
This article was downloaded by: [23.93.106.103] On: 21 November 2022, At: 22:48
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Nonasymptotic Analysis of Monte Carlo Tree Search
Devavrat Shah, Qiaomin Xie, Zhi Xu

To cite this article:
Devavrat Shah, Qiaomin Xie, Zhi Xu (2022) Nonasymptotic Analysis of Monte Carlo Tree Search. Operations Research

Published online in Articles in Advance 01 Mar 2022

. https://doi.org/10.1287/opre.2021.2239

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2021.2239
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Methods

Nonasymptotic Analysis of Monte Carlo Tree Search
Devavrat Shah,a Qiaomin Xie,b,* Zhi Xua

aLaboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; b Industrial and
Systems and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
*Corresponding author
Contact: devavrat@mit.edu, https://orcid.org/0000-0003-0737-3259 (DS); qiaomin.xie@wisc.edu, https://orcid.org/0000-0003-2834-6866
(QX); zhixu@mit.edu, https://orcid.org/0000-0002-1421-2309 (ZX)

Received: January 6, 2020
Revised: April 16, 2021
Accepted: October 15, 2021
Published Online in Articles in Advance:

Area of Review: Machine Learning and Data
Science

https://doi.org/10.1287/opre.2021.2239

Copyright: © 2022 INFORMS

Abstract. In this work, we consider the popular tree-based search strategy within the
framework of reinforcement learning, the Monte Carlo tree search (MCTS), in the con-
text of the infinite-horizon discounted cost Markov decision process (MDP). Although
MCTS is believed to provide an approximate value function for a given state with
enough simulations, the claimed proof of this property is incomplete. This is because
the variant of MCTS, the upper confidence bound for trees (UCT), analyzed in prior
works, uses “logarithmic” bonus term for balancing exploration and exploitation within
the tree-based search, following the insights from stochastic multiarm bandit (MAB) lit-
erature. In effect, such an approach assumes that the regret of the underlying recur-
sively dependent nonstationary MABs concentrates around their mean exponentially in
the number of steps, which is unlikely to hold, even for stationary MABs. As the key
contribution of this work, we establish polynomial concentration property of regret for
a class of nonstationary MABs. This in turn establishes that the MCTS with appropriate
polynomial rather than logarithmic bonus term in UCB has a claimed property. Interest-
ingly enough, empirically successful approaches use a similar polynomial form of
MCTS as suggested by our result. Using this as a building block, we argue that MCTS,
combined with nearest neighbor supervised learning, acts as a “policy improvement”
operator; that is, it iteratively improves value function approximation for all states be-
cause of combining with supervised learning, despite evaluating at only finitely many
states. In effect, we establish that to learn an ε approximation of the value function with
respect to ℓ∞ norm, MCTS combined with nearest neighbor requires a sample size scal-
ing as Õ(ε−(d+4)), where d is the dimension of the state space. This is nearly optimal be-
cause of a minimax lower bound of Ω̃(ε−(d+2)), suggesting the strength of the variant of
MCTS we propose here and our resulting analysis.

Funding: This work was supported by the National Science Foundation [Grant CNS-1955997 and TRI-
PODS Phase II Grant] and MIT-IBM project on "Representation Learning as a Tool for causal Dis-
covery," Siemens Futuremakers Fellowship.

Keywords: Monte Carlo tree search • Nonstationary multi-armed bandit • reinforcement learning

1. Introduction
Monte Carlo Tree Search (MCTS) is a search framework
for finding optimal decisions based on the search tree
built by random sampling of the decision space (Browne
et al. 2012). MCTS has been widely used in sequential
decision makings that have a tree representation, exem-
plified by games and planning problems. Since MCTS
was first introduced, many variations and enhancements
have been proposed. Recently, MCTS has been com-
bined with deep neural networks for reinforcement
learning, achieving remarkable success for games of Go
(Silver et al. 2016, 2017b), chess, and shogi (Silver et al.
2017a). In particular, AlphaGo Zero (AGZ) (Silver et al.
2017b) uses supervised learning to learn a policy/value

function (represented by a neural network) based on
samples generated via MCTS; the neural network is re-
cursively used to estimate the value of leaf nodes in the
next iteration of MCTS for simulation guidance.

Despite the wide application and empirical success of
MCTS, there is only limitedwork on theoretical guarantees
of MCTS and its variants. One exception is the work of
Kocsis and Szepesvári (2006) and Kocsis et al. (2006),
which propose running a tree search by applying the up-
per confidence bound algorithm—originally designed for
stochastic multiarm bandit (MAB) problems (Agrawal
1995, Auer et al. 2002)—to each node of the tree. This leads
to the so-called upper confidence bounds for trees (UCT)
algorithm, which is one of the popular forms of MCTS. In

1

OPERATIONS RESEARCH
Articles in Advance, pp. 1–27

ISSN 0030-364X (print), ISSN 1526-5463 (online)http://pubsonline.informs.org/journal/opre

March 1, 2022

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

mailto:devavrat@mit.edu
https://orcid.org/0000-0003-0737-3259
mailto:qiaomin.xie@wisc.edu
https://orcid.org/0000-0003-2834-6866
mailto:zhixu@mit.edu
https://orcid.org/0000-0002-1421-2309
https://orcid.org/0000-0003-0737-3259
https://orcid.org/0000-0003-2834-6866
https://orcid.org/0000-0002-1421-2309
http://pubsonline.informs.org/journal/opre

Kocsis and Szepesvári (2006), a certain asymptotic optimal-
ity property of UCT is claimed. The proof therein is, how-
ever, incomplete, as we discuss in greater detail in Section
1.2. More importantly, UCT as suggested in Kocsis and
Szepesvári (2006) requires exponential concentration of
regret for the underlying nonstationary MAB, which
is unlikely to hold in general even for stationary
MAB as pointed out in Audibert et al. (2009).

Indeed, rigorous analysis of MCTS is subtle, although
its asymptotic convergence may seem natural. A key
challenge is that the tree policy (e.g., UCT) for selecting
actions typically needs to balance exploration and ex-
ploitation, so the random sampling process at each
node is nonstationary (nonuniform) across multiple
simulations. A more severe difficulty arises because of
the hierarchical/iterative structure of tree search, which
induces complicated probabilistic dependency between
a node and the nodes within its subtree. Specifically, as
part of simulation within MCTS, at each intermediate
node (or state), the action is chosen based on the out-
comes of the past simulation steps within the subtree of
the node in consideration. Such strong dependencies
across time (i.e., depending on the history) and space
(i.e., depending on the subtrees downstream) among
nodes makes the analysis nontrivial.

The goal of this paper is to provide a rigorous theo-
retical foundation for MCTS. In particular, we are in-
terested in the following:

• What is the appropriate form of MCTS for which
the asymptotic convergence property claimed in
the literature (Kocsis and Szepesvári 2006, Kocsis
et al. 2006) holds?

• Can we rigorously establish the “strong policy im-
provement” property of MCTS when combined
with supervised learning as observed in the litera-
ture (Silver et al. 2017b)? If yes, what is the quanti-
tative form of it?

• Does supervised learning combined withMCTS lead
to the optimal policy, asymptotically? If so, what is
its finite-sample (nonasymptotic) performance?

1.1. Our Contributions
As the main contribution of this work, we provide af-
firmative answers to all of the previous questions. In
what follows, we provide a brief overview of our con-
tributions and results.

1.1.1. Nonstationary MAB and Recursive Polynomial
Concentration. In stochastic MAB, the goal is to dis-
cover, among finitely many actions (or arms), the
one with the best average reward while choosing as
few nonoptimal actions as possible in the process.
The rewards for any given arm are assumed to be in-
dependent and identically distributed (i.i.d.). The
usual exponential concentration for such i.i.d. and

hence stationary processes leads to the UCB algo-
rithm with a logarithmic bonus term: at each time,
choose an action with maximal index (ties broken ar-
bitrarily), where the index of an arm is defined as
the empirical mean reward plus constant times���������
log t=s

√
, where t is the total number of trials thus far,

and s ≤ t is the number of times the particular action
is chosen in these t trials.

The goal in the MCTS is very similar to the MAB
setup described previously: choose an action at a given
query state that gives the best average reward. How-
ever, the reward depends on future actions. Therefore,
to determine the best action for the given state, one has
to take future actions into account, and MCTS does this
by simulating future via effectively expanding all possi-
ble future actions recursively in the form of (decision-
like) trees. In essence, the optimal action at the root
of such a tree is determined by finding optimal path
in the tree. Determining this optimal path requires
solving multiple MABs, one per each intermediate
node within the tree. Apart from the MABs associ-
ated with the lowest layer of the tree, all the MABs
associated with the intermediate nodes turn out to
have rewards that are the rewards generated by
MAB algorithms for nodes downstream. This creates
complicated, hierarchically interdependent MABs.

To determine the appropriate, UCB-like index algo-
rithm for each node of the MCTS tree, it is essential to
understand the concentration property of the rewards,
that is, concentration of regret for MABs associated
with nodes downstream. Although the rewards at leaf
level may enjoy exponential concentration, because of
independence, the regret of any algorithm for such an
MAB is unlikely to have exponential concentration in
general (Audibert et al. 2009, Salomon and Audibert
2011). Furthermore, the MAB of our interest has nonsta-
tionary rewards because of strong dependence across
the hierarchy. Indeed, an oversight of this complication
led Kocsis and Szepesvári (2006) and Kocsis et al. (2006)
to suggest the UCT inspired by the standard UCB algo-
rithm for MABs with stationary, independent rewards.

As an important contribution of this work, we formu-
late an appropriate form of nonstationary MAB that cor-
rectly models the MAB at each of the node in the MCTS
tree. For such a nonstationary MAB, we define the UCB
algorithmwith an appropriate index and under which we
establish appropriate concentration of the induced regret.
This, in turn, allows us to recursively define the UCT algo-
rithm for MCTS by appropriately defining index for each
of the node-action within theMCTS tree. Here we provide
a brief summary.

Given [K] � {1, : : : ,K} actions or arms, let Xi,t denote
the reward generated by playing arm i ∈ [K] for the
tth time. Let empirical mean over n trials for arm i be
X̄i,n � 1

n
∑n

t�1Xi,t, and let µi,n � E[X̄i,n] be its expecta-
tion. Suppose µi,n → µi as n→∞ for all i ∈ [K] and let

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
2 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

there exist constants, β > 1, ξ > 0, and 1=2 ≤ η < 1 such
that for every z ≥ 1 and every integer n ≥ 1:

P(| nX̄i,n − nµi |≥ nηz) ≤ β

zξ
:

For i.i.d. bounded rewards, the previous holds for
η � 1=2 for any finite ξ because of exponential concen-
tration. We propose to use the UCB algorithm where
at time t, the arm It is chosen according to

It ∈ arg max
i∈[K]

{X̄i,Ti(t−1) +Bt−1,Ti(t−1)}, (1)

where Ti(t) � ∑t
l�1I{Il � i} is the number of times arm i

has been played, up to (including) time t, and the bias
or bonus term Bt,s is defined as

Bt,s � β1=ξ · tη(1−η)
s1−η

:

Let µ∗ �maxi∈[K]µi and let X̄n denote the empirical
average of the rewards collected. Then, we establish
that E[X̄n] converges to µ∗, and that for every n ≥ 1
and every z ≥ 1, a similar polynomial concentration
holds:

P(|nX̄n − nµ∗ | ≥ nηz) ≤ β′

zξ′
,

where ξ′ � ξη(1− η) − 1, and β′ > 1 is a large enough
constant. The precise statement can be found as Theo-
rem 3 in Section 5.

1.1.2. Corrected UCT for MCTS and Nonasymptotic
Analysis. For MCTS, as discussed previously, the leaf
nodes have rewards that can be viewed as generated
per standard stationary MAB. Therefore, the rewards
for each arm (or action) at the leaf level in MCTS sat-
isfy the required concentration property with η � 1=2
because of independence. Hence, from our result for
nonstationary MAB, we immediately obtain that we
can recursively apply the UCB algorithm per (1) at each
level in the MCTS with η � 1=2 and appropriately ad-
justed constants β and ξ. In effect, we obtain a modified
UCT where the bias or bonus term Bt,s scales as
t1=4=s1=2. This is in constrast to Bt,s scaling as

���������
log t=s

√
in

the standard UCB and UCT suggested in the literature
(Kocsis and Szepesvári 2006, Kocsis et al. 2006).

By recursively applying the convergence and con-
centration property of the nonstationary MAB for the
resulting algorithm for MCTS, we establish that for
any query state s of the MDP, using n simulations of
the MCTS, we can obtain a value function estimation
within error δε0 +O(n−1=2), if we start with a value
function estimation for all the leaf nodes within error
ε0 for some δ < 1 (independent of n, dependent on
depth of MCTS tree). That is, MCTS is indeed asymp-
totically correct as was conjectured in the prior litera-
ture. For details, see Theorem 1 in Section 3.

1.1.3. MCTS with Supervised Learning, Strong Policy
Improvement, and Near Optimality. The result stated
previously for MCTS implies its “bootstrapping”
property: if we start with a value function estimation
for all state within error ε, then MCTS can produce es-
timation of value function for a given query state within
error less than ε with enough simulations. By coupling
such improved estimations of value function for a
number of query states, combined with expressive
enough supervised learning, one can hope to general-
ize such improved estimations of value function for all
states. That is, MCTS coupled with supervised learn-
ing can be “strong policy improvement operator.”

Indeed, this is precisely what we establish by using
nearest neighbor supervised learning. Specifically, we
establish that with Õ 1=ε 4+d()()1 number of samples,
MCTS with nearest neighbor finds an ε approximation
of the optimal value function with respect to ℓ∞-norm;
here, d is the dimension of the state space. This is nearly
optimal in view of a minimax lower bound of
Ω̃ 1=ε 2+d()()

(Shah and Xie 2018). For details, see Theo-
rem 2 in Section 4.

1.1.4. An Implication. As mentioned earlier, the modi-
fied UCT policy per our result suggests using bias or
bonus term Bt,s that scales as t1=4=s1=2 at each node
within the MCTS. Interestingly enough, the empirical
results of AGZ are obtained by using Bt,s that scales as
t1=2=s. This is qualitatively similar to what our results
suggest and in contrast to the classical UCT.

1.2. Related Work
Reinforcement learning aims to approximate the optimal
value function and policy directly from experimental
data. A variety of algorithms have been developed,
including model-based approaches, model-free ap-
proaches like tabular Q-learning (Watkins and Dayan
1992), and parametric approximation such as linear ar-
chitectures (Sutton 1988). More recent work approxi-
mates the value function/policy by deep neural net-
works (Mnih et al. 2015; Schulman et al. 2015, 2017;
Silver et al. 2017b; Yang et al. 2019), which can be trained
using temporal-difference learning or Q-learning (Mnih
et al. 2013, 2016; VanHasselt et al. 2016).
MCTS is an alternative approach, which as dis-

cussed, estimates the (optimal) value of states by build-
ing a search tree fromMonte Carlo simulations (Chang
et al. 2005, Coulom 2006, Kocsis and Szepesvári 2006,
Browne et al. 2012). Kocsis and Szepesvári (2006) and
Kocsis et al. (2006) argue for the asymptotic conver-
gence of MCTS with the standard UCT. However, the
proof is incomplete. A key step toward proving the
claimed result is to show the convergence and con-
centration properties of the regret for UCB under
nonstationary reward distributions. In particular, to

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 3

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

establish an exponential concentration of regret (theo-
rem 5 in Kocsis et al. 2006), Lemma 14 is applied.
However, it requires conditional independence of
{Zi} sequence, which does not hold, hence making the
conclusion of exponential concentration questionable.
Therefore, the proof of the main result (theorem 7 of
Kocsis et al. 2006), which applies Theorem 5 with an
inductive argument, is incorrect as stated.

In fact, it may be infeasible to prove theorem 5 in
Kocsis et al. (2006) as it was stated. For example, the
work of Audibert et al. (2009) shows that for bandit
problems, the regret under UCB concentrates around
its expectation polynomially rather than exponentially
as desired in Kocsis et al. (2006) (e.g., if the essential
infimum of the optimal arm’s reward is below the
mean reward of the second-best arm, see theorem 10
of Audibert et al. (2009)). Furthermore, Salomon and
Audibert (2011) prove that for any strategy that does
not use the knowledge of time horizon, it is infeasible
to improve this polynomial concentration and estab-
lish exponential concentration. Our result is consistent
with these fundamental bound of stationary MAB—
we establish polynomial concentration of regret for
nonstationary MAB, which plays a crucial role in our
analysis of MCTS. Also see the work Munos (2014) for
a discussion of the issues with logarithmic bonus
terms for tree search.

Although we focus on UCT in this paper, we note
that there are other variants of MCTS developed for a
diverse range of applications. The work of Coquelin
and Munos (2007) introduces flat UCB to improve the
worst-case regret bounds of UCT. Schadd et al. (2008)
modifies MCTS for single-player games by adding to
the standard UCB formula a term that captures the
possible deviation of the node. In the work by Sturte-
vant (2008), a variant of MCTS is introduced for multi-
player games by adopting the maxn idea. In addition
to turn-based games like Go and Chess, MCTS has
also been applied to real-time games (e.g., Ms. Pac-
Man, Tron, and Starcraft) and nondeterministic games
with imperfect information. The applications of MCTS
go beyond games and appear in areas such as optimi-
zation, scheduling, and other decision-making prob-
lems. We refer to the survey onMCTS by Browne et al.
(2012) for other variations and applications.

