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17 The 1.5 formalism played a key role in the discovery of supergravity and it has been used
18 to prove the invariance of essentially all supergravity theories under local supersymmetry.
19 It emerged from the gauging of the super Poincaré group to find supergravity. We review
20 both of these developments as well as the auxiliary fields for simple supergravity and its
21 most general coupling to matter using the tensor calculus.

2 Keywords:

s A theory of supergravity was first proposed by Ferrara et al.' entitled “Progress to-
2« wards a theory of supergravity” which contained the vierbein e, and the gravitino
% Yuo. They proposed the action

e 1-
26 A= /d4${2n2R - 2¢MRM} (1)
oz and the local supersymmetry transformations
28 de,t = ke, Yy = 271D, (w(e,))e. (2)

2 In these equations
R= Ruﬁbea"eb”, Rt = etVPrinysy, D (w(e, ¥)) s,
, o 3)

RuVabT =[Du; Do, v = €u"%a,
s where the Lorentz covariant derivative is given by
Jab
» Dy(w(e, ) = O + Wuab = (4)
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1 with
1 v 1 v
2 Whah = € (Oneny — Overy) — 2 (Opear — Oveau)
1 o o c K2 - — -
3 - §ea €y (apeoc - aoapc)eu + Z("/)M'Yawb + "/)a’)/u'(/}b - %%%)- (5)

2+ They showed that the action was invariant up to, and including, cubic terms in the
s gravitino and stated that the quintic terms vanished using a computer programme.
s They also showed that the supersymmetry transformations closed up to terms cubic
7 in the gravitino if one uses the equations of motion. This theory was in second-order
s formalism as it contained the vierbein and gravitino but not the spin connection
o as an independent field. This supergravity is often referred to as N =1, D = 4
0 supergravity, or simple supergravity.

1 A bit later, a theory of supergravity involving the vierbein e, *, the gravitino ¢,

@b was proposed.? This paper proposed an action which

12 and a spin connection w,,
13 was in first-order formalism, that is, the spin connection was an independent field
1 and had an independent supersymmetry transformation. These authors showed that
15 their theory did not have anomalous characteristics of its surfaces of propagation.
15 In other words, it has a consistent propagation. It was known that the propagation
w of a spin 3/2 particle coupled to a spin 1 particle was not consistent and the same
18 was suspected to be the case for generic higher spin theories. Reference 2 contains
19 a two-sentence discussion of the invariance of the action under the supersymmetry
2 transformations that uses Eq. (11) which is, in effect, an equation of motion. The
a1 paper also does not discuss the closure of the supersymmetry transformations. There
22 has subsequently been almost no work on supergravity in first-order formalism and
23 it remains an interesting open problem to develop it further.

2 A different approach to supergravity was taken some months later in Ref. 3.
s This paper considered the gauge theory of the super Poincaré group, which has the
s generators P,, QQ, and J,; and the algebra

[Paan] = Jabs [PmJbC] = (nabpcfnacpb)a
[Jaln ch] = (nadec - nachd - ndeac + nbc‘]ad)v
{Qou QB} = _2(7ac_1)aﬂPa,

27

[Jaln Qa] = _%(’VabQ)aa [Pm Qa] = 0.

2 As such they introduced the connection
a 1 ab 1 yRe’
2 A, =e€, P, — ?UH Jab + 577/1 Qo (7)

s and the corresponding field strengths defined by [ﬁu, ﬁy] = —R#,,“Pa—l—%RW“bJab—&—
31 %\IJWQ where D,, = 9, — A,. The field strengths are
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a __ a a a ,c a ,c 1., ~a
R, = Ouey, — Oue, +wy ey, — wycey, + 507",

R = 0,w,% + w,%w, b — (u e v), (8)

1
\Ijmz = (8;/, - 4'7cdwu0d)wu - (/Jf < V) = D/ﬂ/}V - (:U’ < l/)'

