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ABSTRACT
Consumer IoT products and services are ubiquitous; yet, a proper
characterization of consumer IoT security is infeasible without an
understanding of what IoT products are on the market, i.e., without
a market-scale perspective. This paper seeks to close this gap by
developing the I�TS������ framework, which automatically con-
structs a market-scale snapshot of mobile-IoT apps, i.e., mobile apps
that are used as companions or automation providers to IoT devices.
I�TS������ also extracts artifacts that allow us to examine the se-
curity of this snapshot in the IoT context (e.g., devices supported by
apps, IoT-speci�c libraries). Using I�TS������, we identify 37,783
mobile-IoT apps from Google Play, the largest set of mobile-IoT
apps so far, and uncover 7 key results in the process (R1–R7). We
leverage this dataset to perform three key security analyses that
lead to 10 impactful security �ndings (F1–F10) that demonstrate the
current state of mobile-IoT apps. Our analysis uncovers severe cryp-
tographic violations in 94.11% (863/917) mobile-IoT apps with >1
million installs each, 65 vulnerable IoT-speci�c libraries a�ected by
79 unique CVEs, and used by 40 popular apps, and 7,887 apps that
is a�ected by the Janus vulnerability. Finally, a case study with 18
popular mobile-IoT apps uncovers the critical impact of the vulnera-
bilities in them on important IoT artifacts and functions, motivating
the development of mobile security analysis contextualized to IoT.
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1 INTRODUCTION
Regulators, researchers, and practitioners are grappling with the
implications of billions of potentially vulnerable products [26] that
can sense and modify private user environments. In securing IoT
products at scale, a key challenge is triaging, i.e., quickly identifying
products that need the most attention due to the prevalence and
impact of vulnerabilities in them. At present, triaging the vast and
fragmented IoT ecosystem is infeasible due to the lack of a concrete
understanding of what constitutes IoT, i.e., what products make up
the IoT ecosystem. This paper seeks to address this knowledge gap
by developing an evolvingmarket-scale snapshot of IoT products, i.e.,
a concrete collection of products available to consumers, which will
enable a diverse array of security analyses leading to generalizable
insights that apply to all (or most) available products.

We focus on a security-critical IoT product-class that serves as the
controller and user-interface (UI) of the IoT system: mobile-IoT apps,
i.e., mobile apps that serve as companion apps for devices, or repre-
sent third-party integration/automation services (e.g., the Google
Home app). Mobile-IoT apps form a critical attack surface of the IoT
system, e.g., prior work [44] compromised the TP Link Kasa app to
gain remote control over a NEST security camera, demonstrating
how vulnerabilities in mobile-IoT apps can enable privilege escala-
tion to critical devices. Further, as mobile-IoT apps expose interfaces
to IoT devices and cloud back-ends, their large-scale analysis could
help us understand the security properties of the general IoT land-
scape. However, while a market-scale analysis is common in the
general mobile security domain due to the availability of apps from
markets (e.g., Google Play), the lack of a dedicated dataset/market
of mobile-IoT apps makes such analysis challenging for IoT.

This paper proposes I�TS������, which identi�es mobile-IoT
apps from general app markets such as Google Play, and facilitates
large-scale security analysis that is contextualized to IoT. I�TS����
��� builds upon two key observations: (Ob1) As mobile-IoT apps
manage IoT devices, they exhibit characteristics that distinguish
them from general-purpose mobile apps, which can be leveraged
for their e�ective identi�cation, and, (Ob2) The security rami�ca-
tions of vulnerabilities in mobile-IoT apps go beyond the mobile
space, and impact the user’s physical environment via connected
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IoT devices. These observations guide I�TS������’s design for de-
veloping a market-scale snapshot of mobile-IoT apps and extracting
IoT-related information (e.g., supported devices, IoT libraries) for a
multi-faceted security analysis of the snapshot. Our deployment of
I�TS������ leads to key measurement results (R1–R7), and novel
security �ndings (F1–F10) that illustrate the prevalence and im-
pact of vulnerabilities in mobile-IoT apps. We now outline the our
contributions, followed by a summary of security �ndings:

• A market-scale perspective of IoT– This paper intro-
duces a new direction for IoT security analysis by enabling
a market-scale perspective over IoT products, which would
allow future security research to develop analysis that gen-
eralize to products available to consumers.