It has become popular recently to combine MCTS
with deep neural networks, which serve to approxi-
mate the value function and/or policy (Silver et al.
2016, 2017a, b). For instance, in AGZ, MCTS uses the
neural network to query the value of leaf nodes for
simulation guidance; the neural network is then up-
dated with sample data generated by MCTS-based
policy and used in tree search in the next iteration.
Azizzadenesheli et al. (2018) develop generative ad-
versarial tree search that generates rollouts with a
learned generative adversarial network–based dynamic

model and reward predictor while using MCTS for
planning over the simulated samples and a deep
Q-network to query the Q-value of leaf nodes.

In terms of theoretical results, the closest work to
our paper is Jiang et al. (2018), where they also con-
sider a batch, MCTS-based reinforcement learning al-
gorithm, which is a variant of the AGZ algorithm. The
key algorithmic difference from ours lies in the leaf-
node evaluator of the search tree: they use a combina-
tion of an estimated value function and an estimated
policy. The latest observations at the root node are
then used to update the value and policy functions
(leaf-node evaluator) for the next iteration. They also
give a finite sample analysis. However, their result and
ours are quite different: in their analysis, the sample
complexity of MCTS and the approximation power of
value/policy architectures are imposed as an assumption;
here we prove an explicit finite-sample bound for
MCTS and characterize the nonasymptotic error proro-
gation under MCTS with nonparametric regression for
leaf-node evaluation. Therefore, they do not establish
“strong policy improvement” property of theMCTS.

Two other closely related papers are Teraoka et al.
(2014) and Kaufmann and Koolen (2017), which study
a simplified MCTS for two-player zero-sum games.
There, the goal is to identify the best action of the root
in a given game tree. For each leaf node, a stochastic
oracle is provided to generate i.i.d. samples for the
true reward. Teraoka et al. (2014) give a high probabil-
ity bound on the number of oracle calls needed for ob-
taining ε-accurate score at the root. The more recent
paper (Kaufmann and Koolen 2017) develops refined,
instance-dependent sample complexity bounds. Com-
pared with classical MCTS (e.g., UCT), both the set-
ting and the algorithms in these papers are simpler:
the game tree is given in advance rather than being
built gradually through samples; the algorithm pro-
posed in Teraoka et al. (2014) operates on the tree in a
bottom-up fashion with uniform sampling at the leaf
nodes. As a result, the analysis is significantly simpler
and it is unclear whether the techniques can be ex-
tended to analyze other variants of MCTS.

It is important to mention the work of Chang et al.
(2005) that explores the idea of using UCB for adap-
tive sampling in MDPs. The approximate value com-
puted by the algorithm is shown to converge to the
optimal value. We remark that their algorithm is dif-
ferent from the algorithm we analyze in this paper. In
particular, their algorithm proceeds in a depth-first,
recursive manner, and hence involves using UCB for a
stationary MAB at each node. In contrast, the UCT algo-
rithm we study involves nonstationary MABs; hence,
our analysis is significantly different from theirs. We re-
fer the readers to the work by Kocsis and Szepesvári
(2006) and Coulom (2006) for further discussion of the
difference. Another related work by Kearns et al. (2002)

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
4 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

studies a sparse sampling algorithm for large MDPs.
This algorithm is also different from the MCTS family
we analyze in this paper. Relatedly, Auger et al. (2013)
consider a setting with finite horizon and continuous ac-
tion space. During the tree simulation, a progressive
widening technique is used to decide when to sample
(add) a new action at each step; if no new action is
needed for the current step, UCT is then extendedwith a
specific choice and parameter of polynomial bonus for ac-
tion selection. In contrast,we consider an infinite horizon
setting. More importantly, we establish guarantees for a
class of polynomial bonus forms determined by the set of
interdependent algorithmic parameters. Again, this is
made possible by introducing an appropriate form of
nonstationary MAB, which could be of independent in-
terest. Recently, this idea is further extendedbyMaoet al.
(2020) to establish results for MCTS with a continuous
armed bandit strategy,which showsmore favorable per-
formance than the algorithm proposed by Auger et al.
(2013). We remark that the work by Efroni et al. (2018)
studies multiple-step lookahead policies in reinforce-
ment learning,which can be implemented viaMCTS.

1.3. Organization
Section 2 describes the setting of MDP considered in
this work. Section 3 describes the MCTS algorithm
and the main result about its nonasymptotic analysis.
Section 4 describes a reinforcement learning method
that combines the MCTS with nearest neighbor super-
vised learning. It describes the finite-sample analysis
of the method for finding ε approximate value func-
tion with respect to ℓ∞ norm. Section 5 introduces a
form of nonstationary multiarm bandit and an upper
confidence bound policy for it. For this setting, we
present the concentration of induced regret that serves
as a key result for establishing the property of MCTS.
The proofs of all the technical results are delegated to
Sections 6–8 and the Appendices.

2. Setup and Problem Statement
2.1. Formal Setup
We consider the setup of the discrete-time dis-
counted MDP. An MDP is described by a five-tuple
(S,A,P,R,γ), where S is the set of states, A is the set
of actions, P ≡ P(s′ | s, a) is the Markovian transition
kernel, R ≡R(s,a) is a random reward function, and
γ ∈ (0, 1) is a discount factor. At each time step, the
system is in some state s ∈ S. When an action a ∈A is
taken, the state transits to a next state s′ ∈ S according
to the transition kernel P and an immediate reward is
generated according toR(s,a).

We consider the setup with access to the generative
model (i.e., a simulator) (Kakade 2003), which is a com-
mon setting in the theoretical reinforcement learning liter-
ature. We assume that the agent has knowledge of S, A

and γ. The transition kernelP and the rewardsR are un-
known, but the agent could query the generative model
at any given state-action pair (s, a) to obtain a sample of
next state and the associated immediate reward.

A stationary policy π(a | s) gives the probability of
performing action a ∈A given the current state s ∈ S:
The value function for each state s ∈ S under policy π,
denoted by Vπ(s), is defined as the expected dis-
counted sum of rewards received following the policy
π from initial state s, that is,

Vπ(s) � Eπ

∑∞
t�0

γtR(st, at) | s0 � s

[]
:

The goal is to find an optimal policy π∗ that maxi-
mizes the value from each initial state. The optimal
value function V∗ is defined as V∗(s) � Vπ∗ (s) � supπ

Vπ(s), ∀s ∈ S: It is well understood that such an opti-
mal policy exists in reasonable generality. In this
paper, we restrict our attention to the MDPs with the
following assumptions.

Assumption 1 (MDP Regularity). (A1) The action space
A is a finite set, and the state space S is a compact subset of a
d-dimensional set; without loss of generality, let S � [0,1]d.
(A2) The immediate rewards are random variables, uni-
formly bounded such that R(s, a) ∈ [−Rmax,Rmax], ∀s ∈
S,a ∈A for some Rmax > 0. (A3) The state transitions are
deterministic, that is, P ≡ P(s′ | s, a) ∈ {0, 1} for all s, s′ ∈
S, a ∈A.

Define β¢1=(1− γ) and Vmax¢βRmax: Because all
the rewards are bounded by Rmax, it is easy to see that
the absolute value of the value function for any state
under any policy is bounded by Vmax (Even-Dar et al.
2003, Strehl et al. 2006).

2.1.1. On Deterministic Transition. We first remark
that the deterministic transition in MDP is not a very
restrictive assumption. Traditional artificial intelli-
gence (AI) game research has been focused on deter-
ministic games with a tree representation. MCTS has
been extensively used in such deterministic transition
problems (Browne et al. 2012), as demonstrated by the
recent successes of MCTS in Go (Silver et al. 2017b),
Chess (Silver et al. 2017a), and Atari games (Guo et al.
2014). There has been extensive theoretical literature
on the analysis of MCTS and related methods for de-
terministic transitions (Hren and Munos 2008, Browne
et al. 2012, Munos 2014, Bartlett et al. 2019), which
provide crucial insights for more general scenarios in
reinforcement learning.

Having noted that, our analysis and results for de-
terministic transitions indeed naturally extend to the
stochastic setting with minor modifications. Consider-
ing the importance of deterministic transition setting
and the clarity of our proof framework, we first

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 5

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

develop the results and the associated analysis for the
setting of deterministic transitions. After presenting
the main ideas, we shall extend them for the stochastic
setting as described in Appendix A.

2.2. Value Function Iteration
A classical approach to find optimal value function,
V∗, is an iterative approach called value function itera-
tion. The Bellman equation characterizes the optimal
value function as

V∗(s) �max
a∈A

(E[R(s, a)] + γV∗(s ◦ a)), (2)

where s ◦ a ∈ S is the notation to denote the state
reached by applying action a on state s. Under As-
sumption 1, the transitions are deterministic, and
hence s ◦ a represents a single, deterministic state
rather than a random state.

The value function iteration effectively views (2) as
a fixed-point equation and tries to find a solution to it
through a natural iteration. Precisely, let V(t)(·) be the
value function estimation in iteration t with V(0) being
arbitrarily initialized. Then, for t ≥ 0, for all s ∈ S,

V(t+1)(s) �max
a∈A

(E[R(s,a)] + γV(t)(s ◦ a)): (3)

It is well known (Bertsekas 2017) that value iteration
is contractive with respect to || ·‖∞ norm for all γ < 1.
Specifically, for t ≥ 0, we have

||V(t+1) −V∗‖∞ ≤ γ ||V(t) −V∗‖∞: (4)

3. MCTS
The MCTS has been quite popular recently in many of
reinforcement learning tasks. In effect, given a state
s ∈ S and a value function estimate V̂ , it attempts to
run the value function iteration for a fixed number of
steps, say H, to evaluate V(H)(s) starting with V(0) � V̂
per (3). This, according to (4), would provide an
estimate within error γH ||V̂ −V∗‖∞: an excellent esti-
mate of V∗(s) if H is large enough. The goal is to per-
form computation for value function iteration necessary
to evaluate V(H) for state s only and not necessarily for
all states as required by traditional value function itera-
tion. MCTS achieves this by simply unrolling the associ-
ated computation tree. Another challenge that MCTS
overcomes is the fact that value function iteration as in
(3) assumes knowledge of model so that it can compute
E[R(·, ·)] for any state-action pair. However, in reality,
rewards are observed through samples and not a direct
access to E[R(·, ·)]. MCTS tries to use the samples in a
careful manner to obtain accurate estimation for V(H)(s)
over the computation tree suggested by the value func-
tion iteration as discussed previously. The concern of
careful use of samples naturally connects it to MAB-like
setting.

Next, we present a detailed description of the MCTS
algorithm in Section 3.1. This can be viewed as a correc-
tion of the algorithm presented in Kocsis and Szepesvári
(2006) and Kocsis et al. (2006). We state its theoretical
property in Section 3.2.

3.1. Algorithm
We provide details of a specific form of MCTS, which
replaces the logarithmic bonus term of UCT with a
polynomial one. Overall, we fix the search tree to be
of depth H. Similar to most literature on this topic, it
uses a variant of the UCB algorithm to select an action
at each stage. At a leaf node (i.e., a state at depth H),
we use the current value oracle V̂ to evaluate its
value. Because we consider deterministic transitions,
consequently, the tree is fixed once the root node
(state) is chosen, and we use the notation s ◦ a to de-
note the next state after taking action a at state s. Each
edge represents a state-action pair, whereas each node
represents a state. For clarity, we use superscript to
distinguish quantities related to different depth. The
pseudo-code for the MCTS procedure is given in Al-
gorithm 1, and Figure 1 shows the structure of the
search tree and related notation.

Algorithm 1 (Fixed-Depth MCTS)
1: Input: (1) current value oracle V̂ , root node s(0)

and search depthH;
(2) number of MCTS simulations n;
(3) algorithmic constants, {α(i)}Hi�1, {β(i)}Hi�1,{ξ(i)}Hi�1 and {η(i)}Hi�1:

2: Initialization: for each depth h, initialize the cu-
mulative node value ṽ(h)(s) � 0 and visit count
N(h)(s) � 0 for every node s and initialize the cu-
mulative edge value q(h)(s, a) � 0.

3: for eachMCTS simulation t � 1, 2, : : : ,n do
4: /* Simulation: select actions until

reaching depthH*/
5: for depth h � 0, 1, 2, : : : ,H− 1 do
6: at state s(h) of depth h, select an action (edge)

according to

a(h+1) � arg max
a∈A

q(h+1)(s(h), a) + γṽ(h+1)(s(h) ◦ a)
N(h+1)(s(h) ◦ a)

+ (β(h+1))1=ξ(h+1) · (N(h)(s(h)))α(h+1)=ξ(h+1)

(N(h+1)(s(h) ◦ a))1−η(h+1)
,

(5)

where dividing by zero is assumed to be +∞.
7: upon taking the action a(h+1), receive a random

reward r(h+1)¢R(s(h),a(h+1)) and transit to a
new state s(h+1) at depth h + 1.

8: end for
9: /* Evaluation: call value oracle for

leaf nodes*/

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
6 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

10: reach s(H) at depthH, call the current value oracle
and let ṽ(H)(s(H)) � V̂(s(H)).

11: /* Update Statistics: quantities on the
search path*/

12: for depth h � 0, 1, 2, : : : ,H− 1 do
13: update statistics of nodes and edges that are

on the search path of current simulation:

visit count : N(h+1)(s(h+1)) � N(h+1)(s(h+1)) + 1

edge value : q(h+1)(s(h), a(h+1))
� q(h+1)(s(h), a(h+1)) + r(h+1)

node value : ṽ(h)(s(h))
� ṽ(h)(s(h)) + r(h+1) + γr(h+2) + : : :

+ γH−1−hr(H) + γH−hṽ(H)(s(H))

14: end for
15: end for
16: Output: average of the value for the root node

ṽ(0)(s(0))=n.
In Algorithm 1, there are certain sequences of algo-

rithmic parameters required, namely, α, β, ξ, and η.
The choices for these constants will become clear in our
nonasymptotic analysis. At a higher level, the constants
for the last layer (i.e., depth H), α(H), β(H), ξ(H) and η(H)

depend on the properties of the leaf nodes, whereas the
rest are recursively determined by the constants one
layer below. We note that in selecting action a(h+1) at
each depth h (i.e., Line 6 of Algorithm 1), the upper con-
fidence term is polynomial in n, whereas a typical UCB
algorithm would be logarithmic in n, where n is the
number of visits to the corresponding state thus far. The
logarithmic factor in the original UCB algorithm was
motivated by the exponential tail probability bounds.
In our case, it turns out that exponential tail bounds for
each layer seems to be infeasible without further struc-
tural assumptions. As mentioned in Section 1.2, prior
work (Audibert et al. 2009, Salomon and Audibert
2011) has justified the polynomial concentration of the
regret for the classical UCB in the stochastic (indepen-
dent rewards) MAB setting. This implies that the con-
centration at intermediate depth (i.e., depth less than
H) is at most polynomial. Indeed, we will prove these
polynomial concentration bounds even for the nonsta-
tionary (dependent, nonstationary rewards) MAB that
shows up in MCTS and discuss separately in Section 5.

3.2. Analysis
Now, we state the following result on the nonasymp-
totic performance of the MCTS as described previously.

Theorem 1. Consider an MDP satisfying Assumption 1.
Let H ≥ 1, and for 1=2 ≤ η < 1, let

Figure 1. Notation and Sample Simulation Path of MCTS (Thick Lines)

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 7

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

η(h) � η(H) ≡ η, ∀h ∈ [H], (6)

α(h) � η(1− η)(α(h+1) − 1), ∀h ∈ [H− 1], (7)

ξ(h) � α(h+1) − 1, ∀h ∈ [H− 1]: (8)

Suppose that a large enough ξ(H) is chosen such that
α(1) > 2. Then, there exist corresponding constants {β(i)}Hi�1
such that for each query state s ∈ S, the following claim
holds for the output V̂n(s) of MCTS with n simulations:

|E[V̂n(s)] −V∗(s)| ≤ γHε0 +O(nη−1), (9)

where ε0 � ||V̂ −V∗‖∞ with V̂ being the estimate of V∗
used by the MCTS algorithm for leaf nodes.

Because η ∈ [1=2, 1), Theorem 1 implies a best case
convergence rate of O(n−1=2) by setting η � 1=2. The
constant in the O(·) notation also depends on η ∈ [12 , 1):
However, the impact of η on n is entirely captured
through nη−1. Therefore, the order-wise optimal con-
vergence is achieved by the choice of η � 1=2. With
these parameter choices, the bias term in the upper
confidence bound (Line 6 of Algorithm 1) scales as
(N(h)(s(h)))1=4= ������������������

N(h+1)(s(h) ◦ a)√
, that is, in the form of

t1=4=
��
S

√
as mentioned in Section 1, where t ≡N(h)(s(h))

is the number of times that state s(h) at depth h has
been visited, and S ≡N(h+1)(s(h) ◦ a) is the number of
times action a has been selected at state s(h).

