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The 1.5 formalism played a key role in the discovery of supergravity and it has been used17

to prove the invariance of essentially all supergravity theories under local supersymmetry.18

It emerged from the gauging of the super Poincaré group to find supergravity. We review19

both of these developments as well as the auxiliary fields for simple supergravity and its20

most general coupling to matter using the tensor calculus.21

Keywords:22

A theory of supergravity was first proposed by Ferrara et al.1 entitled “Progress to-23

wards a theory of supergravity” which contained the vierbein eµ
a and the gravitino24

ψµα. They proposed the action25

A =

∫
d4x

{
e

2κ2
R− 1

2
ψ̄µR

µ

}
(1)26

and the local supersymmetry transformations27

δe aµ = κε̄γaψµ, δψµ = 2κ−1Dµ(w(e, ψ))ε. (2)28

In these equations29

R = R ab
µν e µa e

ν
b , Rµ = εµνρκiγ5γνDρ(w(e, ψ))ψκ,

R ab
µν

σab
4

= [Dµ, Dν ], γµ = eµ
aγa,

(3)30

where the Lorentz covariant derivative is given by31

Dµ(w(e, ψ)) = ∂µ + wµab
σab

4
, (4)32
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with1

wµab =
1

2
eνa(∂µebν − ∂νebµ)− 1

2
e νb (∂µeaν − ∂νeaµ)2

− 1

2
e ρa e

σ
b (∂ρeσc − ∂σaρc)e cµ +

κ2

4
(ψ̄µγaψb + ψ̄aγµψb − ψ̄µγbψa). (5)3

They showed that the action was invariant up to, and including, cubic terms in the4

gravitino and stated that the quintic terms vanished using a computer programme.5

They also showed that the supersymmetry transformations closed up to terms cubic6

in the gravitino if one uses the equations of motion. This theory was in second-order7

formalism as it contained the vierbein and gravitino but not the spin connection8

as an independent field. This supergravity is often referred to as N = 1, D = 49

supergravity, or simple supergravity.10

A bit later, a theory of supergravity involving the vierbein eµ
a, the gravitino ψµα11

and a spin connection ωµ
ab was proposed.2 This paper proposed an action which12

was in first-order formalism, that is, the spin connection was an independent field13

and had an independent supersymmetry transformation. These authors showed that14

their theory did not have anomalous characteristics of its surfaces of propagation.15

In other words, it has a consistent propagation. It was known that the propagation16

of a spin 3/2 particle coupled to a spin 1 particle was not consistent and the same17

was suspected to be the case for generic higher spin theories. Reference 2 contains18

a two-sentence discussion of the invariance of the action under the supersymmetry19

transformations that uses Eq. (11) which is, in effect, an equation of motion. The20

paper also does not discuss the closure of the supersymmetry transformations. There21

has subsequently been almost no work on supergravity in first-order formalism and22

it remains an interesting open problem to develop it further.23

A different approach to supergravity was taken some months later in Ref. 3.24

This paper considered the gauge theory of the super Poincaré group, which has the25

generators Pa, Qα and Jab and the algebra26

[Pa, Pb] = Jab, [Pa, Jbc] = (ηabPc − ηacPb),

[Jab, Jcd] = (ηadJbc − ηacJbd − ηbdJac + ηbcJad),

{Qα, Qβ} = −2(γaC−1)αβPa,

[Jab, Qα] = −1

2
(γabQ)α, [Pa, Qα] = 0.

(6)27

As such they introduced the connection28

Aµ = eµ
aPa −

1

2
ωµ

abJab +
1

2
ψ̄αQα (7)29

and the corresponding field strengths defined by [D̂µ, D̂ν ] = −RµνaPa+ 1
2Rµν

abJab+30

1
2 Ψ̄µνQ where Dµ = ∂µ −Aµ. The field strengths are31
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Rµν
a = ∂µe

a
ν − ∂νeaµ + ωµ

a
ce
c
ν − ωνacecµ + 1

2 ψ̄µγ
aψν ,

Rµν
ab = ∂µων

ab + ωµ
acωνc

b − (µ↔ ν),

Ψµν =

(
∂µ −

1

4
γcdωµ

cd

)
ψν − (µ↔ ν) ≡ Dµψν − (µ↔ ν).

