q,a) the number of times that (Q,a) is encountered
during episode k . For simplicity, we use π̃k to denote the policy applied to S̃ during episode k and

prand (·) to denote the stationary distribution of states when applying πrand to states in S̃ and π0
to states in S\S̃. The following lemma illustrates that after a certain number of episodes, πrand
samples each (Q,a) ∈ S̃ × A sufficiently with a relatively large probability (e.g., greater than 1/2).

Lemma 3. Under the setting of Theorem 1 and Algorithm 1, there exists K0 > 0 such that for each

k � K0,

Pr
⎧⎪⎪⎨⎪⎪⎩
N rand
k

(Q,a)

Lk
�

prand
(
Q
)

2|A| ,∀Q ∈ S̃,∀a ∈ A
⎫⎪⎪⎬⎪⎪⎭ �

1

2
.

Proof. Here, we only consider the episodes that π̃k = πrand. (That is, in this proof episode k is
understood as the episode in which the policy πrand is executed for the kth time.) Recall that under

the policy that applies πrand to states in S̃ and π0 to states inS\S̃, the corresponding Markov chain
is positive recurrent. For each Q ∈ S, define N rand

k

(
Q
)
as the number of times that Q is visited

during episode k . For an irreducible positive recurrent Markov chain a on countable state space,
we have the mixing property that for everyQ ∈ S,

lim
k→∞

N rand
k

(
Q
)

L′
k

= prand
(
Q
)

w .p.1. (3)

Note that under πrand + π0, for every Q ∈ S̃, we take each a ∈ A with equal probability 1/|A|.
According to strong law of large number, we have

lim
k→∞

N rand
k

(Q,a)

N rand
k

(
Q
) = 1

|A| w .p.1., (4)

for everyQ ∈ S̃ and a ∈ A.
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Since both Equations (3) and (4) converge to constants, the multiplication rule for limit holds.

That is, for everyQ ∈ S̃ and a ∈ A, we have

lim
k→∞

N rand
k

(Q,a)

L′
k

= lim
k→∞

N rand
k

(
Q
)

L′
k

·
N rand
k

(Q,a)

N rand
k

(
Q
)

= lim
k→∞

N rand
k

(
Q
)

L′
k

· lim
k→∞

N rand
k

(Q,a)

N rand
k

(
Q
)

=
prand

(
Q
)

|A| w .p.1.

Note that almost sure convergence implies convergence in probability. Hence, for each (Q,a) ∈
S̃ × A and ϵ, ξ > 0, there exists a finite constant such that for each k larger than the constant,

Pr
⎧⎪⎪⎨⎪⎪⎩
�������
N rand
k

(Q,a)

L′
k

− prand
(
Q
)

|A|

������� � ϵ
⎫⎪⎪⎬⎪⎪⎭ � ξ .

Since L′
k
≥ Lk , we have

Pr
⎧⎪⎪⎨⎪⎪⎩
N rand
k

(Q,a)

Lk
�

prand
(
Q
)

2|A|

⎫⎪⎪⎬⎪⎪⎭ � Pr
⎧⎪⎪⎨⎪⎪⎩
N rand
k

(Q,a)

L′
k

�
prand

(
Q
)

2|A|

⎫⎪⎪⎬⎪⎪⎭
� Pr

⎧⎪⎪⎨⎪⎪⎩
�������
N rand
k

(Q,a)

L′
k

− prand
(
Q
)

|A|

������� �
prand

(
Q
)

2|A|

⎫⎪⎪⎬⎪⎪⎭.
By setting ϵ = prand

(
Q
)
/(2|A|), ξ = 1/(2|S̃ | |A|) and taking a union bound over S̃ andA, we have

that there exists some constant K0 < ∞ such that for each k � K0,

Pr
⎧⎪⎪⎨⎪⎪⎩
N rand
k

(Q,a)

Lk
�

prand
(
Q
)

2|A| ,∀Q ∈ S̃ and ∀a ∈ A
⎫⎪⎪⎬⎪⎪⎭ �

1

2
���S̃���|A| ·���S̃��� · |A| =

1

2
.

We complete the proof. �

A.2 Sample Requirement for Learning π̃ ∗

Define R � maxQ ∈S̃,a∈A |R
(
Q,a
) |. We have the following lemma on the number of samples

required for each (Q,a) ∈ S̃,a ∈ A to estimate the model of the auxiliary system M̃ sufficiently
accurate.

Lemma 4. Given δ > 0, if for each (Q,a) ∈ S̃ × A, the number of samples N (Q,a) satisfies

N (Q,a) �
2

(Δp)2
· log 2R+1 (U + 1)D |A|

δ
,

then with probability at least 1 − δ
2 , the optimal solution of the estimated truncated MDP is exactly

π̃ ∗.

Proof. Our proof is based on the following lemma from [64].

Lemma 5 (Theorem 2.1 in [64]). For a probability distribution p over n1 distinct events, we obtain
the empirical distribution p̂ based on n2 samples from p. Then the L1− deviation between p and p̂ is

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 7, No. 1, Article 2. Pub. date: August 2022.



RL-QN: A Reinforcement Learning Framework for Optimal Control of Queueing Systems 2:19

upper bounded as

Pr
{���p (·) − p̂ (·)���1 � ϵ

}
�
(
2n1 − 2) exp ��−n2ϵ

2

2
�� .

In our case, for a given (Q,a) ∈ S̃ × A, the true distribution over next state R (Q ) is given by
p̃
(· | Q,a) . We denote the empirical distribution by p̂

(· | Q,a) . Note that |R (Q) | � R. We set

n2 �
2

(Δp)2
· log 2R+1 (U + 1)D |A|

δ
.

By Lemma 5, we have that for each (Q,a) ∈ S̃ × A,

Pr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

Q ′ ∈R (Q )

���p̃ (Q ′ | Q,a) − p̂ (Q ′ | Q,a)��� � Δp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� (2R − 2) · exp ��− (Δp)

2

2
· 2

(Δp)2
· log 2R+1 (U + 1)D |A|

δ
��

�
δ

2(U + 1)D |A|
.

Taking a union bound over eachQ ∈ S̃ and a ∈ A, we obtain

Pr
{
there exists (Q,a) ∈ S̃ × A such that

���p̃ (· | Q,a) − p̂ (· | Q,a)���1 � Δp
}

�
δ

2(U + 1)D |A|
· (U + 1)D · |A| = δ

2
.

This completes the proof. �

A.3 Proof of Theorem 1

We are now ready to prove Theorem 1.