3.2.1. High Probability Bound. Theorem 1 states bounds
on expected estimation error in value function (cf. (9)).
We remark that the proof is established via recursively
arguing a certain form of convergence and polynomial
concentration properties for the nonstationary value
function estimate sequence for nodes at each depth.
That is, starting with the convergence and polynomial
concentration properties for nodes at depth h+ 1,we es-
tablish a similar form of convergence and polynomial
concentration properties for nodes at depth h. We re-
cursively apply this argument, starting from the leaf no-
des, until reaching the root node. Therefore, the output
V̂n(s) ofMCTS at root node also satisfies a form of poly-
nomial concentration. Specifically, under the setup of
Theorem 1, it follows that for every n ≥ 1 and every
z ≥ 1:

P(nV̂n(s) − nµ∗(s) ≥ nηz) ≤ β(1)

zξ(0)
, P(nV̂n(s) − nµ∗(s)

≤ −nηz) ≤ β(1)

zξ(0)
,

where η, ξ(0), and β(1) are some constants (see Theo-
rem 1 and the proof in Section 7 for details.). Here,
µ∗(s) is the value function estimation for s after H iter-
ations of value function iteration starting with V̂ .
With the classical contraction result for value function
iteration, that is, | µ∗(s) −V∗(s) |≤ γHε0, we obtain

P(nV̂n(s) − nV∗(s) ≥ nηz+ γHε0) ≤ β(1)

zξ(0)
,

P(nV̂n(s) − nV∗(s) ≤ −nηz− γHε0) ≤ β(1)

zξ(0)
:

4. Reinforcement Learning Through
MCTS with Supervised Learning

Recently, MCTS has been used prominently in various
empirical successes of reinforcement learning includ-
ing AGZ. Here, MCTS is combined with expressive
supervised learning method to iteratively improve the
policy and the value function estimation. In effect,
MCTS combined with supervised learning acts as a
policy improvement operator.

Intuitively, MCTS produces an improved estima-
tion of value function for a given state of interest,
starting with a given estimation of value function by
unrolling the computation tree associated with value
function iteration. MCTS achieves this using observa-
tions obtained through simulations. Establishing this
improvement property rigorously was the primary
goal of Section 3. Now, given such improved estima-
tion of value function for finitely many states, a good
supervised learning method can learn to generalize
such an improvement to all states. If so, this is like
performing value function iteration, but using simula-
tions. Presenting such a policy and establishing such
guarantees is the crux of this section.

To that end, we present a reinforcement learning
method that combines MCTS with nearest neighbor su-
pervised learning. For this method, we establish that in-
deed, with sufficient number of samples, the resulting
policy improves the value function estimation just like
value function iteration. Using this, we provide a finite-
sample analysis for learning the optimal value function
within a given tolerance. We find it nearly matching a
minimax lower bound in Shah and Xie (2018), which we
recall in Section 4.4, and thus establishes near minimax
optimality of such a reinforcement learning method.

4.1. Reinforcement Learning Policy
Here we describe the policy to produce estimation of op-
timal value function V∗. Similar approach can be applied
to obtain estimation of policy as well. Let V(0) be the ini-
tial estimation of V∗, and for simplicity, let V(0)(·) � 0.
We describe a policy that iterates between use of MCTS
and supervised learning to iteratively obtain estimation
V(ℓ) for ℓ ≥ 1, so that iteratively better estimation of V∗ is
produced as ℓ increases. To that end, for ℓ ≥ 1:

• For appropriately sampled states Sℓ � {si}mℓ

i�1, apply
MCTS to obtain improved estimations of value

function {V̂ (ℓ)(si)}mℓ

i�1 using V(ℓ−1) to evaluate leaf
nodes during simulations.

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
8 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

• Using {(si,V̂ (ℓ)(si)}mℓ

i�1 with a variant of nearest
neighbor supervised learning with parameter
δℓ ∈ (0, 1), produce estimation V(ℓ) of the optimal
value function.

For completeness, the pseudo-code is provided in
Algorithm 2.

Algorithm 2 (Reinforcement Learning Policy)
1: Input: initial value function oracle V(0)(s) � 0,

∀s ∈ S
2: for l � 1, 2, : : : ,L do
3: /* improvement via MCTS */
4: uniformly and independently sample states Sℓ �

{si}mℓ

i�1.
5: for each sampled state si do
6: apply the MCTS algorithm, which takes as in-

puts the current value oracle V(l−1), the depth
H(l), the number of simulation nl, and the root
node si, and outputs an improved estimate for
V∗(si):

V̂
(l)(si) �MCTS(V(l−1),H(l),nl, si) (10)

7: end for
8: /* supervised learning */
9: with the collected data D(l) � {(si,V̂ (l)(si))}ml

i�1,
build a new value oracle V(l) via a nearest
neighbor regression with parameter δl:

V(l)(s) �Nearest Neigbhor (D(l),δl, s), ∀s ∈ S:

(11)

10: end for
11:Output: final value oracleV(L).

4.2. Supervised Learning
For simplicity, we shall use the following variant of
the nearest neighbor supervised learning parame-
trized by δ ∈ (0, 1). Given state space S � [0,1]d, we
wish to cover it with minimal (up to scaling) number
of balls of radius δ (with respect to ℓ2-norm). To that
end, because S � [0,1]d, one such construction is
where we have balls of radius δ with centers being
{(θ1,θ2, : : : ,θd) : θ1, : : : ,θd ∈Q(δ)} where

Q(δ) � 1
2
δi : i ∈ Z, 0 ≤ i ≤

⌊
2
δ

⌋{ }⋃
1− 1

2
δi : i ∈ Z, 0 ≤ i ≤

⌊
2
δ

⌋{ }
:

Let the collection of these balls be denoted by
c1, : : : , cK(δ,d) with K(δ,d) �|Q(δ)|. It is easy to verify
that S ⊂ ⋃

i∈[K(δ,d)]ci, K(δ,d) �Θ(δ−d) and Cdδ
d ≤ volume

(ci ∩ S) ≤ C′
dδ

d for strictly positive constants Cd,C′
d

that depends on d but not δ. For any s ∈ S, let
j(s) �min{j : s ∈ cj}. Given observations {(si,V̂ (ℓ)(si)}mℓ

i�1,
we produce an estimate V(ℓ)(s) for all s ∈ S as follows:

V(ℓ)(s) �

∑
i:si∈cj(s)

V̂
(ℓ)(si)

|{i : si ∈ cj(s)}| , if | {i : si ∈ cj(s)} |≠ 0,

0 otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (12)

It is worth noting that other supervised learning algo-
rithms could be used to achieve similar performance
guarantees under proper conditions. In this work, as a
concrete example, we instantiate the supervised learn-
ing algorithm with nearest neighbors for its simplicity
and its generalization guarantee for smooth functions.
As only the basic Lipschitz smoothness is assumed (As-
sumption 2 in Section 4.3), we do not expect order-wise
gain in terms of improving sample complexity from
other learning methods. However, it could be beneficial
to use a more refined method, for example, local poly-
nomial interpolation, if the underlying function posses
higher-order smoothness or a parametric form.

4.3. Finite-Sample Analysis
For finite-sample analysis of the proposed reinforce-
ment learning policy, we make the following structural
assumption about the MDP. Specifically, we assume
that the optimal value function (i.e., true regression
function) is smooth in some sense. We note that some
form of smoothness assumption for MDPs with contin-
uous state/action space is typical for ℓ∞ guarantee.
The Lipschitz continuous assumption stated here is
natural and representative in the literature on MDPs
with continuous state spaces (Bertsekas 1975; Dufour
and Prieto-Rumeau 2012, 2013; Munos 2014).

Assumption 2. (Smoothness). The optimal value function
V∗ : S → R satisfies Lipschitz continuity with parameter C,
that is,∀s, s′ ∈ S � [0,1]d, |V∗(s) −V∗(s′)| ≤ C ||s− s′‖2:

Now we state the result characterizing the perfor-
mance of the reinforcement learning policy described
previously.

Theorem 2. Let Assumptions 1 and 2 hold. Let ε > 0 be a

given error tolerance. Then, for L �Θ log ε
Vmax

()
, with ap-

propriately chosen mℓ,δℓ for ℓ ∈ [L], as well as parameters
in MCTS, the reinforcement learning algorithm produces
estimation of value function V(L) such that

E[sup
s∈S

|V(L)(s) −V∗(s)|] ≤ ε,

by selecting mℓ states uniformly at random in S within it-
eration ℓ. This, in total, requires T number of state transi-
tions (or samples), where

T �O ε−(4+d) · log
1
ε

()5()
:

A few remarks are in order.We first note that, in
Theorem 2, the expectation is taken with respect to all

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 9

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

the randomness in the algorithm, that is, the random-
ness in sampling the states at each iteration (Line 4 of
Algorithm 2) and the randomness in each query of
the MCTS algorithm (Line 6 of Algorithm 2). As
for the parameters for MCTS and supervised learning,
the following choice would lead to the guarantee of
Theorem 2: for each iteration ℓ ≥ 1, we set

H(ℓ) � c′0logλ
−1, nℓ � c′2λ

−ℓ=(1−η), δℓ � c′1λ
ℓ and

mℓ � c′3δ
−d−2
ℓ logδ−1ℓ ,

where λ¢ ε=Vmax()1=L, and c′0, c′1, c′2, c′3 are constants in-
dependent of λ and ℓ; see Section 8.2 for details.

4.4. Minimax Lower Bound
Leveraging the minimax lower bound for the problem
of nonparametric regression (Stone 1982, Tsybakov
2009), recent work (Shah and Xie 2018) establishes a
lower bound on the sample complexity for reinforce-
ment learning algorithms for general MDPs without
additional structural assumptions. Indeed the lower
bound also holds for MDPs with deterministic transi-
tions (the proof is provided in Appendix C), which is
stated in the following proposition.

Proposition 1. Given an algorithm, let VT be the estima-
tion of V∗ after T samples of state transitions for the given
MDP. Then, for each ε ∈ (0, 1), there exists an instance of
deterministic MDP such that to achieve P[|| V̂T −V∗‖∞ <
ε] ≥ 1− ε, it must be that

T ≥ C′d · ε−(d+2) · log (ε−1),
where C′ > 0 is a constant independent of the algorithm.

Proposition 1 states that for any policy to learn the op-
timal value function within ε approximation error, the
number of samples required must scale as Ω̃(ε−(2+d)).
Theorem 2 implies that the sample complexity of the
proposed algorithm scales as Õ(ε−(4+d)) (omitting the
logarithmic factor). Hence, in terms of the dependence
on the dimension, the proposed algorithm is nearly
optimal. Optimizing the dependence of the sample
complexity on other parameters is an important direc-
tion for future work.

5. Nonstationary MAB
We introduce a class of nonstationary MAB problems,
which will play a crucial role in analyzing the MCTS
algorithm. To that end, let there be K ≥ 1 arms or ac-
tions of interest. Let Xi,t denote the random reward
obtained by playing the arm i ∈ [K] for the tth time
with t ≥ 1. Let X̄i,n � 1

n

∑n
t�1Xi,t denote the empirical

average of playing arm i for n times, and let µi,n �
E[X̄i,n] be its expectation. For each arm i ∈ [K], the re-
ward Xi,t is bounded in [−R,R] for some R > 0, and
we assume that the reward sequence, {Xi,t : t ≥ 1}, is a

nonstationary process satisfying the following conver-
gence and concentration properties:

A. Convergence: The expectation µi,n converges to a
value µi, that is,

µi � lim
n→∞E[X̄i,n]: (13)

B. Concentration: There exist three constants,
β > 1, ξ > 0, and 1=2 ≤ η < 1 such that for every
z ≥ 1 and every integer n ≥ 1,

P(nX̄i,n − nµi ≥ nηz) ≤ β

zξ
, P(nX̄i,n − nµi ≤ −nηz) ≤ β

zξ
:

(14)

5.1. Algorithm
Consider applying the following variant of the UCB
algorithm to the nonstationary MAB. Define the UCB
for arm or action i when it is played s times in total of
t ≥ s time steps as

Ui,s,t � X̄i,s +Bt,s, (15)

where Bt,s is the “bonus term.” Denote by It the arm
played at time t ≥ 1. Then,

It ∈ arg max
i∈[K]

{X̄i,Ti(t−1) +Bt−1,Ti(t−1)}, (16)

where Ti(t) �
∑t

l�1 I{Il � i} is the number of times
arm i has been played, up to (including) time t. We
shall make specific selection of the bonus or bias
term Bt,s as

Bt,s � β1=ξ · tα=ξ
s1−η

: (17)

A tie is broken arbitrarily when selecting an arm.
In the previous statements, α > 0 is a tuning parame-
ter that controls the exploration and exploitation
tradeoff. Let µ∗ �maxi∈[K]µi be the optimal value
with respect to the converged expectation and i∗ ∈
argmaxi∈[K]µi be the corresponding optimal arm.
We assume that the optimal arm is unique. Let
δi∗,n � µi∗,n −µi∗ , which measures how fast the mean
of the optimal nonstationary arm converges. For
simplicity, quantities related to the optimal arm i∗
will be simply denoted with subscript ∗, for example,
δ∗,n � δi∗,n. Finally, denote by Δmin �mini∈[K],i≠i∗Δi the
gap between the optimal arm and the second opti-
mal arm with notation Δi � µ∗ −µi.

5.2. Analysis
Let X̄n¢ 1

n
∑K

i�1 Ti(n)X̄i,Ti(n) denote the empirical average
under the UCB algorithm (16). Then, X̄n satisfies the fol-
lowing convergence and concentration properties.

Theorem 3. Consider a nonstationary MAB satisfying
(13) and (14). Suppose that Algorithm (16) is applied with

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
10 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

parameter α such that ξη(1− η) ≤ α < ξ(1− η) and α > 2.
Then, the following holds:

A. Convergence:

E[X̄n] − µ∗
∣∣ ∣∣ ≤ δ∗,n

∣∣ ∣∣ +
2R(K − 1) · (2

Δmin
· β1=ξ) 1

1−η · n α
ξ(1−η) + 2

α−2 + 1
()

n
:

B. Concentration: there exist constants, β′ > 1 and ξ′ > 0
and 1=2 ≤ η′ < 1 such that for every n ≥ 1 and every z ≥ 1,

P(nX̄n − nµ∗ ≥ nη′z) ≤ β′

zξ′
, P(nX̄n − nµ∗ ≤ −nη′z) ≤ β′

zξ′
,

where η′ � α
ξ(1−η) , ξ

′ � α− 1, β′ depends on R,K,Δmin,β,
ξ,α,η.

6. Proof of Theorem 3
We establish the convergence and concentration prop-
erties of the variant of the UCB algorithm described in
Section 5 and specified through (15)–(17).

Establishing the Convergence Property. We define a
useful notation

Φ(n, δ) � nη
β

δ

()1=ξ
: (18)

We begin with a useful lemma, which shows that
the probability that a nonoptimal arm or action has a
large upper confidence is polynomially small. Proof is
provided in Section 6.1.

Lemma 1. Let i ∈ [K], i≠ i∗ be a suboptimal arm and de-
fine

Ai(t)¢min
u∈N

Φ(u, t−α)
u

≤ Δi

2

{ }
�

⌈
2
Δi

· β1=ξ · tα=ξ
() 1

1−η⌉
: (19)

For each s and t such that, Ai(t) ≤ s ≤ t, we have

P(Ui,s,t > µ∗) ≤ t−α:

Lemma 1 implies that as long as each arm is played
enough, the suboptimal ones become less likely to be
selected. This allows us to upper bound the expected
number of suboptimal plays as follows.

Lemma 2. Let i ∈ [K], i≠ i∗, then

E[Ti(n)] ≤ 2
Δi

· β1=ξ
() 1

1−η
· n α

ξ(1−η) + 2
α− 2

+ 1:

The proof of Lemma 2 is deferred to Section 6.2.
Completing Proof of Convergence. By the triangle

inequality,

µ∗ − E[X̄n]
∣∣ ∣∣ �| µ∗ − µ∗,n |

+ | µ∗,n − E[X̄n] |�| δ∗,n | + | µ∗,n − E[X̄n]|:

The second term can be bounded as follows:

n µ∗,n − E[X̄n]
∣∣∣ ∣∣∣

� E
∑n
t�1

Xi∗,t

[]
− E

∑K
i�1

Ti(n)X̄i,Ti(n)

[]∣∣∣∣∣
∣∣∣∣∣

≤ E
∑n
t�1

Xi∗,t

[]
− E[T∗(n)X̄i∗,T∗(n)]

∣∣∣∣∣
∣∣∣∣∣ +

∣∣∣∣∣E ∑K
i�1, i≠i∗

Ti(n)X̄i,Ti(n)

[]∣∣∣∣∣
� E

∑n
t�T∗(n)+1

Xi∗,t

[]∣∣∣∣∣
∣∣∣∣∣ +

∣∣∣∣∣E ∑K
i�1, i≠i∗

Ti(n)X̄i,Ti(n)

[]∣∣∣∣∣:
(20)

Recall that the reward sequences are assumed to be
bounded in [−R,R]. Therefore, the first term of (20)
can be bounded as follows:

E
∑n

t�T∗(n)+1
Xi∗,t

[]∣∣∣∣∣
∣∣∣∣∣ ≤ E

[∑n
t�T∗(n)+1

Xi∗,t
∣∣ ∣∣] ≤ R ·E ∑K

i�1, i≠i∗
Ti(n)

[]
:

The second term can also be bounded as

E
∑K

i�1, i≠i∗
Ti(n)X̄i,Ti(n)

[]∣∣∣∣∣
∣∣∣∣∣ ≤ R · E ∑K

i�1, i≠i∗
Ti(n)

[]
:

Hence, we obtain that

µ∗ − E X̄n
[]∣∣ ∣∣ � δ∗,n

∣∣ ∣∣ + µ∗,n − E X̄n
[]∣∣∣ ∣∣∣

≤ δ∗,n
∣∣ ∣∣ + 2R · E ∑K

i�1, i≠i∗Ti(n)
[]

n
:

Combining the above bounds and Lemma 2 yields
the desired convergence result in Theorem 3.