• The I�TS������ Framework – We design I�TS������,
the �rst framework for generating an evolving, market-scale
snapshot of mobile-IoT apps for security. With the intuition
that the di�erences between mobile-IoT and non-IoT apps
may show in app meta-data (e.g., descriptions), I�TS������
treats the problem of identifying mobile-IoT apps in an app
market as a classi�cation task. I�TS������’s classi�ers iden-
tify mobile-IoT apps with 94.9% precision and 92.5% recall.
We deploy I�TS������ on 2 million Google Play apps and
obtain 37,783 mobile-IoT apps, the largest such dataset to
date (R1), and manually validate a random sample of this
snapshot (2,250 apps) to �nd that 88.4% are indeed mobile-
IoT (R2). Finally, I�TS������’s Named Entity Recognition
(NER) model analyzes app descriptions from this snapshot
to identify 65,676 unique IoT products (i.e., devices, services)
clustered into 962 product-types (R4), enabling the security
analysis of apps in the context of the IoT devices they support.

• Security analysis of the mobile-IoT snapshot – We per-
form three analyses to explore the prevalence of vulnerabili-
ties in the mobile-IoT snapshot, comparing with proportion-
ate samples of non-IoT apps in each case. We �rst develop
a novel di�erential analysis approach that allows I�TS����
��� to identify 19,939 IoT-speci�c third-party libraries from
522,285 libraries in mobile-IoT apps (R6), from which we
identify 11 popular library families (R7). To understand the
e�ect of IoT libraries on the security of mobile-IoT apps, we
analyze IoT libraries for known CVEs, and �nd popular apps
that use them. Second, we use cryptographic API misuse
detectors [46, 55] to analyze 917 popular mobile-IoT apps (>1
million installs). Finally, we analyze the entire mobile-IoT
snapshot for the Janus app signing vulnerability [11].

• Vulnerability Impact on IoT security: As the mobile-
IoT apps in our snapshot support several security/privacy-
critical products (e.g., cameras, security systems) (R5), we in-
vestigate the impact of vulnerabilities in them in the IoT con-
text, using a systematic case study of 18 popular, vulnerable,
mobile-IoT apps. We �nd that vulnerabilities in mobile-IoT
apps pose a threat to key IoT components/functions (F8, F9),
as we discuss next in our summary of security �ndings.

Summary of Security Findings (F1–F10): Our security analysis
of the mobile-IoT snapshot, and the contextualization of the �nd-
ings to IoT security, lead to ten impactful �ndings. We discover that
of 19k IoT-speci�c libraries identi�ed by I�TS������, several (65

libraries, 481 versions) are vulnerable (subject to 79 CVEs) (F1), and
in use by 40 popular mobile-IoT apps (>50k installs), of which 6 have
>1 million installs (F3). In comparison, general/non-IoT libraries
(5k sample, 2.5k popular and 2.5k random) are far more vulnerable
(73 libraries, 7,203 versions, 193 CVEs), with popular libraries con-
tributing to most of the vulnerabilities (F2). Thus, we �nd a greater
number of popular non-IoT apps (509 with >50k installs, 73 with
>1 million installs) using vulnerable non-IoT libraries (F4).

Further, we �nd that 94.11% (863/917) top mobile-IoT apps (>1
million installs) have at least one crypto-API misuse vulnerability,
which is approximately similar to our results on a proportionate set
of non-IoT apps (96.29%, i.e., 883/917 vulnerable) (F5). Our manual
validation of 589 high-severity vulnerabilities detected by Crypto-
Guard [55] in 10 top mobile-IoT apps �nds that 82.5% (i.e., 486/589)
are used/called from within the apps (F6).

We analyze the entire snapshot of 37k mobile-IoT apps and �nd
7,887 susceptible to the Janus vulnerability (263 with >1 million
installs, 33 with >50 million installs) (F7). While a proportionate
sample of non-IoT apps demonstrates similar results overall (7,765
vulnerable apps), a disproportionate number of moderately popular
mobile-IoT apps (5k-100k installs) are more vulnerable than non-
IoT, while in contrast, more unpopular (<500 installs) non-IoT apps
are vulnerable than mobile-IoT (F8).

Finally, our case study reveals that every type of vulnerability
we found impacts at least one critical IoT component, such as ap-
p/device functions, and user authentication (F9). All 16/18 apps in
which this impact is observed support security-sensitive devices
(cameras being the majority) (F10), underscoring the need for a fo-
cused, large-scale, and contextualized analysis of mobile-IoT apps.

