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Abstract. We develop provably efficient reinforcement learning algorithms for two-player
zero-sum finite-horizon Markov games with simultaneous moves. To incorporate function
approximation, we consider a family of Markov games where the reward function and
transition kernel possess a linear structure. Both the offline and online settings of the prob-
lems are considered. In the offline setting, we control both players and aim to find the
Nash equilibrium by minimizing the duality gap. In the online setting, we control a single
player playing against an arbitrary opponent and aim to minimize the regret. For both set-
tings, we propose an optimistic variant of the least-squares minimax value iteration algo-
rithm. We show that our algorithm is computationally efficient and provably achieves an
Õ( ���������

d3H3T
√ ) upper bound on the duality gap and regret, where d is the linear dimension,H

the horizon and T the total number of timesteps. Our results do not require additional
assumptions on the sampling model. Our setting requires overcoming several new chal-
lenges that are absent in Markov decision processes or turn-based Markov games. In par-
ticular, to achieve optimism with simultaneous moves, we construct both upper and lower
confidence bounds of the value function, and then compute the optimistic policy by solv-
ing a general-sum matrix game with these bounds as the payoff matrices. As finding the
Nash equilibrium of a general-sum game is computationally hard, our algorithm instead
solves for a coarse correlated equilibrium (CCE), which can be obtained efficiently. To our
best knowledge, such a CCE-based scheme for optimism has not appeared in the literature
andmight be of interest in its own right.

Funding:Q. Xie is partially supported by the National Science Foundation [Grant CNS-1955997] and by
J.P. Morgan. Y. Chen is partially supported by the National Science Foundation [Grants CCF-
1657420, CCF-1704828, and CCF-2047910]. Z. Wang acknowledges the National Science Foundation
[Grants 2048075, 2008827, 2015568, and 1934931], the Simons Institute (Theory of Reinforcement
Learning), Amazon, J.P. Morgan, and Two Sigma for their support.
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1. Introduction
Reinforcement learning (Sutton and Barto [83]) is typically modeled as a Markov decision process (MDP) (Puter-
man [71]), where an agent aims to learn the optimal decision-making rule via interaction with the environment.
In multiagent reinforcement learning (MARL), several agents interact with each other and with the underlying
environment, and their goal is to optimize their individual returns. This problem is often formulated under the
framework of Markov games (Shapley [76]), which is a generalization of the MDP model. Powered by function
approximation techniques such as deep neural networks (Goodfellow et al. [33], LeCun et al. [50]), MARL has
recently enjoyed tremendous empirical success across a variety of real-world applications. A partial list of such
applications includes the game of Go (Silver et al. [78], [79]), real-time strategy games (Open AI [62], Vinyals et al.
[86]), Texas hold’em poker (Brown and Sandholm [14], [15], Moravčı́k et al. [59]), autonomous driving (Shalev-
Shwartz et al. [75]), and learning communication and emergent behaviors (Baker et al. [10], Bansal et al. [11],
Foerster et al. [32], Jaques et al. [39], Lowe et al. [56]); see the surveys in Busoniu et al. [16] and Zhang et al. [99].

In contrast to the vibrant empirical study, theoretical understanding of MARL is relatively inadequate. Most
existing work on Markov games assumes access to either a sampling oracle or a well-explored behavioral policy,
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which fails to capture the exploration-exploitation tradeoff that is fundamental in real-world applications of
reinforcement learning. Moreover, these results mostly focus on the relatively simple turn-based setting. An
exception is the work in Wei et al. [89], which extends the UCRL2 algorithm (Jaksch et al. [38]) for MDP to zero-sum
simultaneous-move Markov games. However, their approach explicitly estimates the transition model and thus only
works in the tabular setting. Problems with complicated state spaces and transitions necessitate the use of function
approximation architectures. In this regard, a fundamental question is left open: Can we design a provably efficient rein-
forcement learning algorithm forMarkov games under the function approximation setting?

In this paper, we provide an affirmative answer to this question for two-player zero-sum Markov games with
simultaneous moves and a linear structure. In particular, we study an episodic setting, where each episode consists
ofH timesteps and the players act simultaneously at each timestep. Upon reaching theHth timestep, the episode ter-
minates and players replay the game again by starting a new episode. Here, the players have no knowledge of the
system model (i.e., the transition kernel) nor access to a sampling oracle that returns the next state for an arbitrary
state-action pair. Therefore, the players have to learn the system from data by playing the game sequentially through
each episode and repeatedly for multiple episodes. More specifically, we study episodic Markov games under both
the offline and online settings. In the offline setting, both players are controlled by a central learner, and the goal is
to find an approximate Nash equilibrium of the game, with the approximation error measured by a notion of duality
gap. In the online setting, we control one of the players and play against an opponent who implements an arbitrary
policy. Our goal is to minimize the total regret, defined as the difference between the cumulative return of the con-
trolled player and its optimal achievable return when the opponent plays the best response policy. Both settings are
generalizations of the regret minimization problem for MDPs. Here we use “online” to emphasize the fact that we
only control one player; this terminology is common in the literature (Jin et al. [42], Tian et al. [84]. Wei et al. [89]).
Correspondingly, the name “offline” highlights the fact that we control both players. We remark that both settings
are online in the sense that the samples are collected via iterative interaction with the environment.

Furthermore, to incorporate function approximation, we consider Markov games with a linear structure, moti-
vated by the linear MDP model recently studied in Jin et al. [44]. In particular, we assume that both the transition
kernel and the reward admit a d-dimensional linear representation with respect to a known feature mapping,
which can be potentially nonlinear in its inputs. For both the online and offline settings, we propose the first
provably efficient reinforcement learning algorithm without additional assumptions on the sampling model. Our
algorithm is an optimistic version of minimax value iteration (OMNI-VI) with least-squares estimation—a
model-free approach—which constructs upper confidence bounds of the optimal action-value function to pro-
mote exploration. We show that the OMNI-VI algorithm is computationally efficient, and it provably achieves an
Õ( ���������

d3H3T
√ ) regret in the online setting and a similar duality gap guarantee in the offline setting, where T is the

total number of timesteps and Õ omits logarithmic terms. Note that the bounds do not depend on the cardinal-
ities of the state and action spaces, which can be very large or even infinite. When specialized to MDPs, our
results recover the regret bounds established in Jin et al. [44] and are thus near-optimal.

We emphasize that the Markov game model poses several new and fundamental challenges that are absent in
MDPs and arise due to subtle game-theoretic considerations. Addressing these challenges require several new
ideas, which we summarize as follows:

1. Optimism via general-sum games. In the offline simultaneous-move setting, implementing the optimism
principle for both players amounts to constructing both upper and lower confidence bounds (UCB and LCB) for
the optimal value function of the game. Doing so requires one to find, as an algorithmic subroutine, the solution of
a general-sum (matrix) game where the two players’ payoff functions correspond to the upper and lower bounds
for the action-value (or Q) functions of the original Markov game, even though the latter is zero-sum to begin with.
This stands in sharp contrast of turn-based games (Hansen et al. [36], Jia et al. [40], Sidford et al. [77]), in which each
turn only involves constructing an UCB for one player.

2. Using correlated equilibrium. Finding the Nash equilibrium (NE) of a general-sum matrix game, however, is
computationally hard in general (Chen et al. [18], Daskalakis et al. [23]). Our second critical observation is that it
suffices to find a coarse correlated equilibrium (CCE) (Aumann [6], Moulin and Vial [60]) of the game. Originally
developed in algorithmic game theory, CCE is a tractable notion of equilibrium that strictly generalizes NE. In con-
trast to NE, a CCE can be found efficiently in polynomial time even for general-sum games (Blum et al. [12], Papa-
dimitriou and Roughgarden [65]). Moreover, our analysis shows that using any CCE of the matrix general-sum
game are sufficient for ensuring optimism for the original Markov game. Thus, by using CCE instead of NE, we
achieve efficient exploration-exploitation balance while preserving computational tractability.

3. Concentration and game stability. The last challenge is more technical, arising in the analysis of the algorithm
where we need to establish certain uniform concentration bounds for the CCEs. As we elaborate later, the CCEs of
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a general-sum game are unstable (i.e., not Lipschitz) with respect to the payoff matrices. Therefore, standard
approaches for proving uniform concentration, such as those based on covering/ε-net arguments, are fundamentally
insufficient. We overcome this issue by carefully stabilizing the algorithm, for which we make use of an ε-net in the
algorithm.Moreover, we show that this can be done in a computationally efficient way via rounding on the fly.

We shall discuss the aforementioned challenges and ideas in greater detail when we formally describe our algorithms.
We note that our regret and duality gap bounds also imply polynomial sample complexity and Provably and Approxi-
mately Correct (PAC) guarantees for learning the NEs of simultaneous-move Markov games. Moreover, as turn-based
games can be viewed as a special case of simultaneous games, where at each state the reward and transition kernel only
depend on the action of one of the players, our algorithms and guarantees readily apply to the turn-based setting.

1.1. Related Work
There is a large body of literature on applying reinforcement learning methods to Markov games (also known as
stochastic games). Most of existing results provide convergence guarantees that are asymptotic in nature. In par-
ticular, under the tabular setting, the work of Grau-Moya et al. [34], Greenwald et al. [35], Hu and Wellman [37],
Littman [52], [53], and Littman and Szepesvári [54] extends the value iteration and Q-learning algorithms (Wat-
kins and Dayan [88]) to zero-sum and general-sum Markov games, and that in Pérolat et al. [66] extends the
actor-critic algorithm (Konda and Tsitsiklis [47]) to zero-sumMarkov games; asymptotic convergence guarantees
are obtained in these papers. Besides, the work in Srinivasan et al. [81] proposes a variant of actor-critic to tabular
multiagent extensive-form games with finite-time convergence results.

We focus our discussion on results with nonasymptotic guarantees. In Table 1, we summarize some most
related work on Markov games. One line of work assumes access to a sampling oracle. Particularly related to us
is the work in Sidford et al. [77], which proposes a variance-reduced version of the minimax Q-learning algo-
rithm with near-optimal sample complexity. We remark that the theoretical results therein require a sampling
oracle, and they focus on turn-based games, a special case of simultaneous-move games. The recent work by Jia
et al. [40] studies turn-based zero-sumMarkov games, where the transition model is assumed to be embedded in
some d-dimensional feature space, extending the MDP model in Yang and Wang [94]. Assuming a sampling
oracle, they propose a variant of Q-learning algorithm that is guaranteed to find an ε-optimal strategy using
Õ(d(1− γ)−4ε−2) samples, where γ is the discount factor. Recently, the work by Zhang et al. [99] considers a
model-based algorithm that finds the ε-NE of tabular Markov games with Õ(SAB(1− γ)−3ε−22) sample complex-
ity, assuming a sampling oracle, where S is the size of the state space, and A and B are the sizes of the actions
spaces of the two players. This bound is shown to be minimax-optimal if the algorithm is reward-agnostic, mean-
ing that the algorithm only queries state transition samples but not the reward.

Another line of work (Fan et al. [31], Lagoudakis and Parr [48], Pérolat et al. [67], [68], [69], [70]) considers
function approximation techniques applied to variants of value iteration methods and establishes finite-time con-
vergence to the NEs of two-player zero-sum Markov games. These results are based on the framework of fitted
value iteration (Munos and Szepesvári [61]) and assume the availability of a well-explored behavioral policy. In
summary, all of the works cited require either a sampling oracle or a well-explored behavioral policy for drawing
transitions, therefore effectively bypassing the exploration issue.

Work on provably sample-efficient RL methods for Markov games without a sampling oracle or a well-explored
policy is quite scarce. Before this paper, the only comparable work we are aware of is in Wei et al. [89], which pro-
poses a model-based algorithm that extends the UCRL2 algorithm (Jaksch et al. [38]) for tabular MDPs to the game
setting. Similarly to their work, we also consider both the online and offline settings and provide guarantees in
terms of duality gap and regret. On the other hand, they only consider the tabular setting, a special case of our lin-
ear model. Their model-based algorithm explicitly estimates the Markov transition kernel and relies on the sophis-
ticated technique of extended value iteration, which requires augmenting the state/action spaces. In comparison,
our algorithm is model-free in the sense that it directly estimates the value functions. The computational cost of our
algorithm only depends on the dimension d of the feature but not the cardinality of the state space.

Our work builds on a line of research on provably efficient methods for MDPs without additional assumptions
on the sampling model. Most of the existing work focus on the tabular setting (see, e.g., Agrawal and Jia [4],
Azar et al. [7], Dann et al. [20], Dong et al. [27] Jaksch et al. [38], Jin et al. [43], [45], Osband et al. [63], Rosenberg
and Mansour [72], Russo [73], Simchowitz and Jamieson [80], Strehl et al. [82], Zanette and Brunskill [96] and the
references therein). Under the function approximation setting, sample-efficient algorithms have been proposed
using linear function approximators (Abbasi-Yadkori et al. [2], [3], Du et al. [29], Wang et al. [87], Yang and
Wang [95]), as well as nonlinear ones (Dann et al. [21], Dong et al. [26], Du et al. [29], [30], Jiang et al. [41], Wen
and Van Roy [91]). Among this line of work, our paper is most related to Cai et al. [17], Jin et al. [44], and Zanette
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et al. [97], which consider linear MDP models and propose optimistic and randomized variants of least-squares
value iteration (LSVI) (Bradtke and Barto [13], Osband et al. [63]) as well as optimistic variants of proximal policy
optimization (Schulman et al. [74]). Our linear Markov game model generalizes the MDP model considered in
these papers, and our OMNI-VI algorithm can be viewed as a generalization of the optimistic LSVI method pro-
posed in Jin et al. [44]. As mentioned earlier, the game structures in our problem pose fundamental challenges
that are absent in MDPs, and thus their algorithms cannot be trivially extended to our game setting.

After the conference version of this paper was published (Xie et al. [92]), there have been several concurrent
and follow-up papers on learning for Markov games. One line of work focuses on the offline setting with a finite
state space (i.e., the tabular case). The work in Bai and Jin [8] develops a value iteration-based algorithm
VI-ULCB with an Õ(H5S2AB=ε2) sample complexity for learning the ε-NE. However, this algorithm is not com-
putationally efficient. Using the CCE idea developed in our paper, the follow-up work (Bai et al. [9]) designs two
polynomial time algorithms with sample complexity Õ(H6SAB=ε2) and Õ(H7S(A+B)=ε2), respectively, where
the latter matches the information-theoretic lower bound with respect to S, A, and B. The dependence on the
horizon H has been improved in the recent work (Liu et al. [55]), which develops model-based algorithms with
an Õ(H4SAB=ε2) sample complexity. Another recent work (Daskalakis et al. [22]) considers the setting where each
player independently selects a policy without observing the opponent’s actions or rewards. Their policies need to
use learning rates with two timescales to ensure convergence to the NE. Beyond the tabular setting, the work in
Chen et al. [19] considers Markov games with a linear mixture structure, which is related to but different from the
linear game setting in this paper. Building on the CCE idea developed in our paper, they propose an algorithm that
achieves an Õ(d ������

H2T
√ ) regret, where d is the dimension of linear mixture structure. The work in Jin et al. [42] intro-

duces a new complexity measure for Markov games called multiagent Bellman eluder dimension, which is adapted
from its single-agent version. They design a self-play algorithm that can learn a Markov game with low Bellman
eluder dimension using polynomially many samples. For the online setting where the actions of the opponents are
unobservable, the work in Tian et al. [84] proposes an algorithm that achieves a sublinear regret bound (under the
same regret definition as ours) that is independent of the size of the opponents’ action spaces.