Proof. Define k∗ as the number of required episodes for RL-QN to learn π̃ ∗. Based on Lemmas 3

and 4, we show that as the learning process proceeds, each (Q,a) ∈ S̃ × A will be sampled

sufficiently to learn the optimal policy for M̃. We define the event

Bk �
⎧⎪⎨⎪⎩k � K0, π̃k = πrand,Nk (Q,a) >

prand
(
Q
) · Lk

2|A| ,∀Q ∈ S̃,a ∈ A
⎫⎪⎬⎪⎭.

When Bk is true, at least prand
(
Q
)
L
√
K0/(2|A|) samples are obtained for each (Q,a). Therefore,

a sufficient condition to obtain the required number of samples for each (Q,a) as Lemma 4 is that
Bk occurs for

J ∗ �

⎡⎢⎢⎢⎢⎢⎢
4|A| log 2R+1 (U+1)D |A |

δ

L
√
K0 (Δp)2 ·minQ ∈S̃ p

rand
(
Q
)
⎤⎥⎥⎥⎥⎥⎥ ,

times.
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We denote bym∗ the number of episodes needed for Bk to occur for J
∗ times. Define Ek1,k2, ...,kn

as the event that for episodes k = k1,k2, . . . ,kn , the event Bk does NOT occur. For n � 1, we have

Pr
{
m∗ � K0 + J ∗ + n

}
= Pr

{
from episode K0 to K0 + J ∗ + n − 1, Bk does not occur for at least n times

}
= Pr

⎧⎪⎪⎨⎪⎪⎩
⋃

K0�k1<k2< · · ·<kn�K0+J ∗+n−1
Ek1,k2, ...,kn

⎫⎪⎪⎬⎪⎪⎭
�

∑
K0�k1<k2< · · ·<kn�K0+J ∗+n−1

Pr
{
Ek1,k2, ...,kn

}
. (5)

By applying Lemma 3, we have that for each k � K0,

Pr
{
Bk
}
�

1

2
· Pr

{
πrand is selected at episode k

}
=
�

2
√
k
.

Therefore, for any K0 � k1 < k2 < · · · < kn � K0 + J ∗ + n − 1, we have

Pr
{
Ek1,k2, ...,kn

}
�

n∏
i=1

��1 − �

2
√
ki
�� � ��1 − �

2
√
K0 + J ∗ + n − 1

��
n

. (6)

Inserting Equation (6) into (5) yields

Pr
{
m∗ � K0 + J ∗ + n

}
�
(
J ∗ + n

n

)
· ��1 − �

2
√
K0 + J ∗ + n − 1

��
n

=
(J ∗ + n) · (J ∗ + n − 1) · · · (n + 1)

J ∗!
· ��1 − �

2
√
K0 + J ∗ + n − 1

��
n

�
(J ∗ + n) J

∗

J ∗!
· ��1 − �

2
√
K0 + J ∗ + n − 1

��
n

�
(J ∗ + n) J

∗

J ∗!
· exp ��− n�

2
√
K0 + J ∗ + n − 1

�� (7)

<
(J ∗ + n) J

∗

J ∗!
· (2J

∗ + 4)! · 4J ∗+2 · (K0 + J ∗ + n − 1) J ∗+2

(n�)2J ∗+4
(8)

�
4J
∗+2 · (2J ∗ + 4)! · (K0 + J ∗)2J

∗+2

J ∗! · �2J ∗+4
· 1
n2
,

where Equation (7) follows from the fact that for x ∈ (0, 1), 1−x ≤ e−x and Equation (8) is obtained
by the fact that exp(u) =

∑∞
k=0 (u)

k/k! > u2J ∗+4/(2J ∗ + 4)! holds for u > 0.
We then have

E
[
k∗
]
� E
[
m∗
]
=

∞∑
i=1

Pr
{
m∗ � i

}
= K0 + J ∗ +

∞∑
n=1

Pr
{
m∗ � K0 + J ∗ + n

}

≤ K0 + J ∗ +
4J
∗+2 · (2J ∗ + 4)! · (K0 + J ∗)2J

∗+2

J ∗! · �2J ∗+4
∞∑
n=1

1

n2

≤ K0 + J ∗ +
π 2 · 4J ∗+2 · (2J ∗ + 4)! · (K0 + J ∗)2J

∗+2

6 · J ∗! · �2J ∗+4
� K (J ∗).
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By Markov’s inequality, we have

k∗ �
2E [k∗]

δ
�

2K (J ∗)

δ
, (9)

with probability at least 1 − δ/2.
By taking a union bound over the events of Lemma 4 and Equation (9), we have that with

probability at least 1 − δ ,

k∗ �
2

δ
��K0 + J ∗ +

π 2 · 4J ∗+2 · (2J ∗ + 4)! · (K0 + J ∗)2J
∗+2

6 · J ∗! · �2J ∗+4
�� ,

which completes the proof. �

B PROOF OF LEMMA 1

This section is devoted to the proof of Lemma 1.

Proof. We only discuss an episode k with π in
k
= π̃ ∗ here.

We define
∑tk

t=tk−1+1

(∑
i Qi (t ) − ρ̃∗

)
as the regret of episode k . Let t ′

k
and t ′′

k
denote the first and

last time slot such that Q (t ) ∈ Sin
bd

for t ∈ {tk−1, . . . , tk }. For the simplicity, we first include the
regret incurred at time step tk−1 into the episodic regret analysis and subtract it in the end.
We decompose average episodic regret as follows:

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

(∑
i Qi (t ) − ρ̃∗

)
L′
k

⎤⎥⎥⎥⎥⎥⎦
= lim

k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑t ′′

k

t=t ′
k

(∑
i Qi (t ) − ρ̃∗

)
L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ (10)

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑t ′

k
−1

t=tk−1

(∑
i Qi (t ) − ρ̃∗

)
+
∑tk

t=t ′′
k
+1

(∑
i Qi (t ) − ρ̃∗

)
−
(∑

i Qi (tk−1) − ρ̃∗
)

L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Upper bound of Equation (10):We partition the time slots from t ′
k
to t ′′

k
into T in

k
, T bd

k
and T out

k
,

which denote the set of time slots thatQ (t ) is in Sin
in , S

in
bd
, and Sout, respectively.