(8)1

The variations of the fields under gauge transformations of the form Λ = vaPa −2

1
2ω

abJab + 1
2 ε̄
αQα are given by δAµ = ∂µΛ − [Aµ,Λ] and so the individual fields3

transform as4

δeaµ = ∂µv
a − ωacecµ + ωµ

acvc +
1

2
ε̄γaψµ,

δωµ
ab = ∂µω

ab − (ωacωµc
b − ωbcωµca),

δ = 2

(
∂µ −

1

4
γcdωµ

cd

)
ε+

1

4
γcdω

cdψµ ≡ Dµε+
1

4
γcdω

cdψµ.

(9)5

In Ref. 3, the action was taken to be linear in the field strengths and the unique6

such action which is invariant under local Lorentz transformations is of the form7

−1

8

∫
d4x εµνρλ(εabcde

a
µe
b
νRρλ

cd − 2ifψ̄µγ5γνΨρλ), (10)8

where f is a constant. Since the action is not of the form of the squares of the field9

strengths, it cannot be invariant under the above gauge transformations. However,10

the authors of Ref. 3 only demanded invariance up to the condition11

Raµν = 0. (11)12

We will now vary the action of Eq. (10) under the transformations of Eq. (9)13

subject to the condition of Eq. (11). The argument follows the steps of Ref. 3 except14

that, for simplicity, we will take f = −1, which is the value determined from the15

variation. The variation of the Einstein part is given by16

δ

∫
e

2κ2
(ea

µeb
νRµν

ab)d4x =

∫
d4x

{
1

κ
{ε̄γµψa}

{
−Rµa +

1

2
eµ
aR

}}
(12)17

while the variations of the Rarita–Schwinger part of the action give the following18

three terms:19

δ

∫ (
− i

2
ψ̄µγ5eν

aγaDρψκε
µνρκ

)
d4x =

∫
d4x

{
− i
κ
ε̄ ~Dµγ5γνDρψκε

µνρκ

}
20

×
{
− i
κ
ψ̄µγ5γν ~DρDκεε

µνρκ − κ

2
iε̄γaψνψ̄µγ5γaDρψκε

µνρκ

}
. (13)21

Flipping the spinors using their Majorana property, we find that the second term22

of the above equation takes the form23

− i

8κ
ψ̄µγ5γνRρκ

cdσcdεε
µνρκ = − i

8κ
ε̄σcdγνγ5ψµRρκ

cdεµνρκ. (14)24
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Integrating the first term of Eq. (13) by parts and neglecting surface terms, we find1

that it is given by2

i

κ
ε̄γ5[Dµ, γν ]Dρψκε

µνρκ +
i

κ
ε̄γ5γνDµDρψκε

µνρκ. (15)3

Using Eq. (3) the second of these terms is given by4

i

8κ
ε̄γ5γνRρκ

cdσcdψµε
µνρκ. (16)5

The term given in Eq. (16) and that in Eq. (14) add together to give the result6

+
i

2 · 4κ
ε̄γ5(γνσcd + σcdγν)ψµRρκ

cdεµνρκ7

=
1

4κ
ε̄γfψµεfνcdε

µνρκRρκ
cd

8

= − 1

2κ
ε̄γaψµ{eaµR− 2Ra

µ}e (17)9

which exactly cancels the variation of the Einstein action given in Eq. (12).10

Consequently, we are just left with the first term of Eq. (15) and the last term11

of Eq. (13). Performing a Fierz transformation (see, for example, the Appendix of12

Ref. 5 for details) on the latter term, it becomes13

− κ

2 · 4
iε̄γaγRγaγ5Dρψκε

µνρκψ̄µγRψν = +
κ

4
iε̄γcγ5Dρψκε

µνρκψ̄µγ
cψν . (18)14

The first term in Eq. (15) is most easily evaluated by going to inertial coordinates,15

that is, we set ∂µeν
a = 0; it becomes16

i

4κ
ε̄γ5[σcd, γν ]wµcdDρψκε

µνρκ
17

=
i

κ
ε̄γ5γ

cDρψκwµcνε
µνρκ

18

=
κ

4
iε̄γ5γ

cDρψκψ̄µγcψνε
µνρκ. (19)19

This term cancels with that of Eq. (18). This completes the proof of invariance.20