Finally, we remark that there is a line of work on robust MDPs (Lim et al. [51], Xu and Mannor [93]), where an
adversary chooses the transition kernel from an uncertainty set. This problem is closely related to our online set-
ting, where the adversary chooses an action that determines the transition kernel. One technical difference is that
in their setting, the uncertainty set is known yet the choice of the adversary is not directly observable, whereas in
our case the adversary’s action is observed but its influence on the transition and value functions needs to be esti-
mated from data. The algorithms are also different: they take an model-based approach that finds the worst-case

Table 1. Summary of recent work on RL algorithms for Markov games under different settings.

Algorithm Objective Explore Independence Observation Structure

Minimax Q-learning (Sidford et al. [77]) NE No No Yes Tabular
Q-learning (Jia et al. [40]) NE No No Yes Linear
Model-based (Zhang et al. [99]) NE No No Yes Tabular
UCSG (Wei et al. [89]) NE Yes No Yes Tabular

Value Yes Yes Yes Tabular
VI-ULCB (Bai and Jin [8]) NE Yes No Yes Tabular
Optimistic Nash Q/V-learning (Bai et al. [9]) NE Yes No Yes Tabular
Nash-VI (Liu et al. [55]) NE Yes No Yes Tabular
Policy gradient method (Daskalakis et al. [22]) NE No Yes No Tabular
OGDA (Wei et al. [90]) NE No No Yes Tabular
V-OL (Tian et al. [84]) Value Yes Yes No Tabular
GOLF_with_EXPLOITER (Jin et al. [42]) NE Yes No Yes General

Value Yes Yes Yes General
Nash-UCRL-VTR (Chen et a. [19]) NE Yes No Yes Linear
This work NE Yes No Yes Linear

Value Yes Yes Yes Linear

Notes. The column “Objective” means whether the goal is to learn the NE policy (the offline setting) or compete with the NE value (the online
setting). “Explore” means the algorithm needs to explore, without assuming a sampling oracle or a well-explored behavioral policy.
“Independence” means the algorithm does not coordinate the learning procedures of different players. “Observation” means each player can
observe the opponent’s actions and/or rewards. “Structure” means the structural assumption imposed on the Markov game, including the
tabular, linear and general function approximation settings. Nash-UCRL-VTR, Nash-UCRL with Value-Targeted Regression; Nash-VI,
Optimistic Nash Value Iteration; NE, Nash equilibrium; OGDA, Optimistic Gradient Descent/Ascent; UCSG, Upper Confidence Stochastic
Game algorithm; V-OL, Optimistic Nash V-learning for Online Learning; VI-ULCB, Value Iteration with Upper/Lower Confidence Bound.
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transition kernel from the uncertainty set, whereas our algorithm computes empirical estimates of the worst-case
value functions using data. Also, their results apply only to the tabular setting of MDPs.

2. Background and Preliminaries
In this section, we formally describe the setup for episodic two-player zero-sum Markov games with simultane-
ous moves. We then describe the setting for turn-based games, which can be viewed as a special case of
simultaneous-moves games.

2.1. Notation
For two quantities x and y that potentially depend on problem parameter (d,H, |A|, T, etc.), if x ≥ Cy holds for a
universal absolute constant C > 0, we write x&y, x �Ω(y) and y �O(x). For each real number u, define the clip-
ping operation ΠH(u) �max{min{u,H}, −H}. We use ||·|| to denote the vector ℓ2 norm and ||·||F the matrix Frobe-
nius norm. Given a positive semidefinite matrix A, define the weighted ℓ2 norm ||v||A :� ��������

v�Av
√

for the vector v.
We sometimes need to consider a general-sum matrix (or normal form) game with payoff matrices ui ∈ R

|A|×|A|
for each player i ∈ {1, 2}. Here, if P1 and P2 take actions a and b, respectively, then player i receives a payoff
ui(a,b). Denoting the two players as P1 and P2, we use the convention that P1 tries to maximize the payoff and P2

tries to minimize. A joint distribution σ ∈ Δ(A ×A) of both players’ actions is called a coarse correlated equili-
brium (Aumann [6], Moulin and Vial [60]) of the game if it satisfies

E(a,b)~σ[u1(x,a,b)] ≥ Eb~P2σ[u1(x, a′,b)], ∀a′ ∈A, (1a)
E(a,b)~σ[u2(x, a,b)] ≤ Ea~P1σ[u2(x, a,b′)], ∀b′ ∈A, (1b)

where for i ∈ {1, 2}, Piσ ∈ Δ(A) denotes the ith marginal of σ. In words, in a CCE the players choose their actions
in a potentially correlated way such that no unilateral (unconditional) deviation from σ is beneficial.1 Note that a
CCE σ � σ1 × σ2 in product form is an NE.

2.2. Simultaneous-Move Markov Games
A two-player, zero-sum, simultaneous-moves, episodic Markov game is defined by the tuple

(S,A1,A2, r,P,H),
where S is the state space, Ai is a finite set of actions that player i ∈ {1, 2} can take, r is reward function, P is tran-
sition kernel, and H is the number of steps in each episode. At each step h ∈ [H], upon observing the state x ∈
S, P1 and P2 take actions a ∈A1 and b ∈A2, respectively, and then both receive the reward rh(x,a,b). The system
then transitions to a new state x′ ~ Ph(· | x,a,b) according to the transition kernel. Throughout this paper, we
assume for simplicity that A1 �A2 ≕A and that the rewards rh(x,a,b) are deterministic functions of the tuple (x,
a, b) taking value in [−1, 1]; generalization to the setting with A1 ≠A2 and stochastic rewards is straightforward.

Denote by Δ ≡ Δ(A) the probability simplex over the action space A. A stochastic policy of P1 is a length-H
sequence of functions π :� (πh : S → Δ)h∈[H]. At each step h ∈ [H] and state x ∈ S, P1 takes an action sampled from
the distribution πh(x) over A. Similarly, a stochastic policy of P2 is given by the sequence ν :� (νh : S → Δ)h∈[H].

2.2.1. Value Functions. For a fixed pair of policies (π,ν) for both players, the value and Q (a.k.a. action-value)
functions for the previous game can be defined in a manner analogous to the episodic Markov decision process
(MDP) setting:

Vπ,ν
h (x) :� E

∑H
t�h

rt(xt,at,bt)
∣∣∣∣xh � x

[ ]
, Qπ,ν

h (x, a, b) :� E

∑H
t�h

rt(xt, at, bt)
∣∣∣∣xh � x, ah � a,bh � b

[ ]
,

where the expectation is over at ~ πt(xt), bt ~ νt(xt), and xt+1 ~ Pt(· | xt,at,bt). It is convenient to set Vπ,ν
H+1(x) ≡

Qπ,ν
H+1(x) ≡ 0 for the terminal reward. Under the boundedness assumption on the reward, it is easy see that all

value functions are bounded:

|Vπ,ν
h (x)| ≤H and |Qπ,ν

h (x, a, b)| ≤H, ∀x, a,b,h,π,ν:

In the zero-sum setting, for a given initial state x1, P1 aims to maximize Vπ,ν
1 (x1), whereas P2 aims to minimize

it. Accordingly, we introduce the value and Q functions when P1 plays the best response to a fixed policy ν
of P2:

V∗,ν
h (x) �max

π
Vπ,ν

h (x) and Q∗,ν
h (x,a,b) �max

π
Qπ,ν

h (x,a,b):
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Analogously, when P2 plays the best response to P1’s policy π, we define

Vπ,∗
h (x) �min

ν
Vπ,ν

h (x) and Qπ,∗
h (x, a,b) �min

ν
Qπ,ν

h (x,a,b):
A Nash equilibrium (NE) of the game is a pair of stochastic policies (π∗,ν∗) that are the best response to each
other; that is,

Vπ∗,ν∗
1 (x1) � V∗,ν∗

1 (x1) � Vπ∗,∗
1 (x1), x1 ∈ S: (2)

We assume that the game satisfies appropriate regularity conditions so that an NE exists and their value is unique.2

Correspondingly, let V∗
h(x) :� Vπ∗,ν∗

h (x) andQ∗
h(x,a,b) :�Qπ∗,ν∗

h (x,a,b) denote the values of the NE at step h.
Define the following shorthand for conditional expectation for the step h transition:

[PhV](x, a, b) :� Ex′~Ph(·|x,a,b)[V(x′)] �
∫

V(x′)dPh(x′ | x, a, b):

Although not explicitly needed in our analysis, we note that the value/Q functions for the NE satisfy the follow-
ing Bellman equations:

Q∗
h(x, a, b) � rh(x, a, b) + (PhV∗

h+1)(x, a, b), (3a)
and V∗

h(x) � max
A∈Δ

min
B∈Δ Ea~A,b~BQ∗

h(x, a, b) � min
B∈Δ max

A∈Δ
Ea~A,b~BQ∗

h(x, a, b): (3b)

The fixed policy and best response value/Q functions, Vπ,ν
h ,Vπ,∗

h ,V∗,ν
h ,Qπ,ν

h ,Qπ,∗
h , and Q∗,ν

h , satisfy a similar set of
Bellman equations; we omit the details.

The following weak duality result, which follows immediately from definition, relates the previous value and
Q functions.

Proposition 1 (Weak Duality). For each policy pair (π,ν) and each h ∈ [H], (x, a,b) ∈ S ×A ×A, we have

Qπ,∗
h (x, a,b) ≤Q∗

h(x,a,b) ≤Q∗,ν
h (x, a,b), Vπ,∗

h (x) ≤ V∗
h(x) ≤ V∗,ν

h (x),
Qπ,∗

h (x, a,b) ≤Qπ,ν
h (x,a,b) ≤Q∗,ν

h (x, a,b), Vπ,∗
h (x) ≤ Vπ,ν

h (x) ≤ V∗,ν
h (x):

2.2.2. Linear Structures. We assume that both the reward function and transition kernel have a linear structure.

Assumption 1 (Linearity and Boundedness). For each (x,a,b) ∈ S ×A ×A and h ∈ [H], we have
rh(x,a,b) � φ(x, a, b)�θh and Ph(· | x, a,b) � φ(x, a, b)�μh(·),

where φ : S ×A ×A→ R
d is a known feature map, θh ∈ R

d is an unknown vector, and μh � (μ(i)
h )i∈[d] is a vector of d

unknown (signed) measures on S. We assume that ‖φ(·, · , ·)‖ ≤ 1, ‖θh‖ ≤
��
d

√
, and ‖μh(S)‖ ≤

��
d

√
for all h ∈ [H], where ||·||

is the vector ℓ2 norm.

Note that boundedness of the linear weights θh and μh allows for certain covering and concentration argu-
ments in the analysis; also see Jin et al. [44, section 2.1] for a discussion on the specific choice of normalization in
the previous assumption. It is also easy to see that the linearity assumption above implies that the Q functions
are linear.

Lemma 1 (Linearity of Value Function). Under Assumption 1, for any policy pair (π,ν) and any h ∈ [H], there exists a
vector wπ,ν

h ∈ R
d such that

Qπ,ν
h (x, a,b) � 〈φ(x,a,b),wπ,ν

h 〉, ∀(x, a,b) ∈ S ×A ×A:

Proof. By Bellman equation and linearity of rh and Ph, we have

Qπ,ν
h (x,a,b) � rh(x, a,b) +PhV

π,ν
h+1(x,a,b) � φ(x, a, b)�θh +

∫
Vπ,ν

h+1(x′)φ(x, a, b)�dμh(x′):

Letting wπ,ν
h :� θh + ∫

Vπ,ν
h+1(x′)dμh(x′) proves the lemma. w

Remark 1. Since Qπ,∗
h (x, a,b) �Qπ,br(π)

h (x,a,b), where br(π) ∈ arg minνQπ,ν
h (x,a,b) is the best response policy to π, it

follows immediately from Lemma 1 that Qπ,∗
h (x,a,b) � 〈φ(x, a,b),wπ,∗

h 〉 for some wπ,∗
h ∈ R

d. Similarly, we have
Q∗,ν

h (x,a,b) � 〈φ(x, a,b),w∗,ν
h 〉 for some w∗,ν

h ∈ R
d.
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The previous linear setting covers the tabular setting as a special case, where d � |S| · |A|2 and φ(x,a,b) is the
indicator vector for the tuple (x, a, b). It is also clear that MDPs are a special case of Markov games when P2 plays
a fixed and known policy. In particular, our setting covers both tabular MDPs as well as the linear MDP setting
considered in the work by Jin et al. [44]. Finally, as we elaborate in Section 2.3, turn-based Markov games can
also be viewed as a special case of our setting.

Remark 2. Linearity of the reward and transition kernel is a strictly stronger assumption than linearity of the
value functions. Our analysis makes crucial use of this stronger assumption, which ensures that the linearity of
value functions is preserved under the Bellman equation. In fact, it is likely that this assumption is essential for
developing efficient algorithms, in view of recent hardness result (Du et al. [28]) that only assumes linearity of
value functions of MDPs (a special case of Markov games).

2.3. Turn-Based Markov Games
In turn-based games, at each state only one player takes an action. Without loss of generality, we may partition
the state space as S � S1

⋃
S2, where Si are the states at which it is player i’s turn to play.3 For each state x ∈ S,

let I(x) ∈ {1, 2} indicate the current player to play, so that x ∈ SI(x). At each step h ∈ [H], player I(x) observes the
current state x and takes an action a; then the two players receive the reward rh(x,a), and the system transitions
to a new state x′ ~ Ph(· | x,a).

The value/Q functions Vπ,ν
h (x),Qπ,ν

h (x,a), and so on, as well as the corresponding NE of the game, can be
defined in a completely analogous way as in the simultaneous-move setting. Similarly to Assumption 1, we also
assume that the game has a linear structure.