To analyze the regret associated with T in
k
, we define an “in process” unit as the process that

Q (t ) leaves Sin
bd
, enters Sin

in , stays in S
in
in for some time and finally returns back to Sin

bd
. Then, the

process during T in
k

can be decomposed into multiple “in process” units. An “in process” unit is

said to start from Q in ∈ Sin
bd

if Q in is its last state before entering Sin
in . We use N in

k
(Q in) to denote

the number of times that an “in process” unit starts fromQ in. The accumulated regret during the
i th “in process” unit starting fromQ in is denoted by Rin

k,i
(Q in).

Similarly, we define “out process” units to decompose T out
k

. An “out process” unit is said to start

from Qout ∈ Sin
bd

if Qout is its last state before entering Sout. We define N out
k

(Qout) and Rout
k,i

(Qout)

in similar manners.
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Now we can further decompose Equation (10) as follows:

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑t ′′

k

t=t ′
k

(∑
i Qi (t ) − ρ̃∗

)
L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= lim

k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

Q in∈Sin
bd

∑N in
k (Q

in)
i=1 Rin

k,i

(
Q in
)

L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ (12)

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

Q out∈Sin
bd

∑N out
k (Q out)

i=1 Rout
k,i

(
Qout
)

L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ (13)

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎣
∑

t ∈T bd
k

(∑
i Qi (t ) − ρ̃∗

)
L′
k

⎤⎥⎥⎥⎥⎥⎥⎦ . (14)

For Equation (12), we useY in
k,i

(Q in) to denote the length of the time interval between the starting

time of the ith and (i + 1)−th “in process” units that start from Q in. By the Markovian property
of the system, for a givenQ in, Y in

k,i
(Q in)’s are i.i.d. and Rin

k,i
(Q in)’s are also i.i.d. Then according to

the renewal reward theorem, for everyQ in ∈ Sin
bd
, we have

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑N in

k (Q
in)

i=1 Rin
k,i

(
Q in
)

L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

Eπ̃ ∗+π0

[
Rin
k,1

(
Q in
)]

Eπ̃ ∗+π0

[
Y in
k,1

(
Q in
)] . (15)

Note that we inherently use the fact that as k → ∞, L′
k
→ ∞ since L′

k
� L
√
k .

However, it is not straightforward to compute Eπ̃ ∗+π0 [Y
in
k,1

(Q in)] directly. Note that every time

when an “in process” unit starting from Q in occurs, Q in must be visited. Therefore, we have the
bound that for everyQ in ∈ Sin

bd
,

1

Eπ̃ ∗+π0

[
Y in
k,1

(
Q in
)] � 1

Eπ̃ ∗+π0

[
Interval between visits toQ in

] = pπ̃ ∗+π0 (Q in
)
. (16)

By inserting Equations (15) and (16) into Equation (12), we have

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

Q in∈Sin
bd

∑N in
k (Q

in)
i=1 Rin

k,i

(
Q in
)

L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�
∑

Q in∈Sin
bd

pπ̃
∗+π0
(
Q in
)
· Eπ̃ ∗+π0

[
Rin
k,1

(
Q in
)]

� pπ̃
∗+π0
(
Sin
bd

)
· max
Q ∈Sin

bd

Eπ̃ ∗+π0

[
Rin
k,1

(
Q
)]
. (17)

We provide an upper bound for maxQ ∈Sin
bd
Eπ̃ ∗+π0 [R

in
k,1

(Q )], as stated in the following lemma

(see Appendix B.1 for the proof).

Lemma 6. Under Assumptions 1–3, we have

max
Q ∈Sin

bd

Eπ̃ ∗+π0

[
Rin
k,1

(
Q
)]
� cDU 1+γ .

For Eqaution (13), by following a similar argument, we have that

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

Q out∈Sin
bd

∑N out
k (Q out)

i=1 Rout
k,i

(
Qout
)

L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� pπ̃

∗+π0
(
Sin
bd

)
· max
Q ∈Sin

bd

Eπ̃ ∗+π0

[
Rout
k,1

(
Q
)]
. (18)
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The following lemma gives an upper bound for maxQ ∈Sin
bd
Eπ̃ ∗+π0 [R

out
k,1

(Q )] (see Appendix B.2

for the proof).

Lemma 7. Under Assumptions 1–3, we have

max
Q ∈Sin

bd

Eπ̃ ∗+π0

[
Rout
k,1

(
Q
)]
�

2a2DU 2α+1

ϵ20
.

For Eqaution (14), since under π̃ ∗ + π0, the Markov chain is positive recurrent, we have that

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎣
∑

t ∈T bd
k

(∑
i Qi (t ) − ρ̃∗

)
L′
k

⎤⎥⎥⎥⎥⎥⎥⎦ � (DU − ρ̃∗) · lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎣
���T bd
k

���
L′
k

⎤⎥⎥⎥⎥⎥⎦ � pπ̃
∗+π0
(
Sin
bd

)
· DU .

(19)
By combining Equations (17)–(19), Lemmas 6 and 7, we upper bound Equation (10) as follows:

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑t ′′

k

t=t ′
k

(∑
i Qi (t ) − ρ̃∗

)
L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� pπ̃

∗+π0
(
Sin
bd

)
· O
(
U 1+max{2α,γ }

)
. (20)

Upper bound of Equation (11): From the episode termination criteria of RL-QN, we have
Q (tk−1) ∈ Sin. IfQ (tk−1) ∈ Sin

bd
, we have that t ′

k
= tk−1, and therefore have that

Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎣
t ′
k
−1∑

t=tk−1

���
∑
i

Qi (t ) − ρ̃∗��� | Q (tk−1) ∈ Sin
bd

⎤⎥⎥⎥⎥⎥⎥⎦ = 0.

If Q (tk−1) ∈ Sin
in , then from t = tk−1 to t = t ′

k
− 1, Q (t ) ∈ Sin

in . By applying techniques in the
proof of Lemma 6, we have

Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎣
t ′
k
−1∑

t=tk−1

���
∑
i

Qi (t ) − ρ̃∗��� | Q (tk−1) ∈ Sin
in

⎤⎥⎥⎥⎥⎥⎥⎦ � cDU 1+γ .