Adopting the constraint of Eq. (11) was somewhat unconventional and we now21

discuss it in more detail. Equation (11) allows one to express the spin connection in22

terms of the vierbein and gravitino, indeed this is all the information it contains. The23

resulting expression is nothing but the equation of motion of the spin connection24

of the action of Eq. (10) with f = −1. As such, the constraint of Eq. (11) takes the25

theory from the first- to second-order formalism. Indeed, adopting this value for the26

spin connection, Eq. (11) is identically true. Enforcing the condition of Eq. (11),27

the action of Eq. (10) and the transformations of the veirbein and gravitino of28

Eq. (9) are just those found in Ref. 1. Thus gauging the super Poincaré group29

leads to the supergravity theory discovered in Ref. 1, that is, the same action and30

transformation laws, however, it had the great advantage which also showed that31

it was invariant under the local supersymmetry transformations.32
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It remains to comment on the fact that in the steps above we essentially did not1

vary the spin connection in the action. Varying the action of Eq. (1), or equivalently2

Eq. (10) with f = −1, we have3

δA =

∫
d4x

(
δA

δeµa
δeµ

a +
δA

δψµα
δψµα +

δA

δωµab
δωµ

ab

)
. (20)4

Since we are in second-order formalism, the variation of ωµ
ab is just that found by5

varying the vierbein and graviton upon which it depends. Just to be completely6

clear7

δωµ
ab =

δωµ
ab

δeµc
δeµ

c +
δωµ

ab

δψµα
δψµα, (21)8

where the variations of the vierbein and graviton are those of Eq. (2). However, the9

last term of the variation of the action, given in Eq. (20), vanishes10

δA

δωµab
=
e

2
R c
κλ (eλc (eµae

κ
b − e

µ
b e
κ
a) + eµc e

κ
ae
λ
b ) = 0 (22)11

as a consequence of the constraint Eq. (11). Thus in effect, one does not have to12

vary the spin connection in the action. In second-order formalism ωµ
ab is not an13

independent field but is given in terms of the vierbein and graviton. Indeed, it is14

the equation of motion of ωµ
ab that determines the spin connection in this way.15

As such, Eq. (22) is not an equation of motion but an identity. A straightforward16

account of the invariance of the action was given in Ref. 6. This paper adopted the17

steps in Ref. 3, that is Eqs. (12)–(19), but also implemented Eq. (22).18

With the above steps, the discovery of supergravity was complete, the transfor-19

mations rules of Ref. 1 were shown to be an invariance of the action of the seminal20

Ref. 1 using the usual analytic methods given in Ref. 3. The advantage of this was21

that any reader could verify that the action was invariant so opening up the way22

to further discoveries. The method of Ref. 3 has been used to show the invariance23

of all supergravity actions in all dimensions.24

At some point, the above procedure was given the name the 1.5 order formalism,25

a name by which it is now known. However, the supergravity of theory of Ref. 3 and26

indeed the discussion of Eqs. (12)–(19) are in second-order formalism as we have27

implemented the constraint of Eq. (11). The proof of invariance presented in Ref. 328

is really a method and not a formalism. This aspect has mislead some authors such29

as in Ref. 7.30

The method of gauging the supersymmetry algebra to derive supergravity pre-31

sented in Ref. 3 was simultaneously also presented in an alternative form based on32

gauging the Orthosymplectic algebra OSP(1, 4) which has the generators Pa, Jab33

and Qα.7 In this work it was shown how to obtain the N = 1 supergravity fields34

eaµ, ω
ab
µ and ψµ as gauge fields of OSP(1, 4). The transformations of the fields were35

calculated and it was shown how to recover the above results based on the super36