Assumption 2 (Linearity and Boundedness, Turn-Based). For each (x,a) ∈ S ×A and h ∈ [H], we have
rh(x,a) � φ(x, a)�θh and Ph(· | x, a) � φ(x,a)�μh(·),

where φ : S ×A→ R
d is a known feature map, θh ∈ R

d is an unknown vector, and {μ(i)
h }i∈[d] are d unknown (signed) meas-

ures on S.We assume that ‖φ(·, ·)‖ ≤ 1, ‖μh(S)‖ ≤
��
d

√
, and ‖θh‖ ≤

��
d

√
for all h ∈ [H].

One may view a turn-based game as a special case of a simultaneous-move game, where at each state only one
of the players is active and the other player’s action has no influence on the reward or the transition. Formally,
for each x ∈ S1, the values of rh(x,a,b), Ph(· | x,a,b), and φ(x,a,b) are independent of b; for each x ∈ S2, they are
independent of a.

3. Main Results for the Offline Setting
In this section, we consider the offline setting, where a central controller controls both players. The goal of the controller
is to learn a Nash equilibrium (π∗,ν∗) of the game in episodic setting. In what follows, we formally define the problem
setup and objectives, and then present our algorithm and provide theoretic guarantees for its performance.

3.1. Setup and Performance Metrics
In the episodic setting, the Markov game is played for K episodes, each of which consists of H timesteps. At the
beginning of the kth episode, an arbitrary initial state xk1 is chosen. Then the players P1 and P2 play according to
the policies πk � (πk

h

)
h∈[H] and νk � (νkh)h∈[H], respectively, which may adapt to observations from past episodes.

The game terminates after H timesteps and restarts for the (k+ 1) th episode. Note that expected reward for P1
and P2 in the kth episode is Vπk,νk

1 (xk1).

3.1.1. Duality Gap Guarantees. Recall the weak duality property in Proposition 1, which states the value of the
NE, V∗

1(x1), is sandwiched between Vπk,∗
1 (x1) and V∗,νk

1 (x1). Therefore, it is natural to use the duality gap V∗,νk
1 (x1) −

Vπk,∗
1 (x1) to measure how well the policy (πk,νk) in the kth episode approximates the NE. Accordingly, we aim to

bound the following total duality gap:

Gap(K) :�∑K
k�1

[
V∗,νk

1 (xk1) −Vπk ,∗
1 (xk1)

]
: (4)

Another way to interpret the previous objective is as follows. Define the exploitability (Davis et al. [24]) of P1
and P2, respectively, as

Exploit1(πk,νk) :� Vπk,νk
1 (xk1) −Vπk,∗

1 (xk1) and Exploit2(πk,νk) :� V∗,νk
1 (xk1) −Vπk,νk

1 (xk1),
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both of which are nonnegative by Proposition 1. Here, Exploiti(πk,νk) measures the potential loss of player i ∈
{1, 2} in the kth episode if the other player unilaterally switched to the best response policy. The total duality gap
can then be rewritten as

Gap(K) �∑K
k�1

[
Exploit1(πk,νk) +Exploit2(πk,νk)

]
,

which is the sum of the exploitability of both players accumulated over K episodes. Also note that in special cases
of MDPs, Gap(K) reduces to the usual notion of total regret.

3.1.2. Sample Complexity and PAC Guarantees. Another performance metric is the sample complexity for find-
ing an approximate NE. In particular, suppose that for all episodes the initial states x1 are sampled from the
same fixed distribution. We are interested in the number of episodes K (or equivalently the number of samples
T � KH) needed to find a policy pair (π,ν) satisfying

V∗,ν
1 (x1) −Vπ,∗

1 (x1) ≤ ε with probability at least 1− δ:

In light of Proposition 1, this inequality implies that (π,ν) is an ε-approximate NE in the sense that

V∗,ν
1 (x1) − ε ≤ Vπ,ν

1 (x1) ≤ Vπ,∗
1 (x1) + ε;

that is, (π,ν) satisfies the definition (2) of NE up to an ε error. As we discuss in detail after presenting our main
theorem, a bound on the total duality gap implies a bound on the sample complexity. Such a bound in turn
implies a PAC-type guarantee in the sense of Kakade [46], which stipulates that an ε-approximate NE is played
in all but a small number of timesteps.

3.2. Algorithm
We now present our algorithm, optimistic minimax value iteration (OMNI-VI) with least-squares estimation,
which is given as Algorithm 1.

Algorithm 1. (Optimistic Minimax Value Iteration (Simultaneous Move, Offline))
1: Input: bonus parameter β > 0.
2: for episode k � 1, 2, : : : ,K do
3: Receive initial state xk1
4: for step h �H,H− 1, : : : , 2, 1 do . update policy
5: Λk

h ←∑k−1
τ�1φ(xτh, aτh,bτh)φ(xτh ,aτh ,bτh)� + I:

6: wk
h ← (Λk

h)−1∑k−1
τ�1φ(xτh,aτh,bτh)

[
rh(xτh, aτh,bτh) +V

k
h+1(xτh+1)

]
.

7: wk
h ← (Λk

h)−1∑k−1
τ�1φ(xτh,aτh,bτh)

[
rh(xτh, aτh,bτh) +Vk

h+1(xτh+1)
]
.

8: Q
k
h(·, · , ·) ←ΠH

{
(wk

h)�φ(·, · , ·) + β
�����������������������������
φ(·, · ,·)�(Λk

h)−1φ(·, · , ·)
√ }

:

9: Qk
h(·, · , ·) ←ΠH

{
(wk

h)�φ(·, · , ·) − β
�����������������������������
φ(·, · ,·)�(Λk

h)−1φ(·, · , ·)
√ }

:

10: For each x, let σkh(x) ← FIND_CCE
(
Q

k
h,Q

k
h,x

)
:

11: V
k
h(x) ← E(a,b)~σkh(x)Q

k
h(x,a,b) for each x.

12: Vk
h(x) ← E(a,b)~σkh(x)Q

k
h(x,a,b) for each x.

13: end for
14: for step h � 1, 2, : : : ,H do . execute policy
15: Sample (akh,bkh) ~ σkh(xkh).
16: P1 takes action akh; P2 takes action bkh.
17: Observe next state xkh+1.
18: end for
19: end for

In each episode k, the algorithm first constructs the policies for both players (lines 4–13), and then executes the
policy to play the game (lines 14–18). The construction of the policy is done through backward induction with
respect to the timestep h. In each timestep, we first compute upper/lower estimates wh,wh ∈ R

d of the linear
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coefficients of the Q function. This is done by approximately solving the Bellman Equation (3) using (regularized)
least-squares estimation, for which we use empirical data from the previous k− 1 episodes to estimate the
unknown transition kernel Ph (lines 5–7). Then, to encourage exploration, we construct UCB/LCB for the Q func-

tion by adding/subtracting an appropriate bonus term (lines 8–9). The bonus takes the form β
���������������
φ�(Λk

h)−1φ
√

,

where Λk
h is the regularized Gram matrix defined in line 5 of the algorithm. This form of bonus is common in the

literature of linear bandits (Lattimore and Szepesvári [49]). The next and crucial step is to convert the UCB/LCB
(Qh,Qh) for the Q function into UCB/LCB (Vh,Vh) for the value function (lines 10–12). This step turns out to be
delicate; we elaborate next.

Note that Vh(x) and Vh(x) should correspond to the actions (a′,b′) that would be actually played at state x, that is,
Vh(x) �Qh(x, a′,b′) (in expectation w.r.t. randomness of the stochastic policy; similarly for Vh(x)), so that these
upper/lower bounds can be tightened up using empirical observations from these actions. To construct these
bounds, one may be tempted to let each player independently compute the maximin or minimax values and

actions. That is, one may let P1 play the action a′ � arg maxaminbQ
k
h(x,a,b) and P2 play b′ � arg minbmaxaQk

h(x, a,b),
and then set V

k
h(x) ←Q

k
h(x, a′,b′) and Vk

h(x) ←Qk
h(x,a′,b′). Unfortunately, such a V

k
h(x) is not a valid upper bound

for the true value, becauseQ
k
h ≠Qk

h in general and hence Q
k
h(x,a′,b′)≠maxaminbQ

k
h(x,a,b).

Instead, we must coordinate both players for their choices of actions, which is done by solving the general-

sum matrix game with payoff matrices Q
k
h(x, · , ·) and Qk

h(x, · , ·). Finding the NE for general-sum games gives
valid UCB/LCB, but doing so is computationally intractable (Chen et al. [18], Daskalakis et al. [23]). Fortunately,
computing an (approximate) CCE of the matrix game turns out to be sufficient as well. For technical reasons ela-
borated in the next subsection, the subroutine FIND_CCE for finding the CCE is implemented in a specific way as
follows. LetQ be the class of functions Q : S ×A ×A→ R with the parametric form

Q(x, a,b) �ΠH

{
〈w,φ(x,a,b)〉 + ρβ

�������������������������
φ(x,a,b)�Aφ(x, a,b)

√ }
, (5)

where the parameters (w,A,ρ) ∈ R
d × R

d×d × {61} satisfy ‖w‖ ≤ 2H
���
dk

√
and ‖A‖F ≤ β2

��
d

√
. Let Qε be a fixed ε-cover-

ing of Q with respect to the ℓ∞ norm ‖Q−Q′‖∞ :� supx,a,b |Q(x,a,b) −Q′(x, a,b)|. With these notations, we present

the subroutine FIND_CCE in Algorithm 2. The algorithm effectively rounds the game (Qk
h(x, · , ·),Qk

h(x, · , ·)) of inter-
est into a nearby game in the finite ε-cover Qε ×Qε, and then uses the CCE of the latter game as an surrogate of the
CCE of the original game. Furthermore, we remark that this rounding step can be implemented efficiently without
explicitly computing/maintaining the (exponentially large) ε-net; see Appendix D for details.

Algorithm 2. FIND_CCE
1: Input:Q

k
h, Q

k
h, x and discretization parameter ε > 0.

2: Pick a pair (Q̃,Q˜ ) inQε ×Qε satisfying
∣∣∣∣∣∣Q̃ −Q

k
h

∣∣∣∣∣∣∞ ≤ ε and
∣∣∣∣∣∣Q̃ −Qk

h

∣∣∣∣∣∣∞ ≤ ε.

3: For the input x, let σ̃(x) be the CCE (cf. Equation (1)) of the matrix game with payoff matrices

Q̃(x, · , ·) for P1 and Q˜ (x, · , ·) for P2:

4:Output: σ̃(x).

3.2.1. Technical Considerations for FIND_CCE. The use of rounding and an ε-cover in FIND_CCE is motivated by
the following considerations. First, note that the least-squares step of Algorithm 1 (lines 5–7) uses data from all

previous episodes. This introduces complicated probabilistic dependency between the estimation target V
k
h+1

and the linear features φ(xτh,aτh,bτh),τ ∈ [k− 1], as they both depend on past data. Such dependency is not present
in usual least-squares estimation in supervised learning. To overcome this issue, a standard approach is to use a

covering argument to establish uniform concentration bounds valid for all value functions V
k
h+1.

4

Whereas it is straightforward to construct a cover for the Q functions (as we have done in FIND_CCE), doing
so for the value functions is challenging due to instability of the equilibria of general-sum games. In particular,
recall that the value function is defined by the CCE value of a general-sum game with two payoff matrices given
by the Q functions. The CCE value, however, is not a Lipschitz function of the payoff matrices, hence a cover for
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the former does not follow from a cover for the latter. Indeed, suppose that a game has payoff matrices (Qk
h,Q

k
h)

that are ε-close to another game (Q̃,Q˜ ) from the coverQε ×Qε. Lemma E.1 in Appendix E shows the following:

i. The CCE values of the previous two games may be bounded away from each other.
Interestingly, general-summatrix games satisfy another property, proved in Lemma 4, that is seemingly contradic-
tory to property (i):

ii. The CCE policy of the game (Q̃,Q˜ ) from the cover is a 2ε-approximate CCE policy for the original game

(Qk
h,Q

k
h), and vice versa.

Here, a 2ε-approximate CCE policy is one that satisfies the definition (1) of CCE with an additive 2ε error on
the right-hand side (RHS). The proof of Lemma E.1 gives an example in which properties (i) and (ii) hold
simultaneously.

Due to property (i), it is unclear how to run a covering argument only in the analysis, because in this case the algo-
rithm would use the CCE value of the original game (Qk

h,Q
k
h) and this value cannot be controlled. However, thanks

to property (ii), it suffices to use the ε-cover in the algorithm, because in this case the algorithm actually uses the CCE
policy of the game (Q̃, Q˜ ) from the finite ε-cover, and its value can be controlled by a union bound over the
cover. The small price we pay is that the resulting UCB/LCB are valid up to a 2ε error, which eventually goes into
the regret bound. This error can be made negligible relative to the main terms in the regret by choosing a small
enough ε.

In summary, the previous algorithmic use of ε-cover appears crucial under our current framework. We leave
as an intriguing open problem whether this algorithmic complication is in fact necessary or can be avoided by a
more clever analysis. We also remark that the previous issue does not exist in the tabular setting, in which case

the value functions (Vk
h,V

k
h) are just a pair of finite-dimensional vectors and hence one can directly build an

ε-cover for the relevant set of vectors.

3.3. Theoretical Guarantees
In each episode k, Algorithm 2 computes a joint (correlated) policy σkh. As NE requires the policies to be in prod-
uct form, we marginalize σkh into a pair of independent policies πk

h(x) :� P1σ
k
h(x) and νkh(x) :� P2σ

k
h(x) for each

player. Our main theoretical result is the following bound on the total duality gap (4) of these policy pairs. Recall
that T � KH is the total number of timesteps.

Theorem 1 (Offline, Simultaneous Moves). Under Assumption 1, there exists a constant c > 0 such that the following
holds for each fixed p ∈ (0, 1). Set β � cdH

�
ι

√
with ι :� log(2dT=p) in Algorithm 1, and set ε � 1

KH in Algorithm 2. Then
with probability at least 1− p, Algorithm 1 satisfies the bounds

V∗,νk
1 (xk1) −Vπk ,∗

1 (xk1) ≤ V
k
1(xk1) −Vk

1(xk1) +
8
K
, ∀k ∈ [K], (6)

∑K
k�1

[
V

k
1(xk1) −Vk

1(xk1)
]
.

�����������
d3H3Tι2

√
; (7)

consequently, we have
Gap(K). �����������

d3H3Tι2
√

: (8)

The proof is given in Section 5. Next, we provide discussion and remarks on this theorem.