Therefore, we have

Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎣
t ′
k
−1∑

t=tk−1

���
∑
i

Qi (t ) − ρ̃∗���
⎤⎥⎥⎥⎥⎥⎥⎦ � cDU 1+γ . (21)

Since we also have thatQ (tk ) ∈ Sin, by following a similar argument, we have

Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎣
tk∑

t=t ′′
k
+1

���
∑
i

Qi (t ) − ρ̃∗���
⎤⎥⎥⎥⎥⎥⎥⎦ � cDU 1+γ . (22)
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By combining Equations (21) and (22), together with the fact that L′
k
� Lk , we have an upper

bound for Equation (11) as follows:

lim
k→∞
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑t ′

k
−1

t=tk−1

(∑
i Qi (t ) − ρ̃∗

)
+
∑tk

t=t ′′
k
+1

(∑
i Qi (t ) − ρ̃∗

)
−
(∑

i Qi (tk−1) − ρ̃∗
)

L′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� lim

k→∞

1

Lk
Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎢⎣
t ′
k
−1∑

t=tk−1

���
∑
i

Qi (t ) − ρ̃∗��� +
tk∑

t=t ′′
k
+1

���
∑
i

Qi (t ) − ρ̃∗��� −
���
∑
i

Qi (tk−1) − ρ̃∗���
⎤⎥⎥⎥⎥⎥⎥⎦

� lim
k→∞

2cDU 1+γ + ρ̃∗

L ·
√
k

= 0. (23)

By summing up Equations (20) and (23), we complete the proof. �

B.1 Proof of Lemma 6

Proof. FromProposition 5.5.1 in [7], when applying π̃ ∗ to M̃, there exists a function h̃∗ : S̃ → R
such that the following Bellman equation holds:

ρ̃∗ + h̃∗
(
Q
)
=
∑
i

Qi +
∑

Q ′ ∈Sin

p̃
(
Q ′ | Q, π̃ ∗ (Q)) · h̃∗ (Q ′) , ∀Q ∈ Sin. (24)

By the construction of M̃ in Section 3, for eachQ ∈ Sin
in ,Q

′ ∈ Sin and a ∈ A, we have

p̃
(
Q ′ | Q, π̃ ∗ (Q)) = p (Q ′ | Q, π̃ ∗ (Q)) .

Therefore, for eachQ ∈ Sin
in , Equation (24) can be rewritten as

ρ̃∗ + h̃∗
(
Q
)
=
∑
i

Qi +
∑

Q ′ ∈Sin

p
(
Q ′ | Q, π̃ ∗ (Q)) · h̃∗ (Q ′) . (25)

Fix an Q̂ ∈ Sin
bd
, we now analyze Rin

k,1

(
Q̂
)
. We denote the start and end time slot of this “in

process” unit as ts and te , respectively. Note that Q (t ) ∈ Sin
in for t ∈ [ts , te ]. Using Equation (25),

we have

Eπ̃ ∗+π0

[
Rin
k,1

(
Q̂
)]
= E

⎡⎢⎢⎢⎢⎢⎣
te∑
t=ts

���
∑
i

Qi − ρ̃∗��� | Q (ts − 1) = Q̂
⎤⎥⎥⎥⎥⎥⎦

= Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎣
te∑
t=ts

(
h̃∗
(
Q (t )
) − E [h̃∗ (Q (t + 1)

) | Q (t )
])
| Q (ts − 1) = Q̂

⎤⎥⎥⎥⎥⎥⎦
= Eπ̃ ∗+π0

[
h̃∗
(
Q (ts )

) − E [h̃∗ (Q (te + 1)
) | Q (te )

]
| Q (ts − 1) = Q̂

]
+ Eπ̃ ∗+π0

⎡⎢⎢⎢⎢⎢⎣
te−1∑
t=ts

(
h̃∗ (Q (t + 1)) − E

[
h̃∗ (Q (t + 1)) | Q (t )

])
| Q (ts − 1) = Q̂

⎤⎥⎥⎥⎥⎥⎦
= Eπ̃ ∗+π0

[
h̃∗
(
Q (ts )

) − h̃∗ (Q (te + 1)
) | Q (ts − 1) = Q̂

]
. (26)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 7, No. 1, Article 2. Pub. date: August 2022.

5.5.1


RL-QN: A Reinforcement Learning Framework for Optimal Control of Queueing Systems 2:25

On the other hand, for each (Q,Q ′) ∈ S × S, by following the analysis for the proof of Propo-

sition 5.5.1 in [7], we can upper bound h̃∗
(
Q ′
) − h̃∗ (Q) as follows:

h̃∗
(
Q ′
)
− h̃∗ (Q) = min

π̃
Ẽπ̃

⎡⎢⎢⎢⎢⎢⎢⎣
TQ→Q ′∑
t=1

⎡⎢⎢⎢⎢⎢⎣
∑
i

Qi (t ) − ρ̃∗
⎤⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎦

(a)
� min

π̃
Ẽπ̃

[
TQ→Q ′

]
· DU

(b )
� cDU 1+γ , (27)

where (a) comes from the fact that
∑

i Qi (t ) � DU forQ ∈ S̃, and the second inequality (b) holds
under Assumption 3. By inserting Equation (27) into Equation (26), we complete the proof. �

B.2 Proof of Lemma 7

Proof. Fix an Q̂ ∈ Sin
bd
, we now turn to analyze Rout

k,1
(Q̂ ). From the definition of Sin, we have

Q̂max � U −W . We denote the length of this “out process” unit as τ . We then have

Eπ̃ ∗+π0

[
Rout
k,1 (Q̂ )

]
� Eπ̃ ∗+π0

[
D · (U −W +Wτ ) · τ ] = D (U −W )Eπ̃ ∗+π0 [τ ]+DWEπ̃ ∗+π0

[
τ 2
]
, (28)

where the inequality comes from the fact that the backlog of each queue can be no larger
than (U −W +Wτ ) during this “out process” unit. We upper bound Eπ̃ ∗+π0 [τ ] and Eπ̃ ∗+π0 [τ

2]
separately.

Upper bound of Eπ̃ ∗+π0 [τ ]:We use the following lemma from [12].

Lemma 8 (Theorem 1.1 in Chapter 5 of [12]). For an irreducible Markov chain with countable

state space, if there exists ϵ > 0, a finite state set F and a nonnegative Lyapunov function Φ (·), such
that E[Φ(Q (t+1)) | Q (t ) = Q] < ∞ for eachQ � F and E[Φ(Q (t+1))−Φ(Q (t )) | Q (t ) = Q] � −ϵ
for each Q � F , we then have that for each Q � F , E[TQ→F ] � Φ(Q )/ϵ , where TQ→F is the first

hitting time of the set F when starting from stateQ .