Artifact Release and Vulnerability Disclosure: The code and
data associated with this paper is available in our Github repos-
itory [40]. We have reported the con�rmed vulnerabilities from
the case study (Sec. 8) to 12/18 vendors, and are in the process of
reporting to the remaining 6 vendors. Additional details on the
vulnerability disclosure can be found in our online appendix [39].

2 MOTIVATION
Mobile-IoT apps serve as the primary UIs for controlling, con�gur-
ing, and automating IoT devices, and vulnerabilities in them could
provide adversaries with privileged access to IoT devices, services,
and the user’s physical environment [44, 48]. While there is a large
body of work on mobile and IoT security, researchers have only
recently begun to explore the security of mobile-IoT apps, which lie
at the intersection of mobile and IoT [23, 43–45, 66]. For instance, our
prior work [44, 45] demonstrates how vulnerabilities in mobile-IoT
apps can be exploited to target IoT platforms and devices, while
Wang et al. [66] use mobile-IoT apps to approximate the characteris-
tics of the connected devices, to estimate the vulnerabilities in them.
Prior work relies on small app datasets crawled from Google Play
using regular expression based searches or snowball sampling [33],
the largest being Wang et al.’s set of 2081 [66]. Such analysis with
limited, ad-hoc, sub-samples of mobile-IoT apps may result in in-
su�cient insights, i.e., which do not apply to a representative set of
apps available to consumers. Therefore, we need to develop a large
collection of mobile-IoT apps from markets such as Google Play to
enable a generalizable understanding of the state of IoT security.
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Figure 1: Overview of I�TS������.

This paper is motivated by the goal of developing a market-
scale snapshot of mobile-IoT apps and demonstrating its usefulness
through diverse security analyses that are impactful in the IoT
context, and is guided by two core research questions (RQs):
RQ1 How to automatically develop amarket-scale snapshot ofmobile-

IoT apps from markets containing heterogeneous apps? This is
particularly challenging, given that there is no single reposi-
tory of mobile-IoT apps, and ad-hoc crawling from general
app markets such as Google Play leads to insu�cient results.

RQ2 How to make this snapshot useful for IoT security analysis?
Vulnerabilities in mobile-IoT apps must not be studied in
isolation, but in the IoT context relevant to speci�c apps. Thus,
we need to extract useful information and artifacts from
mobile-IoT apps that enable impactful IoT security analysis.

With the motivation of demonstrating I�TS������’s utility, we
seek to analyze the generated snapshot using diverse security anal-
yses, particularly balancing between analyses that can scale to the
entire snapshot (e.g., testing for vulnerable IoT libraries, the Janus
signature vulnerability [11]), and analyses that may not scale due
to limitations in existing tools, but are yet critical for IoT security,
such as the vulnerable use of cryptography. Finally, as vulnerabili-
ties in mobile-IoT apps can be leveraged to attack the complex IoT
system (e.g., devices, servers) [44, 48], we seek to leverage the IoT
context obtained by I�TS������ to study the impact of the mobile
vulnerabilities discovered in our analysis on IoT security.

3 THE IOTSPOTTER FRAMEWORK
We propose I�TS������, a semi-automated framework that system-
atically identi�es mobile-IoT apps from popular markets such as
Google Play (RQ1), and extracts information (e.g., the IoT devices
the app supports) and artifacts (e.g., IoT-speci�c libraries) that facil-
itatel impactful security analysis in the IoT context (RQ2). Figure 1
provides an overview of I�TS������.

I�TS������ frames the problem of extracting mobile-IoT apps
from markets as a classi�cation task, i.e., of distinguishing between
mobile-IoT and non-IoT apps based on salient di�erences that may
appear in their metadata. Prior to pursuing this ML-based approach,
we tried to crawl Google Play for mobile-IoT apps using regular
expression-based searches applied to descriptions (similar to prior
work [44]). However, we found that a regex-based approach results
in signi�cant false positives and negatives that are easily avoided us-
ing ML, primarily due to the ambiguity of several natural language
terms. For example, the term “lock” can mean a phone keypad lock
as well as a door lock depending on the usage. Similarly, regexes
cannot capture unique terms, e.g., the “Wyze Cam” would not be
captured with keywords such as “camera”. Thus, a regex-based
search that conforms to a known set of manually-curated keywords

limits data collection, both (i) in terms of identifying mobile-IoT
apps, as well as (ii) analyzing their metadata further to learn about
the products they support. In contrast, I�TS������’s ML approach
learns features observed in mobile-IoT metadata, and develops a
general characterization that allows it to classify mobile-IoT and
non-IoT apps at scale, and moreover, enables precise analysis of
the identi�ed mobile-IoT metadata to extract rich information (e.g.,
65k IoT products extracted using NER, Section 4.2) that regular
expressions would fail to obtain from unstructured text.