3.3.1. Optimality of the Bound. The theorem provides an (instance-independent) bound scaling with
��
T

√
. As the

total duality gap reduces to the usual regret in the special case MDPs, our bound is optimal in T in view of
known minimax lower bounds for MDPs (Lattimore and Szepesvári [49]). Also note that our bound is independ-
ent of the cardinality |S | and |A| of the state/action spaces, but rather depends only on dimension d of the feature
space, thanks to the use of function approximation. To investigate the tightness of the dependence of our bound
on d and H, we recall that our setting covers the standard tabular MDPs and linear bandits as special cases. A
direct reduction from the known lower bounds on tabular MDPs gives a lower bound Ω( ��������

dH2T
√ ) for the case of

nonstationary transitions (Azar et al. [7], Jin et al. [43]). Our bound is off by a factor of
���
H

√
, which may be

improved by using a Bernstein-type bonus term (Azar et al. [7], Jin et al. [43]). Results from linear bandits give
the lower bound Ω(d ��

T
√ ). The additional

��
d

√
factor in our bound is due to a covering argument applied to the d-

dimensional feature space for establishing uniform concentration bounds.
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3.3.2. Computational Complexity. Our algorithm can be implemented efficiently, with a computational complex-
ity polynomial in H, K, d, and |A|. In particular, note that a CCE of a general-sum game can be found in polyno-
mial time (Blum et al. [12], Papadimitriou and Roughgarden [65]).5 Moreover, in Algorithm 1 we do not need to
compute Q(x, · , ·),V(x) and σ̃(x), and so on, for all x ∈ S; rather, we only need to do so for the states {xkh} actually
encountered in the algorithm. Similarly, we do not need to explicitly maintain the (exponentially large) ε-net Qε

in FIND_CCE (Algorithm 2). It suffices if we can find an element in Qε that is ε-close to a given function in Q,
which can be done efficiently on the fly. Indeed, each function in Q has a succinct representation using
(w,A) ∈ R

d × R
d×d. We can (implicitly) maintain a covering of the space of (w, A), and find a nearby element from

this covering when needed, which can be done inO(d2) time. See Appendix D and Lemma D.1 therein for details.
Moreover, when finding an ε-close element inQε for any function inQ, it turns out that the implementation only
involves a set of computations based on the parameter (w, A), and we do not need to explicitly store the ε-cover
Qε. Thus, in addition to being sample and computationally efficient, our Algorithm 1 also enjoys memory effi-
ciency in the sense that the required memory size is polynomial in d, H, and K.

3.3.3. Sample Complexity and PAC Guarantees. It is a standard fact that a regret bound as in Theorem 1 can be
converted into a bound on the sample complexity. For simplicity, we assume that the initial state x1 is fixed.6

After K episodes, we choose, among the K policy pairs (πk,νk), k ∈ [K] computed by Algorithm 1, the pair
(πk0 ,νk0)with the minimum gap between the UCB and LCB; that is,

k0 � argmin
k∈[K]

{
V

k
1(x1) −Vk

1(x1)
}
:

Note that the UCB/LCB V
k
1(x1) and Vk

1(x1) are computed by the algorithm and hence their values are known.
This policy pair (πk0 ,νk0) satisfies the bound

V∗,νk0
1 (x1) −Vπk0 ,∗

1 (x1)

≤ V
k0
1 (x1) −Vk0

1 (x1) +
8
K

inequality (6)

≤ 1
K

∑K
k�1

V
k
1(x1) −Vk

1(x1)
[ ]

+ 8
K

min ≤ average

.
���������
d3H5ι2

T

√
: inequality (7) divided by K � T=H

Therefore, we can find an ε-approximate NE (meaning that the last RHS is bounded by ε) with a sample com-

plexity of T �O d3H5ι2

ε2

( )
. By playing the policy pair (πk0 ,νk0) in all subsequent episodes, we obtain a PAC-type

guarantee (Kakade [46]) in the sense that an ε-approximate NE is played in all but O d3H5ι2

ε2

( )
timesteps.

3.4. Turn-Based Games
In this section, we consider turn-based Markov games, which is a special case of simultaneous-move Markov
games. Algorithm 1 can be specialized to this setting. For completeness, we provide the resulting algorithm in
Algorithm A.1 in Appendix A.1. Note that for turn-based games, the FIND_CCE routine is simplified to the sub-
routines FIND_MAX and FIND_MIN given in Algorithm A.2, because each state is controlled by a single player
and hence finding a CCE reduces to computing a maximizer or minimizer.

As a corollary of Theorem 1, we have the following bound on the total duality gap, which is defined in the
same way as in Equation (4).

Corollary 1 (Offline, Turn-based). Under Assumption 2, there exists a constant c > 0 such that, for each fixed p ∈ (0, 1), by
setting β � cdH

�
ι

√
with ι :� log(2dT=p) in AlgorithmA.1, then with probability at least 1− p,AlgorithmA.1 satisfies bound

Gap(K). �����������
d3H3Tι2

√
:

We prove this corollary in Appendix A.1.1.

4. Main Results for the Online Setting
In this section, we consider the online setting, where we control P1 and play against an arbitrary (and potentially
adversarial) P2. Our goal is to maximize the reward of P1. Next we describe the performance metrics, followed
by our algorithms and theoretical guarantees.
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4.1. Setup and Performance Metrics
We consider the episodic setting as described in Section 3.1. Let π � (πk) and ν � (νk) be the policy sequences for
P1 and P2, respectively, where ν is arbitrary. We do not know P2’s choice of ν nor the Markov model of the game
a priori, and would like learn a good policy π online so as to optimize the reward ∑

kV
πk,νk
1 received by P1 over K

episodes. To this end, we are interested in bounding, for each ν, the total (expected) regret

Regretν(K) :�
∑K
k�1

[
V∗

1(xk1) −Vπk,νk
1 (xk1)

]
, (9)

where xk1 is the (arbitrary) initial state in the kth episode. The regret (9) is a weak notion of regret that competes against
the minimax value (i.e., NE value) of the game. It serves as a conservative but practical metric in the sense that it provides
an achievable upper bound on the performance of P1 against any opponent policy. Specifically, if we can obtain a bound
on Regretν(K) that scales sublinearly with K for all ν, then we are guaranteed that regardless of ν, the reward collected
by P1 is no worse (in the long run) than its optimal worst-case reward, that is, the NE valueV∗

1.
We note that a special case of the previous setting is when P2 is omniscient and always plays the best response

to P1’s policy, that is,

νk � br(πk) ∈ argmin
ν′∈Δ Vπk,ν′

1 (xk1), ∀k ∈ [K]:
Note that in this case, we have Vπk,νk

1 (xk1) � Vπk,∗
1 (xk1) by definition.

Remark 3. One may wish to consider a stronger notion of regret that compares the expected reward received by
P1 over K episodes against the best fixed policy of P1 in hindsight:

Regret(S)(K) :� sup
μ

∑
k�1

[
Vμ,νk

1 −Vπk ,νk
1

]
: (10)

However, recent work has established hardness results for optimizing this regret. In particular, it has been
shown in Bai et al. [9] that under standard hardness assumptions, there is no polynomial time algorithm that
attains a sublinear regret in the sense of (10) when playing against adversarial opponents in Markov games. The
work by Tian et al. [84] further shows that it is statistically hard to compete against the best policy in hindsight,
as the regret defined in (10) can be either linear in K or exponential in H. In light of these results, in this paper we
focus on the weak regret in (9) as a practical notion of performance metric.

4.2. Algorithm
We adapt the optimistic minimax value iteration algorithm to the online setting, as given in Algorithm 3. This
algorithm can be viewed as a one-sided version of Algorithm 1: we compute least-squares estimate for the linear
coefficients and then construct UCBs for the value functions—we do not need to construct LCBs as P2 is not con-
trolled by us. Constructing the UCBs is done by computing the NE of the zero-sum matrix game with the payoff
matrix Qk

h(x, · , ·) (line 8 of Algorithm 3).

Algorithm 3. (Optimistic Minimax Value Iteration (Simultaneous Move, Online))
1: Input: bonus parameter β > 0.
2: for episode k � 1, 2, : : : ,K do
3: Receive initial state xk1.
4: for step h �H,H− 1, : : : , 2, 1 do . update policy
5: Λk

h ←∑k−1
τ�1φ(xτh, aτh,bτh)φ(xτh ,aτh ,bτh)� + I:

6: wk
h ← (Λk

h)−1∑k−1
τ�1φ(xτh,aτh,bτh)

[
rh(xτh,aτh,bτh) +Vk

h+1(xτh+1)
]
.

7: Qk
h(·, · , ·) ←ΠH

{
(wk

h)�φ(·, · , ·) + β
�����������������������������
φ(·, · ,·)�(Λk

h)−1φ(·, · , ·)
√ }

.

8: For each x, let (πk
h(x),B0) be the NE of the matrix game with payoff matrixQk

h(x, · , ·).
9: Vk

h(·) ← Ea~πk
h(·),b~B0

[Qk
h(·, a,b)]:

10: end for
11: for step h � 1, 2, : : : ,H do . execute policy
12: P1 take action akh ~ πk

h(xkh).
13: Let P2 play; denote its action by bkh.
14: Observe next state xkh+1.
15: end for
16: end for
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Because of the one-sided nature of the online setting, some of the difficulties in the offline setting—pertaining
to general-sum games and CCE—no longer exist here. In particular, Algorithm 3 no longer requires the
FIND_CCE subroutine that makes use of an ε-cover. Technically, this is due to the fact that zero-sum matrix
games are more well-behaved than general-sum games. In particular, the value of a zero-sum game is Lipschitz
in the payoff matrix, hence uniform concentration can be established in a more straightforward manner (cf. the
discussion in Section 3.2).

4.3. Regret Bound Guarantees
We establish the following bound on the total regret (9) achieved by Algorithm 3.

Theorem 2 (Online, Simultaneous Move). Under Assumption 1, there exists a constant c > 0 such that the following
holds for each fixed p ∈ (0, 1) and any policy sequence ν for P2. Set β � cdH

�
ι

√
with ι :� log(2dT=p). Then, with probability

at least 1− p, Algorithm 3 achieves the regret bound

Regretν(K).
�����������
d3H3Tι2

√
:

The proof is given in Appendix C. Note that the regret bound holds for any policy ν of P2 and any initial states
{xk1}. Moreover, the bound is sublinear in T—scaling with

��
T

√
in particular—and depends polynomially on d and

H. As our regret reduces to the standard regret notion in the special cases of MDPs and linear bandits, the discus-
sion in Section 3.2 on the optimality of bounds, also applies here.

We remark that the previous bound provides a uniform guarantee for P1’s performance, regardless of the pol-
icy of the opponent P2. An interesting future direction is to achieve a more refined guarantee that exploits a
weak opponent. In particular, such a guarantee would involve a stronger notion of regret in which, instead of
competing with the Nash value ∑

kV
∗
1(xk1) as in the current definition (9), one competes against the value

maxπ
∑K

k�1V
π,νk
1 (xk1) achieved by the best fixed policy in hindsight. We believe doing so would require modifying

the algorithm, which is left to future work.

4.4. Turn-Based Games
The algorithm above can be specialized to online turn-based games. For completeness, we provide the result-
ing algorithm in Appendix A.1 as Algorithm A.3. Note that in the turn-based setting, we only need to solve a
unilateral maximization or minimization problem, rather than solving zero-sum games as is needed in the
simultaneous-move setting.

As an immediate corollary of Theorem 2, we have the following regret bound for turn-based games in the
online setting.

Corollary 2 (Online, Turn-based). Under Assumption 2, there exists a constant c > 0 such that the following holds for
each fixed p ∈ (0, 1) and any policy sequence ν for P2. Set β � cdH

�
ι

√
with ι :� log(2dT=p) in Algorithm A.3. Then, with

probability at least 1− p, Algorithm A.3 achieves the following regret bound:

Regretν(K).
�����������
d3H3Tι2

√
:

We prove this corollary in Appendix A.2.1.

5. Proof of Theorem 1
In this section, we prove Theorem 1 for the offline setting of simultaneous games. We shall make use of the tech-
nical lemmas given in Appendix B. For clarity of exposition, we denote by φk

h :� φ(xkh,akh,bkh) the feature vector
encountered in the hth step of the kth episode. Our proof consists of five steps:

i. Uniform concentration: We begin by showing that an empirical estimate of the transition kernel Ph,
when acting on the value functions maintained by the algorithm, concentrates around its expectation. See
Section 5.1.

ii. Least-squares estimation error: Using the concentration result in (i), we derive high probability bounds
on the errors of our least-squares estimates of the true Q functions Qπ,ν

h , recursively in the timestep h. See
Section 5.2.

iii.UCB and LCB:We next show that the UCBs and LCBs constructed in the algorithms are indeed valid bounds
on the true value functions Vπ,∗

h and V∗,ν
h . See Section 5.3.
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iv. Recursive decomposition of duality gap: We derive a recursive formula for the difference between the UCB
and LCB in terms of the timestep h. This difference in turn bounds the duality gap of interest. See Section 5.4.

v. Establishing final bound: Bounding each term in the recursive decomposition in (iv) in terms of the least-
squares estimation errors, we establish the desired bound on the total duality gap, thereby completing the proof of
the theorem. See Section 5.5.

Next, we provide the details of each step.

5.1. Uniform Concentration
The quantity ∑

τ∈[k−1]φ
τ
hV

k
h+1(xτh+1) can be viewed as an empirical estimate of the unknown population quantity∑

τ∈[k−1]φ
τ
h(PhV

k
h+1)(xτh,aτh,bτh). To control the least-squares estimation error, we need to show that the empirical

estimate concentrates around its population counterpart. The main challenge in doing so is that V
k
h+1 is con-

structed using data from previous episodes and hence depends on φτ
h for all τ ∈ [k− 1]. We overcome this issue

by noting that V
k
h+1 is computed using the CCE of a finite class of games with payoff matrices in the ε-net

Qε ×Qε, as is done in FIND_CCE. Therefore, we can prove a concentration bound valid uniformly over this class
of games and thereby establish the following concentration result. Here we recall that ||v||A :� ��������

v�Av
√

denotes the
weighted ℓ2 norm of a vector v.