We can interpret τ as the hitting time of the set Sin when the Markov chain starts from state
Q ∈ Sout . From the selection of U in Algorithm 1, each state in Sout has negative Lyapunov drift
regarding Φ0. Also, from Assumption 1, the value of Lyapunov function Φ0 for the beginning state
of the “out process” unit can be upper bounded as a(U −W +W )α = aU α . By Lemma 8, it follows
that

Eπ̃ ∗+π0 [τ ] �
aU α

ϵ0
� T0. (29)

Upper bound of Eπ̃ ∗+π0 [τ
2]: We use the following lemma from [25].

Lemma 9 (Theorem 6.3.4 in [25]). In a Markov chain with a countable state space, for a nonempty

state set B, and a state s , if there exists a constant C such that E[Ts→B] � C · F ∗
s,B , then for p � 1,

we have E[T
p

s→B] � p! · Cp · F ∗
s,B , where F

∗
s,B � Pr{s1 ∈ B | s0 = s} + ∑∞n=2 Pr{s1 � B, . . . , sn−1 �

B, sn ∈ B | s0 = s}.
In our case, under π̃ ∗ + π0, the Markov chain is positive recurrent. Thus, for eachQ ∈ Sout and

eachQ ′ ∈ Sin, we have F ∗Q ,Q ′ = 1. Note that F ∗
Q ,Sin is upper bounded by 1 since it is a probability.

Also, F ∗
Q ,Sin � F ∗Q ,Q ′ , we thus have F

∗
Q ,Sin = 1. Therefore, E [τ ] � T0 = T0 · F ∗Q ,Sin . By applying

Lemma 9, we have that
Eπ̃ ∗+π0

[
τ 2
]
� 2 ·T 2

0 · F ∗Q ,Sin = 2T 2
0 . (30)

Inserting Equations (29) and (30) into Equation (28) gives

Eπ̃ ∗+π0

[
Rout
k,1

(
Q̂
)]
� D (U −W )T0 + 2DWT 2

0 � 2D (U −W +W )T 2
0 =

2a2DU 2α+1

ϵ20
,

which completes the proof. �
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C PROOF OF LEMMA 2

Proof. For the ease of exposition, we first define a “linear” Lyapunov function Φ′(·) as

Φ′
(
Q
)
=

⎧⎪⎪⎨⎪⎪⎩
[
Φ̃∗
(
Q
)] 1

β , forQ ∈ Sin

U −W , forQ ∈ Sout
,

which has the following properties (see Appendix C.1 for the proof).

Lemma 10. Under Assumption 2, there exist constants V , ϵ ′ > 0 such that for each U > W , the

following properties hold:

(1) For eachQ ∈ S, maxQ ′ ∈R (Q ) |Φ
′(Q ′) − Φ′ (Q) | � V ;

(2) For eachQ ∈ Sin such that Qmax � B̃∗, we have

Eπ̃ ∗+π0

[
Φ′
(
Q (t + 1)

) − Φ′ (Q (t )
) | Q (t ) = Q

]
� −ϵ ′.

With Lemma 10, we obtain the following properties on the distribution of Φ′(·) (see Appen-
dix C.2 for the proof).

Lemma 11. Suppose Assumption 2 holds. Definem∗ � �(U +V −W −b1/β1 B̃∗)/(2V )�, we then have
that form = 1, 2, . . . ,m∗,

pπ̃
∗+π0
({
Q ∈ Sin : Φ′

(
Q
)
> U −W − (2m − 1)V

})
�

V

V + ϵ̃∗
· pπ̃ ∗+π0

({
Q ∈ Sin : Φ′

(
Q
)
> U −W − (2m + 1)V

})
.

Lemma 11 implies that

p π̃
∗+π0
({
Q ∈ Sin : Φ′

(
Q
)
> U −W −V

})
�
(

V

V + ϵ∗

)m∗
· pπ̃ ∗+π0

({
Q ∈ Sin : Φ′

(
Q
)
> U −W − (2m∗ + 1)V

})
�
(

V

V + ϵ∗

)m∗
.

Note that our goal is to obtain the stationary probability of the state being in Sin
bd
. Recall that

Sin �
{
Q : Φ̃∗

(
Q
)
� (U −W )β

}
and Sin

bd
� {Q ∈ Sin : R (Q ) ∩ Sout � ∅}. Therefore,

max
Q ′ ∈R (Q )

Φ̃∗
(
Q ′
)
> (U −W )β , ∀Q ∈ Sin

bd.

By the definition of Φ′ and Lemma 10, we have Φ′
(
Q
)
> U −W −V . Therefore,

Sin
bd ⊆

{
Q ∈ Sin : Φ′

(
Q
)
> U −W −V

}
,

and the following inequality holds

pπ̃
∗+π0
(
Sin
bd

)
� pπ̃

∗+π0
({
Q ∈ Sin : Φ′

(
Q
)
> U −W −V

})
�
(

V

V + ϵ∗

)m∗
.

By taking natural logarithm on both sides and applying the fact that log(1 + x ) � x/(1 + x ) for
x > 0, we have

logp π̃
∗+π0
(
Sin
bd

)
� −m∗ log

(
1 +

ϵ̃ ∗

V

)
� −m∗ · ϵ̃ ∗

V + ϵ̃ ∗
= −

⎢⎢⎢⎢⎢⎢⎣
U +V −W − b1/β

1 B̃∗

2V

⎥⎥⎥⎥⎥⎥⎦ ·
ϵ̃ ∗

V + ϵ̃ ∗
= O (−U ) ,

which completes the proof. �
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C.1 Proof of Lemma 10

Proof. Consider a fixed Q ∈ Sin. From the definition of Sin and W , we have maxQ ′ ∈R (Q )
Q ′max � U . HenceQ ′ ∈ S̃ for eachQ ′ ∈ R (Q) . By the definition of function Φ′(·), we have

Eπ̃ ∗+π0

[
Φ′
(
Q (t + 1)

) − Φ′ (Q (t )
) | Q (t ) = Q

]
= −

[
Φ̃∗
(
Q
)] 1

β +
∑

Q ′ ∈R (Q )

p̃
(
Q ′ | Q, π̃ ∗ (Q )

)
· Φ′
(
Q ′
)
. (31)

Note that

∑
Q ′ ∈R (Q )

p̃
(
Q ′ | Q, π̃ ∗ (Q )

)
· Φ′
(
Q ′
)

=
∑

Q ′ ∈R (Q )∩Sin

p̃
(
Q ′ | Q, π̃ ∗ (Q )

)
·
[
Φ̃∗
(
Q ′
)] 1

β

+
∑

Q ′ ∈R (Q )∩Sout

p̃
(
Q ′ | Q, π̃ ∗ (Q )

)
· (U −W )