Establishing the Concentration Property. Having
proved the convergence property, the next step is to
show that a similar concentration property (cf. (14))
also holds for X̄n. We aim to precisely capture the re-
lationship between the original constants assumed in
the assumption and the new constants obtained for
X̄n. To begin with, recall the definition of Ai(t) in
Lemma 1 and define

A(t) �max
i∈ K[]

Ai(t) �
⌈

2
Δmin

· β1=ξ
() 1

1−η
· t α

ξ(1−η)
⌉
: (21)

It can be checked that replacing β with any larger
number still makes the concentration inequalities (14)
hold. Without loss of generality, we hence let β be
large enough so that 2

Δmin
· β1=ξ > 1. We further denote

by Np the first time such that t ≥ A(t), that is,

Np �min t ≥ 1 : t ≥ A(t){ } � Θ
2ξβ
Δminξ

() 1
ξ(1−η)−α

()
: (22)

We first state the following concentration property,
which will be further refined to match the desired
form in Theorem 3. We defer the proof to Section 6.3.

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 11

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

Lemma 3. For anyn ≥Np andx ≥ 1, let r0 � nη + 2R(K− 1)
(3+A(n)): Then,

P(nX̄n − nµ∗ ≥ r0x) ≤ β

xξ
+ 2(K− 1)
(α− 1)((1+A(n))x)α−1 ,

P(nX̄n − nµ∗ ≤ −r0x) ≤ β

xξ
+ 2(K− 1)
(α− 1)((1+A(n))x)α−1 :

Lemma 3 confirms that indeed, as n becomes large,
the average X̄n also satisfies certain concentration in-
equalities. However, the particular form of concentra-
tion in Theorem 3 does not quite match the form of
concentration in Theorem 3, which we conclude next.

Completing Proof of Concentration Property. Let
N′

p be a constant defined as follows:

N′
p �min{t ≥ 1 : t ≥ A(t) and 2RA(t) ≥ tη + 2R(4K− 3)}:

Recall the definition of A(t) and that α ≥ ξη(1− η)
and α < ξ(1− η). Hence, N′

p is guaranteed to exist. In
addition, by definition, N′

p ≥Np. For each n ≥N′
p,

2RK 2
Δmin

· β1=ξ
() 1

1−η · n α
ξ(1−η) � 2RK 2

Δmin
· β1=ξ

() 1
1−η · n α

ξ(1−η) + 1− 1
[]

≥ 2RKA(n) − 2RK
� 2R(K− 1)A(n) + 2RA(n) − 2RK
≥ 2R(K− 1)A(n) + nη

+2R(4K− 3) − 2RK
� 2R(K− 1)(A(n) + 3) + nη � r0

Now, let us apply Lemma 3: for every n ≥N′
p and

x ≥ 1, we have

P(nX̄n − nµ∗ ≥ n
α

ξ(1−η) 2RK 2
Δmin

· β1=ξ
() 1

1−η
[]

x) ≤ P(nX̄n − nµ∗ ≥ r0x)

≤ β

xξ
+ 2(K− 1)
(α− 1)((1+A(n))x)α−1

≤
2max β,

2(K− 1)
(α− 1)(1+A(N′

p))α−1
()

xα−1
,

(23)

where the last inequality follows because n ≥N′
p and

A(n) is a nondecreasing function. In addition, because
α < ξ(1− η) < ξ, we have α− 1 < ξ. For convenience,
we define a constant

c1¢2RK
2

Δmin
· β1=ξ

() 1
1−η
: (24)

Equivalently, by a change of variable, that is, letting
z � c1x, then for every n ≥N′

p and z ≥ 1, we obtain that

P nX̄n − nµ∗ ≥ n
α

ξ(1−η)z
()

≤
2cα−11 ·max β, 2(K−1)

(α−1)(1+A(N′
p))α−1

()
zα−1

:

(25)

The previous inequality holds because (1) if z ≥ c1,
then (25) directly follows from (23); (2) if 1 ≤ z ≤ c1, then

the right-hand side (R.H.S.) of (25) is at least one (by as-
sumption, β > 1) and the inequality trivially holds. The
concentration inequality, that is, Equation (25), is now
almost the same as the desired form in Theorem 3. The
only difference is that it only holds for n ≥N′

p. This is
not hard to resolve. The easiest approach, which we
show in the following, is to refine the constants to en-
sure that when 1 ≤ n <N′

p, Equation (25) is trivially
true. To this end, we note that nX̄n − nµ∗

∣∣ ∣∣ ≤ 2Rn. For
each 1 ≤ n <N′

p, there is a corresponding z̄(n) such that
n

α
ξ(1−η)z̄(n) � 2Rn. That is,

z̄(n)¢2Rn1−
α

ξ(1−η), 1 ≤ n <N′
p:

This then implies that for each 1 ≤ n <N′
p, the fol-

lowing inequality trivially holds:

P nX̄n − nµ∗ ≥ n
α

ξ(1−η)z
()

≤ z̄(n)α−1
zα−1

, ∀z ≥ 1:

To see why, note that for each 1 ≤ n <N′
p: (1) if

z ≥ z̄(n), then n
α

ξ(1−η)z ≥ 2Rn and the previous probabil-
ity should be zero. Hence, any positive number on
the R.H.S. makes the inequality trivially true; (2) if
1 ≤ z < z̄(n), the R.H.S. is at least one, which again
makes the inequality hold. For convenience, define

c2¢ max
1≤n<N′

p

z̄(n) � 2R(N′
p − 1)1− α

ξ(1−η): (26)

Then, it is easy to see that for every n ≥ 1 and every
z ≥ 1, we have

P(nX̄n − nµ∗ ≥ nη
′
z) ≤ β′

zξ′
,

where the constants are given by

η′ � α

ξ(1− η) , (27)

ξ′ � α− 1, (28)

β′ �max c2, 2cα−11 ·max β,
2(K− 1)

(α− 1)(1+A(N′
p))α−1

(){ }
: (29)

Finally, notice that because α ≥ ξη(1− η) and α <
ξ(1− η), we have 1=2 ≤ η ≤ η′ < 1. Per (24), c1 depends
on R,K,Δmin,β,ξ and η. In addition, c2 depends on
R,K,Δmin,β,ξ,α,η and N′

p depends on R,K,Δmin,β,
ξ,α,η. Therefore, β′ depends on R,K,Δmin,β,ξ,α,η.
The other direction follows exactly the same reason-
ing, and this completes the proof of Theorem 3.

6.1. Proof of Lemma 1
By the choice of Ai(t), s, and t, we have Bt,s � Φ(s, t−α)

s ≤
Φ(Ai(t), t−α)

Ai(t) ≤ Δi
2 . Therefore,

P(Ui,s,t > µ∗) � P(X̄i,s +Bt,s > µ∗)
� P(X̄i,s −µi > Δi −Bt,s)
≤ P(X̄i,s −µi > Bt,s) Δi ≥ 2Bt,s

≤ t−α: by concentration (14):

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
12 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

6.2. Proof of Lemma 2
If a suboptimal arm i is chosen at time t+ 1, that is,
It+1 � i, then at least one of the following two equa-
tions must be true: with notation T∗(·) � Ti∗ (·),

Ui∗,T∗(t),t ≤ µ∗, (30)
Ui,Ti(t),t > µ∗: (31)

Indeed, if both inequalities are false, we have
Ui∗,T∗(t),t > µ∗ ≥Ui,Ti(t),t, which is a contradiction to
It+1 � i. We now use this fact to prove Lemma 2.

Case 1: n > Ai(n). Such n exists because Ai(n) grows
with a polynomial order O(n α

ξ(1−η)) and α < ξ(1− η),
that is, Ai(n) � o(n). Then,
Ti(n) �

∑n−1
t�0

I{It+1 � i}(a)�1+∑n−1
t�K

I{It+1 � i}

� 1+∑n−1
t�K

(I{It+1 � i,Ti(t) < Ai(n)} + I{It+1 � i,Ti(t) ≥ Ai(n)})

≤ Ai(n) +
∑n−1
t�K

I{It+1 � i,Ti(t) ≥ Ai(n)},

where equality (a) follows from the fact that Bt,s �∞ if
s � 0.

To analyze the previous summation, we note that
from (30) and (31),
I{It+1 � i,Ti(t) ≥ Ai(n)} ≤ I{Ui∗,T∗(t),t ≤ µ∗ or Ui,Ti(t),t > µ∗,Ti(t) ≥ Ai(n)}

≤ I{Ui,Ti(t),t > µ∗,Ti(t) ≥ Ai(n)} + I{Ui∗ ,T∗(t),t ≤ µ∗,Ti(t) ≥ Ai(n)}
≤ I{Ui,Ti(t),t > µ∗,Ti(t) ≥ Ai(n)} + I{Ui∗ ,T∗(t),t ≤ µ∗}
� I{∃ s : Ai(n) ≤ s ≤ t, s:t: Ui,s,t > µ∗}
+I{∃ s∗ : 1 ≤ s∗ ≤ t, s:t: Ui∗,s∗,t ≤ µ∗}:

To summarize, we have proved that

E Ti(n)[] ≤ Ai(n) +
∑n−1

t�Ai(n)
P((30) or (31) is true; and Ti(t) ≥ Ai(n))

≤ Ai(n) +
∑n−1

t�Ai(n)

[
P(∃ s : Ai(n) ≤ s ≤ t, s:t: Ui,s,t > µ∗︸&&&&&&&&&&&&&&&&&︷︷&&&&&&&&&&&&&&&&&︸

E1

)

+ P(∃ s∗ : 1 ≤ s∗ ≤ t, s:t: Ui∗,s∗,t ≤ µ∗︸&&&&&&&&&&&&&&&&︷︷&&&&&&&&&&&&&&&&︸
E2

)
]
:

(32)
To complete the proof of Lemma 2, it suffices to

bound the probabilities of the two events E1 and E2.
To this end, we use a union bound:

P(E1) ≤
∑t

s�Ai(n)
P(Ui,s,t > µ∗) ≤

(a) ∑t

s�Ai(n)
t−α ≤ t · t−α � t1−α,

where the step (a) follows from Ai(n) ≥ Ai(t) and
Lemma 1. We bound P(E2) in a similar way:

P(E2) ≤
∑t

s∗�1
P(Ui∗,s∗,t ≤ µ∗) �

∑t

s∗�1
P(X̄i∗,s∗ +Bt,s∗ ≤ µ∗) ≤

(a)∑t

s∗�1
t−α ≤ t1−α,

where step (a) follows from concentration (cf. (14)). By
substituting the bounds of P(E1) and P(E2) into (32),

we have

E Ti(n)[] ≤ Ai(n) +
∑n−1

t�Ai(n)
2t1−α

≤ Ai(n) +
∫ ∞

Ai(n)−1
2t1−αdt α > 2

� Ai(n) + 2(Ai(n) − 1)2−α
α− 2

≤ Ai(n) + 2
α− 2

≤
(
2
Δi
· β1=ξ

) 1
1−η

· n α
ξ(1−η) + 2

α− 2
+ 1:

Case 2: n ≤ Ai(n). If n is such that n ≤ Ai(n), then the
previous bound trivially holds because Ti(n) ≤ n ≤
Ai(n). This completes the proof of Lemma 2.

6.3. Proof of Lemma 3
We first prove one direction, namely, P(nµ∗ − nX̄n ≥
r0x). The other direction follows the similar steps, and
we will comment on that at the end of this proof.
The general idea underlying the proof is to rewrite the
quantity nµ∗ − nX̄n as sums of terms that can be
bounded using previous lemmas or assumptions. To
begin with, note that

nµ∗ − nX̄n � nµ∗ −
∑K
i�1

Ti(n)X̄i,Ti(n)

� nµ∗ −
∑T∗(n)

t�1
Xi∗ ,t −

∑
i≠i∗

Ti(n)X̄i,Ti(n)

� nµ∗ −
∑n
t�1

Xi∗ ,t +
∑n

t�T∗(n)+1
Xi∗ ,t −

∑
i≠i∗

∑Ti(n)

t�1
Xi,t

≤ nµ∗ −
∑n
t�1

Xi∗ ,t + 2R
∑
i≠i∗

Ti(n),

because Xi,t ∈ −R,R[] for all i, t. Therefore, we have

P(nµ∗ − nX̄n ≥ r0x) ≤ P nµ∗ −
∑n
t�1

Xi∗ ,t + 2R
∑
i≠i∗

Ti(n) ≥ r0x

()

≤ P nµ∗ −
∑n
t�1

Xi∗ ,t ≥ nηx

()
+∑

i≠i∗
P(Ti(n) ≥ (3+A(n))x),

(33)

where the last inequality follows from the union bound.
To prove the theorem, we now bound the two terms

in (33). By our concentration assumption, we can up-
per bound the first term as follows:

P nµ∗ −
∑n
t�1

Xi∗,t ≥ nηx

()
≤ β

xξ
: (34)

Next, we bound each term in the summation of
(33). Fix n and a suboptimal edge i. Let u be an integer
satisfying u ≥ A(n): For any τ ∈ R, consider the follow-
ing two events:

E1 � {For each integer t ∈ u,n[], we have Ui,u,t ≤ τ},

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 13

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

E2 � {For each integer s ∈ 1,n− u[], we have Ui∗,s,u+s > τ}:

As a first step, we want to show that

E1 ∩ E2 ⇒ Ti(n) ≤ u: (35)

To this end, let us condition on both events E1 and
E2. Recall that Bt,s is nondecreasing with respect to t.
Then, for each s such that 1 ≤ s ≤ n− u, and each t
such that u+ s ≤ t ≤ n, it holds that

Ui∗,s,t � X̄i∗,s +Bt,s ≥ X̄i∗,s +Bu+s,s �Ui∗,s,u+s > τ ≥Ui,u,t:

This implies that Ti(n) ≤ u. To see why, suppose that
Ti(n) > u and denote by t′ the first time that arm i has
been played u times, that is, t′ �min{t : t ≤ n,Ti(t) � u}.
By definition, t′ ≥ u+T∗(t′). Hence, for any time t such
that t′ < t ≤ n, the previous inequality implies that
Ui∗,T∗(t),t >Ui,u,t. That is, i∗ always has a higher upper
confidence bound than i, and arm i will not be selected;
that is, arm i will not be played the (u+ 1) th time. This
contradicts our assumption that Ti(n) > u, and hence
we have the inequality Ti(n) ≤ u.

To summarize, we have established the fact that
E1 ∩ E2 ⇒ Ti(n) ≤ u: As a result, we have

{Ti(n) > u} ⊂ (Ec
1 ∪ Ec

2)
� ({∃ t : u ≤ t ≤ n s:t:Ui,u,t > τ}
∪ {∃ s : 1 ≤ s ≤ n− u, s:t: Ui∗,s,u+s ≤ τ}):

Using union bound, we obtain that

P(Ti(n) > u) ≤ ∑n
t�u

P(Ui,u,t > τ) + ∑n−u
s�1

P(Ui∗,s,u+s ≤ τ):
(36)

For the previous bound, we are free to choose u and
τ as long as u ≥ A(n). To connect with our goal (cf.
(33)), in the following, we set u � �(1+A(n))x� + 1 (re-
call that x ≥ 1) and τ � µ∗ to bound P(Ti(n) > u): Be-
cause u ≥ A(n) ≥ Ai(n), by Lemma 1, we have∑n
t�u

P(Ui,u,t > µ∗) ≤
∑n
t�u

t−α ≤
∫ ∞

u−1
t−αdt � (u− 1)1−α

α− 1

� (�(1+A(n))x�)1−α
α− 1

≤ ((1+A(n))x)1−α
α− 1

:

As for the second summation in the R.H.S. of (36),
we have that

∑n−u
s�1

P(Ui∗,s,u+s ≤ τ) � ∑n−u
s�1

P(Ui∗,s,u+s ≤ µ∗)

� ∑n−u
s�1

P(X̄i∗,s + Bu+s,s ≤ µ∗)

≤ ∑n−u
s�1

(s + u)−α � ∑n
t�1+u

t−α

≤
∫ ∞

u−1
t−αdt � (u − 1)1−α

α − 1
≤ ((1 + A(n))x)1−α

α − 1
,

where the first inequality follows from the concentra-
tion property (cf. (14)). Combining the previous in-
equalities and note that (3+A(n))x > �(1+A(n))x� + 1:

P(Ti(n) ≥ (3+A(n))x) ≤ P(Ti(n) > u)

≤ 2((1+A(n))x)1−α
α− 1

: (37)

Substituting (34) and (37) into (33), we obtain

P(nµ∗ − nX̄n ≥ r0x) ≤ β

xξ
+ ∑

i≠i∗

2((1 + A(n))x)1−α
α − 1

,

which is the desired inequality in Lemma 3.
To complete the proof, we need to consider the

other direction, that is, P(nX̄n − nµ∗ ≥ r0x). The proof
is almost identical. Note that

nX̄n − nµ∗ �
∑K
i�1

Ti(n)X̄i,Ti(n) − nµ∗

� ∑n
t�1

Xi∗,t − nµ∗ −
∑n

t�T∗(n)+1
Xi∗,t +

∑
i≠i∗

∑Ti(n)

t�1
Xi,t

≤ ∑n
t�1

Xi∗,t − nµ∗ + 2R
∑
i≠i∗

Ti(n),

because Xi,t ∈ −R,R[] for all i, t. Therefore,

P(nX̄n − nµ∗ ≥ r0x) ≤ P
∑n
t�1

Xi∗ ,t − nµ∗ + 2R
∑
i≠i∗

Ti(n) ≥ r0x

()

≤ P
∑n
t�1

Xi∗ ,t − nµ∗ ≥ nηx

()
+∑

i≠i∗
P(Ti(n) ≥ (3+Ai(n))x):

The desired inequality then follows exactly from
the same reasoning of our previous proof.