Lemma 2 (Concentration). Under the setting of Theorem 1, for each p ∈ (0, 1), the following event E holds with probability
at least 1− p=2:∣∣∣∣∣

∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h V

k
h+1(xτh+1) − PhV

k
h+1

( )
(xτh ,aτh ,bτh)

[ ]∣∣∣∣∣
∣∣∣∣∣(Λk

h)−1
. dH

�������������
log(dT=p)√

, ∀(k,h) ∈ [K] × [H],
∣∣∣∣∣
∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h Vk

h+1(xτh+1) − PhVk
h+1

( )
(xτh , aτh ,bτh)

[ ]∣∣∣∣∣
∣∣∣∣∣(Λk

h)−1
. dH

�������������
log(dT=p)√

, ∀(k,h) ∈ [K] × [H]:

Proof. Fix (k,h) ∈ [K] × [H]. Let
F τ−1 :� σ(x1· , a1· ,b1· , : : : ,xτ−1· , aτ−1· ,bτ−1· ,xτ1, a

τ
1,b

τ
1, : : : ,x

τ
h,a

τ
h,b

τ
h) (11)

be the σ-algebra generated by the data from the first τ− 1 episodes plus that from the first h steps of the τth
episode. We note that as actions are randomized, they must also be included in the definition of the filtration
in Equation (11), unlike in the MDP setting. Also note that φτ

h,x
τ
h,a

τ
h,b

τ
h ∈ F τ−1 and xτh+1 ∈ F τ:

Fix a pair (Q̃,Q˜) in the ε-net Qε ×Qε. For each x ∈ S, let σ̃(x) be the CCE of (Q̃(x, · , ·), Q̃(x, · , ·)) in the sense of
Equation (1), and set Ṽ(x) :� E(a,b)~̃σ(x)[Q̃(x,a,b)]. The random variable Ṽ(xτh+1) − (PhṼ)(xτh,aτh,bτh), when condi-
tioned on F τ−1, is zero-mean and H-bounded. Applying Lemma B.6 gives∣∣∣∣∣

∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h[Ṽ(xτh+1) − (PhṼ)(xτh ,aτh ,bτh)]

∣∣∣∣∣
∣∣∣∣∣(Λk

h)−1
.dH

�������������
log(dT=p)

√

with probability at least 1− 2−Ω(d2log(dT=p)). Now note that |Qε ×Qε| � (N ε)2 ≤ 4 1+ 8H
���
dk

√
ε

( )2d
1+ β2

��
d

√
ε2

( )2d2
by Lemma

B.5. By a union bound and the choice that ε � 1=(kH), the previous inequality holds for all (Q̃,Q˜ ) ∈Qε ×Qε with

probability at least 1− p=2.

Now, for the pair (Qk
h+1,Qk

h+1), which is in Q ×Q by Lemma B.2, let (Q̃,Q˜ ) ∈Qε ×Qε be the pair in the net as

chosen in FIND_CCE. Recall that by construction we have ‖ Q̃ −Q
k
h‖∞ ≤ ε, and ‖Q̃ −Qk

h‖∞ ≤ ε and V
k
h+1(x) �

E(a,b)~̃σ(x)[Q
k
h+1(x, a,b)]. Therefore, the difference Δ(x) :� V

k
h+1(x) − Ṽ(x) satisfies

|Δ(x)| �
∣∣∣∣E(a,b)~̃σ(x)

[
Q

k
h+1(x,a,b) − Q̃(x, a,b)

]∣∣∣∣
≤ E(a,b)~̃σ(x)

∣∣∣Qk
h+1(x,a,b) − Q̃(x, a,b)

∣∣∣ ≤ ε, ∀x ∈ S:
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It follows that∣∣∣∣∣
∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h V

k
h+1(xτh+1) − PhV

k
h+1

( )
(xτh , aτh , bτh)

[ ]∣∣∣∣∣
∣∣∣∣∣(Λk

h)−1

≤
∣∣∣∣∣
∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h Ṽ(xτh+1) − (PhṼ)(xτh , aτh , bτh)
[ ]∣∣∣∣∣

∣∣∣∣∣(Λk
h)−1

+
∣∣∣∣∣
∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h[Δ(xτh+1) − (PhΔ)(xτh , aτh , bτh)]

∣∣∣∣∣
∣∣∣∣∣(Λk

h)−1
. dH

�������������
log(dT=p)√ + ε

∑
τ∈[k−1]

‖φτ
h‖(Λk

h)−1

≤ dH
�������������
log(dT=p)√ + εk,

where the last step follows from Λk
h � I and ‖φτ

h‖ ≤ 1. Recalling our choice ε � 1
KH proves the first inequality in the

lemma. The second inequality can be proved in a similar fashion. w

5.2. Least-Squares Estimation Error
Here we bound the difference between the algorithm’s action-value functions (without bonus) and the true
action-value functions of any policy pair (π,ν), recursively in terms of the step h.

Lemma 3 (Least-squares Error Bound). The quantities
{
wk

h, w
k
h,V

k
h,V

k
h

}
in Algorithm 1 satisfy the following. If β �

dH
�
ι

√
, where ι � log(2dT=p), then on the event E in Lemma 2, we have for all (x,a,b,h,k) ∈ S ×A ×A × [H] × [K] and

any policy pair (π,ν): ∣∣∣〈φ(x, a,b),wk
h〉 −Qπ,ν

h (x, a,b) −Ph V
k
h+1 −Vπ,ν

h+1
( )

(x, a,b)
∣∣∣ ≤ ρk

h(x,a,b), (12a)∣∣∣〈φ(x, a,b),wk
h〉 −Qπ,ν

h (x, a,b) −Ph Vk
h+1 −Vπ,ν

h+1
( )

(x, a,b)
∣∣∣ ≤ ρk

h(x,a,b), (12b)

where ρk
h(x,a,b) :� β‖φ(x,a,b)‖(Λk

h)−1 :

Proof. We only prove the first inequality (12a). The second inequality can be proved in a similar fashion.
By Lemma 1 and the Bellman equation we have the equality

(φτ
h)�wπ,ν

h � Qπ,ν
h (xτh, aτh, bτh) � rh(xτh, aτh, bτh) + (PhV

π,ν
h+1)(xτh, aτh, bτh)

for all τ ∈ [k− 1]. Multiplying this equality by (Λk
h)−1φτ

h and summing over τ, we obtain that

wπ,ν
h − (Λk

h)−1wπ,ν
h � (Λk

h)−1
∑

τ∈[k−1]
φτ
h(φτ

h)�
( )

wπ,ν
h

� (Λk
h)−1

∑
τ∈[k−1]

φτ
h · [rh(xτh,aτh,bτh) + (PhV

π,ν
h+1)(xτh,aτh,bτh)], (12c)

where the first equality (12c) holds because ∑
τ∈[k−1]φ

τ
h(φτ

h)� � Λk
h − I. On the other hand, recall that by algorithm

specification we have wk
h � (Λk

h)−1∑τ∈[k−1]φ
τ
h · [rh(xτh,aτh,bτh) +V

k
h+1(xτh+1)]: It follows that

wk
h −wπ,ν

h � −(Λk
h)−1wπ,ν

h + (Λk
h)−1

∑
τ∈[k−1]

φτ
h ·
[
V

k
h+1(xτh+1) − (PhV

π,ν
h+1)(xτh, aτh,bτh)

]
� −(Λk

h)−1wπ,ν
h︸����︷︷����︸

q1

+(Λk
h)−1

∑
τ∈[k−1]

φτ
h ·
[
V

k
h+1(xτh+1) − (PhV

k
h+1)(xτh,aτh,bτh)

]
︸�����������������������������︷︷�����������������������������︸

q2

+(Λk
h)−1

∑
τ∈[k−1]

φτ
h · Ph V

k
h+1 −Vπ,ν

h+1
( )

xτh, a
τ
h,b

τ
h

( )[ ]
︸�������������������������︷︷�������������������������︸

q3

:

Hence, for each (x, a, b):

〈φ(x, a, b),wk
h〉 −Qπ,ν

h (x, a, b) � 〈φ(x, a, b), q1 + q2 + q3〉:
We apply Cauchy-Schwarz to bound each RHS term:
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1. First term:We have

|〈φ(x, a, b), q1〉| ≤ ‖wπ,ν
h ‖(Λk

h)−1 · ‖φ(x, a, b)‖(Λk
h)−1

≤ ‖wπ,ν
h ‖ · ‖φ(x, a, b)‖(Λk

h)−1 .H
��
d

√ · ‖φ(x, a, b)‖(Λk
h)−1 ,

where the last two steps follow from Λk
h � I and ‖wπ,ν

h ‖.H
��
d

√
(Lemma B.1).

2. Second term: By Lemma 2, we have

|〈φ(x, a, b), q2〉| . dH
�������������
log(dT=p)

√
· ‖φ(x, a, b)‖(Λk

h)−1 :

3. Third term: Recalling that∑τ∈[k−1]φ
τ
h(φτ

h)� �Λk
h − I and Ph(· | xτh, aτh,bτh) � (φτ

h)�μh(·), we have
〈φ(x,a,b),q3〉
� 〈φ(x,a,b), (Λk

h)−1
∑

τ∈[k−1]
φτ
h(φτ

h)�
∫

V
k
h+1 −Vπ,ν

h+1
( )

(x′)dμh(x′)〉
� 〈φ(x,a,b),∫ V

k
h+1 −Vπ,ν

h+1
( )

(x′)dμh(x′)〉 − 〈φ(x,a,b), (Λk
h)−1

∫
V

k
h+1 −Vπ,ν

h+1
( )

(x′)dμh(x′)〉
� Ph V

k
h+1 −Vπ,ν

h+1
( )

(x,a,b) + 〈φ(x, a,b), (Λk
h)−1

∫
V

k
h+1 −Vπ,ν

h+1
( )

(x′)dμh(x′)〉︸��������������������������︷︷��������������������������︸
p2

:

Note that in this equality we make crucial use of the linearity assumption on the transition kernel. The term p2
satisfies the bound |p2| . ‖φ(x, a, b)‖(Λk

h)−1 ·H
��
d

√
,

where we use the facts that Λk
h � I, ‖μh(S)‖ ≤

��
d

√
,
∣∣∣Vk

h+1(·)
∣∣∣ ≤H, and

∣∣∣Vπ,ν
h+1(·)

∣∣∣ ≤H:
Combining, we obtain∣∣∣〈φ(x, a, b),wk

h〉 −Qπ,ν
h (x, a, b) − Ph V

k
h+1 − Vπ,ν

h+1
( )

(x, a, b)
∣∣∣.dH‖φ(x, a, b)‖(Λk

h)−1 ≤ β‖φ(x, a, b)‖(Λk
h)−1 ,

under our choice of β � dH
�
ι

√
. This completes the proof of the inequality (12a) in the lemma. w

Lemma 3 can be specialized to the value functions of the best response (cf. Remark 1); for example, it holds
that ∣∣∣〈φ(x, a, b),wk

h〉 −Qπ,∗
h (x, a, b) − Ph V

k
h+1 − Vπ,∗

h+1
( )

(x, a, b)
∣∣∣ ≤ ρk

h(x, a, b):
We will make use of this bound and its variants in the subsequent proof.

5.3. Upper and Lower Confidence Bounds
With the previous bounds on the estimation errors, we can show that Vk

h and V
k
h constructed in the algorithm are

indeed lower and upper bounds for the true value function. To this end, we state a simple lemma first.

Lemma 4 (Algorithm 2 Finds 2ε-CCE). For each (k, h, x), σkh(x) is an 2ε-CCE of
(
Q

k
h(x, · , ·),Qk

h(x, · , ·)
)
in the sense that

E(a,b)~̃σ(x) Q
k
h(x,a,b)

[ ]
≥ Eb~P2̃σ(x) Q

k
h(x,a′,b)

[ ]
− 2ε, ∀a′ ∈A,

E(a,b)~̃σ(x) Q
k
h(x,a,b)

[ ] ≤ Ea~P1̃σ(x) Q
k
h(x,a,b′)

[ ]
+ 2ε, ∀b′ ∈A:

Proof. Let (Q̃, Q˜) be the elements in the ε-net that are closest to (Qk
h,Q

k
h), as specified in Algorithm 2. This means

that |Qk
h(x,a,b) − Q̃(x,a,b)|≤ ε and |Qk

h(x,a,b) − Q̃(x, a,b)|≤ ε for all (x, a, b). Fix an arbitrary x ∈ S. Because σkh(x) �
σ̃(x) is a CCE of

(
Q̃(x, · , ·), Q̃(x, · , ·)

)
, we have for all a′ ∈A:

E(a,b)~̃σ(x) Q
k
h(x, a,b)

[ ]
� E(a,b)~̃σ(x) Q̃

k
h(x,a,b)

[ ]
+E(a,b)~̃σ(x) Q

k
h(x, a,b) − Q̃

k
h(x,a,b)

[ ]
≥ Eb~P2̃σ(x) Q̃

k
h(x, a′,b)

[ ]
− ε

� Eb~P2̃σ(x) Q
k
h(x, a′,b)

[ ]
+Eb~P2̃σ(x) Q̃

k
h(x,a′,b) −Q

k
h(x, a′,b)

[ ]
− ε

≥ Eb~P2̃σ(x) Q
k
h(x, a′,b)

[ ]
− 2ε:

This proves the first inequality in the lemma. The second inequality can be proved in a similar fashion. w

We can now establish the UCB and LCB properties.
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Lemma 5 (UCB and LCB). Under the setting of Theorem 1, on the event E in Lemma 2, we have for each (x, a,b, k,h):

Qk
h(x,a,b) − 2(H− h+ 1)ε ≤(a)Qπk,∗

h (x, a,b) ≤(b)Q∗,νk
h (x,a,b) ≤(c)Qk

h(x,a,b) + 2(H− h+ 1)ε,
and

Vk
h(x) − 2(H− h+ 2)ε ≤(i)Vπk,∗

h (x) ≤(ii)V∗,νk
h (x) ≤(iii)Vk

h(x) + 2(H− h+ 2)ε:

Proof. The inequalities (b) and (ii) follow from Proposition 1. Next we only prove the upper bounds (c) and (iii).
The lower bounds (a) and (i) can be proved in a similar fashion.

We fix k and perform induction on h. The base case h �H+ 1 holds because the terminal cost is zero. Now
assume that the bounds (c) and (iii) hold for step h+1; that is, Q

k
h+1(x, a,b) ≥Q∗,νk

h+1(x, a,b) − 2(H − h)ε and V
k
h+1(x) ≥

V∗,νk
h+1(x) − 2(H − h+ 1)ε for all (x, a, b). By inequality (12a) in Lemma 3 applied to (π̃,νk) with π̃ being the best

response to νk, we have for each (x, a, b):∣∣∣〈φ(x,a,b),wk
h〉 −Q∗,νk

h (x,a,b) −Ph(Vk
h+1 −V∗,νk

h+1)(x,a,b)
∣∣∣ ≤ ρk

h(x,a,b),
whence

〈φ(x,a,b),wk
h〉 + ρk

h(x,a,b) ≥Q∗,νk
h (x, a,b) +Ph(Vk

h+1 −V∗,νk
h+1)(x, a,b),

where we recall that ρk
h(x, a,b) :� β‖φ(x, a,b)‖(Λk

h)−1 . Under the induction hypothesis, we obtain

〈φ(x,a,b),wk
h〉 + ρk

h(x,a,b) ≥Q∗,νk
h (x,a,b) − 2(H − h+ 1)ε ≥ 0:

We can now lower-bound Q
k
h(x,a,b):

Q
k
h(x,a,b)

�ΠH{〈φ(x,a,b),wk
h〉 + ρk

h(x,a,b)} by construction

≥ΠH{Q∗,νk
h (x, a,b) − 2(H − h+ 1)ε} u ≥ v⇒max{min{u,H}, −H} ≥max{min{v,H}, −H}

≥ΠH{Q∗,νk
h (x, a,b)} − 2(H − h+ 1)ε ΠH is non-expansive:

�Q∗,νk
h (x, a,b) − 2(H − h+ 1)ε: Q∗,νk

h (x,a,b) ∈ [−H,H]
This proves the inequality (c) for step h.