To train I�TS������’s mobile-IoT app classi�er, we evaluated
several metadata objects and discovered that app descriptions of-
fer the most distinguishing source of features, as we elaborate in
Section 3.1. As shown in Figure 1, I�TS������ crawls for app meta-
data from Google Play, which it then classi�es into mobile-IoT and
non-IoT, resulting in a market-scale snapshot of mobile-IoT apps
(which are also downloaded from a mirror of the market, i.e., An-
drozoo [16]). I�TS������ then analyzes the app descriptions in the
snapshot using its NER model (Section 4.2) to identify the supported
IoT products in each mobile-IoT app, to study the vulnerabilities in
mobile-IoT apps in the context of the products they represent. To
demonstrate the utility of this snapshot, we perform three types
of security analyses (Section 5–Section 7). Our security analysis
culminates in a systematic case study (Section 8) that assesses the
impact of the discovered vulnerabilities on IoT security.

3.1 Mobile-IoT App Identi�cation
Mobile-IoT apps are a unique class of mobile apps developed to
support IoT devices/services, and may exhibit distinguishing fea-
tures that can help with their classi�cation/identi�cation at scale.
We focus on the metadata associated with the app, as it is intended
to convey the purpose of the app to end-users, and because the
actual code itself may show signi�cant overlap between the two
classes of apps given the vast amount of glue and UI code needed
for mobile apps in general. However, the question is, which of the
several metadata objects (e.g., description, reviews, title) are the most
suitable for distinguishing between mobile-IoT and non-IoT apps?

To answer this question, we performed a preliminary investiga-
tion of app metadata, wherein we studied 776 apps that were avail-
able as companion apps to integrations obtained from the “Works
with Google Assistant” [13] smart home platform. We found that
mobile app descriptions generally use IoT keywords indicating the
device types (e.g., light bulb) and IoT phrases (e.g., automation,
remotely control), whereas, other features such as product title, per-
missions, reviews, or icons did not consistently reveal IoT-related
characteristics. For example, titles for apps such as “Nest” [34] or
“Vivint” [35] do not convey any particular information that con-
sumers may associate with smart homes, other than the brand
name itself (which a classi�er may not be able to distinguish from
other brands). Similarly, we observed that app permissions and
user-reviews do not generally provide distinguishing information,
i.e., most user-reviews only discussed experience with the app, and
only few apps requested wearable permissions [68]. We also an-
alyzed the UI text from manys apps as it may carry IoT-speci�c
information (although it is not strictly metadata), and found that UI
text may contain IoT-speci�c phrases such as “Add Device”. Thus,
we decided to evaluate app descriptions and UI text as potential
sources of features for I�TS������’s classi�er.
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Table 1: Mobile-IoT App Classi�er Performance.

Description UI Text

Performance LR SVM NB RF RNN LSTM BiLSTM BERT LR SVM NB RF CNN

Accuracy 0.927 0.916 0.914 0.926 0.947 0.946 0.952 0.957 0.625 0.637 0.608 0.620 0.543
Precision 0.932 0.897 0.909 0.929 0.925 0.957 0.962 0.949 0.675 0.67 0.639 0.688 0.545
Recall 0.896 0.908 0.889 0.896 0.954 0.915 0.925 0.951 0.530 0.586 0.553 0.483 0.707
F1-Score 0.914 0.902 0.899 0.913 0.939 0.936 0.943 0.950 0.593 0.625 0.594 0.568 0.615

3.1.1 Collecting Apps andMetadata. Webeginwith 5,732,376Google
Play apps from Androzoo [16], reduced to 2,182,654 unique apps
(i.e., after removing multiple versions). I�TS������ automatically
crawls the metadata of each app from Google Play (US) using the
package names obtained from Androzoo, leading to set of 2,182,654
apps (metadata), while also downloading the corresponding APKs
from Androzoo, as it mirrors Google Play and does not rate limit.