> The variations of the fields under gauge transformations of the form A = v*P, —
3 %w“bJab + %E‘)‘Qa are given by 64, = 0,A — [A,,A] and so the individual fields
+ transform as

1
def, = 0,0 — wheel, + wu*ve + §€7aww

. &Uuab — uwab _ (wacwlwb _ wbcwuca)v (9)
1 cd 1 cd 1 cd
0=2(0,— Z%dw“ €+ Z%dw Yy = Dye+ Z%dw Yy
6 In Ref. 3, the action was taken to be linear in the field strengths and the unique
7 such action which is invariant under local Lorentz transformations is of the form
1 .
8 ~3 /d4x e“"p’\(eabcdeZel;Rp,\Cd — 2ifus 7 ¥pr)s (10)

o where f is a constant. Since the action is not of the form of the squares of the field
10 strengths, it cannot be invariant under the above gauge transformations. However,
n  the authors of Ref. 3 only demanded invariance up to the condition

2 R%, =0. (11)
13 We will now vary the action of Eq. (10) under the transformations of Eq. (9)
1. subject to the condition of Eq. (11). The argument follows the steps of Ref. 3 except
15 that, for simplicity, we will take f = —1, which is the value determined from the

16 variation. The variation of the Einstein part is given by

€ v aby 74 4 Lo a 1 a
17 5/@(%“% R,,"")d x:/d x{ﬁ{w“%}{—Ru +§eﬂ R}} (12)

18 while the variations of the Rarita—Schwinger part of the action give the following
19 three terms:

2 (5/ (—;wu%e,,a'yaDpwns””’m)d‘lx: /d4x{—’isﬁﬂ757VDpz/JK€“”p”}

2 X {_ZwM’YS'YVﬁpDKEffIWpR - gi‘gfyawuwu’YS’YaDpwﬁglwpﬂ}- (13)
K

2 Flipping the spinors using their Majorana property, we find that the second term
23 of the above equation takes the form
i

8K

_ i
2 ¢u757uRmedO'cd€5#VpK = 7§50cd7u75qupchd5#Vpn- (14)
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1 Integrating the first term of Eq. (13) by parts and neglecting surface terms, we find
> that it is given by

3 15’75 [D;u 'VV]DprE'uypH + EEWWVDquw»cEWM- (15)
K K
+ Using Eq. (3) the second of these terms is given by
)
5 8??}/5’nypHCd0cd¢u€“upﬁ. (16)

s The term given in Eq. (16) and that in Eq. (14) add together to give the result

, +5 o (e + TedVo )y Rpr L P
_ L UVPK cd
8 = ﬂE’qupugfuch an
1 _
9 = —ﬂeyawu{ea“R — 2R, "}e (17)

1 which exactly cancels the variation of the Einstein action given in Eq. (12).
1 Consequently, we are just left with the first term of Eq. (15) and the last term
2 of Eq. (13). Performing a Fierz transformation (see, for example, the Appendix of
13 Ref. 5 for details) on the latter term, it becomes

KoL — K._ _
14 _ﬂZE’YQ7R'7a75Dpwm€MVpru'7Rwu = +115%75Dp¢m€wpﬁ¢u’7c%- (18)
15 The first term in Eq. (15) is most easily evaluated by going to inertial coordinates,
1 that is, we set d,e,* = 0; it becomes

1

17 475’7’5 [ch’ 'Vu]wucdewnEMwm
K

i
18 = ;57576Dpw,§wuc,,s’”p“

K._ -
1 = Zw'yg,'chpsz/J#%w,,s””p”. (19)
20 This term cancels with that of Eq. (18). This completes the proof of invariance.
2 Adopting the constraint of Eq. (11) was somewhat unconventional and we now