Finally, recall that νkh(x) :� P2σ
k
h(x), and let br(νkh(x)) denote the best response to νkh(x) with respect to

Q∗,νk
h (x, · , ·); that is,

br(νkh(x)) :� argmax
A∈Δ

Ea~A,b~νkh(x) Q
∗,νk
h (x, a,b)

[ ]
:

We then have for all x:

V
k
h(x) :� E(a,b)~σkh(x) Q

k
h(x, a, b)

[ ]
by construction

≥ Ea′~br(νkh(x)), b~P2σ
k
h(x) Q

k
h(x, a′, b)

[ ]
− 2ε σkh(x) is 2ε-CCE by Lemma 4

≥ Ea′~br(νkh(x)), b~P2σkh(x) Q
∗,νk
h (x, a′, b)

[ ]
− 2(H − h + 1)ε − 2ε inequality (c) we just proved

� Ea~br(νkh(x)), b~νkh(x) Q
∗,νk
h (x, a, b)

[ ]
− 2(H − h + 2)ε definition of πk

h(x) and νkh(x)
� V∗,νk

h (x) − 2(H − h + 2)ε:
This proves inequality (iii) for step h. w

5.4. Recursive Decomposition of Duality Gap
Thanks to Lemma 5 established earlier, the difference of the UCB and LCB, namely δkh :� V

k
h(xkh) −Vk

h(xkh), is an
(approximate) upper bound on the duality gap V∗,νk

h (xkh) −Vπk,∗
h (xkh). Setting the stage for bounding the duality

gap, we show next that δkh can be decomposed recursively into the sum of δkh+1 and some error terms.
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Lemma 6 (Recursive Decomposition). Define the random variables

δkh :� V
k
h(xkh) − Vk

h(xkh),
ζkh :� E[δkh+1 | xkh, akh, bkh] − δkh+1,

γk
h :� E(a,b)~σkh(xkh)

[
Q

k
h(xkh, a, b)

]
−Q

k
h(xkh, akh, bkh),

γk
h :� E(a,b)~σkh(xkh)

[
Qk

h(xkh, a, b)
]
−Qk

h(xkh, akh, bkh):
Then on the event E in Lemma 2, we have for all (k, h),

δkh ≤ δkh+1 + ζkh + γk
h − γk

h + 4β
�������������������
(φk

h)�(Λk
h)−1φk

h

√
:

Proof. For each (x,a,b,k,h), by construction we have

Q
k
h(x,a,b) −Q k

h(x,a,b) � (wk
h)�φ(x,a,b) + β‖φ(x,a,b)‖(Λk

h)−1
[ ]

− (wk
h)�φ(x,a,b) − β ‖φ(x,a,b)‖(Λk

h)−1
[ ]

� (wk
h −wk

h)�φ(x,a,b) + 2β‖φ(x,a,b)‖(Λk
h)−1 :

The inequalities (12a) and (12b) in Lemma 3 ensure that

(wk
h − wk

h)�φ(x, a, b) ≤ Ph

(
V

k
h+1 − Vk

h+1
)
(x, a, b) + 2β ‖φ(x, a, b)‖(Λk

h)−1 ,

Hence, by plugging back we obtain the bound

Q
k
h(x, a, b) −Qk

h(x, a, b) ≤ Ph

(
V

k
h+1 − Vk

h+1
)
(x, a, b) + 4β ‖φ(x, a, b)‖(Λk

h)−1 : (13)

On the other hand, observe that by definition,

δkh :� V
k
h(xkh) − V k

h(xkh)
� E(a,b)~σkh(xkh) Q

k
h(xkh, a, b)

[ ]
− E(a,b)~σkh(xkh) Q

k
h(xkh, a, b)

[ ]
� Q

k
h(xkh, akh, bkh) −Qk

h(xkh, akh, bkh)+
(
E(a,b)~σkh(xkh) Q

k
h(xkh, a, b)

[ ]
−Q

k
h(xkh, akh, bkh)

)
−
(
E(a,b)~σkh(xkh)Q

k
h (xkh, a, b)
[ ] −Qk

h(xkh, akh, bkh)
)

� Q
k
h(xkh, akh, bkh) −Qk

h(xkh, akh, bkh) + γk
h − γk

h:

Applying the inequality (13), we obtain

δkh ≤ Ph V
k
h+1 − Vk

h+1
( )

(xkh, akh, bkh) + 4β‖φ(xkh, akh)‖(Λk
h)−1 + γk

h − γ k
h

� E δkh+1 | xkh, akh, bkh
[ ]

+ 4β‖φk
h‖(Λk

h)−1 + γk
h − γk

h

� δkh+1 + ζkh + 4β‖φk
h‖(Λk

h)−1 + γk
h − γk

h

as desired. w

5.5. Establishing Duality Gap Bound
We are now ready to prove Theorem 1. First, observe that on the event E in Lemma 2 (which holds with proba-
bility at least 1− p=2), we have for all k ∈ [K]:
V∗,νk

1 (xk1) −Vπk,∗
1 (xk1) ≤ V

k
1(xk1) −V k

1(xk1) + 8Hε Lemma 5

≤ V
k
1(xk1) −Vk

1(xk1) +
8
K
: by the choice ε � 1

KH

This proves the first inequality (6) in Theorem 1.
We next bound the cumulated difference between the UCB and LCB that appear in the RHS of the last inequal-

ity. We have∑K
k�1

V
k
1(xk1) − Vk

1(xk1)
[ ]

�∑K
k�1

δk1 definition of δk1

≤∑K
k�1

∑H
h�1

(ζkh + γk
h − γk

h) + 4β
∑K
k�1

∑H
h�1

�������������������
(φk

h)�(Λk
h)−1φk

h

√
: Lemma 6

We bound the first two RHS terms separately:
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• For the first term, we know that (ζkh + γk
h − γk

h) is a martingale difference sequence (with respect to both h and
k), and | ζkh + γk

h − γk
h |≤ 6H. Hence by Azuma-Hoeffding, we have with probability at least 1− p=2,∑K

k�1

∑H
h�1

(ζkh + γk
h − γk

h).H · ������
KHι

√
:

• For the second term, we apply the elliptical potential Lemma B.4 to obtain

∑H
h�1

∑K
k�1

�������������������
(φk

h)�(Λk
h)−1φk

h

√
≤∑H

h�1

���
K

√ �����������������������∑K
k�1

(φk
h)�(Λk

h)−1φk
h

√
Jensen′s inequality

≤∑H
h�1

���
K

√ ·
�����������������
2log

detΛK
h

detΛ0
h

( )√√
Lemma B:4

≤∑H
h�1

���
K

√ ·
����������������������������������
2log

(λ + Kmaxk‖φk
h‖2)d

λd

( )√√
by construction of Λk

h

≤∑H
h�1

���
K

√ ·
������������������
2dlog

λ + K
λ

( )√
‖φk

h‖ ≤ 1, ∀h, k by assumption

≤ H
�������
2Kdι

√
:

Combining the aforementioned inequalities, we obtain that with probability at least 1− p=2,∑K
k�1

[
V

k
1(xk1) −Vk

1(xk1)
]
.H

������
HKι

√ + 4β ·H �������
2Kdι

√
.

�����������
d3H3Tι2

√
,

by our choice of β � dH
�
ι

√
and the fact that T � KH. This proves the second inequality (7) in Theorem 1.

Finally, recalling the definition of Gap(K) and combining the inequalities (6) and (7) we just proved, we obtain
that with probability at least 1− p,

Gap(K) :�∑K
k�1

[
V∗,νk

1 (xk1) −Vπk,∗
1 (xk1)

]
≤∑K

k�1

[
V

k
1(xk1) −Vk

1(xk1)
]
+ 8.

�����������
d3H3Tι2

√
,

thereby proving the third inequality (8) in Theorem 1.

6. Conclusion
In this paper, we develop provably efficient reinforcement learning methods for zero-sum Markov games with
simultaneous moves and a linear structure. To ensure efficient exploration, our algorithms construct appropriate
UCB/LCB for both players and make crucial use of the concept of coarse correlated equilibrium. We provide
regret bounds under both the offline and online settings. Corollaries of these bounds apply to turn-based games
and the tabular settings. Our results build on and generalize work on learning MDPs with linear structures, and
at the same time highlight the crucial differences and new challenges in the game setting.

A number of directions are of interest for future research. An immediate step is to investigate whether the
dependence on the dimension d and horizon H in our bounds can be improved and what are the optimal scaling.
It would also be interesting to improve our online regret bounds to exploit a weak opponent, in the sense that
we can compete with the best response to the opponent, not just competing with the NE. Generalizations to
general-sum Markov games, as well as to games with more complicated, nonlinear structures, are also of great
interest.
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Appendix A: Algorithms and Proofs for Turn-based Games
In this section, we present our algorithms for turn-based games and prove the performance guarantees in Corollaries 1 and 2.
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A.1. Offline Setting
In this, the algorithm for turn-based games is given in Algorithm A.1, which is derived by specializing the corresponding
simultaneous-move Algorithm 1 to the turn-based setting.

Algorithm A.1. (Optimistic Minimax Value Iteration (Turn-Based, Offline))
1: Input: bonus parameter β > 0.
2: for episode k � 1,2, : : : ,K do
3: Receive initial state xk1.
4: for step h �H,H− 1, : : : , 2, 1 do . update policy
5: Λk

h ←∑k−1
τ�1φ(xτh,aτh)φ(xτh , aτh)� + I:

6: wk
h ← (Λk

h)−1∑k−1
τ�1φ(xτh, aτh)

[
rh(xτh,aτh) +V

k
h+1(xτh+1)

]
.

7: wk
h ← (Λk

h)−1∑k−1
τ�1φ(xτh, aτh)

[
rh(xτh,aτh) +Vk

h+1(xτh+1)
]
.

8: Q
k
h(·, ·) ←ΠH

{
(wk

h)�φ(·, ·) + β
������������������������
φ(·,·)�(Λk

h)−1φ(·, ·)
√ }

9: Qk
h(·, ·) ←ΠH

{
(wk

h)�φ(·, ·) − β
������������������������
φ(·,·)�(Λk

h)−1φ(·, ·)
√ }

10: Let

{πk
h(·) ← FIND_MAX(Qk

h, ·),Vk
h(·) ← Q

k
h(·,πk

h(·)),V k
h(·) ← Qk

h(·,πk
h(·)) I(·) � 1

νkh(·) ← FIND_MIN(Qk
h, ·),Vk

h(·) ← Q
k
h(·, νkh(·)),Vk

h(·) ← Qk
h(·, νkh(·)) I(·) � 2

11: end for
12: for step h � 1, 2, : : : ,H do . execute policy
13: if I(xkh) � 1, P1 takes action akh � πk

h(xkh),
14: else if I(xkh) � 2, P2 takes action akh � νkh(xkh).
15: Observe next state xkh+1.
16: end for
17: end for

The algorithm involves the subroutines FIND_MAX and FIND_MIN, which are derived by specializing the FIND_CCE rou-
tine in Algorithm 2 to the turn-based setting. For completeness, we provide a description of these two subroutines. Let Q
be the class of functions Q : S ×A→ R with the parametric form

Q(x, a) � 〈w,φ(x,a)〉 + ρβ
���������������������
φ(x, a)�Aφ(x, a)

√
,

where the parameter (w,A,ρ) satisfy ‖w‖ ≤ 2H
���
dk

√
, ‖A‖F ≤ β2

��
d

√
, and ρ ∈ {61}. Let Qε be a fixed ε-covering of Q with

respect to the ℓ∞ norm. With these notations, the subroutine FIND_MAX is given in Algorithm A.2, and the subroutine
FIND_MIN is given by FIND_MIN(Q,x) � FIND_MAX(−Q,x).
Algorithm A.2. (FIND_MAX)

1: Input:Q, x, and discretization parameter ε > 0.
2: Pick Q̃ ∈Qε satisfying ‖Q̃ −Q‖∞ ≤ ε.
3: For the input x, let ã � argmaxaQ̃(x, a).
4:Output: ã.

Informally, one may simply think of FIND_MAX(Q,x) as argmaxaQ(x,a) and FIND_MIN(Q,x) as argminaQ(x, a). As in the
simultaneous-move setting, these subroutines are introduced for the technical considerations explained in Section 3.2.1.

A.1.1. Proof of Corollary 1. We prove Corollary 1 by specializing Theorem 1 to the turn-based setting. Specifically, as
argued in Section 2.3, linear turn-based game is a special case of linear simultaneous games with

φ(x, a, b) ≡ φ(x, a), rh(x, a, b) ≡ r(x, a), Ph(x, a, b) ≡ Ph(x, a), if x ∈ S1,

φ(x, a, b) ≡ φ(x, b), rh(x, a, b) ≡ r(x, b), Ph(x, a, b) ≡ Ph(x, b), if x ∈ S2:
(A.1)

Moreover, Algorithm 1, when applied to the turn-based setting, degenerates to Algorithm A.1. To see this, note that under

the degeneration of φ(x, a,b) in (A.1), the values Q
k
h and Qk

h computed in Algorithm 1 only depend on the action of the
active player; that is,

Q
k
h(x, a,b) ≡Q

k
h(x, a), if x ∈ S1,

Qk
h(x, a,b) ≡Qk

h(x,b), if x ∈ S2:
(A.2)
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In this case, one can verify that finding the CCE (cf. Equation (1)) as done in FIND_CCE degenerates to a unilateral
maximization or minimization problem, namely argmaxaQ̃(x, a) or argminaQ̃(x, a). This is exactly what the subroutines
FIND_MAX and FIND_MIN compute. With the previous reduction, Corollary 1 follows directly from Theorem 1.

A.2. Online Setting
In this setting, the algorithm for turn-based games is given in Algorithm A.3, which is derived by specializing the corre-
sponding simultaneous-move Algorithm 3 to the turn-based setting.

Algorithm A.3. (Optimistic Minimax Value Iteration (Turn-Based, Online)
1: Input: bonus parameter β > 0.
2: for episode k � 1,2, : : : ,K do
3: Receive initial state xk1.
4: for step h �H,H− 1, : : : , 2, 1 do . update policy
5: Λk

h ←∑k−1
τ�1φ(xτh,aτh)φ(xτh , aτh)� + I:

6: wk
h ← (Λk

h)−1∑k−1
τ�1φ(xτh,aτh) rh(xτh, aτh) +Vk

h+1(xτh+1)
[ ]

.