Poincaré algebra of Ref. 3 by rescaling Pa → RPa, Qα →
√
RQα, Jab → Jab then37
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taking the infinite radius limit R→∞. This was taken up in the work of MacDow-1

ell and Mansouri who completed the calculation using the Orthosymplectic algebra2

and constructed an action based on field strengths squared.8 Despite the aesthetic3

appearance of the action one still has to impose Eq. (11). A similar calculation was4

also presented in Ref. 9.5

A restriction of the results of Ref. 3 can also be used to find Einstein’s theory6

of general relativity in a very simple way. We begin by gauging just the Poncaré7

group and so set to zero the gravitino in the above equations. The resulting theory8

has just local translations and rotations. We also adopt the constraint of Eq. (11)9

with the gravitino set to zero. The remarks above about the spin connection and10

the proof of invariance apply in the same way to the case of pure gravity. A review11

of the above gauging of the Poincaré group can be found in Sec. 13.1.3 in the book12

of Ref. 4.13

Adopting the condition of Eq. (11) is rather unconventional as it breaks by hand14

the gauge symmetry and in particular the local translations. However, one can write15

the gauge transformation of the vierbein of Eq. (8) as16

δeµ
a = ∂µξ

λeλ
a + ξλ∂λeµ

a − (ξλwλ
a
b)eµ

b − 1

2
(ξλψλ)γaψµ + ξλRµλ, (23)17

where ξµ = eµbv
b. We recognize this transformation as a diffeomorphism, a local18

Lorentz transformation and a local supersymmetry transformation provided the19

constraint of Eq. (11) holds. Thus, we have the paradoxical result that imposing20

the condition of Eq. (11) we find that the local translations become a combination of21

a diffeomorphism, a local Lorentz and a local supersymmetry transformation which22

are symmetries of the final theory. This feature appears in the other applications23

of Ref. 3 to the gauging other spacetime groups. A way to proceed without taking24

the constraint of Eq. (11), and so not breaking the gauge symmetry by hand, was25

to introduce some more fields which are constrainted.14
26

It will be instructive to recall previous developments on the connection between27

the Poincaré group and general relativity. The vierbein was introduced into general28

relativity by Herman Weyl in 1929.15 In Refs. 16–18, it was shown that the spin29

connection of general relativity in first-order form could be thought of as the gauge30

field for the Lorentz group, indeed the Riemann curvature was just the correspond-31

ing field strength. The authors of Refs. 17 and 18 also considered what they called32

the gauge theory of the Poincaré group. In this approach, they took the well-known33

coordinate transformations of the Poincaré group on Minkowski spacetime34

xµ → xµ + ωµνx
ν + aµ (24)35

and let the constant parameters ωµν and aµ be local, that is, depend on spacetime.36

As they pointed out, in this way, one introduces a diffeomorphism. This approach37

has been extensively pursued and there is now a substantial literature, see, for38

example, Ref. 19. This literature is not the same as taking the gauge theory of39

the Poincaré group in the sense of Yang–Mills which was the approach of Ref. 3.40

As is well known, the unique action of a Yang–Mills theory consists of its field

2230005-6
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strength squared and this is not the case of gravity. This fact had, perhaps, put off1

researchers from carrying out a direct gauging of the Poincaré, In this context, it2

is amusing to read the first sentence of the introduction of Ref. 3; the authors were3

just PhD students!4

The advantage of the gauge approach of Ref. 3 was that it provided a simple5

way to construct Einstein’s theory of general relativity if one gauge the Poincaré6

group, and supergravity if one gauged the super Poincaré group. Indeed this gauging7

approach was used to construct the theories of super conformal gravity,20 the super8

conformal tensor calculus as well as gravity and supergravity in three dimensions,30
9

. . . It also underlies the construction of higher spin theories21 where one gauges an10

infinite-dimensional gauge group rather than the Poincaré, or super Poincaré group.11

One drawback of the original formulation of supergravity1,3 was that the local12

supersymmetry algebra only closed when one used the equations of motion. This13

meant that the coupling of supergravity to any super matter, that is, any combi-14

nation of the super Yang–Mills and Wess–Zumino models, was a formidable task.15

Indeed, the task had to be repeated for each new matter model as the equations16

of motion were different and, as a consequence, so were the local supersymmetry17

transformations. This changed with the discovery of the auxiliary fields M , N and18

bµ for the simplest supergravity in four dimensions.10,11 The action was given by19

A =

∫
d4x

{
e

2κ2
R− 1

2
ψ̄µR

µ − 1

3
e(M2 +N2 − bµbµ)