�
∑

Q ′ ∈R (Q )

p̃
(
Q ′ | Q, π̃ ∗ (Q )

)
·
[
Φ̃∗
(
Q ′
)] 1

β

, (32)

where the inequality comes from the fact that [Φ̃∗ (Q ′)]1/β � U −W forQ ′ ∈ Sout.
Combining Equations (31) and (32) yields

Eπ̃ ∗+π0

[
Φ′
(
Q (t + 1)

) − Φ′ (Q (t )
) | Q (t ) = Q

]
� Ẽπ̃ ∗

[(
Φ̃∗
(
Q (t + 1)

)) 1
β | Q (t ) = Q

]
−
(
Φ̃∗
(
Q
)) 1

β

(a)
�
(
Ẽπ̃ ∗

[
Φ̃∗
(
Q (t + 1)

) | Q (t ) = Q
]) 1

β −
(
Φ̃∗
(
Q
)) 1

β

(b )
�

(
Φ̃∗
(
Q
)) 1

β
−1

β
·
(
Ẽπ̃ ∗

[
Φ̃∗
(
Q (t + 1)

) | Q (t ) = Q
]
− Φ̃∗ (Q))

(c )
� −

(
Φ̃∗
(
Q
)) 1

β
−1

β
· ϵ̃∗ ·Qβ−1

max

(d )
� −

b
1
β
−1

1

β
· ϵ̃∗ � −ϵ ′,

where (a) follows from Jensen’s inequality, (b) holds because f (x ) = x1/β is concave and thus
f (y) − f (x ) � f ′(x ) (y − x ), (c) and (d) come from Assumption 2.
Next we discuss the upper bound of maxQ ′ ∈R (Q ) |Φ

′(Q ′) − Φ′ (Q) |.
IfQ,Q ′ ∈ Sin with Qmax = 0 or Q ′max = 0, we have |Φ′(Q ′) − Φ′ (Q) | � b

1/β
1 W .

If Q,Q ′ ∈ Sin with Qmax > 0 and Q ′max > 0, we have Φ′(Q ′) = (Φ̃∗ (Q ′))
1
β and Φ′

(
Q
)
=

(Φ̃∗ (Q ))
1
β . Note that for the concave function f (x ) = x1/β , it holds that

���f (y) − f (x )��� � max{ f ′(x ), f ′(y)} ·���y − x ��� .
ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 7, No. 1, Article 2. Pub. date: August 2022.



2:28 B. Liu et al.

Without losing generality, we assume that Q ′max > Qmax. Thus����Φ′ (Q ′) − Φ′ (Q) ���� � max
{ (

Φ̃∗
(
Q
)) 1

β
−1
/β,
(
Φ̃∗
(
Q ′
)) 1

β
−1
/β
}
·
����Φ̃∗ (Q ′) − Φ̃∗ (Q) ����

(a)
�

1

β ·Qβ−1
max

· 2b2Q
′β−1
max �

2b2
β

(
1 +

W

Qmax

)β−1
�

2b2
β

(1 +W )β−1, (33)

where (a) follows from Assumption 2.

IfQ,Q ′ ∈ Sout, from the definition of Φ′(·), we have ���Φ′ (Q ′) − Φ′ (Q) ��� = 0.

IfQ ∈ Sin,Q ′ ∈ Sout, we have����Φ′ (Q ′) − Φ′ (Q) ���� = U −W − [
Φ̃∗
(
Q
)] 1

β �
[
Φ̃∗
(
Q ′
)] 1

β −
[
Φ̃∗
(
Q
)] 1

β ,

which can be upper bounded in the same way as Equation (33). The case of Q ∈ Sout,Q ′ ∈ Sin

has the same upper bound.
Therefore, we have that for eachQ and eachQ ′ ∈ R (Q) ,����Φ′ (Q ′) − Φ′ (Q) ���� � max

{
b

1
β

1 W ,
2b2
β

(1 +W )β−1
}
� V .

�

C.2 Proof of Lemma 11

Proof. We define a series of Lyapunov functions: Φm
(
Q
)
� max{U −W − 2mV ,Φ′ (Q) }, ∀Q ∈

S, wherem = 1, 2, . . . ,m∗. Note that Φm (·) is finite. Since the Markov chain under policy π̃ ∗ + π0
is positive recurrent, the mean drift of Φm in steady-state must be 0, i.e.,

Eπ̃ ∗+π0

[
Φm
(
Q (t + 1)

) − Φm (Q (t )
)]
= 0.

Define ΔΦm
(
Q
)
� Eπ̃ ∗+π0 [Φm

(
Q (t + 1)

) − Φm (Q (t )
) | Q (t ) = Q] as the conditional mean drift

of Φm . Next, we decompose the mean drift of Φm :

0 = Eπ̃ ∗+π0
[
Φm
(
Q (t + 1)

) − Φm (Q (t )
)]

=
∑
Q ∈S

pπ̃
∗+π0
(
Q
) · ΔΦm (Q)

=
∑

Q ∈Sin:Φ′(Q )�U−W −(2m+1)V

pπ̃
∗+π0
(
Q
) · ΔΦm (Q) (34)

+
∑

Q ∈Sin:U−W −(2m+1)V <Φ′(Q )�U−W −(2m−1)V

pπ̃
∗+π0
(
Q
) · ΔΦm (Q) (35)

+
∑

Q ∈Sin:Φ′(Q )>U−W −(2m−1)V

pπ̃
∗+π0
(
Q
) · ΔΦm (Q) (36)

+
∑

Q ∈Sout

pπ̃
∗+π0
(
Q
) · ΔΦm (Q) . (37)

The key here is to derive the upper bounds of the ΔΦm
(
Q
)
’s in Equations (34)–(37) separately,

so that we could analyze the stationary probability of the corresponding regions.