7: Qk
h(·, ·) ←ΠH

{
(wk

h)�φ(·, ·) + β
������������������������
φ(·,·)�(Λk

h)−1φ(·, ·)
√ }

.

8: Vk
h(·) ←

{
maxaQk

h+1(·,a) if I(·) � 1,
minaQk

h+1(·, a) if I(·) � 2:9: end for
10: for step h � 1, 2, : : : ,H do . execute policy
11: if I(xkh) � 1, take action akh � arg maxaQk

h(xkh, a),
12: else do nothing and let P2 play.
13: Observe next state xkh+1.
14: end for
15: end for

A.2.1. Proof of Corollary 2. We prove Corollary 2 by specializing Theorem 2 to the turn-based setting. The argument is
essentially the same as that in the proof of Corollary 1. We omit the details.

Appendix B: Technical Lemmas
The proofs of our main Theorems 1 and 2 involve several common steps. We summarize these steps as several lemmas,
which are either proved below or are standard in the literature.

B.1. Boundedness of Linear Coefficients
We begin with two simple lemmas about boundedness of the linear coefficients of Q functions.

Lemma B.1 (True Coefficients Are Bounded). Under Assumption 1, for each policy pair (π,ν) of P1 and P2, the linear coeffi-
cient of their action-value function Qπ,ν

h (x,a,b) � 〈φ(x, a,b),wπ,ν
h 〉 satisfies

‖wπ,ν
h ‖ ≤ 2H

��
d

√
, ∀h ∈ [H]:

Proof. From the Bellman equation, we have

φ(x, a, b)�wπ,ν
h � Qπ,ν

h (x, a, b) � rh(x, a, b) + (PhV
π,ν
h+1)(x, a, b)

� φ(x, a, b)�θh +
∫

Vπ,ν
h+1(x′)φ(x, a, b)�dμh(x′), ∀x, a, b, h:

Assuming that {φ(x, a,b)} spans R
d and solving the linear equation, we obtain

wπ,ν
h � θh +

∫
Vπ,ν

h+1(x′)dμh(x′):

Under the normalization Assumption 1, we have ‖θh‖ ≤
��
d

√
, ‖μh(S)‖ ≤

��
d

√
and |Vπ,ν

h+1(x′)| ≤H. It follows that

‖wπ,ν
h ‖ ≤ ��

d
√ +H

��
d

√ ≤ 2H
��
d

√
,

as desired. w

An immediate consequence of the Lemma B.1 is that ‖wπ,∗
h ‖ ≤ 2H

��
d

√
and ‖w∗,ν

h ‖ ≤ 2H
��
d

√
; cf. Remark 1.

Lemma B.2 (Algorithm Coefficients Are Bounded). The coefficients {wk
h,w

k
h} in Algorithm 1 and the coefficients {wk

h} in Algo-
rithm 3 satisfy ∣∣∣∣wk

h

∣∣∣∣ ≤ 2H
���
dk

√
,
∣∣∣∣wk

h

∣∣∣∣ ≤ 2H
���
dk

√
, and

∣∣∣∣wk
h

∣∣∣∣ ≤ 2H
���
dk

√
, ∀(k,h) ∈ [K] × [H]:
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Proof. We only prove the last inequality. The other two inequalities can be established in exactly the same way. For each
k and h, we have

‖wk
h‖ �

∣∣∣∣∣∣∣∣(Λk
h)−1

∑k−1
τ�1

φ(xτh, aτh, bτh) rh(xτh, aτh, bτh) + Vk
h+1(xτt+1)

[ ]∣∣∣∣∣∣∣∣
≤∑k−1

τ�1

∣∣∣∣∣∣(Λk
h)−1φ(xτh, aτh, bτh)

∣∣∣∣∣∣ · 2H |rh | ≤ H, |Vk
h+1 | ≤ H

≤∑k−1
τ�1

∣∣∣∣∣∣(Λk
h)−1=2

∣∣∣∣∣∣ · ∣∣∣∣∣∣φ(xτh , aτh , bτh)∣∣∣∣∣∣(Λk
h)−1

· 2H

≤
������������������������������
k
∑k−1
τ�1

∣∣∣∣∣∣φ(xτh , aτh , bτh)∣∣∣∣∣∣2(Λk
h)−1

√
· 2H Λk

h � I and Jensen′s

≤ ���
kd

√ · 2H, Lemma B:3

thereby proving the last inequality in the lemma. w

B.2. Inequalities for Summations
We next state two lemmas for summations. The first lemma is from Jin et al. [44, lemma D.1].

Lemma B.3 (Simple Upper Bound). If Λt � λI+∑
i∈[t]φiφ

�
i , where φi ∈ R

d and λ > 0, then∑
i∈[t]

φ�
i Λ

−1
t φi ≤ d:

The second lemma can be found in Abbasi-Yadkori et al. [1, lemma 11] and Jin et al. [44, lemma D.2].

Lemma B.4 (Elliptical Potential Lemma). Suppose that {φt}t ≥ 0 is a sequence in R
d satisfying ‖φt‖ ≤ 1, ∀t. Let Λ0 ∈ R

d×d be a
positive definite matrix, and Λt �Λ0 +∑

i∈[t]φiφ
�
i . If the smallest eigenvalue of Λ0 satisfies λmin(Λ0) ≥ 1, then

log
detΛt

detΛ0

( )
≤∑

j∈[t]
φ�
j Λ

−1
j−1φj ≤ 2log

detΛt

detΛ0

( )
, ∀t:

B.3. Covering and Concentration Inequalities for Self-normalized Processes
The first lemma that follows is useful for establishing uniform concentration. Recall the function class Q defined in the
text around Equation (5).

Lemma B.5 (Covering). The ε-covering number of Q with respect to the ℓ∞ norm satisfies

N ε ≤ 2 1+ 8H
���
dk

√
ε

( )d
1+ 8β2

��
d

√
ε2

( )d2
:

Proof. For any two functions Q,Q′ ∈Q with parameters (w,A,ρ) and (w′,A′,ρ), we have

‖Q−Q′‖∞
� sup

x, a,b

∣∣∣ΠH

{
〈w,φ(x, a,b)〉 + ρβ

��������������������������
φ(x, a,b)�Aφ(x,a,b)

√ }
−ΠH

{
〈w′,φ(x, a,b)〉 − ρβ

���������������������������
φ(x, a,b)�A′φ(x,a,b)

√ }∣∣∣
≤ sup

φ:‖φ‖≤1
〈w−w′,φ〉 + ρβ

���������
φ�Aφ

√
− ρβ

����������
φ�A′φ

√∣∣∣∣ ∣∣∣∣
≤ sup

φ:‖φ‖≤1
| 〈w−w′,φ〉 | + sup

φ:‖φ‖≤1

��������������������
| φ�(A−A′)φ |

√
≤ ‖w−w′‖ + �������������‖A−A′‖F

√
,

where the second to last inequality follows due to the fact that | ��
x

√ − ��
y

√ | ≤ ��������|x− y|√
holds for any x,y ≥ 0:

Therefore, a 0-cover Cρ of {61}, an ε=2-cover Cw of {w ∈ R
d : ‖w‖ ≤ 2H

���
dk

√ }, and an ε2=4-cover CA of {A ∈ R
d×d : ‖A‖F ≤

β2
��
d

√ } implies an ε-cover of Q. It follows that

N ε ≤ |Cρ| |Cw| |CA| ≤ 2 1+ 8H
���
dk

√
ε

( )d
1+ 8β2

��
d

√
ε2

( )d2
,

where the last step follows from standard bounds on the covering number of Euclidean balls, for example, Vershynin [85,
lemma 5.2]. w

The next lemma, originally from Abbasi-Yadkori et al. [1, theorem 1], is now standard in the bandit literature.
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Lemma B.6 (Concentration for Self-normalized Processes). Suppose {εt}t≥1 is a scalar stochastic process generating the filtra-
tion {F t}t≥0, and εt | F t−1 is zero-mean and σ-subGaussian. Let {φt}t≥1 be an R

d-valued stochastic process with φt ∈ F t−1. Suppose
Λ0 ∈ R

d×d is positive definite, and Λt �Λ0 +∑t
s�1φsφ

�
s . Then for each δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣∣∣∣∣∣∑t

s�1
φsεs

∣∣∣∣∣∣∣∣2
Λ−1

t

≤ 2σ2log
det(Λt)1=2det(Λ0)−1=2

δ

[ ]
, ∀t ≥ 0:

Appendix C: Proof of Theorem 2
In this section, we prove Theorem 2 for the online setting of simultaneous games. We shall make use of the technical
lemmas given in Appendix B. Recall the shorthand φk

h :� φ(xkh,akh,bkh). The proof follows a similar strategy as that for
the proof of Theorem 1 in Section 5. In particular, our proof consists of five steps, as presented in the following
subsections.

C.1. Uniform Concentration
In the online setting, the value function estimate Vk

h+1(x) is computed using the NE of the zero-sum game defined by a
single payoff matrix Qk

h+1(x, · , ·). It is easier to establish uniform concentration in this setting. To see why, we recall the
function class Q defined in the text around Equation (5), and introduce the related function class

V :�
{
V : S → R,V(x) �max

A∈Δ
min
B∈Δ Ea∈A,b∈BQ(x,a,b),Q ∈Q

}
:

In words, V contains the possible values of the NEs of the zero-sum matrix games in Q. As we show in Lemma C.1, an
ε-cover of the set Q immediately induces an ε-cover of the set V, thanks to the nonexpansiveness of the maximin opera-
tor for zero-sum games. (Note that general-sum games and their CCEs do not have such a nonexpansiveness property in
general; see Appendix E for details.)

Lemma C.1 (Covering). The ε-covering number of V with respect to the ℓ∞ norm is upper bounded by

N ε ≤ 2 1+ 8H
���
dk

√
ε

( )d
1+ 8β2

��
d

√
ε2

( )d2
:

Proof. For any two functions V,V′ ∈ V, let them take the form V(·) �maxA∈ΔminB∈ΔEa∈A,b∈BQ(·,a,b) and V′(·) �
maxA∈ΔminB∈ΔEa∈A,b∈BQ′(·,a,b) with Q,Q′ ∈Q. Because the maximin operator is nonexpansive, we have

‖V−V′‖∞ � sup
x

∣∣∣∣max
A∈Δ

min
B∈Δ Ea∈A,b∈BQ(·, a,b) −max

A∈Δ
min
B∈Δ Ea∈A,b∈BQ′(·, a,b)

∣∣∣∣
≤ sup

x,a, b

∣∣∣Q(x,a,b) −Q′(x, a,b)
∣∣∣

� ‖Q−Q′‖∞:
Therefore, an ε-cover of Q induces an ε-cover of V, and hence the ε-covering number of V is upper bounded by the
ε-covering number of Q. Recalling that the latter number is bounded in Lemma B.5, we complete the proof of the desired
bound. w

Lemma C.2 (Concentration). Under the setting of Theorem 2, for each p ∈ (0,1), the following event E holds with probability at
least 1− p=2: ∣∣∣∣∣∣∣∣ ∑

τ∈[k−1]
φτ
h Vk

h+1(xτh+1) − (PhVk
h+1)(xτh , aτh ,bτh)

[ ]∣∣∣∣∣∣∣∣(Λk
h)−1

. dH
��������������
log(dT=p)

√
, ∀(k,h) ∈ [K] × [H]:

Proof. Fix (k,h) ∈ [K] × [H]. Define the filtration {Fτ} as in Equation (11).
Set ε � 1

K and let Vε be a minimal ε-net of V. Fix a function Ṽ ∈ Vε: The random variable Ṽ(xτh+1) −PhṼ(xτh), when condi-
tioned on F τ−1, is zero-mean and 2H-bounded. Applying Lemma B.6 gives∣∣∣∣∣∣∣∣ ∑

τ∈[k−1]
φτ
h

(
Ṽ(xτh+1) −PhṼ(xτh ,aτh ,bτh)

)∣∣∣∣∣∣∣∣(Λk
h)−1

. dH
��������������
log(dT=p)

√
,

with probability at least 2−Ω(d2log(dT=p)). Now note that |Vε | �N ε ≤ 2 1+ 8H
���
dk

√
ε

( )d
1+ β2

��
d

√
ε2

( )d2
by Lemma C.1. By a union bound,

the previous inequality holds for all Ṽ ∈ Vε with probability at least 1− p=2.
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Now, for each Vk
h+1 ∈ V (the inclusion follows from Lemma B.2), let Ṽ ∈ Vε be the closest point in the net. The difference

Δ � Vk
h+1 − Ṽ satisfies ‖Δ‖∞ ≤ ε. It follows that∣∣∣∣∣∣∣∣ ∑

τ∈[k−1]
φτ
h Vk

h+1(xτh+1) − (PhVk
h+1)(xτh , aτh ,bτh)

[ ]∣∣∣∣∣∣∣∣(Λk
h)−1

≤
∣∣∣∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h Ṽ(xτh+1) − (PhṼ)(xτh , aτh ,bτh)
[ ]∣∣∣∣∣∣∣∣(Λk

h)−1
+
∣∣∣∣∣∣∣∣ ∑
τ∈[k−1]

φτ
h Δ(xτh+1) − (PhΔ)(xτh , aτh ,bτh)
[ ]∣∣∣∣∣∣∣∣(Λk

h)−1

. dH
��������������
log(dT=p)√ + ε

∑
τ∈[k−1]

‖φτ
h‖(Λk

h)−1

≤ dH
��������������
log(dT=p)√ + 1

K
· k,

where the last step follows from ε � 1
K , Λ

k
h � I and ‖φτ

h‖ ≤ 1. This completes the proof of the lemma. w

C.2. Least-Squares Estimation Error
Here we bound the difference between the algorithm’s value function (without bonus) and the true value function of any
policy π, recursively in terms of the step h.

Lemma C.3 (Least-Squares Error Bound). The quantities {wk
h,V

k
h} in Algorithm 3 satisfy the following. If β � dH

�
ι

√
, then on the

event E in Lemma C.2, we have for all (x, a,b,h, k) and any policy pair (π,ν):
|〈φ(x,a,b),wk

h〉 −Qπ,ν
h (x,a,b) −Ph(Vk

h+1 −Vπ,ν
h+1)(x,a,b)| ≤ ρk

h(x,a,b), (C.1)

where ρk
h(x, a,b) :� β

��������������������������������
φ(x,a,b)�(Λk

h)−1φ(x, a,b)
√

:

Proof. The proof is essentially identical to that of Lemma 3, except that we use the concentration result in Lemma C.2
instead of Lemma 2. w

C.3. Upper Confidence Bounds
Here we establish the desired UCB property.