}
(25)20

and the transformations by21

δe aµ = κε̄γaψµ,

δψµ = 2κ−1Dµ(w(e, ψ))ε+ iγ5

(
bµ −

1

3
γµ/b

)
ε− 1

3
γµ(M + iγ5N)ε,

δM = −1

2
e−1ε̄γµR

µ − κ

2
iε̄γ5ψνb

ν − κε̄γνψνM +
κ

2
ε̄(M + iγ5N)γµψµ,

δN = −e
−1

2
iε̄γ5γµR

µ +
κ

2
ε̄ψνb

ν − κε̄γνψνN −
κ

2
iε̄γ5(M + iγ5N)γµψµ

δbµ =
3i

2
e−1ε̄γ5

(
gµν −

1

3
γµγν

)
Rν + κε̄γνbνψµ −

κ

2
ε̄γνψνbµ

− κ

2
iψ̄µγ5(M + iγ5N)ε− iκ

4
ε bcdµ bbε̄γ5γcψd.

(26)22

These transformations closed without the use of equations of motion, namely23

[δε1 , δε2 ] = δsupersymmetry(−κξνψν) + δgeneral coordinate(2ξµ)24

+ δLocal Lorentz

(
−2κ

3
εabλρb

λξρ − 2κ

3
ε̄2σab(M + iγ5N)ε1 + 2ξdw ab

d

)
,25

(27)26

where ξµ = ε̄2γµε1.27
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It was straightforward to extend the proof of invariance of the action without1

auxiliary fields3 to include them. With this last step we now have a supergravity2

theory which possess local supersymmetry transformations that satisfy a closing3

algebra which is independent of any specific dynamics and leave the action invariant.4

Of course this is the usual situation with symmetries before that of supersymmetry.5

It was straightforward to quantize the simple supergravity theory using the usual6

BRST techniques.12 This contrasts with the statements given in Ref. 13 which finds7

not only this result, but the 1.5 formalism itself to be troublesome.8

The discovery of the auxiliary fields allowed the construction of a tensor calcu-9

lus for supergravity which made it easy to compute the most general coupling of10

D = 4, N = 1 supergravity to the most general matter, which, in turn, paved the11

way to construct a realistic spontaneously broken supersymmetric model. We will12

now explain how the tensor calculus was constructed.22,23 Matter consists of chiral13

multiplets (Wess–Zumino) Σa and vector multiplets V . The chiral multiplets have14

the field content15

Σa = (za, χaL, h
a), (28)16

where za = Aa+iBa are complex scalar fields, χaL are left-handed Weyl spinors and17

ha = F a + iGa are complex auxiliary fields. Taking the complex conjugate of the18

above chiral super multiplet, we find it contains a spin zero field za, which is the19

complex conjugate of za, and also a spinor of the opposite chirality. The index a20

on Σa is an internal symmetry index which corresponds to fact that Σa can belong21

to a representation of a gauge group G.22

The vector multiplet V is real and has the components23

V = (C, ζ,H,K, vµ, λ,D), (29)24

which belong to the adjoint representation of the gauge group G. In this equation25

ζ, λ are Majorana spinors and C, H, K are scalars while D, which is also a scalar,26

is an auxiliary field. These super multiplets have been used to construct realistic27

models of nature that have rigid supersymmetry. The quarks, leptons and Higgs are28

expected to be contained in chiral super multiplets while the vector super multiplets29

contain the spin one gauge particles. It is far from clear how to break supersymmetry30

in the context of rigid supersymmetry.31

As we have mentioned the introduction of the auxiliary fields leads to a theory32

of simple supergravity whose fields possessed transformations that closed without33

the use of the equations of motion. This is the supergravity analogue of the closure34

of two general coordinate transformations in general relativity. With this result, the35

chiral and vector multiplets of rigid supersymmetry could then be generalized to be36

multiplets of this local supersymmetry, that is carry a representation of this local37

algebra. In particular, their supersymmetry transformations should have a local38

spinor parameter and they must have a closing algebra that is the same as that39

for the supergravity fields, in other words that of Eq. (26). To achieve this, their40

transformations must be extended to include terms involving the supergravity fields.41

2230005-8
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Given these local chiral and vector super multiplets we can, as in general relativity,1

construct a tensor calculus. In other words, we can construct local chiral and vector2

multiplets out of products of such multiplets. The precise formulae can be found in3