7. Analysis of MCTS and Proof
of Theorem 1

In this section, we give a complete analysis for the
fixed-depth MCTS algorithm illustrated in Algorithm 1
and prove Theorem 1. In effect, as discussed in Section
3, one can view a depth-HMCTS as a simulated version
of H steps value function iteration. Given the current
value function proxy V̂ , let V(H)(·) be the value function
estimation after H steps of value function iteration start-
ing with the proxy V̂ . Then, we prove the result in two
parts. First, we argue that because of the MCTS sam-
pling process, the mean of the empirical estimation of
value function at the query node s, or the root node of
MCTS tree, is within O(nη−1) of V(H)(s) after n simula-
tions, with the given proxy V̂ being the input to the
MCTS algorithm. Second, we argue that V(H)(s) is
within γH||V̂ −V∗||∞ ≤ γHε0 of the optimal value func-
tion. Putting this together leads to Theorem 1.

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
14 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

We start by a preliminary probabilistic lemma in
Section 7.1 that will be useful throughout. Sections 7.2
and 7.3 argue the first part of the proof as explained
previously. Section 7.4 provides proof of the second
part. Section 7.5 concludes the proof of Theorem 1.

7.1. Preliminary
We state the following probabilistic lemma that is use-
ful throughout. Proof can be found in Section 7.6.

Lemma 4. Consider real-valued random variables Xi, Yi

for i ≥ 1 such that Xs are independent and identically dis-
tributed taking values in −B,B[] for some B > 0, Xs are in-
dependent of Ys, and Ys satisfy

A. Convergence: for n ≥ 1, with notation Ȳn � 1
n∑n

i�1Yi

()
,

lim
n→∞E Ȳn

[] � µY:

B. Concentration: there exist constants, β > 1, ξ > 0,
1=2 ≤ η < 1 such that for n ≥ 1 and z ≥ 1,

P(nȲn − nµY ≥ nηz) ≤ β

zξ
, P(nȲn − nµY ≤ −nηz) ≤ β

zξ
:

Let Zi � Xi + ρYi for some ρ > 0. Then, Zs satisfy
A. Convergence: for n ≥ 1, with notation Z̄n � 1

n∑n
i�1Zi

()
, and µX � E X1[],

lim
n→∞E Z̄n

[] � µX + ρµY:

B. Concentration: there exist constant β′ > 1 depending
upon ρ,ξ,β and B, such that for n ≥ 1 and z ≥ 1,

P(nZ̄n − n(µX + ρµY) ≥ nηz) ≤ β′

zξ
,

P(nZ̄n − n(µX + ρµY) ≤ −nηz) ≤ β′

zξ
:

7.2. Analyzing Leaf Level H
The goal is to understand the empirical reward ob-
served at the query node for MCTS or the root node of
the MCTS tree. In particular, we argue that the mean
of the empirical reward at the root node of the MCTS
tree is within O(nη−1) of the mean reward obtained at
it assuming access to infinitely many samples. We
start by analyzing the reward collected at the nodes
that are at leaf level H and level H – 1.
The nodes at leaf level, that is, level H, are children of

nodes at level H – 1 in the MCTS tree. Let there be nH−1
nodes at level H – 1 corresponding to states s1,H−1, : : : ,
snH−1,H−1 ∈ S. Consider node i ∈ nH−1[] at levelH – 1, cor-
responding to state si,H−1. As part of the algorithm,
whenever this node is visited, one of the K feasible ac-
tions is taken. When an action a ∈ K[] is taken, the node
s′H � si,H−1 ◦ a, at the leaf level H is reached. This results
in reward at node si,H−1 (at level H – 1) being equal to
R(si,H−1, a) + γṽ(H)(s′H). Here, for each s ∈ S and a ∈ K[],

the reward R(s,a) is an independent, bounded random
variable taking value in −Rmax,Rmax[] with distribution
dependent on s, a; ṽ(H)(·) is the input of value function
proxy to the MCTS algorithm denoted as V̂(·), and γ ∈
0, 1)[is the discount factor. Recall that ε0 � ||V̂ −V∗| ∞|
and ||V∗| ∞ ≤ Vmax| . Therefore, ||ṽ(H)| ∞ �| ||V̂ | ∞ ≤ Vmax+|
ε0, and the reward collected at node si,H−1 by following
any action is bounded, in absolute value, by R̃max(H−1) �
Rmax+ γ(Vmax + ε0).

As part of the MCTS algorithm as described in (5),
when node si,H−1 is visited for the t + 1 time with t ≥ 0,
the action taken is

arg max
a∈A

{
1
ua

∑ua
j�1

(r(si,H−1, a)(j) + γṽ(H)(si,H−1 ◦ a)(j))

+ (β(H))1=ξ(H) · (t)α(H)=ξ(H)

(ua)1−η(H)

}
,

where ua ≤ t is the number of times action a has been
chosen thus far at state si,H−1 in the t visits thus far,
r(si,H−1,a)(j) is the jth sample of random variable per
distribution R(si,H−1,a), and ṽ(H)(si,H−1 ◦ a)(j) is the re-
ward evaluated at leaf node si,H−1 ◦ a for the jth time.
For all j, the reward evaluated at leaf node si,H−1 ◦ a is
the same and equals to ṽ(H)(·), the input value function
proxy for the algorithm. When ua � 0, we use notation
∞ to represent quantity inside the argmax. The net dis-
counted reward collected by node si,H−1 during its total
of t ≥ 1 visits is simply the sum of rewards obtained by
selecting the actions per the policy, which includes the
reward associated with taking an action and the evalua-
tion of ṽ(H)(·) for appropriate leaf node, discounted by
γ. In effect, at each node si,H−1, we are using the UCB
policy described in Section 5 with parameters α(H),β(H),
ξ(H),η(H) with K possible actions, where the rewards
collected by playing any of these K actions each time is
simply the summation of bounded independent and
identical (for a given action) random variable and a de-
terministic evaluation. By applying Lemma 4, where Xs
correspond to independent rewards, ρ � γ, and Ys cor-
respond to deterministic evaluations of ṽ(H)(·), we ob-
tain that for given ξ(H) > 0 and η(H) ∈ 1

2 , 1)
[

, there exists
β(H) such that the collected rewards at si,H−1 (i.e., sum of
i.i.d. reward and deterministic evaluations) satisfy the
convergence property (cf. (13)) and concentration prop-
erty (cf. (14)) stated in Section 5. Therefore, by an appli-
cation of Theorem 3, we conclude Lemma 5. We define
some notations first:

µ(H−1)
a (si,H−1) � E R(si,H−1, a)[]+ γṽ(H)(si,H−1 ◦ a),

µ(H−1)
∗ (si,H−1) �max

a∈ K[]
µ(H−1)
a (si,H−1)

a(H−1)∗ (si,H−1) ∈ arg max
a∈ K[]

µ(H−1)
a (si,H−1)

Δ(H−1)
min (si,H−1) � µ(H−1)

∗ (si,H−1) − max
a≠a(H−1)

∗ (si,H−1)
µ(H−1)
a (si,H−1):

(38)

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 15

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

We shall assume that the maximizer in the set
argmaxa∈ K[]µ(H−1)

a (si,H−1) is unique, that is, Δmin(H−1)

(si,H−1) > 0. Further note that all rewards belong to
−R̃max(H−1) , R̃max(H−1)
[]

.

Lemma 5. Consider a node corresponding to state si,H−1 at
level H–1 within the MCTS for i ∈ nH−1[]. Let
ṽ(H−1)(si,H−1)n be the total discounted reward collected at
si,H−1 during n ≥ 1 visits of it, to one of its K leaf nodes un-
der the UCB policy. Then, for the choice of appropriately
large β(H) > 0, for a given ξ(H) > 0, η(H) ∈ 1

2 , 1)
[

and
α(H) > 2, we have

A. Convergence:

E
1
n
ṽ(H−1)(si,H−1)n

[]
− µ(H−1)

∗ (si,H−1)
∣∣∣∣ ∣∣∣∣
≤
2R̃max(H−1) (K − 1) · 2(β(H))

1
ξ(H)

Δ(H−1)
min (si,H−1)

() 1
1−η(H)

· n α(H)
ξ(H)(1−η(H)) + 2

α(H) − 2
+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n
:

B. Concentration: there exist constants, β′ > 1 and ξ′ > 0
and 1=2 ≤ η′ < 1 such that for every n ≥ 1 and every z ≥ 1,

P(ṽ(H−1)(si,H−1)n − nµ(H−1)
∗ (si,H−1) ≥ nη

′
z) ≤ β′

zξ′
,

P(ṽ(H−1)(si,H−1)n − nµ(H−1)
∗ (si,H−1) ≤ −nη′z) ≤ β′

zξ′
,

where η′ � α(H)
ξ(H)(1−η(H)) , ξ

′ � α(H) − 1, and β′ is a large enough

constant that is function of parameters α(H),β(H),ξ(H),
η(H), R̃max(H−1) ,K,Δ(H−1)

min (si,H−1).
Let Δmin(H−1) �mini∈ nH−1[]Δ(H−1)

min (si,H−1). Then, the rate
of convergence for each node si,H−1, i ∈ nH−1[] can be
uniformly simplified as

δ(H−1)
n �

2R̃max(H−1) (K− 1) · 2(β(H))
1

ξ(H)
Δmin(H−1)

() 1
1−η(H)

· n α(H)
ξ(H)(1−η(H)) + 2

α(H) − 2
+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n

� Θ n
α(H)

ξ(H) (1−η(H))−1
()

�(a) O(nη−1),

where (a) holds because α(H) � ξ(H)(1− η(H))η(H),
η(H) � η. It is worth remarking that µ(H−1)

∗ (si,H−1), as de-
fined in (38), is precisely the value function estimation
for si,H−1 at the end of one step of value iteration start-
ing with V̂.

7.3. Recursion: Going from Level h to h – 1
Lemma 5 suggests that the necessary assumption of The-
orem 3, that is, (13) and (14), is satisfied by ṽ(H−1)

n for
each node or state at level H–1, with α(H−1),
ξ(H−1),η(H−1) as defined per relationship (6)–(8) and with
appropriately defined large enough constant β(H−1). We
shall argue that result similar to Lemma 5, but for node
at level H–2, continues to hold with parameters

α(H−2),ξ(H−2),η(H−2) as defined per relationship (6)–(8)
and with appropriately defined large enough constant
β(H−2). A similar argument will continue to apply going
from level h to h – 1 for all h ≤H− 1. That is, we shall as-
sume that the necessary assumption of Theorem 3, that
is, (13) and (14), holds for ṽ(h)(·), for all nodes at level
h with α(h),ξ(h),η(h) as defined per relationship (6)–(8)
and with appropriately defined large enough constant
β(h), and then argue that such holds for nodes at level h – 1
as well. This will, usingmathematical induction, allow us
to prove the results for all h ≥ 1.

To that end, consider any node at level h – 1. Let
there be nh−1 nodes at level h–1 corresponding to
states s1,h−1, : : : , snh−1,h−1 ∈ S. Consider a node corre-
sponding to state si,h−1 at level h–1 within the MCTS
for i ∈ nh−1[]: As part of the algorithm, whenever this
node is visited, one of the K feasible action is taken.
When an action a ∈ K[] is taken, the node s′h � si,h−1 ◦ a,
at the level h is reached. This results in reward at node
si,h−1 at level h – 1 being equal to R(si,h−1,a) + γṽ(h)(s′h).
As noted before, R(s, a) is an independent, bounded
valued random variable while ṽ(h)(·) is effectively col-
lected by following a path all the way to the leaf level.
Inductively, we assume that ṽ(h)(·) satisfies the conver-
gence and concentration property for each node or
state at level h, with α(h),ξ(h),η(h) as defined per rela-
tionship (6)–(8) and with appropriately defined large
enough constant β(h). Therefore, by an application of
Lemma 4, it follows that this combined reward contin-
ues to satisfy (13) and (14), with α(h),ξ(h),η(h) as de-
fined per relationship (6)–(8) and with a large enough
constant that we shall denote as β(h). These constants
are used by the MCTS policy. By an application of
Theorem 3, we can obtain the following Lemma 6 re-
garding the convergence and concentration properties
for the reward sequence collected at node si,h−1 at level
h− 1: Similar to the notation in Equation (38), let

µ(h−1)
a (si,h−1) � E R(si,h−1,a)

[]+ γµ(h)
∗ (si,h−1 ◦ a)

µ(h−1)
∗ (si,h−1) �max

a∈ K[]
µ(h−1)
a (si,h−1)

a(h−1)∗ (si,h−1) ∈ arg max
a∈ K[]

µ(h−1)
a (si,h−1)

Δ(h−1)
min (si,h−1) � µ(h−1)

∗ (si,h−1) − max
a≠a(h−1)∗ (si,h−1)

µ(h−1)
a (si,h−1):

(39)

Again, we shall assume that the maximizer in the
set argmaxa∈ K[]µ(h−1)

a (si,h−1) is unique, that is, Δ(h−1)
min

(si,h−1) > 0. Define R̃max(h−1) � Rmax + γR̃max(h) , where

R̃
(H) � Vmax + ε0: All rewards collected at level h–1 be-

long to −R̃(h−1)
max , R̃

(h−1)
max]

[
.

Lemma 6. Consider a node corresponding to state si,h−1 at
level h–1 within the MCTS for i ∈ nh−1[]. Let ṽ(h−1)
(si,h−1)n be the total discounted reward collected at si,h−1
during n ≥ 1 visits. Then, for the choice of appropriately

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
16 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

large β(h) > 0, for a given ξ(h) > 0, η(h) ∈ 1
2 , 1)
[

and α(h) > 2,
we have

A. Convergence:

E
1
n
ṽ(h−1)(si,h−1)n

[]
− µ(h−1)

∗ (si,h−1)
∣∣∣∣ ∣∣∣∣
≤
2R̃max(h−1) (K − 1) · 2(β(h))

1
ξ(h)

Δ(h−1)
min (si,h−1)

() 1
1−η(h)

· n α(h)
ξ(h) (1−η(h)) + 2

α(h) − 2
+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n
:

B. Concentration: there exist constants, β′ > 1 and ξ′ > 0
and 1=2 ≤ η′ < 1 such that for n ≥ 1, z ≥ 1,

P(ṽ(h−1)(si,h−1)n − nµ(h−1)
∗ (si,h−1) ≥ nη

′
z) ≤ β′

zξ′
,

P(ṽ(h−1)(si,h−1)n − nµ(h−1)
∗ (si,h−1) ≤ −nη′z) ≤ β′

zξ′
,

where η′ � α(h)
ξ(h)(1−η(h)) , ξ

′ � α(h) − 1, and β′ is a large enough

constant that is function of parameters α(h),β(h),ξ(h),
η(h), R̃max(h−1) ,K,Δ

(h−1)
min (si,h−1).

As before, let us define Δ(h−1)
min �mini∈ nh−1[]Δ(h−1)

min
(si,h−1). Similarly, we can show that for every node
si,h−1, i ∈ nh−1[], the rate of convergence in Lemma 6
can be uniformly simplified as

δ(h−1)n �
2R̃max(h−1) (K− 1) · 2(β(h))

1
ξ(h)

Δmin(h−1)

() 1
1−η(h)

· n α(h)
ξ(h)(1−η(h)) + 2

α(h) − 2
+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n

� Θ n
α(h)

ξ(h)(1−η(h))−1
()

� O(nη−1),

where the last equality holds as α(h) � ξ(h)(1− η(h))η(h)
and η(h) � η: Again, it is worth remarking, induc-
tively, that µ(h−1)

∗ (si,h−1) is precisely the value function
estimation for si,h−1 at the end of H− h+ 1 steps of
value iteration starting with V̂ .