3.1.2 Creating Mobile-IoT and Non-IoT Datasets for Training and
Testing. To build a classi�er, we need to construct labeled datasets
of both mobile-IoT and non-IoT apps. We construct the mobile-IoT
app dataset through ad-hoc, keyword-based, crawling of Google
Play, in a manner similar to that adopted by prior work [44, 66].
We develop a crawling heuristic to obtain an initial set of mobile-
IoT apps from Google Play, which considers keywords that repre-
sent (1) 126 Device types obtained from prior work [50] (e.g., smart
vacuum), (2) generic IoT keywords (e.g., smart room, IoT), (3) generic
device keywords (e.g., smart devices, appliances), (4) popular plat-
forms (e.g., Alexa, Home Assistant), (5) IoT protocols (e.g., Zig-
bee), and (6) common regex patterns used in mobile-IoT apps (e.g.,
phrases containing ‘control’ and ‘remotely’). We use Snorkel [59] to
programmatically build our initial training data, where we selected
app descriptions that contain at least one keyword match. We �nd
1,758 app descriptions with at least 3 out of 6 overlapping keywords,
8,467 with 2 keywords match and 89,508 with 1 keyword match. Out
of these we selected all the app descriptions with at least 3 keyword
matches and an additional 800 from the remaining set. We integrate
the mobile-IoT apps obtained from this crawler with a dataset of
2,081 mobile-IoT apps from prior work [66], which after removing
unavailable apps and false positives leads to an eventual set of 1,574
mobile-IoT apps. Together, our heuristic-based crawler and prior
work yield us 4,132 tentative mobile-IoT apps. Additionally, we
sample 3,073 random non-IoT apps from Google Play, leading to a
candidate list of 7,205 IoT and non-IoT app descriptions.

We manually labeled these 7,205 app descriptions to con�rm
their mobile-IoT/non-IoT class, in a process that involved three of
the authors with prior experience in IoT research. We established a
unanimously agreed-upon de�nition of what constitutes a mobile-
IoT app, i.e., any app that connects to or supports an IoT device,
product, or service, which is in line with prior work [44, 66]. Two
authors labeled the descriptions, and the third resolved con�icts,
with a calculated Cohen’s Kappa score [38] of 0.976, demonstrating
high inter-annotator reliability score. Our labeling led to a dataset
of 3,251 con�rmed mobile-IoT apps. Similarly, we obtained 3,954 con-
�rmed non-IoT apps, which also included the false positives from the
tentative mobile-IoT set produced by our heuristic-based crawler or
prior work. We split the 7,205 labeled apps into a training dataset
consisting of 2,837 mobile-IoT and 3,403 non-IoT apps (6,240/7,205
or 86.6%) and a testing dataset consisting of 414 mobile-IoT and
551 non-IoT apps (965/7205 apps or 13.4%), using strati�ed sampling

by providing equal distribution of mobile-IoT and non-IoT apps for
both training and testing, as recommended in ML literature [27].

3.1.3 Building the Mobile-IoT Classifier. We evaluated the ability
of several ML approaches at classifying mobile-IoT and non-IoT
apps, using features from app descriptions or UI text (obtained from
.xml resources in APKs), extracted using TF-IDF [56] and tokeniz-
ers [5, 12]. We began with algorithms such as Logistic Regression
(LR), Support Vector Machines (SVM), Naive Bayes (NB), and Ran-
dom Forest (RF), and then explored deep learning techniques such
as Recurrent Neural Network (RNN), Long Short Term Memory
(LSTM), and Bi-directional LSTM (BiLSTM), and BERT [4], which
are known for their performance in text classi�cation.

Table 1 shows the performance of classi�ers trained on the train-
ing set (on top of the pre-trained model [4] for BERT), and evaluated
on the testing set. Descriptions fare much better at distinguishing
mobile-IoT apps from non-IoT, relative to UI text, with a di�erence
of 30-40% in precision and recall for all classi�ers. Hence, we select
descriptions as I�TS������’s sole source of features. Further, BiL-
STM and BERT perform best, with a similar overall performance
(F1 score of 94.3% and 95.0% respectively). As we want to prioritize
precision to generate a reliable snapshot of mobile-IoT apps, we
adopt the hard-voting [37] approach, i.e., I�TS������ marks an
app as mobile-IoT only if there is consensus among both models.