Refs. 22 and 23, or the review of Chap. 13 in the book of Ref. 5.4

The final step in the construction of the tensor calculus is to construct the super-5

symmetric invariants for the chiral and vector multiplets. For rigid supersymmetry,6

these are just given by the integrals over spacetime of the two auxiliary fields F and7

D, respectively. These are called the F and D terms. Their generalization to be in-8

variant under local supersymmetry are easy to find given the local supersymmetry9

transformations of the fields.22,23 The invariant for the chiral super multiplet, the10

F term, is given by11

AF =

∫
d4x e

(
F − (MA+NB) +

1

2
ψ̄µγ

µχ+
1

4
ψ̄µγ

µν(A+ iγ5B)ψν

)
. (30)12

While the invariant for the vector super multiplet, the D term, is given by13

AD =

∫
d4x e

{
D − iκ

2
ψ̄µγ

µγ5λ+
2

3
(MK −NH)14

− 2κ

3
Aµ

(
bµ +

3κe−1

8
εµνρσψ̄νγρψσ

)
15

− κ

3
ζ̄(iγ5γµR

µ +
3κ

8
εµνρσψµψ̄νγρψσ

)
− 2κ2

3
e−1LSG

}
, (31)16

where LSG is the Lagrangian of simple supergravity which can be read off from17

Eq. (25). We observe that all the fields of the relevant super multiplet occur in18

these local F and D terms, as do all the supergravity fields. A complete discussion19

of the tensor calculus can be found in Chap. 13 of the book of Ref. 5.20

Using the tensor calculus, it is easy to find the most general coupling of super21

matter to simple supergravity; one just has to apply the formulae for the composi-22

tion of the super multiplets and the above density formulae of Eqs. (30) and (31).23

The resulting action can be expressed in terms of three functions g(za), φ(za, za)24

and fαβ(za). The super potential function g(za) is the lowest element of the most25

general gauge singlet chiral multiplet formed out of the chiral multiplets Σa. We26

can write it as27

g(za) = Aa1a2···amz
a1za2 · · · zam . (32)28

The function φ(za, za) represents the most general gauge singlet vector multiplet29

formed out of the chiral multiplet Σa and its hermitian conjugate Σa whose first30

components are za and its complex conjugate za, respectively. It can be written as31

φ(za, za) = B b1···bn
a1···am za1 · · · zamzb1 · · · zbn . (33)32

The coefficients Aa1a2···am and B b1···bn
a1···am are arbitrary parameters except that33

they are chosen to maintain invariance under the gauge group G. The function34

fαβ(za) is the lowest component of a chiral function transforming as the symmetric35
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product of the adjoint representation of G. In most models fαβ(za) is taken to1

be δαβ .2

The final action resulting from the tensor calculus will contain the auxiliary3

fields for supergravity and matter multiplets. They can be eliminated using their4

equations of motion, although once this step is taken the resultant Lagrangian will5

be invariant under supersymmetry transformation only after using the equations6

of motion. The full Lagrangian is too long to list here, so we will only write the7

bosonic part which can be transformed to be of the form24–26
8 ∫

d4x e

{
1

2κ2
R− 1

4
FαµνF

µνα − 1

κ2
G,a bDµz

aDµzb9

− 1

κ4
e−G(3 + (G−1)a

bG,aG,b )− 1

8κ4
|gαG,a(Tαz)a|2

}
, (34)10

where Fαµν is the Yang–Mills field strength and the function G is defined by11

G = 3 ln

(
−κ

2

3
φ(za, za)

)
− ln

(
κ6

4
|g(za)|2

)
. (35)12

We have defined Dµz
a as covariant derivative with respect to gauge group G, Ga, =13

∂G
∂za

, G,a = ∂G
∂za , G,a b = ∂2G

∂za∂zb
, Tα and the gα are the matrices and gauge couplings14

associated with the representation carried by za.15

Unlike the case for rigid supersymmetry, the potential in Eq. (34) is no longer16

positive definite because of the corrections from supergravity. This fact is already17

apparent from the way the auxiliary fields occur in the supergravity action of18

Eq. (26) and the tensor calculus density formulae of Eqs. (30) and (31). Realistic19

supergravity models can be constructed by considering a set of fields zA = (z, za)20

where z is a field belonging to the super-Higgs sector, which is the sector responsible21

for supersymmetry breaking, and za are the remaining matter fields. This can be22

achieved by considering the super potential24,28
23

g(zA) = g1(za) + g2(z), (36)24

where in the limit κ→ 0, there is no interaction between the fields za and z.25

For nonzero κ, these fields do have super-gravitational interactions. The most26

dramatic effect occurs in the za sector, which due to influence of the field z, has27

soft breaking terms due to the super-Higgs effect. The superpotential g2(z) is taken28

to be of the form28
29

g2(z) = κ−1m2f(κz) (37)30

so that the expectation value of z at the minimum of the potential is such that31