Remark 1 (Recursive Relation Among Parameters).
With the previous development, we are ready to elabo-
rate our choice of parameters in Theorem 1, defined
recursively via Equations (6)–(8). In essence, those pa-
rameter requirements originate from our analysis of the
nonstationary MAB, that is, Theorem 3. Recall that,
from our previous analysis, the key to establish the
MCTS guarantee is to recursively argue the conver-
gence and the polynomial concentration properties at
each level; that is, we recursively solve the nonstation-
ary MAB problem at each level. To do so, we apply our
result on the nonstationary MAB (Theorem 3) recur-
sively at each level. Importantly, recall that Theorem 3
only holds when ξη(1− η) ≤ α < ξ(1− η) and α > 2, un-
der which it leads to the recursive conclusions η′ �

α
ξ(1−η) and ξ′ � α− 1. Using our notation with super-
script indicating the levels, this means that apart from
the parameters at the leaf level (level H) that could be

freely chosen, we must choose parameters of other lev-
els recursively so that the following conditions hold:

α(h) > 2, ξ(h)η(h)(1− η(h)) ≤ α(h) < ξ(h)(1− η(h)),
ξ(h) � α(h+1) − 1 and η(h) � α(h+1)

ξ(h+1)(1− η(h+1)) :

It is not hard to see that the conditions in Theorem 1
guarantee this. There might be other sequences of pa-
rameters satisfying the requirements, but our particular
choice gives cleaner analysis as presented in this paper.

7.4. Error Analysis for Value Function Iteration
We now move to the second part of the proof. The
value function iteration improves the estimation of
optimal value function by iterating Bellman equation.
In effect, the MCTS tree is “unrolling” H steps of such
an iteration. Precisely, let V(h)(·) denote the value func-
tion after h iterations starting with V(0) � V̂ . By defini-
tion, for any h ≥ 0 and s ∈ S,

V(h+1)(s) �max
a∈ K[]

(E R(s, a)[] + γV(h)(s ◦ a)): (40)

Recall that value iteration is contractive with respect
to || · | ∞| norm (Bertsekas 2017). That is, for any h ≥ 0,

||V(h+1) −V∗| ∞ ≤ γ
∣∣ ∣∣|V(h) −V∗| ∞:| (41)

As remarked earlier, µ(h−1)
∗ (si,h−1), the mean reward

collected at node si,h−1 for i ∈ nh−1[] for any h ≥ 1, is pre-
cisely V(H−h+1)(si,h−1) starting with V(0) � V̂ , the input to
MCTS policy. Therefore, the mean reward collected at
root node s(0) of the MCTS tree satisfies µ(0)

∗ (s(0)) �
V(H)(s(0)). Using (41), we obtain the following lemma.

Lemma 7. The mean reward collected under the MCTS
policy at root note s(0), µ(0)

∗ (s(0)), starting with input value
function proxy V̂ is such that

µ(0)
∗ (s(0)) −V∗(s(0))

∣∣∣ ∣∣∣ ≤ γH ||V̂ −V∗| ∞:| (42)

7.5. Completing Proof of Theorem 1
In summary, using Lemma 6, we conclude that the re-
cursive relationship going from level h to h – 1 holds
for all h ≥ 1 with level 0 being the root. At root s(0), the
query state that is input to the MCTS policy, we have
that after n total simulations of MCTS, the empirical
average of the rewards over these n trial, 1

n ṽ
(0)(s0)n is

such that (using the fact that α(0) � ξ(0)(1− η(0))η(0))

E
1
n
ṽ(0)(s0)n

[]
−µ(0)

∗

∣∣∣∣ ∣∣∣∣ �O n
α(0)

ξ(0) 1−η(0)()−1
()

� O(nη−1), (43)

where µ(0)
∗ is the value function estimation for s(0) after

H iterations of value function iteration starting with
V̂ . By Lemma 7, we have

µ(0)
∗ −V∗(s(0))

∣∣∣ ∣∣∣ ≤ γHε0, (44)

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 17

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

because ε0 � ||V̂ −V∗| ∞| . Combining (43) and (44),

E
1
n
ṽ(0)(s0)n

[]
−V∗(s(0))

∣∣∣∣ ∣∣∣∣ ≤ γHε0 +O(nη−1): (45)

This concludes the proof of Theorem 1.

7.6. Proof of Lemma 4
The convergence property, lim n→∞E Z̄n

[] � µX + ρµY,
follows simply by linearity of expectation. For concen-
tration, consider the following: because Xs are i.i.d.
bounded random variables taking value in −B,B[], by
Hoeffding’s inequality (Hoeffding 1963), we have that
for t ≥ 0,

P nX̄n − nµX ≥ nt
() ≤ exp − t2n

2B2

()
,

P nX̄n − nµX ≤ −nt() ≤ exp − t2n
2B2

()
:

(46)

Therefore,

P nZ̄n − n µX + ρµY

() ≥ nηz
() ≤ P nX̄n − nµX ≥ nηz

2

()
+ P nȲn − nµY ≥ nηz

2ρ

()
≤ exp − z2n2η−1

8B2

()
+ β2ξρξ

zξ

≤ β′

zξ
,

(47)

where β′ is a large enough constant depending on
ρ,ξ,β, and B. The other side of the inequality follows
similarly. This completes the proof.

8. Proof of Theorem 2
First, we establish a useful property of nearest neigh-
bor supervised learning presented in Section 4.2. This
is stated in Section 8.1. We will use it, along with the
guarantees obtained for MCTS in Theorem 1 to estab-
lish Theorem 2 in Section 8.2. Throughout, we shall as-
sume the setup of Theorem 2.

8.1. Guarantees for Supervised Learning
Let δ ∈ 0, 1() be given. As stated in Section 4.2, let
K δ,d() �Θ(δ−d) be the collection of balls of radius δ,
say ci, i ∈ K δ,d()[], so that they cover S, that is,
S ⊂ ⋃

i∈ K ε,d()[]ci. Also, by construction, each of these
balls have intersection with S whose volume is at least
Cdδ

d. Let S � {si : i ∈ N[]} denote N state samples from
S uniformly at random and independent of each
other. For each state s ∈ S, let V : S → −Vmax,Vmax[] be
such that E V s()[] −V∗ s()| | ≤ Δ. Let the nearest neigh-
bor supervised learning described in Section 4.2 pro-
duce estimate V̂ : S → R using labeled data points
si,V si()()i∈ N[]. Then, we claim the following guarantee.
Proof can be found in Section 8.3.

Lemma 8. Under the previously described setup, as long as

N ≥ 32max 1,δ−2Vmax2

()
C−1
d δ−dlog K δ,d()

δ , that is, N �Ω

dδ−d−2logδ−1
()

,

E sup
s∈S

|V̂ s() −V∗ s()|
[]

≤ Δ+ C+ 1()δ+ 4Vmaxδ
2

K δ,d() : (48)

8.2. Establishing Theorem 2
Using Theorem 1 and Lemma 8, we complete the
proof of Theorem 2 under appropriate choice of al-
gorithmic parameters. We start by setting some
notation.

To that end, the algorithm as described in Section 4.1
iterates between MCTS and supervised learning. In par-
ticular, let ℓ ≥ 1 denote the iteration index. Let mℓ be the
number of states that are sampled uniformly at random,
independently, over S in this iteration, denoted as
S ℓ() � {s ℓ()

i : i ∈ mℓ[]}. Let V ℓ−1() be the input of value
function from prior iteration; using this, the MCTS algo-
rithm with nℓ simulations obtains improved estimates

of value function for states in S ℓ() denoted as V̂
ℓ()

s ℓ()
i

()
, i ∈ mℓ[]. Using s ℓ()

i ,V̂
ℓ()
s ℓ()
i

()()
i∈ mℓ[]

, the nearest

neighbor supervised learning as described previously
with balls of appropriate radius δℓ ∈ 0, 1() produces esti-
mate V ℓ() for all states in S. Let F ℓ() denote the smallest
σ-algebra containing all information pertaining to the
algorithm (both MCTS and supervised learning). Define
the error under MCTS in iteration ℓ as

ε ℓ()
mcts � E sup

s∈S
|E V̂

ℓ()
s()|F ℓ−1()

[]
−V∗ s()|

[]
: (49)

The error for supervised learning in iteration ℓ as

θ
ℓ()
sl � sup

s∈S
V ℓ() s() −V∗ s()∣∣ ∣∣, and ε

ℓ()
sl � E θ

ℓ()
sl

[]
: (50)

Recall that in the beginning, we set V 0() s() � 0 for
all s ∈ S. Because V∗ ·() ∈ −Vmax,Vmax[], we have that
ε

0()
sl ≤ Vmax. Furthermore, it is easy to see that, if the
leaf estimates (i.e., the output of the supervised
learning from the previous iteration) is bounded in
−Vmax,Vmax[], then the output of the MCTS algo-
rithm is always bounded in −Vmax,Vmax[]. That is,
because V 0() s() � 0 and the nearest neighbor super-
vised learning produces estimate V l() via simple aver-
aging, inductively, the output of the MCTS algorithm
is always bounded in −Vmax,Vmax[] throughout every
iteration.

With the notation as previously set up, it follows that,
for a given δℓ ∈ 0, 1() with mℓ satisfying condition of
Lemma 8, that is, mℓ �Ω

(
dδ−d−2ℓ logδ−1ℓ

)
, and with the

nearest neighbor supervised learning using δℓ radius

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
18 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

balls for estimation, we have the following recursion:

ε
ℓ()
sl ≤ ε

ℓ()
mcts + C+ 1()δℓ + 4Vmaxδ

2
ℓ

K δℓ,d() ≤ ε
ℓ()
mcts +C′δℓ, (51)

where C′ is a large enough constant, because
δ2ℓ

K δℓ,d() �Θ dδd+2ℓ

()
, which is O δℓ() for all δℓ ∈ 0, 1(). By

Theorem 1, for iteration ℓ+ 1 that uses the output of
supervised learning estimate, V ℓ(), as the input to the
MCTS algorithm, we obtain

E V̂
ℓ+1()

s()|F ℓ()
[]

−V∗ s()
∣∣∣ ∣∣∣ ≤ γH ℓ+1()

E θ
ℓ()
sl |F ℓ()

[]
+O nη−1ℓ+1

()
,

∀s ∈ S,

(52)

where η ∈ 1=2, 1[) is the constant used by MCTS with
fixed height of tree being H ℓ+1(). This then implies that

ε
ℓ+1()
mcts � E sup

s∈S

∣∣∣∣E V̂
ℓ+1()

s()|F ℓ()
[]

−V∗ s()
∣∣∣∣

[]
≤ γH ℓ+1()

E E θ
ℓ()
sl |F ℓ()

[][]
+O nη−1ℓ+1

()
≤ γH ℓ+1()

ε
ℓ()
mcts +C′δℓ

()
+O nη−1ℓ+1

()
:

(53)

Denote by λ¢ ε
Vmax

()1=L
. Because the final desired er-

ror ε should be less than Vmax (otherwise, the problem
is trivial by just outputing zero as the final estimates
for all the states), we have λ < 1. Let us set the algo-
rithmic parameters for MCTS and nearest neighbor
supervised learning as follows: for each ℓ ≥ 1,

H ℓ() �
⌈
log γ

λ

8

⌉
,δℓ � 3Vmax

4C′ λℓ,nℓ � κl
8

Vmaxλ
ℓ

() 1
1−η
, (54)

where κl > 0 is a sufficiently large constant such that

O nη−1ℓ

()
� Vmax

8 λℓ. Substituting these values into Equa-

tion (53) yields

ε
ℓ+1()
mcts � E sup

s∈S

∣∣∣∣E V̂
ℓ+1()

s()|F ℓ()
[]

−V∗ s()
∣∣∣∣

[]

≤ λ

8
ε

ℓ()
mcts + 7Vmax

32
λℓ+1:

By (52) and (54), and the fact that ε 0()
sl ≤ Vmax, we have

ε
1()
mcts ≤ λ

8
ε

0()
sl +λ

8
Vmax ≤ λ

4
Vmax:

It then follows inductively that

ε
ℓ()
mcts ≤ λℓ−1ε 1()

mcts � Vmax

4
λℓ:

As for the supervised learning oracle, ∀s ∈ S, Equa-
tion (51) implies

E sup
s∈S

∣∣∣∣V ℓ() s() −V∗ s()
∣∣∣∣

[]
≤ ε

ℓ()
mcts + 3Vmax

4
λℓ ≤ Vmaxλ

ℓ:

This implies that

E sup
s∈S

|V L() s() −V∗ s()|
[]

≤ Vmaxλ
L � ε:

We now calculate the sample complexity, that is,
the total number of state transitions required for the
algorithm. During the ℓ th iteration, each query of
MCTS oracle requires nℓ simulations. Recall that the
number of querying MCTS oracle, that is, the size of
training set S ℓ() for the nearest neighbor supervised step,

should satisfy mℓ �Ω dδ−d−2ℓ logδ−1ℓ
()

(cf. Lemma 8).

From Equation (54), we have

H ℓ() � c′0logλ
−1, δℓ � c′1λ

ℓ, and nℓ � c′2λ
−ℓ= 1−η(),

where c′0, c′1, c′2, are constants independent of λ and ℓ:

Each simulation of MCTS samples H ℓ() state transi-
tions. Hence, the number of state transitions at the ℓ

th iteration is given by

M ℓ() �mℓnℓH ℓ():

Therefore, the total number of state transitions after
L iterations is∑L

l�1
M ℓ() � ∑L

ℓ�1
mℓ · nℓ ·H ℓ()

� O ε− 2+1= 1−η()+d() · log
1
ε

()5()
:

That is, for optimal choice of η � 1=2, the total num-

ber of state transitions is O ε− 4+d() · log 1
ε

()5()
:

8.3. Proof of Lemma 8
Given N samples si, i ∈ N[] that are sampled indepen-
dently and uniformly at random over S, and given
the fact that each ball ci, i ∈ K δ,d()[] has at least Cdδ

d

volume shared with S, each of the sample falls within
a given ball with probability at least Cdδ

d. Let Ni, i ∈
K δ,d()[] denote the number of samples among N sam-
ples in ball ci.

Now the number of samples falling in any given
ball is lower bounded by a Binomial random variable
with parameter N,Cdδ

d. By the Chernoff bound for
the Binomial variable with parameter n, p, we have
that

P B n,p
() ≤ np=2

() ≤ exp −np
8

()
:

Therefore, with an application of union bound, each
ball has at least 0:5Cdδ

dN samples with probability at

least 1−K δ,d()exp −Cdδ
dN=8

()
. That is, for N � 32max

1,δ−2Vmax2

()
C−1
d δ−d log K δ,d() + logδ−1

(][
, each ball has

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 19

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

at least Γ � 16max 1,δ−2V2
max

()
logK δ,d() + logδ−1

()
sam-

ples with probability at least 1− δ2

K δ,d(). Define event

E1 � {Ni ≥ 16max 1,δ−2V2
max

()
logK δ,d() + logδ−1

()
, ∀i ∈ K δ,d()[]}:

Then

P Ec
1

() ≤ δ2

K δ, d() :

Now, for any s ∈ S, the nearest neighbor supervised
learning described in Section 4.2 produces estimate
V̂ s() equal to the average value of observations for
samples falling in ball cj s(). Let Nj s() denote the number
of samples in ball cj s(): To that end,

V̂ s() −V∗ s()
∣∣∣ ∣∣∣ � 1

Nj s()

∑
i:si∈cj s()

V si() −V∗ s()
()∣∣∣∣∣∣

∣∣∣∣∣∣
� 1

Nj s()

∑
i:si∈cj s()

V si() −E V si()[]
()∣∣∣∣∣∣

∣∣∣∣∣∣+ 1
Nj s()

∑
i:si∈cj s()

E V si()[] −V∗ si()
()∣∣∣∣∣∣

∣∣∣∣∣∣
+ 1
Nj s()

∑
i:si∈cj s()

V∗ si() −V∗ s()
()∣∣∣∣∣∣

∣∣∣∣∣∣:
For the first term, because for each si ∈ cj s(), V si() is

produced using independent randomness via MCTS,
and because the output V si() is a bounded random
variable, using Hoeffding’s inequality, it follows that

P

(∣∣∣∣ 1
Nj s()

∑
i:si∈cj s()

V si() −E V si()[]
()∣∣∣∣ ≥ Δ1

)
≤ 2exp −Nj s()Δ2

1

8Vmax2

()
:

The second term is no more than Δ because of the
guarantee given by MCTS as assumed in the setup. Fi-
nally, the third term is no more than Cδ because of
Lipschitzness of V∗. To summarize, with probability

at least 1− 2exp − Nj s()Δ2
1

8Vmax2

()
, we have that

|V̂ s() −V∗ s()| ≤ Δ1 +Δ+Cδ:

As can be noticed, the algorithm produces the same
estimate for all s ∈ S such that they map to the same
ball. There are K δ,d() such balls. Therefore, using
union bound, it follows that with probability at least

1− 2K δ,d()exp − mini∈ K δ,d()[]Ni()Δ2
1

8Vmax2

()
,

sup
s∈S

V̂ s() −V∗ s()
∣∣∣ ∣∣∣ ≤ Δ1 +Δ+Cδ:

Under event E1, mini∈ K δ,d()[]Ni ≥ 16max 1,(δ−2V2
max)

logK(δ,d()+ logδ−1). Therefore, under event E1, by
choosing Δ1 � δ, we have

sup
s∈S

V̂ s() −V∗ s()
∣∣∣ ∣∣∣ ≤ Δ+ C+ 1()δ,

with probability at least 1− 2δ2
K δ,d(). When event E1 does

not hold or the previous expression does not hold, we
have a trivial error bound of 2Vmax on the error.
Therefore, we conclude that

E sup
s∈S

V̂ s() −V∗ s()
∣∣∣ ∣∣∣[]

≤ Δ+ C+ 1()δ+ 4Vmaxδ
2

K δ,d() :

9. Conclusion
In this paper, we introduce a correction of the popular
MCTS policy for improved value function estimation
for a given state, using an existing value function esti-
mation for the entire state space. This correction was
obtained through careful, rigorous analysis of a non-
stationary MAB where rewards are dependent and
nonstationary. In particular, we analyzed a variant of
the classical UCB policy for such an MAB. Using this
as a building block, we establish rigorous perfor-
mance guarantees for the corrected version of MCTS
proposed in this work. This, to the best of our knowl-
edge, is the first mathematically correct analysis of the
UCT policy despite its popularity since it has been
proposed in literature (Kocsis and Szepesvári 2006,
Kocsis et al. 2006). We further establish that the pro-
posed MCTS policy, when combined with nearest
neighbor supervised learning, leads to near optimal
sample complexity for obtaining estimation of value
function within a given tolerance, where the optimal-
ity is in the minimax sense. This suggests the tightness
of our analysis and the utility of the MCTS policy.