3.2 Extracting IoT Product Information
As mobile-IoT app descriptions often discuss supported IoT prod-
ucts, we develop a Named Entity Recognition (NER) model that
identi�es IoT products in description-text, and enables us to under-
stand the implications of our security analysis of mobile-IoT apps
in terms of the devices a�ected (e.g., security cameras, door locks).

3.2.1 Preparing and Annotating Descriptions. We begin by anno-
tating mobile-IoT app descriptions that can be used to train the
model. For this, we selected 600 random mobile-IoT apps, and pre-
processed their descriptions (e.g., discarded incomplete statements,
normalized Unicode characters), which led to to 3,961 sentences for
training. We used prodigy [54] to manually annotate the sentences
with IoT product entities, de�ned as any entity that represents a
device/service/thing that can be controlled/connected.

3.2.2 Training the NER model. We train and test the NER model by
splitting the dataset of 3,961 sentences into 3,169 (80%) for training
set and the remaining 972 (20%) for the hold-out test set. We use the
methodology similar to prior work (i.e., PolicyLint [17]), and train
our model on top of the existing Spacy stock model [60]. Spacy’s
training process iteratively compares the predictions against the
annotations to update the weights so that the predictions become
more similar to the reference labels (using back-propagation [32]).
Our approach results in I�TS������’s NERmodel, which has 82.84%
precision and 83.04% recall in identifying IoT product entities.
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3.2.3 Clustering of product entities to identify common types. Upon
deploying our NER model on the entire mobile-IoT app snapshot,
we identi�ed 65,676 unique IoT product entities (see Section 4.1),
because IoT products are often expressed using di�erent names
e.g., outdoor camera, cctv camera, or <company_name> outdoor
cameras. To understand the types of products supported by mobile-
IoT apps, we perform short text clustering on IoT product entities
using GSDMM library [36, 69]. We set the the upper bound cluster
value (k) to 1000 to allow the algorithm to converge on diverse IoT
product clusters considering semantically-similar entity-names.

4 APPLYING IOTSPOTTER TO 2 MILLION
GOOGLE PLAY APPS

This section describes our application of I�TS������ on the entire
Google Play dataset consisting of 2,182,654 apps, and quantitative
as well as qualitative insights generated during the process.

4.1 Characteristics of the Mobile-IoT snapshot
I�TS������’s BERT-based and BiLSTM classi�ers identi�ed 58,859
and 69,270 app descriptions as mobile-IoT, respectively. Using con-
sensus between both models to obtain high precision (as described
in Section 3.1), I�TS������ identi�ed 37,783 mobile-IoT apps.

Result 1 (R1) – I�TS������ identi�es 37,783 apps out of
2,182,654 Google Play apps, the largest such set to date.

To evaluate the e�ectiveness of I�TS������ in deployment, we
further manually evaluated a random subset of this mobile-IoT
snapshot, consisting of 2,250 apps (i.e., ⇡6%). The time required to
label new apps was the main constraint on the size of this set.

Result 2 (R2) –Manual validation of 2,250 mobile-IoT apps iden-
ti�ed by I�TS������ shows that 88.4% (1989/2250) are indeed
mobile-IoT.

Thus, we demonstrate that our mobile-IoT snapshot is reliable,
and that I�TS������’s classi�cation approach yields an 18x in-
crease in the obtained mobile-IoT apps in comparison with ad-hoc
crawling (e.g., the 2k apps obtained by [66]), at the cost of some pre-
cision. Upon further analysis, we �nd that most of the false positive
cases contain ambiguous statements containing keywords relevant
to IoT used in non-IoT contexts that are hard to disambiguate; e.g.,
the “Pocket Cloudwatcher” app [53] mentions that an " ..alarm will
�re if your phone stops receiving data". Other examples of false
positives include apps that discuss IoT data such as blood pressure,
heart and health records but do not connect to any health/wearable
devices (e.g., “Blood Pressure Diary“ [20]).