κ〈z〉 = O(1) and 〈g2〉 = O(κ−1m2). Such supersymmetry breaking leads to a grav-32

itino mass and low-energy supersymmetric particles of size ms = κ2〈g2〉 = κm2. If33

we choose m ∼ 1010 GeV, then ms = O is of the order of (Tev).34

The supersymmetric partner χ of the field z is the Goldstino, that is, the Gold-35

stone fermion arising from the supersymmetry breaking. It gets absorbed by the36
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gravitino making it massive with mass m 3
2

= κ−1〈e 1
2G〉. Taking the unification1

group G to be SU(5), or SO(10), the gauge coupling constants unify at a scale2

MG ' 2 × 1016 GeV and the group breaks to SU(3)C × SU(2)L × U(1)Y . It was3

shown in Ref. 28 that, for the superpotential of the form given in Eqs. (36) and (37),4

the gauge hierarchy is preserved for both MPl and MG. For the case fαβ(zA) = δαβ5

and a flavor blind Kähler potential φ(zA, zA) the effective potential takes the6

simple form27
7

Veff =

∣∣∣∣ ∂g̃∂zα
∣∣∣∣2 +m2

0z
αzα + (B0g̃)(2) +A0g̃

(3) + h.c.)8

+
1

2κ4
|gσGα(T σz)α|2, (38)9

where g̃ is the superpotential containing only the quadratic and cubic functions of10

the light fields zα, i.e. g̃(zα) = g̃(2)(zα) + g̃(3)(zα), m0, A0, B0 are soft breaking11

parameters of size ms and Gα = g̃,α+ κ2

2 zαg̃. The most remarkable feature, however,12

is that the breaking of supergravity in the hidden sector induces the breaking of13

SU(2)L ×U(1)Y .14

The fact that the super-Higgs mass scale ms of the soft breaking parameters15

and the scale of SU(2) × U(1) breaking are comparable, i.e. both lie in the TeV16

region, is a natural consequence of the heavy top quark. The two Higgs doublets17

have an effective coupling in the superpotential in the form µ0H1H2 with µ0 is18

of size ms. Thus, one is led to a simple model with five universal parameters at19

the GUT scale: m0, m 1
2
, A0, B, µ0 where m 1

2
is the mass of the gauginos. These20

parameters characterize the way the super-Higgs field interacts with the matter21

fields.22

While global (rigid) supersymmetry models can accommodate over 134 soft23

breaking parameters, the supergravity models, called variously SUGRA GUT24

model, minimal supergravity model, CMSS or mSUGRA allows one to build simple25

models that are relatively natural and with a significantly reduced number of soft26

terms. However, experimental results over the last few years have restricted the27

five parameter space of the models discussed above to a rather small volume and it28

would seem that one has to consider more complicated models in order to remain29

consistent with experimental results. For a review of the construction of realistic30

models of supersymmetry, see the review of Ref. 29.31

In this review, we have explained the formulation of supergravity3 that results32

from gauging the super Poincaré group and how it contained an analytic proof of the33

invariance of D = 4, N = 1 (simple) supergravity under local supersymmetry trans-34

formations. Indeed this method has been used to prove the invariance of essentially35

all supergravity theories including those in ten and eleven dimensions. These results36

allowed for the systematic development of supergravity theories and in particular37

the discovery of the auxiliary, fields, that is, a formulation of simple supergravity38

whose transformations closed without the use of the equations of motion.10,11 The39

resulting algebra allowed the construction of the analogue of the tensor calculus for40
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general relativity for simple supergravity.22,23 This in turn allowed for the construc-1

tion of the most general matter coupling to supergravity and as a result the realistic2

models making it possible to test low energy supersymmetry experimentally.3

Acknowledgments4

The work of A.H.C. is supported in part by the National Science Foundation Grant5