Much of this work was inspired by the success of
AGZ that uses MCTS combined with supervised learn-
ing. Interestingly enough, the correction of MCTS sug-
gested by our analysis is qualitatively similar to the
version of MCTS used by AGZ as reported in practice.
This seeming coincidence may suggest further avenue
for practical utility of versions of the MCTS proposed in
this work and is an interesting direction for future work.

Appendix A. Extension of Theorem 1 for
Stochastic Environment

We established Theorem 1 when the transition kernel is
deterministic. We now explain how to extend the results
to the setting with stochastic transition kernel. We do so
by effectively mapping the stochastic setting to a deter-
ministic setting as discussed next.
We start by defining the stochastic environment. Recall

that when an action a is taken at state s, the next state is
s′ with probability P s′(|s, a). In the deterministic setting,
we have P s′(|s,a)∈ {0,1}, whereas in the stochastic setting,
we allow for P s′(|s, a)∈ 0, 1[]. We further consider the fol-
lowing setup. Let there be a fixed φ > 0 so that

inf {P s′(|s,a): P s′(|s,a)≠ 0, s, s′ ∈ S, a ∈A} ≥ φ: (A.1)

Let supp s, a() be the support of the distribution P ·(|s,a).
Because of (A.1), supp s,a()∣∣ ∣∣ ≤ �1φ� ≡M. That is, the number

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
20 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

of next state reachable for a given state s under an action
a is bounded by a constant M for all s, a.

Let us consider the MCTS algorithm for such a stochas-
tic setting. At a node (i.e., state) at depth h, the action
with the highest sum of average reward and a polynomial
bonus is selected. A next state at depth h + 1 is reached,
and the process is repeated until a fix depth H. We then
update the corresponding statistics of the nodes and the se-
lected actions at each depth, and this finishes one iteration
of the simulation. Because the transitions are stochastic, for
state (node) s at each depth, each action a ∈A would have
up to supp s, a()∣∣ ∣∣ ≤M children nodes. In contrast, for the
deterministic case, each action leads to a unique state at
the next depth (as shown in Figure 1, where each edge rep-
resents an action and connects a node s at depth h to a
unique next state s′ at depth h + 1). However, despite of
the distinct difference, we can map the stochastic scenario
back to the deterministic setting via a simple transforma-
tion. Specifically, given the state s at depth h and action a,
although there are multiple next states, for the purpose of
MCTS decision, we assign a “meta-edge” corresponding to
each action a ∈A for a given state s ∈ S. This edge connects
s via action a to all of its next states in supp s, a(). This is il-
lustrated in Figure A.1, where each thick edge is a meta-
edge representing an action in A.

In the deterministic setting, at the end of each simula-
tion step, the rewards of nodes and edges were updated
along the entire path visited in the simulation step as de-
scribed in Algorithm 1. In the stochastic setting, we per-
form the same operation, that is, updating the rewards for

each node (state) and each action (i.e., the meta-edge) in
the same manner. Now we might have a larger tree be-
cause of multiple children associated with the same action
for a given state. Finally, while similar in spirit, the key
difference lies in how we selection an action a ∈A at a
given state s ∈ S at depth h of the tree in a simulation
step. In the deterministic setting, we simply use the sum
of the empirical average return and the polynomial bonus
term associated with the action (or the edge), as described
in (5). In the stochastic setting, for each action a at a state
s, instead, we use a weighted sum of the empirical aver-
age returns associated with all possible next states, with
weights simply being the empirical frequency of visiting
each next state in supp s, a() thus far. We use a similar
polynomial bonus term for each action.
With the modifications elaborated previously, we can

then reuse the majority of our previous analysis. Recall
that to establish the desired theorem for MCTS with deter-
ministic transitions, we recursively argue the convergence
and polynomial concentration properties at each depth.
That is, starting with the convergence and concentration
properties for nodes at depth h + 1, we show the conver-
gence and concentration properties for nodes at depth
h and then recursively apply this process until we reach
the root node. More precisely, the induction step is com-
pleted by analyzing a nonstationary MAB problem where
the (nonstationary) outcomes of each arm converge and
polynomially concentrate. In the stochastic setting, the al-
gorithm dynamics are almost the same as that for deter-
ministic setting, except that on taking an arm (action),

Figure A.1. MCTSwith Stochastic Transitions

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 21

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

there is additional randomness determining which chil-
dren in supp s, a() we transition to. Suppose that we can
argue that the nonstationary outcomes of each arm, after
accounting for the stochastic transition through weighted
average with empirical frequency, have the same conver-
gence and polynomially concentration properties as the
children nodes. Consequently, we can apply the analysis
we developed for the deterministic case by following the
same line of induction argument.

Specifically, we can reduce the analysis of MCTS for
stochastic settings to that of the deterministic settings as
shown in Figure A.2. We view the children nodes associ-
ated with one action collectively as one meta-node corre-
sponding to the action, that is, the meta-node encapsulates
the randomness of the transitions and the nonstationary
reward processes at the children nodes. At depth h + 1,
starting with the convergence and concentration proper-
ties for the nonstationary reward processes at each child
node, we show that the reward process at the meta-node
has the same convergence and concentration properties.
The action selection problem at each node/state for the
stochastic setting then is reduced to the MAB problem
we analyzed in the deterministic setting, for which we
have established the convergence and concentration prop-
erties for the parent nodes at depth h. By following the
proof for the deterministic settings, we shall obtain the
guarantees for MCTS with stochastic environments. To
summarize, it is clear that to establish the desired results
for MCTS, we only need to fill in the missing step of ar-
guing the convergence and concentration properties of the
meta-node; the rest of the proof then exactly follows with-
out modifications.

To this end, we consider a mathematical formulation
that precisely describes the action selection problem at a
node with stochastic transition. Consider a multinomial
distribution over M[] � {1, : : : ,M} with pm ≥ φ being prob-
ability of observing outcome m ∈ M[]. We denote the dis-
tribution by Dist p

()
. Let us consider a sequence of i.i.d.

random variables {Yi, i ∈ N
+}, where Yi ~Dist p

()
: Consider

M random processes (possibly dependent) {Xm,t, t ∈ N
+}

for 1 ≤m ≤M. Define a random process {Zi, i ∈ N
+} as fol-

lows: Zi �
∑M

m�1 I{Yi �m}Xm,N m,i−1()+1, where N m, i− 1() �∑i−1
j�1 I{Yj �m} is the total number of times that the mth

outcome has been generated up to (and including) time
i –1. In the context of MAB with stochastic transition, the
introduced random processes are associated with one arm
a as follows: playing action a leads to a random next state
in M[] according to Dist p

()
; state m ∈ M[] is associated

with a reward sequence {Xm,t, t ∈ N
+}; Zi represents the re-

ward obtained by playing the action a for the ith time. We
establish that if for each m ∈ M[], the random process
{Xm,t, t ∈ N

+} satisfies a convergence and the polynomial
concentration properties, then so does the random process
{Zi}, as stated in the following lemma.

Lemma A.1. Suppose that the M random processes {Xm,t, t ∈
N

+}, 1 ≤m ≤M, satisfy
A. Convergence: for n ≥ 1, with notation X̄m,n � 1

n

∑n
t�1Xm,t

()
,

lim
n→∞E X̄m,n

[] � µm, ∀1 ≤m ≤M:

B. Concentration: there exist constants, β > 1, ξ > 1, 1=2 ≤ η < 1
such that for n ≥ 1 and z ≥ 1,

P nX̄m,n − nµm ≥ nηz
() ≤ β

zξ
,

P nX̄m,n − nµm ≤ −nηz() ≤ β

zξ
, ∀1 ≤m ≤M:

Then, the random process {Zi, i ∈ N
+} satisfies

A. Convergence: for n ≥ 1, with notation Z̄n � 1
n

∑n
i�1Zi

()
,

lim
n→∞E Z̄n

[] � ∑M
m�1

pmµm:

B. Concentration: there exist constant β′ > 1 depending upon
M,ξ,β such that for n ≥ 1 and z ≥ 1,

P nZ̄n − n
∑M
m�1

pmµm

()
≥ nηz

()
≤ β′

zξ
,

P nZ̄n − n
∑M
m�1

pmµm

()
≤ −nηz

()
≤ β′

zξ
:

As discussed, with Lemma A.1, the proof in the main pa-
per is then readily extended to the stochastic setting. One
important aspect that is worth mentioning is that the con-
stants related to the polynomial rate, η and ξ, are preserved
and remain unchanged from the processes {Xm,·} to the pro-
cess Z, that is, the meta-nodes has the same polynomial
rate as the children nodes. Only the constant β is different.
This means that the proof of Theorem 1 can be applied
with a simple change of a different constant β′. Particularly,
Theorem 1 holds with the same rate of convergence, that is,
O nη−1

()
. Finally, one may notice that in Lemma A.1, for the

concentration of {Xm,t, t ∈ N
+}, we assume ξ > 1 instead of a

more general choice ξ > 0 (cf., Section 5). This is indeed not
an issue, as one can easily verify that the conditions in The-
orem 1, that is, choosing a large ξ H() at depth H and using
the algorithmic choices (6)–(8), implicitly guarantees ξ > 1
for every depth recursively.

Figure A.2. Reduce the Stochastic Transitions to a Single “Meta-Node” for Each Action

Reduction

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
22 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

A.1. Proof of Lemma A.1
Fix n. Note that according to the generating process, we
can rewrite Z̄n as

Z̄n � 1
n

∑M
m�1

∑Nm

i�1
Xm,i

()
,

where Nm, 1 ≤m ≤M are random variables such that∑M
m�1Nm � n and Nm ~ Binomial n,pm

()
, that is, Nm is the

number of times the mth outcome is generated according
to the distribution Dist p

()
after n trials. By Hoeffding’s in-

equality, we have that for 1 ≤m ≤M and t ≥ 0,

P Nmµm − npmµm ≥ t
() ≤ exp − 2t2

nµ2
m

()
:

Therefore,

P Nmµm − npmµm ≥ pmnηz
() ≤ exp − 2p2mz

2n2η−1

µ2
m

()
≤ βm

zξ
,

where βm is a large enough constant depending on ξ,pm,
and µm and importantly, independent of n. The last step
follows because the exponential tail resulted from the
Hoeffding’s inequality decays faster than a polynomial
one. We have that

P nZ̄n −
∑M
m�1

npmµm ≥ nηz

()
≤ P nZ̄n −

∑M
m�1

npmµm ≥ ∑M
m�1

N η
mz

2M
+∑M

m�1

pmnηz
2

()
,

(A.2)

� P
∑M
m�1

NmX̄m,Nm −
∑M
m�1

npmµm ≥ ∑M
m�1

N η
mz

2M
+∑M

m�1

pmnηz
2

()
≤ ∑M

m�1
P NmX̄m,Nm − npmµm ≥N η

mz
2M

+ pmnηz
2

()
:

,

(A.3)

Note that (A.2) follows because the following holds al-
most surely:∑M

m�1

N η
mz

2M
+ ∑M

m�1

pmnηz
2

≤ ∑M
m�1

nηz
2M

+ ∑M
m�1

pmnηz
2

� nηz:

Furthermore, (A.2) holds because

P A + B ≥ C +D() ≤ P A ≥ C or B ≥ D()
≤ P A ≥ C() + P B ≥ D():

To continue, we have that

P NmX̄m,Nm −npmµm ≥N η
mz

2M
+pmnηz

2

()
�P NmX̄m,Nm −Nmµm +Nmµm −npmµm ≥N η

mz
2M

+pmnηz
2

()
≤P NmX̄m,Nm −Nmµm ≥N η

mz
2M

()
+P Nmµm −npmµm ≥ pmnηz

2

()
�E P NmX̄m,Nm −Nmµm ≥N η

mz
2M

(∣∣∣∣Nm)
[]

+P Nmµm −npmµm ≥ pmnηz
2

()
≤E

β 2M()ξ
zξ

[]
+2ξβm

zξ

≤ β′m
zξ

, (A.4)

where βm
′ � β 2M()ξ + 2ξβm. Note that P NmX̄m,Nm −Nmµm ≥ N η

mz
2M

(∣∣∣Nm)

≤ β 2M()ξ
zξ holds, because if z ≥ 2M, the concentration inequal-

ity for {X̄m,·} assumed in the lemma applies; and if
1 ≤ z < 2M, the R.H.S. of the previous inequality is larger
than one because β > 1 and the inequality trivially holds.
Combining (A.3) and (A.4), we have that

P nZ̄n −
∑M
m�1

npmµm ≥ nηz

()
≤ ∑M

m�1

βm
′

zξ
≤ β′

zξ
,

where β′ �Mmax1≤m≤Mβm
′. The other side of the inequality

follows similarly, and this completes the proof of the de-
sired concentration property of Z̄n.
For convergence, note that we have established the con-

centration property that for z ≥ 1:

P

(∣∣∣∣Z̄n −
∑M
m�1

pmµm

∣∣∣∣ ≥ nη−1z
)
≤ 2β′

zξ
:

Therefore,

E

∣∣∣∣Z̄n −
∑M
m�1

pmµm

∣∣∣∣
[]

�
∫ ∞

0
P

(∣∣∣∣Z̄n −
∑M
m�1

pmµm

∣∣∣∣ ≥ s
)
ds

�
∫ nη−1

0
P

(∣∣∣∣Z̄n −
∑M
m�1

pmµm

∣∣∣∣ ≥ s
)
ds

+
∫ ∞

nη−1
P

(∣∣∣∣Z̄n −
∑M
m�1

pmµm

∣∣∣∣ ≥ s
)
ds

≤ nη−1 +
∫ ∞

nη−1

2β′nξ(η−1)

sξ
ds

� nη−1 + 2β′nη−1

ξ − 1
,

where the integral is finite because ξ > 1 by assumption in
the lemma. Therefore,

lim
n→∞ E Z̄n −

∑M
m�1

pmµm

[]∣∣∣∣∣
∣∣∣∣∣ ≤ lim

n→∞E

∣∣∣∣Z̄n −
∑M
m�1

pmµm

∣∣∣∣
[]

≤ lim
n→∞ nη−1 + 2β′nη−1

ξ− 1

()
� 0:

The limit is zero because 1=2 ≤ η < 1. The previous ex-

pression implies that lim n→∞E Z̄n
[] � ∑M

m�1 pmµm, which
establishes the desired convergent property of Z̄n. This
completes the proof of Lemma A.1.

Appendix B. Numerical Experiments
Although the focus of this paper is to develop a theoreti-
cal understanding of MCTS, we provide simple toy exam-
ples as supplements to corroborate our results. To this
end, we design a simple class of deterministic MDPs as
follows. For each state s ∈ S and each action a ∈A, we
sample uniformly from S a state and fix it to be the corre-
sponding next state s′. The reward R s, a() is a uniformly
distributed random variable taking values in 0,Rmax s,a()[],
where the bound Rmax s,a() is uniformly sampled from the
interval −3, 3[] beforehand and is then fixed. We let S| | �
20, |A| � 5 and γ � 0:8. We then sample a deterministic
MDP from the previous class and query a state via the
MCTS algorithm with different depth H. For selecting an
action at each depth, we use the polynomial bonus term

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 23

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

(Eq. (5)) as emphasized throughout the paper with
η � 1=2. That is, we choose the action with the highest up-
per confidence bound in the form of “mean reward +
C · t1=4s =t1=2a .” Here, ts is the number of times that particular
node at depth h has been visited; ta is the number of times
the action a is chosen for that node; and C is a constant
for controlling exploration and exploitation. For simplic-
ity, we choose the same C for each depth as this is com-
mon in practice. The value of the leaf nodes is set to zero.
Per our theoretical results (Theorem 1 and Section 7.5),
the output of the MCTS algorithm, in expectation, con-
verges to the value estimate after running H steps of value
function iteration starting with V̂ ≡ 0 for all states. To vali-
date this consistency result, we perform 25 independent
queries of MCTS with a selected root state and plot the re-
sulting mean and standard deviation. The value estimate
after H steps of value function iteration is used as the “true
value” to benchmark the experiments. Figure B.1 shows
the results for two tree depths: H � 7 (left) and H � 10
(right). As expected, the output of MCTS converges to the
desired true value. The constant C captures the extent of
the exploration-exploitation tradeoff. With smaller C, the
simulation could be underexplored and the error bars are
wider because of occasionally inaccurate estimates for
some runs. A larger C implies more exploration; conse-
quently, it requires more simulation steps to converge. We
note that C � 1 seems to be a good choice in this example.