ForQ ∈
{
Q ∈ Sin : Φ′

(
Q
)
� U −W − (2m + 1)V

}
: GivenQ (t ) = Q , together with the definition

ofV , we have thatΦ′
(
Q (t + 1)

)
� U −W − (2m+1)V +V = U −W −2mV and thusΦm

(
Q (t + 1)

)
=
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Φm
(
Q (t )
)
= U −W − 2mV . Therefore, we have

ΔΦm
(
Q
)
= 0. (38)

For Q ∈
{
Q ∈ Sin : U −W − (2m + 1)V < Φ′

(
Q
)
� U −W − (2m − 1)V

}
: Given Q (t ) = Q , by

analyzing all the possible relationships among Φ′
(
Q (t )
)
, Φ′
(
Q (t + 1)

)
andU −W − 2mV , it is not

hard to verify that���Φm (Q (t + 1)
) − Φm (Q (t )

) ��� � ���Φ′ (Q (t + 1)
) − Φ′ (Q (t )

) ��� � V ,

which gives us that

ΔΦm
(
Q
)
� V . (39)

For Q ∈
{
Q ∈ Sin : Φ′

(
Q
)
> U −W − (2m − 1)V

}
: Given Q (t ) = Q , we have Φ′

(
Q (t + 1)

)
>

U −W − (2m − 1)V − V = U −W − 2mV , which indicates ΔΦm
(
Q
)
= ΔΦ′

(
Q
)
. Since Qmax �

Φ′
(
Q
)
/b

1/β
1 > (U −W − (2m∗ − 1)V/)b1/β1 � B̃∗, by applying Lemma 10, we have

ΔΦm
(
Q
)
= ΔΦ′

(
Q
)
� −ϵ ′. (40)

ForQ ∈ Sout: Since Φm
(
Q
)
has reached maximum, the drift conditioned onQ (t ) = Q cannot be

positive, i.e.,

ΔΦm
(
Q
)
� 0. (41)

By inserting Equations (38)–(41) into Equations (34)–(37), respectively, we have that

0 � p π̃
∗+π0
(
Q ∈ Sin : U −W − (2m + 1)V < Φ′

(
Q
)
� U −W − (2m − 1)V

)
·V−

p π̃
∗+π0
(
Q ∈ Sin : Φ′

(
Q
)
> U −W − (2m − 1)V

)
· ϵ̃∗,

which is equivalent to the statement in Lemma 11 after simple algebraic calculations. �

D PROOF OF THEOREM 2

In this section, we prove Theorem 2. The proof is build on Theorem 1 and Lemmas 1–2.

Proof. By combining Lemmas 1 and 2, we have that

lim
k→∞
E

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

(∑
i Qi (t ) − ρ̃∗

)
L′
k

| π in
k = π̃ ∗

⎤⎥⎥⎥⎥⎥⎦ = O ��U
1+max{2α,γ }

exp(U )
�� .

Thus there exists a k1 < ∞ such that when k � k1,

E

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

(∑
i Qi (t ) − ρ̃∗

)
L′
k

| π in
k = π̃ ∗

⎤⎥⎥⎥⎥⎥⎦ − O ��U
1+max{2α,γ }

exp(U )
�� � 1

2
· O ��U

1+max{2α,γ }

exp (U )
�� . (42)

To analyze the overall expected queue backlog, we need to further consider three possible cases
where π in

k
� π̃ ∗ for some k > k∗:

(i) We have not learned π̃ ∗ at k = k∗, which happens with probability at most δ according to
Theorem 1;

(ii) We have learned π̃ ∗ when k = k∗, but obtain some bad samples and fail to estimate M̃ in
following episodes with probability at most δ/2 (according to Lemma 4);

(iii) πrand may be selected as π in
k
, which occurs with probability �/

√
k .
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By taking union bound over the above three events, we have that

Pr
{
π in
k � π̃ ∗

}
� δ +

δ

2
+ ϵk =

3δ

2
+
�
√
k
, ∀k > k∗. (43)

During episode k , the number of visits to Sin is Lk , and the associated expected regret is upper
bounded by LkDU . Additionally, the Markov chain can enter Sout from Sin at most Lk times, and
each time the associated expected regret is uniformly upper bounded by O (U 1+2α ) from Lemma 7.
Therefore, we have

E

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

(∑
i Qi (t ) − ρ̃∗

)
L′
k

| π in
k � π̃ ∗

⎤⎥⎥⎥⎥⎥⎦ �
Lk · DU + Lk · O

(
U 1+2α

)
Lk

− ρ̃∗ = O
(
U 1+2α

)
. (44)

By combining Equations (42)–(44), for each k � k2 � max{k∗,k1}, we can upper bound the
overall expected episodic regret as follows:

E

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

(∑
i Qi (t ) − ρ̃∗

)
L′
k

⎤⎥⎥⎥⎥⎥⎦ � Pr
{
π in
k = π̃ ∗

}
· O ��U

1+max{2α,γ }

exp(U )
�� + Pr

{
π in
k � π̃ ∗

}
· O
(
U 1+2α

)

� O ��U
1+max{2α,γ }

exp(U )
+ δU 1+2α +

U 1+2α

√
k

�� . (45)

By taking δ = exp(−U ), we have

lim
k→∞
E

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

∑
i Qi (t )

L′
k

⎤⎥⎥⎥⎥⎥⎦ � ρ̃∗ + O ��U
1+max{2α,γ }

exp(U )
�� . (46)

We now have the overall expected queue backlog in comparison to ρ̃∗. The following lemma
states the relationship between ρ̃∗ and ρ∗ (see Appendix D.1 for the proof).

Lemma 12. Under the setting of Theorem 2, we have

ρ̃∗ = ρ∗ + O �� U 1+γ

exp(U )
�� .

By replacing ρ̃∗ in Equation (46) with ρ∗ using Lemma 12, we have an upper bound for the
overall expected queue backlog as follows:

lim
k→∞
E

⎡⎢⎢⎢⎢⎢⎣
∑tk

t=tk−1+1

∑
i Qi (t )

L′
k

⎤⎥⎥⎥⎥⎥⎦ � ρ∗ + O ��U
1+max{2α,γ }

exp(U )
�� ,

which completes the proof. �

D.1 Proof of Lemma 12

As defined in Table 1, ρ∗ is the average total queue backlog when applying π ∗ toM, while ρ̃∗ is

the average total queue backlog when applying π̃ ∗ to M̃. To bridge the gap between ρ∗ and ρ̃∗, we

define the average queue backlog when applying (a truncated version of) π ∗ to M̃ as ρ̃ (π ∗).