» discuss it in more detail. Equation (11) allows one to express the spin connection in
3 terms of the vierbein and gravitino, indeed this is all the information it contains. The
2 resulting expression is nothing but the equation of motion of the spin connection
s of the action of Eq. (10) with f = —1. As such, the constraint of Eq. (11) takes the
% theory from the first- to second-order formalism. Indeed, adopting this value for the
2z spin connection, Eq. (11) is identically true. Enforcing the condition of Eq. (11),
s the action of Eq. (10) and the transformations of the veirbein and gravitino of
» Eq. (9) are just those found in Ref. 1. Thus gauging the super Poincaré group
s leads to the supergravity theory discovered in Ref. 1, that is, the same action and
a1 transformation laws, however, it had the great advantage which also showed that
» it was invariant under the local supersymmetry transformations.
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1 It remains to comment on the fact that in the steps above we essentially did not
> vary the spin connection in the action. Varying the action of Eq. (1), or equivalently
s Eq. (10) with f = —1, we have

) 0A 0A
§A= [ d'z de, "+ ——36 —— 0w, ). 20
¢ / <5€Ma H + 61/%@ ¢;¢a+ &U}Lab 2 > ( )
s Since we are in second-order formalism, the variation of w,® is just that found by
¢ varying the vierbein and graviton upon which it depends. Just to be completely
7 clear

- 5wuab 5wuab

8 6wua = 56 P 66#64’ W§'Il)’ua, (21)
H pe

o where the variations of the vierbein and graviton are those of Eq. (2). However, the

1 last term of the variation of the action, given in Eq. (20), vanishes

0A
— SR, C(d(elhef — eltel) + eltetied) = 0 (22)

11
ab
5Wu 2

1 as a consequence of the constraint Eq. (11). Thus in effect, one does not have to

ab ig not an

13 vary the spin connection in the action. In second-order formalism w,,
1 independent field but is given in terms of the vierbein and graviton. Indeed, it is
15 the equation of motion of w, that determines the spin connection in this way.
16 As such, Eq. (22) is not an equation of motion but an identity. A straightforward
17 account of the invariance of the action was given in Ref. 6. This paper adopted the
18 steps in Ref. 3, that is Egs. (12)—(19), but also implemented Eq. (22).

19 With the above steps, the discovery of supergravity was complete, the transfor-
20 mations rules of Ref. 1 were shown to be an invariance of the action of the seminal
2 Ref. 1 using the usual analytic methods given in Ref. 3. The advantage of this was
» that any reader could verify that the action was invariant so opening up the way
23 to further discoveries. The method of Ref. 3 has been used to show the invariance
2 of all supergravity actions in all dimensions.

2 At some point, the above procedure was given the name the 1.5 order formalism,
» aname by which it is now known. However, the supergravity of theory of Ref. 3 and
z indeed the discussion of Egs. (12)—(19) are in second-order formalism as we have
s implemented the constraint of Eq. (11). The proof of invariance presented in Ref. 3
2 is really a method and not a formalism. This aspect has mislead some authors such
» as in Ref. 7.

31 The method of gauging the supersymmetry algebra to derive supergravity pre-
» sented in Ref. 3 was simultaneously also presented in an alternative form based on
1 gauging the Orthosymplectic algebra OSP(1,4) which has the generators P,, Jap
1 and Q.7 In this work it was shown how to obtain the N = 1 supergravity fields
B €, w/‘jb and 1, as gauge fields of OSP(1,4). The transformations of the fields were
s calculated and it was shown how to recover the above results based on the super
% Poincaré algebra of Ref. 3 by rescaling P, — RPy, Qo — VRQa, Jap — Jap then
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1 taking the infinite radius limit R — oo. This was taken up in the work of MacDow-
> ell and Mansouri who completed the calculation using the Orthosymplectic algebra
s and constructed an action based on field strengths squared.® Despite the aesthetic
+ appearance of the action one still has to impose Eq. (11). A similar calculation was
s also presented in Ref. 9.