Lemma C.4 (UCB). On the event E in Lemma 2, we have for all (x,a,b, k,h):
Qk

h(x, a,b) ≥Q∗
h(x,a,b), Vk

h(x) ≥ V∗
h(x):

Proof. We fix k and perform induction on h. The base case h � H holds because the terminal cost is zero. Now assume
that the bounds hold for step h + 1; that is, Qk

h+1(x, a,b) ≥Q∗
h+1(x, a,b) and Vk

h+1(x) ≥ V∗
h+1(x), ∀(x, a,b): By construction, we

have

Qk
h(x,a,b) �ΠH

{〈φ(x,a,b),wk
h〉 + β

∣∣∣∣φ(x,a,b)∣∣∣∣(Λk
h)−1
}
:

On the other hand, note that Q∗
h �Qπ∗ ,ν∗

h and V∗
h � Vπ∗ ,ν∗

h , hence by inequality (C.1) in Lemma C.3 applied to (π,ν) �
(π∗,ν∗), we have

|〈φ(x, a,b),wk
h〉 −Q∗

h(x,a,b) −Ph(Vk
h+1 −V∗

h+1)(x,a,b)| ≤ β ‖φ(x, a,b)‖(Λk
h)−1 :

Plugging back, we obtain

Qk
h(x, a, b) ≥ ΠH{Q∗

h(x, a, b) + Ph(Vk
h+1 − V∗

h+1)(x, a, b)}:
Under the induction hypothesis, we have Vk

h+1(x) −V∗
h+1(x) ≥ 0 for each x ∈ S, whence

Qk
h(x,a,b) ≥ΠH{Q∗

h(x, a,b)} �Q∗
h(x,a,b):

Consequently, we have

Vk
h(x) � max

A∈Δ
min
B∈Δ

Ea~A,b~B Qk
h(x, a, b)

[ ]
algorithm specification

≥ max
A∈Δ

min
B∈Δ Ea~A,b~B Q∗

h(x, a, b)
[ ]

� V∗
h(x): definition

We conclude that the bounds hold for step h. w

C.4. Recursive Regret Decomposition
Thanks to Lemma C.4, the regret V∗

1(xk1) −Vπk ,νk
1 (xk1) of interest is upper bounded by the difference Vk

1(xk1) −Vπk ,νk
1 (xk1)

between the empirical value (with bonus) and true value of the agent’s policy πk. We next derive a recursive (in h) for-
mula for this difference.
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Lemma C.5 (Recursive Decomposition). Define the random variables

δkh :� Vk
h(xkh) − Vπk ,νk

h (xkh),
ζkh :� E δkh+1 | xkh, akh, bkh

[ ]
− δkh+1,

γk
h :� Ea~πk

h(xkh) Q
k
h(xkh, a, bkh)

[ ] −Qk
h(xkh, akh, bkh),

γ̂k
h :� Ea~πk(xkh),b~νkh(xkh) Q

πk ,νk
h (xkh, a, b)

[ ]
−Qπk ,νk

h (xkh, akh, bkh):
Then, on the event E in Lemma 2, we have for all (k, h):

δkh ≤ δkh+1 + ζkh + γk
h − γ̂k

h + 2β
�������������������
(φk

h)�(Λk
h)−1φk

h

√
:

Proof. By algorithm specification and the fact that (πk
h(xkh),B0) is the NE of Qk

h(xkh, · , ·), we have

Vk
h(xkh) �min

b
Ea~πk

h(xkh) Q
k
h(xkh, a,b)

[ ]
≤ Ea~πk

h(xkh) Q
k
h(xkh, a,bkh)

[ ]
�Qk

h(xkh,akh,bkh) + γk
h,

and by definition we have

Vπk ,νk
h (xkh) � Ea~πk(xkh),b~νkh(xkh) Q

πk ,νk
h (xkh,a,b)

[ ]
�Qπk ,νk

h (xkh,akh,bkh) + γ̂k
h:

It follows that

δkh ≤ Qk
h(xkh, akh, bkh) −Qπk ,νk

h (xkh, akh, bkh) + γk
h − γ̂k

h:

On the other hand, by construction of Qk
h and Lemma B.6, we have for all (x, a, b),

Qk
h(x,a,b) −Qπk ,νk

h (x,a,b) ≤ Ph(Vk
h+1 −Vπk ,νk

h+1 )(x, a,b) + 2β
��������������������������������
φ(x, a,b)�(Λk

h)−1φ(x, a,b)
√

:

Combining pieces, we obtain that

δkh ≤ Ph(Vk
h+1 − Vπk ,νk

h+1 )(xkh, akh, bkh) + γk
h − γ̂k

h + 2β
�������������������
(φk

h)�(Λk
h)−1φk

h

√
� E δkh+1 | xkh, akh, bkh

[ ]
+ γk

h − γ̂k
h + 2β

�������������������
(φk

h)�(Λk
h)−1φk

h

√
� δkh+1 + ζkh + γk

h − γ̂k
h + 2β

�������������������
(φk

h)�(Λk
h)−1φk

h

√
as desired. w

C.5. Establishing Regret Bound
We are now ready to prove Theorem 2. First, observe that

Regret(K) :�∑K
k�1

V∗
1(xk1) − Vπk ,νk

1 (xk1)
[ ]

definition

≤ ∑K
k�1

Vk
1(xk1) − Vπk ,νk

1 (xk1)
[ ]

Vk
1(xk1) ≥ V∗

h(xk1) by Lemma C:4

� ∑K
k�1

δk1 definition

≤ ∑K
k�1

∑H
h�1

(ζkh + γk
h − γ̂k

h) + 2β
∑K
k�1

∑H
h�1

�������������������
(φk

h)�(Λk
h)−1φk

h

√
: Lemma C:5:

We bound the two RHS terms separately.
• For the first term, we know that (ζkh + γk

h − γ̂k
h) is a martingale difference sequence (with respect to both h and k), and

|ζkh + γk
h − γ̂k

h | ≤ 6H. Hence by Azuma-Hoeffding, we have with high probability.

∑K
k�1

∑H
h�1

(ζkh + γk
h − γ̂k

h).H · ������
KHι

√ �H
���
Tι

√
:
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• For the second term, we apply the elliptical potential Lemma B.4 to obtain∑H
h�1

∑K
k�1

�������������������
(φk

h)�(Λk
h)−1φk

h

√
≤∑H

h�1

���
K

√ ������������������������∑K
k�1

(φk
h)�(Λk

h)−1φk
h

√
Jensen′s inequality

≤∑H
h�1

���
K

√ ·
�����������������
2log

detΛK
h

detΛ0
h

( )√√
Lemma B:4

≤∑H
h�1

���
K

√ ·
����������������������������������
2log

(λ + Kmaxk‖φk
h‖2)d

λd

( )√√
by construction of Λk

h

≤∑H
h�1

���
K

√ ·
������������������
2dlog

λ + K
λ

( )√
‖φk

h‖ ≤ 1, ∀h, k by assumption

≤ H
�������
2Kdι

√
:

Combining, we obtain that

Regret(K).H
���
Tι

√ + β ·H �������
2Kdι

√
.

�����������
d3H3Tι2

√
,

by our choice of β � dH
�
ι

√
: This completes the proof of Theorem 2.

Appendix D: Efficient Implementation of FIND_CCE
The main computation step in FIND_CCE is to find an element in the fixed ε-cover Qε that is close to a given function Q.
Here, we discuss how to efficiently implement this procedure without explicitly maintaining the cover Qε.

Recall that each element in Qε is defined by a pair (w,A) ∈ R
d × R

d×d. Therefore, Qε is induced, up to scaling, by an
ε-cover Cw in ℓ2 norm of the Euclidean ball Bw :� {w ∈ R

d : ‖w‖ ≤ 1} as well as an ε2-cover CA of the ball
BA :� {A ∈ R

d×d : ‖A‖F ≤ 1}; cf. the proof of Lemma B.5. We may replace Cw by a cover Cw,∞ in the ℓ∞ norm; similarly for
CA. Clearly, an ℓ∞ cover is also an ℓ2 cover; moreover, an ℓ∞ cover allows for efficient computation of near neighbors by
simple rounding. The price we pay is an additional dimension factor d in the covering number, which eventually goes
into the log term.

We now provide the details for covering Bw; the idea applies similarly to covering BA.

Lemma D.1. Let ε > 0 be a given accuracy parameter. There exists a set Cw,∞ satisfying the following: (i) log |Cw,∞| ≤ dlog 1+ 2
��
d

√
ε

( )
;

(ii) for each vector w ∈ Bw, we can find, in O(d) time, a vector w̃ ∈ Cw,∞ that satisfies ‖w̃ −w‖∞ ≤ ε��
d

√ , and hence ‖w̃ −w‖ ≤ ε.

Proof. Set ε0 :� ε��
d

√ . We discretize the interval G :� [−1, 1] into an ε0-grid as

Gε0 :� kε0 : k � − 1
ε0

⌊ ⌋
, − 1

ε0

⌊ ⌋
+ 1, : : : , − 2, − 1, 0, 1, 2, : : : ,

1
ε0

⌊ ⌋
− 1,

1
ε0

⌊ ⌋{ }
:

We then let Cw,∞ :� (Gε0 )d. The log cardinality of Cw,∞ is

log |Cw,∞| � log |Gε0 |d � log 1+ 2
⌊
1
ε0

⌋( )d
≤ dlog 1+ 2

��
d

√
ε

( )
,

as claimed in part (i) of the lemma. Compare this bound with the log cardinality of the optimal ε-cover in ℓ2 norm of

{w ∈ R
d : ‖w‖ ≤ 1}: log |Cw | � dlog 1+ 2

ε

( )
: We see that the former is only logarithmic larger than the latter.

Moreover, for each vector w in the ball {w′ ∈ R
d : ‖w′‖ ≤ 1}, we can efficiently find a vector w̃ ∈ Cw,∞ that satisfies

‖w̃ −w‖∞ ≤ ε��
d

√ and hence ‖w̃ −w‖ ≤ ε. To do this, we simply let

w̃i �
⌊ |wi |
ε0

⌋
· ε0 · sign(wi), for each i ∈ [d],

with the convention that sign(0) � 0. Note that w̃ can be computed in O(d) time. Moreover, since ‖w‖ ≤ 1, for each i ∈ [d]
we have |wi | ≤ 1 and hence ⌊ |wi |

ε0

⌋
∈ 0, 1, : : : ,

⌊
1
ε0

⌋{ }
,

which means w̃i ∈ Gε0 . It follows that w̃ ∈ (Gε0 )d � Cw,∞ as claimed. Finally, the approximation accuracy satisfies

‖w̃ −w‖∞ �max
i∈[d]

∣∣∣∣⌊ |wi |
ε0

⌋
· ε0 · sign(wi) −wi

∣∣∣∣
� ε0 max

i∈[d]

∣∣∣∣⌊ |wi |
ε0

⌋
· sign(wi) − |wi |

ε0
· sign(wi)

∣∣∣∣ wi � |wi | ·sign(wi)
≤ ε0 max

i∈[d]
1· |sign(wi)| |�x� − x| ≤ 1

≤ ε0 � ε��
d

√ :

This proves part (ii) of the lemma. w
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Appendix E: Instability of the Value of General-Sum Game
In the analysis of our algorithms (in particular, in proving uniform concentration in the proof of Theorem 1), we encoun-
ter the following question: Is the value of the CCE of a general-sum game stable under perturbation to the payoff matri-
ces? Here we show that the answer is negative in general, by demonstrating a counter example.

Consider a two-player general-sum matrix game, and recall our convention that player 1 tries to maximize and player
2 tries to minimize (cf. Section 2.1). Let ui :A ×A→ R be the payoff matrix of player i ∈ {1, 2}, such that player i receives
the payoff ui(a,b) when players 1 and 2 take actions a and b, respectively. Let σ ∈ Δ(A ×A) be any notion of CCE that is
unique; for example., the social-optimal or max-entropy CCE. In this equilibrium, the expected payoff of player i is

Vi(u1,u2) :� E(a,b)~σ ui(a,b)[ ]:
We say that the game value V � (V1,V2) is a Lipschitz function of the payoff matrices u � (u1,u2) if there exists a univer-
sal constant C such that

max
i∈{1,2}

|Vi(u1,u2) −Vi(u′1,u′2)|︸���������������︷︷���������������︸
||V(u)−V(u′)||∞

≤ C · max
j∈{1, 2}

max
a,b∈A

|uj(a,b) − u′j (a,b)|︸���������������︷︷���������������︸
||u−u′ ||∞

, ∀u,u′:

The following example shows that V is in general not Lipschitz in u.7

Lemma E.1. For any ε > 0, there exists a pair of games u and u′, each with a unique CCE, such that

||u− u′ || ≤ 2ε and ||V(u) −V(u′)||∞ ≥ 1:

Proof. Consider two games u and u′ with payoff matrices

(u1,u2) �
(
1+ ε, − 1− ε ε, − 1

1, − ε 0, 0

)
and (u′1,u′2) �

(
1− ε, − 1+ ε −ε, − 1

1,ε 0, 0

)
,

where ε > 0. Note that the two pairs of payoff matrices satisfy ||u− u′||∞ � 2ε, so u and u′ can be made arbitrarily close.
The game u has a unique CCE, which is the deterministic policy (or pure strategy) corresponding to the top-left entry of
the payoff matrices; similarly, the game u′ has a unique CCE corresponding to the bottom-right entry. These two CCEs
have values

(V1(u1,u2),V2(u1,u2)) � (1+ ε, − 1− ε) and (V1(u′1,u′2),V2(u′1,u′2)) � (0, 0),
which are bounded away from each other as claimed. w

We note that in the previous example, the CCE policy of the game u is an ε-approximate CCE of the game u′, and vice
versa, as any unilateral deviation leads to at most ε improvement in the payoff.

Endnotes
1 We note in passing that there is a more restrictive notion of correlated equilibrium (CE) (Aumann [6], Moulin and Vial [60]), in which the
deviation is allowed to depend on the original actions. The set of CCEs include the set of CEs, which in turn includes the set of NEs. We use
CCE in this paper as it is the easiest to compute among the three.
2 This holds, for example, when the state space is compact (Maitra and Parthasarathy [57], [58]).
3 The assumption S1 ∩ S2 � ∅ is satisfied if one incorporates the “turn” of the player as part of the state.
4 In the tabular setting, recent work (Agarawal et al. [5], Ding and Chen [25], Pananjady and Wainwright [64]) bypasses the use of uniform
concentration by employing sophisticated leave-one-out techniques to decouple the probabilistic dependency. However, it is unclear how
such techniques can be used in the function approximation setting.
5 This can be done by linear programming—as the inequalities in the definition (1) of CCE are linear in σ—or by self-playing a
no-regret algorithm (Blum et al. [12]).
6 For the general case where x1 is sampled from a fixed distribution, we can simply add an additional time step at the beginning of each
episode.
7 We learned the example from https://mathoverflow.net/questions/347366/perturbation-of-the-value-of-a-general-sum-game-at-a-equilibirium.
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