Since π̃ ∗ is the optimal policy to M̃, we have

ρ̃∗ � ρ̃ (π ∗). (47)

Next we compare ρ̃ (π ∗) and ρ∗. The analysis follows a similar argument as that for Lemmas 1
and 2.
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We partition the state space of M̃, i.e., S̃, into Sin and S̃out � S̃\Sin. We define T̃ in and T̃ out as

the set of time slots thatQ (t ) is in Sin and S̃out, respectively. We then can decompose the expected
average regret under the (truncated) policy π ∗ with respect to ρ∗ as follows:

lim
T→∞

Ẽπ̃ ∗

[∑T
t=1

(∑
i Qi (t ) − ρ∗

)]
T

= lim
T→∞

Ẽπ̃ ∗

[∑
t ∈T̃ in

(∑
i Qi (t ) − ρ∗

)]
T

+ lim
T→∞

Ẽπ̃ ∗

[∑
t ∈T̃ out

(∑
i Qi (t ) − ρ∗

)]
T

. (48)

Bounding the first term in Equation (48): Similar to the analysis in Lemma 1, we define “in

process” units as the process that Q (t ) leaves S̃out, enters Sin, stays in Sin for some time and

finally returns back to S̃out. Then, the process during T̃ in can be decomposed into multiple “in

process” units. An “in process” unit is said to start from Q̃ if Q̃ is its last state before entering into

Sin (i.e. Q̃ ∈ S̃out). The accumulated regret during the ith “in process” unit that starts from Q̃ is

denoted by R̃i (Q̃ ).

We use p̃π
∗
(·) to denote the stationary distribution of states when applying π ∗ to M̃. By applying

renewal theorem analysis as in the proof of Lemma 1, we have that

lim
T→∞

Ẽπ̃ ∗

[∑
t ∈T̃ in

(∑
i Qi (t ) − ρ∗

)]
T

� p̃π
∗ (S̃out

)
· max
Q ∈S̃out

Ẽπ̃ ∗

[
R̃1

(
Q̃
)]
. (49)

Bounding the second term in Equation (48): Since the total queue backlog in M̃ is upper
bounded by DU , we simply have that

lim
T→∞

Ẽπ̃ ∗

[∑
t ∈T̃ out

(∑
i Qi (t ) − ρ∗

)]
T

� DU · lim
T→∞

E

[
T̃ out

]
T

= p̃π
∗ (S̃out

)
· DU . (50)

Bounding Ẽπ̃ ∗[R̃1 (Q̃ )] in Equation (49): According to Bellman’s equation, when applying π ∗

to M, there exists h∗ (·) such that the for every Q ∈ S, we have ρ∗ + h∗
(
Q
)
=
∑

i Qi +∑
Q ′ ∈S p

(
Q ′ | Q,π ∗ (Q)) · h∗ (Q ′) . Note that Bellman’s equation might not have solutions for

countably infinite state space MDP (see Section 5.6 in Volome 2 of [7]). For simplicity, we assume
the existence of h∗ (·).
When applying π ∗ to M̃, using the definition of Sin we have that for eachQ ∈ Sin,Q ′ ∈ S̃ and

a ∈ A, p̃ (Q ′ | Q,π ∗ (Q )) = p (Q ′ | Q,π ∗ (Q )). Therefore, for each Q ∈ Sin, we have ρ∗ + h∗ (Q ) =∑
i Qi +

∑
Q ′ ∈S̃ p̃ (Q

′ | Q,π ∗ (Q )) · h∗ (Q ′).
Following a similar argument as Lemma 6, we obtain

Ẽπ̃ ∗

[
R̃1

(
Q̃
)]
� cDU 1+γ . (51)

Bounding p̃π
∗
(S̃out): The proof follows the same line of argument as that for Lemma 2. Denote

by Φ∗ (·) the Lyanopuv function in Assumption 2 for U = ∞. We consider a new Lyapunov func-

tion Φ̃′(Q ) � [Φ∗ (Q )]
1
β , for each Q ∈ S̃. We define a mapping TR : S → S̃ to represent the

packet dropping scheme in the bounded system. In particular,TR (Q ) � {min{U ,Qi }}Di=1. Note that
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Φ∗ (TR (Q )) ≤ Φ∗ (Q ),∀Q ∈ S.We then have that

Ẽπ ∗
[
Φ̃′
(
Q (t + 1)

) − Φ̃′ (Q (t )
) | Q (t ) = Q

]
= −

[
Φ∗
(
Q
)] 1

β +
∑

Q ′ ∈R (Q )∩Sin

p
(
Q ′ | Q,π ∗ (Q )

)
·
[
Φ∗
(
Q ′
)] 1

β

+
∑

Q ′ ∈R (Q )∩S̃out

p
(
Q ′ | Q,π ∗ (Q )

)
·
[
Φ∗
(
TR
(
Q ′
))] 1

β

� Eπ ∗
[ [
Φ∗
(
Q (t + 1)

)] 1
β −

[
Φ∗
(
Q (t )
)] 1

β | Q (t ) = Q

]
.

Wenow can apply the analysis from the proof of Lemma 10 to show show that there exist constants
V , ϵ ′ > 0 such that for any U > 0, the following properties hold:

(1) For eachQ ∈ S̃, maxQ ′ ∈R (Q ) |Φ̃
′ (Q ′) − Φ̃′ (Q) | � V ;

(2) For eachQ ∈ Sin with Qmax � B̃∗, we have Ẽπ ∗[Φ̃
′(Q (t + 1)) − Φ̃′(Q (t )) | Q (t ) = Q] � −ϵ ′.

We define m∗ � �(U + V −W − b1/β1 B̃∗)/(2V )� and consider a series of Lyapunov functions

Φ̃m
(
Q
)
� max{U −W − 2mV , Φ̃′ (Q) } withm = 1, 2, . . . ,m∗. We decompose S̃ into three sets:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{
Q ∈ S̃ : Φ̃′

(
Q
)
� U −W − (2m + 1)V

}{
Q ∈ S̃ : U −W − (2m + 1)V < Φ̃′

(
Q
)
� U −W − (2m − 1)V

}
.{

Q ∈ S̃ : Φ̃′
(
Q
)
> U −W − (2m − 1)V

}
By following the analysis for Equations (38)–(40), we can bound the drifts in these regions, respec-
tively, and show that

p̃π
∗ (
Q ∈ S̃ : Φ̃′

(
Q
)
> U −W − (2m − 1)V

)
�
V · p̃π ∗

(
Q ∈ S̃ : Φ̃′

(
Q
)
> U −W − (2m + 1)V

)
V + ϵ̃∗

,

wherem = 1, 2, . . . ,m∗. Similar to Lemma 2, we obtain that p̃π
∗
(S̃out) = exp(−U ).

Inserting Equation (51) into Equations (49) and (50), together with Equation (47), gives

ρ̃∗ � ρ̃ (π ∗) = lim
T→∞

Ẽ

[∑T
t=1

∑
i Qi (t )

]
T

≤ ρ∗ + O �� U 1+γ

exp (U )
�� ,

which completes the proof.
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