Because our results can be extended to the stochastic
environments, we also experiment with stochastic MDPs.
The class of stochastic MDPs is constructed in the same
manner as before except that for each state s ∈ S and each
action a ∈A: (1) we sample L states uniformly from S and
fix them to be the potential next states; and (2) the transi-
tion kernel P ·(|s, a) is then sampled from a Dirichlet distri-
bution with L categories. We let S| | � 100, |A| � 3, L � 3,
and γ � 0:8. A stochastic MDP is then sampled from the
class, and we again perform 25 independent MCTS queries
with different depth H. Figure B.2 summarizes the corre-
sponding results. A large number of simulation steps is used
to account for the additional stochasticity from the transition.

Again, these experiments corroborate our theoretical findings,
with the mean of the outputs converging to the true value.

Appendix C. Proof of Proposition 1
Recent work (Shah and Xie 2018) establishes a lower bound
on the sample complexity for reinforcement learning algo-
rithms on MDPs. We follow a similar argument to establish
a lower bound on the sample complexity for MDPs with
deterministic transitions. We provide the proof for com-
pleteness. The key idea is to connect the problem of esti-
mating the value function to the problem of nonparametric
regression and then leveraging known minimax lower
bound for the latter. In particular, we show that a class of
nonparametric regression problems can be embedded in an
MDP with deterministic transitions, so any algorithm for
the latter can be used to solve the former. Prior work on
nonparametric regression (Stone 1982, Tsybakov 2009) es-
tablishes that a certain number of observations is necessary
to achieve a given accuracy using any algorithms, hence
leading to a corresponding necessary condition for the
sample size of estimating the value function in an MDP
problem. We now provide the details.
Step 1. Nonparametric Regression. Consider the follow-

ing nonparametric regression problem: Let S :� 0,1[]d and
assume that we have T data pairs x1,y1

()
, : : : , xT,yT

()
such

that conditioned on x1, : : : ,xn, the random variables
y1, : : : ,yn are independent and satisfy

E yt xt|] � f xt(), xt ∈ S,
[

(C.1)

where f : S → R is the unknown regression function. Sup-
pose that the conditional distribution of yt given xt � x is a
Bernoulli distribution with mean f(x). We also assume that
f is 1 − Lipschitz continuous with respect to the Euclidean
norm, that is,

f x() − f x0()∣∣ ∣∣ ≤ |x− x0|, ∀ x,x0 ∈ S:

Let F be the collection of all 1 − Lipschitz continuous
function on X , that is,

F � h h is a 1-Lipschitz function on S
∣∣ }

,
{

Figure B.1. (Color online) Simulation for a Deterministic MDPwith Tree DepthH � 7 (Left) andH � 10 (Right)

Note. Each line is a summary of 25 MCTS experiments showing the mean and standard deviation.

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
24 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

The goal is to estimate f given the observations x1,y1
()

,
: : : , xT,yT

()
and the prior knowledge that f ∈ F .

It is easy to verify that the previous problem is a special
case of the nonparametric regression problem considered
in the work by Stone (1982) (in particular, example 2
therein). Let f̂ T denote an arbitrary (measurable) estimator
of f based on the training samples x1,y1

()
, : : : , xT,yT

()
. By

theorem 1 in Stone (1982), we have the following result:
there exists a c > 0, such that

lim
T→∞ inf

f̂ T

sup
f∈F

P

(
||f̂ T − f ‖∞ ≥ c

logT
T

() 1
2+d) � 1,

where infimum is over all possible estimators f̂ T. Translat-
ing this result to the nonasymptotic regime, we obtain the
following theorem.

Theorem C.1. Under the previously stated assumptions, for
each δ ∈ 0,1(), there exists c > 0 and Tδ such that

inf
f̂ T

sup
f∈F

P

(
||f̂ T − f ‖∞ ≥ c

logT
T

() 1
2+d) ≥ δ, for all T ≥ Tδ:

Step 2. MDP with Deterministic Transitions. Consider a
class of discrete-time discounted MDPs S,A,P, r,γ

()
, where

S � 0,1[]d,
A is finite,
for each x,a(), there exists a unique x′ ∈ S such that P x′ | x, a() � 1,
r x, a() � r x() for all a,
γ � 0:

In words, the transition is deterministic, the expected
reward is independent of the action taken and the current
state, and only immediate reward matters.

Let Rt be the observed reward at step t. We assume
that given xt, the random variable Rt is independent of
x1, : : : ,xt−1(), and follows a Bernoulli distribution Bernoulli
r xt()(): The expected reward function r ·() is assumed to be
1 − Lipschitz and bounded. It is easy to see that for all
x ∈ S, a ∈A,

V∗ x() � r x(): (C.2)

Step 3. Reduction from Regression to MDP. Given a non-
parametric regression problem as described in Step 1, we
may reduce it to the problem of estimating the value func-
tion V∗ of the MDP described in Step 2. To do this, we set

r x() � f x(), ∀x ∈ S

and

Rt � yt, t � 1, 2, : : : ,T:

In this case, it follows from Equations (C.2) that the
value function is given by V∗ � f . Moreover, the expected
reward function r ·() is 1 − Lipschitz, so the assumptions
of the MDP in Step 2 are satisfied. This reduction shows
that the MDP problem is at least as hard as the nonpara-
metric regression problem, so a lower bound for the latter
is also a lower bound for the former.
Applying Theorem C.1 yields the following result: for

any number δ ∈ 0,1(), there exist some numbers c > 0 and
Tδ > 0, such that

inf
V̂T

sup
V∗∈F

P || V̂T −V∗˚∞ ≥ c
logT
T

() 1
2+d

[]
≥ δ, for all T ≥ Tδ:

Consequently, for any reinforcement learning algorithm V̂T

and any sufficiently small ε > 0, there exists an MDP prob-
lem with deterministic transitions such that, to achieve

P || V̂T −V∗˚∞ < ε
[] ≥ 1− δ,

one must have

T ≥ C′d
1
ε

()2+d
log

1
ε

()
,

where C′ > 0 is a constant. The statement of Proposition 1
follows by selecting δ � 1

2.

Endnote
1 We use the standard notation Õ ·() and Ω̃ ·() to hide logarithmic
terms in the big-O and big-Ω asymptotic notation.

References
Agrawal R (1995) Sample mean based index policies by o (log n) re-

gret for the multi-armed bandit problem. Adv. Appl. Probability
27(4):1054–1078.

Figure B.2. (Color online) Simulation for a Stochastic MDPwith Tree DepthH � 5 (Left) andH � 8 (Right)

Note. Each line is a summary of 25 MCTS experiments showing the mean and standard deviation.

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 25

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

Audibert JY, Munos R, Szepesvári C (2009) Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits. Theo-
retical Comput. Sci. 410(19):1876–1902.

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of
the multiarmed bandit problem. Machine Learn. 47(2-3):
235–256.

Auger D, Couetoux A, Teytaud O (2013) Continuous upper confi-
dence trees with polynomial exploration–consistency. Proc. Joint
Eur. Conf. on Machine Learn. and Knowledge Discovery in Data-
bases (Springer, Berlin), 194–209.

Azizzadenesheli K, Yang B, Liu W, Brunskill E, Lipton ZC, Anand-
kumar A (2018) Sample-efficient deep RL with generative ad-
versarial tree search. Preprint, version 4, submitted September
5, 2019, arXiv:1806.05780.

Bartlett P, Gabillon V, Healey J, Valko M (2019) Scale-free adaptive
planning for deterministic dynamics & discounted rewards.
Chaudhuri K, Salakhutdinov R, eds. Proc. 36th Internat. Conf. on
Machine Learn., vol. 97. Proceedings of Machine Learning Re-
search (PMLR), 495–504.

Bertsekas D (1975) Convergence of discretization procedures
in dynamic programming. IEEE Trans. Automated Control
20(3):415–419.

Bertsekas D (2017) Dynamic Programming and Optimal Control
(Athena Scientific).

Browne CB, Powley E, Whitehouse D, Lucas SM, Cowling PI,
Rohlfshagen P, Tavener S, et al. (2012) A survey of Monte
Carlo tree search methods. IEEE Trans. Comput. Intelligent AI
Games 4(1):1–43.

Chang HS, Fu MC, Hu J, Marcus SI (2005) An adaptive sampling al-
gorithm for solving markov decision processes. Oper. Res. 53(1):
126–139.

Coquelin PA, Munos R (2007) Bandit algorithms for tree search. Pre-
print, version 1, submitted March 13, https://arxiv.org/abs/
0703062.

Coulom R (2006) Efficient selectivity and backup operators in
monte-carlo tree search. Proc. Internat. Conf. on Comput. and
Games (Springer, Berlin), 72–83.

Dufour F, Prieto-Rumeau T (2012) Approximation of Markov deci-
sion processes with general state space. J. Math. Anal. Appl. 388
(2):1254–1267.

Dufour F, Prieto-Rumeau T (2013) Finite linear programming ap-
proximations of constrained discounted Markov decision pro-
cesses. SIAM J. Control Optim. 51(2):1298–1324.

Efroni Y, Dalal G, Scherrer B, Mannor S (2018) Multiple-step greedy
policies in approximate and online reinforcement learning. Ben-
gio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N,
Garnett R, eds. Advances in Neural Information Processing Sys-
tems, vol. 31 (Curran Associates, Inc.), 5244–5253.

Even-Dar E, Mansour Y, Bartlett P (2003) Learning rates for
Q-learning. J. Machine Learn. Res. 5(1).

Guo X, Singh S, Lee H, Lewis RL, Wang X (2014) Deep learning for
real-time Atari game play using offline Monte-Carlo tree search
planning. Ghahramani Z, Welling M, Cortes C, Lawrence N,
Weinberger KQ, eds. Advances in Neural Information Processing
Systems, vol. 27 (Curran Associates, Inc.), 3338–3346.

Hoeffding W (1963) Probability inequalities for sums of bounded
random variables. J. Amer. Statist. Assoc. 25:13–30.

Hren JF, Munos R (2008) Optimistic planning of deterministic sys-
tems. Proc. Eur. Workshop on Reinforcement Learn. (Springer, Ber-
lin), 151–164.

Jiang DR, Ekwedike E, Liu H (2018) Feedback-based tree search for
reinforcement learning. Proc. Internat. Conf. on Machine Learn.

Kakade S (2003) On the sample complexity of reinforcement learn-
ing. PhD thesis, University of London, University College
London.

Kaufmann E, Koolen WM (2017) Monte-carlo tree search by best
arm identification. Guyon I, Luxburg UV, Bengio S, Wallach H,

Fergus R, Vishwanathan S, Garnett R, eds. Advances in Neural
Information Processing Systems, vol. 30 (Curran Associates, Inc.),
4897–4906.

Kearns M, Mansour Y, Ng AY (2002) A sparse sampling algorithm
for near-optimal planning in large markov decision processes.
Machine Learn. 49(2-3):193–208.

Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo planning.
Proc. Eur. Conf. on Machine Learn. (Springer, Berlin), 282–293.

Kocsis L, Szepesvári C, Willemson J (2006) Improved Monte-Carlo
search. Technical report, University of Tartu, Tartu, Estonia.

Mao W, Zhang K, Xie Q, Basar T (2020) Poly-hoot: Monte-carlo
planning in continuous space mdps with non-asymptotic analy-
sis. Adv. Neural Inform. Processing Systems 33:4549–4559.

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wier-
stra D, Riedmiller M (2013) Playing atari with deep reinforce-
ment learning. Preprint, version 1, submitted December 19,
https://arxiv.org/abs/1312.5602.

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver
D, et al. (2016) Asynchronous methods for deep reinforcement
learning. Proc. Internat. Conf. on Machine Learn 1928–1937.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, et al (2015) Human-level control through deep
reinforcement learning. Nature 518(7540):529.

Munos R (2014) From bandits to monte-carlo tree search: The opti-
mistic principle applied to optimization and planning. Founda-
tions TrendsVR Machine Learn. 7(1):1–129.

Salomon A, Audibert JY (2011) Deviations of stochastic bandit re-
gret. Proc. Internat. Conf. on Algorithmic Learn. Theory (Springer,
Berlin), 159–173.

Schadd MPD, Winands MHM, van den Herik HJ, Chaslot GMJB,
Uiterwijk JWHM (2008) Single-player Monte-Carlo tree search.
van den Herik HJ, Xu X, Ma Z, Winands MHM, eds. Computers
and Games (Springer, Berlin), 1–12.

Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust re-
gion policy optimization. Proc. Internat. Conf. on Machine Learn.
1889–1897.

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)
Proximal policy optimization algorithms. Preprint, version 2,
submitted August 28, https://arxiv.org/abs/1707.06347.

Shah D, Xie Q (2018) Q-learning with nearest neighbors. Bengio S,
Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett
R, eds. Advances in Neural Information Processing Systems, vol. 31
(Curran Associates), 3115–3125.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche
G, Schrittwieser J, et al. (2016) Mastering the game of go with deep
neural networks and tree search. Nature 529(7587):484–489.

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A,
Lanctot M, et al (2017a) Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. Preprint, ver-
sion 1, submitted December 5, 2017, https://arxiv.org/abs/
1712.01815.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A,
Guez A, Hubert T, et al (2017b) Mastering the game of go with-
out human knowledge. Nature 550(7676):354.

Stone CJ (1982) Optimal global rates of convergence for nonpara-
metric regression. Ann. Statist. 10(4):1040–1053.

Strehl AL, Li L, Wiewiora E, Langford J, Littman ML (2006) Pac
model-free reinforcement learning. Proc. 23rd Internat. Conf. Ma-
chine Learn. (ACM, New York), 881–888.

Sturtevant NR (2008) An analysis of uct in multi-player games. van
den Herik HJ, Xu X, Ma Z, Winands MHM, eds. Computers and
Games (Springer, Berlin), 37–49.

Sutton RS (1988) Learning to predict by the methods of temporal
differences. Machine Learn. 3(1):9–44.

Teraoka K, Hatano K, Takimoto E (2014) Efficient sampling method
for Monte Carlo tree search problem. IEICE Trans. Inform. Sys-
tems 97(3):392–398.

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
26 Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

https://arxiv.org/abs/
http://0703062
https://arxiv.org/abs/
http://1312.5602
https://arxiv.org/abs/
http://1707.06347
https://arxiv.org/abs/
http://1712.01815

Tsybakov AB (2009) Introduction to Nonparametric Estimation.
Springer Series in Statistics (Springer, Berlin).

Van Hasselt H, Guez A, Silver D (2016) Deep Reinforcement Learning
with Double q-Learning, vol. 2 (AAAI, Palo Alto, CA).

Watkins CJ, Dayan P (1992) Q-learning. Machine Learn. 8(3-4):
279–292.

Yang Y, Zhang G, Xu Z, Katabi D (2019) Harnessing structures for
value-based planning and reinforcement learning. Preprint, ver-
sion 3, submitted July 4, 2020, https://arxiv.org/abs/1909.12255.

Devavrat Shah is the Andrew and Erna Viterbi professor of
electrical engineering and computer science at Massachusetts
Institute of Technology. His research focuses on statistical infer-
ence and stochastic networks. His contributions span a variety

of areas including resource allocation in communications net-
works, inference and learning on graphical models, algorithms
for social data processing. He received the Erlang Prize and
SIGMETRICSRising StarAward.

Qiaomin Xie is an assistant professor in the Department
of Industrial and Systems Engineering at the University of
Wisconsin-Madison. Her research interests lie in the fields of
reinforcement learning, applied probability, and stochastic
networks.

Zhi Xu is affiliated with the Laboratory for Information
and Decision Systems at the Massachusetts Institute of Tech-
nology. His research interests include both theoretical and
applied machine learning.

Shah, Xie, and Xu: Nonasymptotic Analysis of Monte Carlo Tree Search
Operations Research, Articles in Advance, pp. 1–27, © 2022 INFORMS 27

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[2

3.
93

.1
06

.1
03

] o
n

21
 N

ov
em

be
r 2

02
2,

 a
t 2

2:
48

 .
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll
rig

ht
s r

es
er

ve
d.

https://arxiv.org/abs/
http://1909.12255

	s1
	s1A
	s1A1
	s1A2
	s1A3
	s1A4
	s1B
	s1C
	s2
	s2A
	s2A1
	s2B
	s3
	s3A
	s3B
	s3B1
	s4
	s4A
	s4B
	s4C
	s4D
	s5
	s5A
	s5B
	s6
	s6A
	s6B
	s6C
	s7
	s7A
	s7B
	s7C
	s7D
	s7E
	s7F
	s8
	s8A
	s8B
	s8C
	s9
	s10
	s10A