A series of measurements on the metadata of apps in the mobile-
IoT snapshot allows us to glean some of its general characteristics.
As shown in Figure 2, the CDFs of the popularity/install-count dis-
tributions of the mobile-IoT snapshot and the general Google Play
dataset of 2 million apps are strikingly close, indicating that mobile-
IoT apps trend similarly in terms of popularity as the rest of the
market; e.g., the 2M Google Play app set and 37K mobile-IoT app set
have 88.7% and 85.76% apps with less or equal than 10K downloads.
However, we �nd that mobile-IoT apps are generally concentrated
in a few key app categories (e.g., tools, lifestyle, health); e.g., several
mobile-IoT apps (35.5%) fall in the tools category (relative to only
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Figure 2: CDF of the popularity distribution (using install count) of
mobile-IoT and general Google Play apps.
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Figure 3: Top 10 IoT Product Clusters identi�ed in IoT Apps

5.77% of Google Play apps in the same) (see the online appendix [39]
for a �gure showing this distribution). This statistical observation
leads to the following result:

Result 3 (R3) –While mobile-IoT apps trend similarly in terms
of popularity as the rest of the market, they are heavily skewed
towards a few app categories, in contrast with the general mar-
ket that is relatively evenly distributed across categories.

4.2 Products in the mobile-IoT snapshot
I�TS������’s domain-adapted NER model analyzed the entire set
of 37,783 mobile-IoT apps in the snapshot, and identi�ed 65,676
unique IoT product entities. The GSDMM-based approach allows us
to characterize these entities, by clustering semantically-similar
entities into 962 clusters representing product types; e.g., a type
“light”, which includes Neusmart lighting and Opple smart lighting
devices (see the online appendix [39] for additional examples).

Result 4 (R4) – I�TS������ identi�es 65,676 product-entities,
clustered into 962 types, in the mobile-IoT snapshot.

Figure 3 shows top 10 IoT product types represented by clustering
of the unique products identi�ed by I�TS������’s NER model. The
largest such cluster represents the product type “TV”, containing
over 3,271 unique mentions of products of that type (e.g., “Philips
TV”, “HiSense TV”). It is interesting to note that a prior network-
based analysis of devices used in homes by Kumar et al. [47] also
found TVs to be themost common of all IoT devices, which indicates
a correlation between the device types most supported by mobile-IoT
apps, and those in use in the wild.
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Further, the mean and median cluster sizes, among our total 962
clusters, are 68.27 and 47, respectively, the latter of which demon-
strates that signi�cant groupings/product types exist far beyond
the most populous/top clusters. Examples of clusters of average
size (⇡ 68 entities each) include dimming systems (which includes
devices such as the “Leviton dimmer” and “Sensor3 Dimmers”),
and smart glasses (which includes devices such as “Vue Glasses”).
Similarly, examples of median-sized clusters (⇡ 47 product entities)
include smart bands and GPS trackers. Moreover, we observed that
the smallest clusters containing very few products (i.e., 1-5 products
each) were often the result of obscure product/brand names that did
not contain any information indicating its type, e.g., eqb-600 [29],
which is a smart watch. Finally, as we observe in Figure 3, several
of the top-10 clusters indicate devices that are security or privacy
sensitive, even by a conservative standard.

Result 5 (R5) – Security and privacy sensitive device types
such as security cameras, security systems, vehicle trackers,
and TVs form some of the most common devices supported by
mobile-IoT apps in the snapshot.

5 MOBILE-IOT LIBRARY ANALYSIS
The security characteristics of IoT-speci�c third-party libraries
and SDKs are understudied, relative to general-purpose Android
libraries categorized on platforms such as Appbrain [3]. We explore
a simple but fundamental question: How do IoT-speci�c libraries
impact the security of mobile-IoT apps? To answer this question, we
develop a method for automatically extracting IoT-speci�c libraries,
analyze the libraries for known vulnerabilities, and identify the use
of vulnerable IoT libraries in mobile-IoT apps.

5.1 Methodology
A naive approach for collecting IoT libraries used in our mobile-IoT
apps would be to crawl popular repositories (e.g., Maven, Github),
identify IoT-speci�c libraries from their descriptions, and map them
to the libraries in our mobile-IoT snapshot. However, we observe
that online repositories do not consistently contain clear descrip-
tions of libraries. Thus, we develop an automated approach that
uses di�erential analysis to identify IoT libraries, i.e., determines
the relevance of a library to IoT functionality by comparing the
frequency of its use in our mobile-IoT snapshot, and non-IoT apps.