No. Phys-1912998 and P.C.W. has benefitted from Grant Nos. ST/P000258/1 and6

ST/T000759/1 from STFC in the UK.7

References8

1. D. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D 13, 3214 (1976);9

ibid. 14, 912 (1976).10

2. S. Deser and B. Zumino, Phys. Lett. B 62, 335 (1976).11

3. A. Chamseddine and P. West, Nucl. Phys. B 129, 39 (1977).12

4. P. West, Introduction to String and Branes (Cambridge Univ. Press, 2012).13

5. P. West, Introduction to Supersymmetry and Supergravity, 2nd edn. (World Scientific,14

2012).15

6. P. Townsend and P. van Nieuwenhuizen, Phys. Lett. B 67, 439 (1977).16

7. A. H. Chamseddine, Supersymmetry and higher spin fields, Ph.D. thesis. Chapter 617

of the thesis is stated as collaborative work with P. West, https://drive.google.com/18

file/d/0B8tITtoqQkxfeHQ3cFJ0WUxIcHM/view?usp=sharing.19

8. S. MacDowell and F. Mansouri, Phys. Rev. Lett. 38, 739 (1977).20

9. A. H. Chamseddine, Ann. Phys. 113, 219 (1978).21

10. K. Stelle and P. West, Phys. Lett. B 74, 330 (1978).22

11. S. Ferrara and P. van Nieuwenhuizen, Phys. Lett B. 74, 333 (1978).23

12. K. Stelle and P. West, Nucl. Phys. B 140, 285 (1978).24

13. J. Dixon, arXiv:2112.11906.25

14. P. West, 76, 569 (1978); J. Phys. A 12, L205 (1979); Phys. Rev. D 21, 1466 (1980).26

15. H. Weyl, Proc. Natl. Acad. Sci. 15, 323 (1929).27

16. D. Sciama, Rev. Mod. Phys. 36, 463 (1964).28

17. R. Utiyama, Phys. Rev. 101, 1597 (1956).29

18. W. B. Kibble, J. Math. Phys. 2, 212 (1961).30

19. See for example the collected papers in the reprint volume by F. Hehl , Gauge Theories31

of Gravitation (Imperial College Press, 2013).32

20. P. van Nieuwenhuizen, M. Kaku, and P. Townsend, Phys. Rev. D 17, 1501 (1978).33

21. See for example the review of V. Didenko and E. Skvortsov, Elements of Vasiliev34

theory, arXiv:1401.2975.35

22. K. S. Stelle and P. West, Nucl. Phys. B 77, 376 (1978); ibid. 145, 175 (1978).36

23. S. Ferrara and P. van Nieuwenhuizen, Phys. Lett. B 76, 404 (1978); ibid. 78, 57337

(1978).38

24. A. H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49, 970 (1982).39

25. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Phys. Lett. B 116, 23140

(1982).41

26. P. Nath, R. Arnowitt and A. H. Chamseddine, Applied N = 1 Supergravity, ICTP42

Series in Theoretical Physics, Vol. 1, (World Scientific, 1982).43

2230005-12

https://drive.google.com/file/d/0B8tITtoqQkxfeHQ3cFJ0WUxIcHM/view?usp=sharing
https://drive.google.com/file/d/0B8tITtoqQkxfeHQ3cFJ0WUxIcHM/view?usp=sharing
https://drive.google.com/file/d/0B8tITtoqQkxfeHQ3cFJ0WUxIcHM/view?usp=sharing
https://arxiv.org/abs/2112.11906
https://arxiv.org/abs/1401.2975


March 13, 2022 19:6 MPLA S0217732322300051 page 13

1st Reading

The role of the 1.5 order formalism and the gauging of spacetime groups

27. R. Barbieri, S. Ferrara and C. Savoy, Phys. Lett. B 119, 343 (1982).1

28. P. Nath, R. Arnowitt and A. H. Chamseddine, Nucl. Phys. B 227, 121 (1983).2

29. H. P. Nilles, Phys. Rep. 110, 1 (1984).3

30. A. Achucarro and P. Townsend, Phys. Lett. B 180, 89 (1986); Nucl. Phys. B 311, 464

(1988).5

2230005-13