6 A restriction of the results of Ref. 3 can also be used to find Einstein’s theory
7 of general relativity in a very simple way. We begin by gauging just the Poncaré
¢ group and so set to zero the gravitino in the above equations. The resulting theory
o has just local translations and rotations. We also adopt the constraint of Eq. (11)
10 with the gravitino set to zero. The remarks above about the spin connection and
1 the proof of invariance apply in the same way to the case of pure gravity. A review
12 of the above gauging of the Poincaré group can be found in Sec. 13.1.3 in the book
13 of Ref. 4.

14 Adopting the condition of Eq. (11) is rather unconventional as it breaks by hand
15 the gauge symmetry and in particular the local translations. However, one can write
16 the gauge transformation of the vierbein of Eq. (8) as

1
p e = 080 + 0" — (Euat)e, = S(E V)T Y+ CRins (23)

12 where £ = ey, We recognize this transformation as a diffeomorphism, a local
10 Lorentz transformation and a local supersymmetry transformation provided the
2 constraint of Eq. (11) holds. Thus, we have the paradoxical result that imposing
2 the condition of Eq. (11) we find that the local translations become a combination of
» a diffeomorphism, a local Lorentz and a local supersymmetry transformation which
3 are symmetries of the final theory. This feature appears in the other applications
2 of Ref. 3 to the gauging other spacetime groups. A way to proceed without taking
s the constraint of Eq. (11), and so not breaking the gauge symmetry by hand, was
2 to introduce some more fields which are constrainted.'*

7 It will be instructive to recall previous developments on the connection between
s the Poincaré group and general relativity. The vierbein was introduced into general
» relativity by Herman Weyl in 1929.'5 In Refs. 16-18, it was shown that the spin
s connection of general relativity in first-order form could be thought of as the gauge
a1 field for the Lorentz group, indeed the Riemann curvature was just the correspond-
» ing field strength. The authors of Refs. 17 and 18 also considered what they called
13 the gauge theory of the Poincaré group. In this approach, they took the well-known
s coordinate transformations of the Poincaré group on Minkowski spacetime

3 at =t + ot a4+ a (24)

s and let the constant parameters w*, and a” be local, that is, depend on spacetime.
s As they pointed out, in this way, one introduces a diffeomorphism. This approach
s has been extensively pursued and there is now a substantial literature, see, for
s example, Ref. 19. This literature is not the same as taking the gauge theory of
w0 the Poincaré group in the sense of Yang—Mills which was the approach of Ref. 3.

As is well known, the unique action of a Yang—Mills theory consists of its field

2230005-6
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1 strength squared and this is not the case of gravity. This fact had, perhaps, put off
> researchers from carrying out a direct gauging of the Poincaré, In this context, it
s is amusing to read the first sentence of the introduction of Ref. 3; the authors were
+ just PhD students!

5 The advantage of the gauge approach of Ref. 3 was that it provided a simple
s way to construct Einstein’s theory of general relativity if one gauge the Poincaré
7 group, and supergravity if one gauged the super Poincaré group. Indeed this gauging
s approach was used to construct the theories of super conformal gravity,2® the super

s conformal tensor calculus as well as gravity and supergravity in three dimensions,3°
w0 ... It also underlies the construction of higher spin theories?! where one gauges an
1 infinite-dimensional gauge group rather than the Poincaré, or super Poincaré group.
12 One drawback of the original formulation of supergravity was that the local

13 supersymmetry algebra only closed when one used the equations of motion. This
1 meant that the coupling of supergravity to any super matter, that is, any combi-
15 nation of the super Yang—Mills and Wess—Zumino models, was a formidable task.
1 Indeed, the task had to be repeated for each new matter model as the equations
17 of motion were different and, as a consequence, so were the local supersymmetry
18 transformations. This changed with the discovery of the auxiliary fields M, N and
1 b, for the simplest supergravity in four dimensions.'%!! The action was given by

e 1- . 1
2 A= /d%{MR — gVl - ge(M2 + N? — bub“)} (25)
a1 and the transformations by
(56,} = KEYY,,
1 . 1 1 .
6wu =2k D;t(w(€,¢))€ + 15 b/L - g'}/,ulé € — g%(M + 175N)57
1 -1z L K._ v =~V K_ .
oM = —5€ ey, R! — 525'751/},,1) — k&Y Y, M + §€(M + iy N )Yy,
2 o1 p p (26)
SN = —71'5757,LR“ + 551/@6” — k&Y Y, N — §i§'y5(M + ivs N)vH
3t . 1 y _ K_
6b,, = 56 1575 (g;w - 37;L’Yv>R + k€Y by, — 557 Yuby

K. - . K B
= WY (M +i5N)e = e,/ 05 Ve tba-
23 These transformations closed without the use of equations of motion, namely
24 [661 5 562] = 5supersymmetry(7/€§uwl/) + §general coordinate(2£,u)

2K 2K _ . a
25 + 6Local Lorentz (_35ab>\pb>\§p - §E2Uab(M + 7/)/5N)€1 + 2£dwd b) )

2 (27)

z  where &, = &y,€1.

2230005-7
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1 It was straightforward to extend the proof of invariance of the action without
> auxiliary fields® to include them. With this last step we now have a supergravity
s theory which possess local supersymmetry transformations that satisfy a closing
+ algebra which is independent of any specific dynamics and leave the action invariant.
s Of course this is the usual situation with symmetries before that of supersymmetry.
s It was straightforward to quantize the simple supergravity theory using the usual
7 BRST techniques.!? This contrasts with the statements given in Ref. 13 which finds
s not only this result, but the 1.5 formalism itself to be troublesome.

9 The discovery of the auxiliary fields allowed the construction of a tensor calcu-
10 lus for supergravity which made it easy to compute the most general coupling of
un D =4, N =1 supergravity to the most general matter, which, in turn, paved the
12 way to construct a realistic spontaneously broken supersymmetric model. We will
15 now explain how the tensor calculus was constructed.??:23 Matter consists of chiral
1 multiplets (Wess—Zumino) X% and vector multiplets V. The chiral multiplets have
15 the field content

16 ¥ = (Zav X%a ha)v (28)

v where z¢* = A*4{B® are complex scalar fields, x¢ are left-handed Weyl spinors and
18 h® = F* 4+ iG* are complex auxiliary fields. Taking the complex conjugate of the
19 above chiral super multiplet, we find it contains a spin zero field z,, which is the
2 complex conjugate of z%, and also a spinor of the opposite chirality. The index a
a1 on X% is an internal symmetry index which corresponds to fact that % can belong
» to a representation of a gauge group G.

23 The vector multiplet V is real and has the components

24 V:(O,C,H,K,’U#,)\,D), (29)

»s  which belong to the adjoint representation of the gauge group G. In this equation
s (, A are Majorana spinors and C, H, K are scalars while D, which is also a scalar,
7 is an auxiliary field. These super multiplets have been used to construct realistic
s models of nature that have rigid supersymmetry. The quarks, leptons and Higgs are
2 expected to be contained in chiral super multiplets while the vector super multiplets
3 contain the spin one gauge particles. It is far from clear how to break supersymmetry
a1 in the context of rigid supersymmetry.

32 As we have mentioned the introduction of the auxiliary fields leads to a theory
13 of simple supergravity whose fields possessed transformations that closed without
s the use of the equations of motion. This is the supergravity analogue of the closure
55 of two general coordinate transformations in general relativity. With this result, the
s chiral and vector multiplets of rigid supersymmetry could then be generalized to be
s multiplets of this local supersymmetry, that is carry a representation of this local
s algebra. In particular, their supersymmetry transformations should have a local
3 spinor parameter and they must have a closing algebra that is the same as that
w for the supergravity fields, in other words that of Eq. (26). To achieve this, their
s transformations must be extended to include terms involving the supergravity fields.

2230005-8
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1 Given these local chiral and vector super multiplets we can, as in general relativity,
> construct a tensor calculus. In other words, we can construct local chiral and vector
s multiplets out of products of such multiplets. The precise formulae can be found in
+ Refs. 22 and 23, or the review of Chap. 13 in the book of Ref. 5.

5 The final step in the construction of the tensor calculus is to construct the super-
s symmetric invariants for the chiral and vector multiplets. For rigid supersymmetry,
7 these are just given by the integrals over spacetime of the two auxiliary fields F' and
s D, respectively. These are called the F' and D terms. Their generalization to be in-
o variant under local supersymmetry are easy to find given the local supersymmetry
1 transformations of the fields.?223 The invariant for the chiral super multiplet, the
un F term, is given by

1- 1-
" Ap = /d4x e<F — (MA+NB) + 59,7"x + 707" (A+ %B)%). (30)
13 While the invariant for the vector super multiplet, the D term, is given by
K — 2

14 ADZ/d4LE6{D—Z;’(z)u’yﬂ’)/s)\—Fg(MK—NH)

2 -1 -
15 — —EA,L b* + %e“”p“wl/ypwg

3 8

K=, 3K oo T 262 _
16 - gC(VYSVﬂRH + gEu r "/)uwu')/p'(/)o) - ?e 1LSG}; (31)

1w where Lgg is the Lagrangian of simple supergravity which can be read off from
18 Eq. (25). We observe that all the fields of the relevant super multiplet occur in
10 these local F and D terms, as do all the supergravity fields. A complete discussion
20 of the tensor calculus can be found in Chap. 13 of the book of Ref. 5.

21 Using the tensor calculus, it is easy to find the most general coupling of super
2 matter to simple supergravity; one just has to apply the formulae for the composi-
23 tion of the super multiplets and the above density formulae of Eqgs. (30) and (31).
2« The resulting action can be expressed in terms of three functions g(z%), ¢(2%, z4)
»s and fog(z*). The super potential function g(z®) is the lowest element of the most
s general gauge singlet chiral multiplet formed out of the chiral multiplets 3. We
27 can write it as

28 9(z%) = Aaras-an, 2202 - 20m. (32)

» The function ¢(z%,z,) represents the most general gauge singlet vector multiplet
s formed out of the chiral multiplet ¥* and its hermitian conjugate Y, whose first
a1 components are z% and its complex conjugate z,, respectively. It can be written as

32 ¢(Za, Za) _ Balmabl.--bnzm . Zamzb (33)

m 1

Zb, -

n

13 The coefficients Ag, ..
s they are chosen to maintain invariance under the gauge group G. The function

Qo

and B, 1.__ail“‘b" are arbitrary parameters except that

5 fop(2®) is the lowest component of a chiral function transforming as the symmetric

2230005-9
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product of the adjoint representation of G. In most models fog(2%) is taken to
be (5%3.

The final action resulting from the tensor calculus will contain the auxiliary
fields for supergravity and matter multiplets. They can be eliminated using their
equations of motion, although once this step is taken the resultant Lagrangian will
be invariant under supersymmetry transformation only after using the equations
of motion. The full Lagrangian is too long to list here, so we will only write the
bosonic part which can be transformed to be of the form?* 26

1 1 1
/d4xe{wR — ZF*?”FW — ?g,a *D,2" D"z,

1 1
- Ee—g(z + (GGG ) — 8/&|gag,a(T°“z)“l2}, (34)

where F7, is the Yang-Mills field strength and the function G is defined by

2

6 =3 (~ o2 ) —1n (=) (3)

We have defined D),2* as covariant derivative with respect to gauge group G, g% =

oG _ oG b_ _9%g
8Za’ g7a — 0ze? ng - (')Zaazb

associated with the representation carried by z®.

, T and the g, are the matrices and gauge couplings

Unlike the case for rigid supersymmetry, the potential in Eq. (34) is no longer
positive definite because of the corrections from supergravity. This fact is already
apparent from the way the auxiliary fields occur in the supergravity action of
Eq. (26) and the tensor calculus density formulae of Eqgs. (30) and (31). Realistic
supergravity models can be constructed by considering a set of fields 24 = (z, 2%)
where z is a field belonging to the super-Higgs sector, which is the sector responsible
for supersymmetry breaking, and z® are the remaining matter fields. This can be
achieved by considering the super potential®428

9(z") = 91(z*) + g2(2), (36)

where in the limit x — 0, there is no interaction between the fields z* and z.

For nonzero k, these fields do have super-gravitational interactions. The most
dramatic effect occurs in the z® sector, which due to influence of the field z, has
soft breaking terms due to the super-Higgs effect. The superpotential g2(z) is taken
to be of the form?®

g2(2) = kIm2 f(k2) (37)

so that the expectation value of z at the minimum of the potential is such that
k{z) = O(1) and {g2) = O(k~1m?). Such supersymmetry breaking leads to a grav-
itino mass and low-energy supersymmetric particles of size m, = k?(go) = xkm?. If
we choose m ~ 101 GeV, then m4 = O is of the order of (Tev).

The supersymmetric partner y of the field z is the Goldstino, that is, the Gold-
stone fermion arising from the supersymmetry breaking. It gets absorbed by the

2230005-10
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gravitino making it massive with mass ms = I€71<6%g>. Taking the unification
group G to be SU(5), or SO(10), the gauge coupling constants unify at a scale
Mg ~ 2 x 1016 GeV and the group breaks to SU(3)c x SU(2) x U(1)y. It was
shown in Ref. 28 that, for the superpotential of the form given in Eqs. (36) and (37),
the gauge hierarchy is preserved for both Mp; and M. For the case fa5(2") = 6ap
and a flavor blind Kihler potential ¢(z4,z4) the effective potential takes the
simple form?”
2

+m22%24 + (Bog)® + 405® +h.c)

Veff:’

1 o\« |2
+@|ga0a(T 2)*[%, (38)

where g is the superpotential containing only the quadratic and cubic functions of
the light fields z®, i.e. §(2%) = @ (2*) + §® (%), mo, Ao, By are soft breaking
parameters of size ms and G = § .o+ %22'& g. The most remarkable feature, however,
is that the breaking of supergravity in the hidden sector induces the breaking of
SU(?)L X U(l)y.

The fact that the super-Higgs mass scale mg of the soft breaking parameters
and the scale of SU(2) x U(1) breaking are comparable, i.e. both lie in the TeV
region, is a natural consequence of the heavy top quark. The two Higgs doublets
have an effective coupling in the superpotential in the form puoH;Ho with g is
of size mgs. Thus, one is led to a simple model with five universal parameters at
the GUT scale: my, mi, Ao, B, po where mi is the mass of the gauginos. These
parameters characterize the way the super-Higgs field interacts with the matter
fields.

While global (rigid) supersymmetry models can accommodate over 134 soft
breaking parameters, the supergravity models, called variously SUGRA GUT
model, minimal supergravity model, CMSS or mSUGRA allows one to build simple
models that are relatively natural and with a significantly reduced number of soft
terms. However, experimental results over the last few years have restricted the
five parameter space of the models discussed above to a rather small volume and it
would seem that one has to consider more complicated models in order to remain
consistent with experimental results. For a review of the construction of realistic
models of supersymmetry, see the review of Ref. 29.

In this review, we have explained the formulation of supergravity® that results
from gauging the super Poincaré group and how it contained an analytic proof of the
invariance of D = 4, N = 1 (simple) supergravity under local supersymmetry trans-
formations. Indeed this method has been used to prove the invariance of essentially
all supergravity theories including those in ten and eleven dimensions. These results
allowed for the systematic development of supergravity theories and in particular
the discovery of the auxiliary, fields, that is, a formulation of simple supergravity
whose transformations closed without the use of the equations of motion.!%!! The
resulting algebra allowed the construction of the analogue of the tensor calculus for
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general relativity for simple supergravity.?223 This in turn allowed for the construc-
tion of the most general matter coupling to supergravity and as a result the realistic
models making it possible to test low energy supersymmetry experimentally.
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