1. Collecting Third-party Library Packages: We extract third-
party library package names from mobile apps using LibScout [19].
For this, we �rst construct package trees based on the code structure.
Second, we use app manifest �le and the Android framework SDK
(android.jar) to identify �rst-party libraries and framework API
libraries, respectively. Finally, we identify library package names
using LibScout, excluding �rst-party and framework API libraries.
Using this approach, we identi�ed 522,285 library packages in the
mobile-IoT snapshot. Given the infeasible manual e�ort that would
be required to identify IoT-speci�c libraries from this set, we develop
the automated di�erential analysis approach discussed next.

2. Identifying IoT Library Packages: We develop a di�erential
analysis approach that identi�es library package names speci�c
to IoT, i.e., which are more commonly used by mobile-IoT apps.
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Figure 4: The number of selected package names against decision
boundaries n in Equation 2, and ` in Equation 3.

That is, we compare third-party libraries used in our snapshot of
37,783 mobile-IoT apps against the remaining 2,144,871 non-IoT
apps. While a simple comparison can yield the di�erence between
the two sets of library package list (i.e., by excluding libraries that
are common across mobile-IoT and non-IoT library set), we develop
a more precise characterization, i.e., to identify libraries that are
(1) popular among mobile-IoT apps, if only used in our mobile IoT
app snapshot, and (2) signi�cantly more popular in the mobile-IoT
snapshot relative to non-IoT, if also used in non-IoT apps.

We �rst de�ne the notion of popularity for a library 8 from a set
of libraries !, in a set of apps ' containing # apps. For each library
8 2 !, 5 '8 denotes the number of apps in ' using the library 8 . We
de�ne the popularity ?'8 of the library 8 in the app dataset ' as:

?'8 =
5 '8
#

, 8 2 ! (1)

We now describe our approach for de�ning decision boundaries,
that allow us to identify libraries that are exclusive to the mobile-
IoT snapshot and popular in it, as well as libraries that are common
among IoT and non-IoT apps, but signi�cantly more popular in the
former. To elaborate, consider a library set !� containing all the
libraries used in the mobile-IoT snapshot '� , and !$ from non-IoT
app dataset '$ . In Equation 2 and Equation 3, ?�8 and ?$8 denote
the popularity of library 8 in app set '� and '$ . We de�ne two
decision boundaries: (i) n , for identifying popular IoT-speci�c li-
braries (i.e., those only found in mobile-IoT apps), and (ii) `, for
identifying libraries common among both sets that are signi�cantly
more popular (hence relevant) to IoT. We now de�ne Equation 2
and Equation 3, which use these decision boundaries to identify
popular IoT-speci�c libraries, and those common libraries that are
far more relevant to IoT, respectively, as follows:

?�8 > n, 8 2 !� , 8 8 !$ (2)

?�8
?$8

> `, 8 2 !� , 8 2 !$ (3)

To understand the distribution of common package names, we
calculate the number of package names that will be selected based
on a given decision boundary. As shown in Figure 4a, the common
package count continuously decreases as we continue to increase
the decision boundary. For our analysis, we seek to choose decision
boundary parameters that identify larger set of library package
names without compromising on popularity. That is, a high decision
boundarywill result in a high precision (i.e., libraries popular among
IoT apps) but low recall. We see a similar trend in Figure 4b, i.e., the
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package count continues to decrease as we increase the decision
boundary, which means that there are very few library packages
that are extremely popular in mobile-IoT set (relative to non-IoT).

Analyzing IoT Library Packages for Vulnerabilities: To under-
stand what vulnerabilities IoT libraries introduce in mobile-IoT apps,
we crawl the Maven Repository [14] to identify vulnerable library
versions of libraries in our set. Note that we investigated alternative
sources such as library websites and Github repositories, but ob-
served that the Maven repository is a better resource, as it contains
CVE badges for vulnerable library versions and has a consistent
layout that facilitates automated analysis. We then check for the
vulnerable library versions in apps using LibScout.

5.2 Results: IoT Library Identi�cation,
Characterization, and Security Analysis

We obtained 522,285 third-party library package names from 37K
mobile-IoT apps. By choosing the decision boundary (n = 0.0002),
we select all the packages which are used by at least 7 apps, and
identify 11,242 library package names. Similarly, we used a decision
boundary (`) of 44, i.e., considered library package names that are
44 times more popular in the mobile-IoT snapshot compared to non-
IoT apps, and identi�ed 8,697 library package names. Our online
appendix [39] describes the intuition behind our choice of decision
boundary. Together, this resulted in 19,939 library package names
that are signi�cantly more popular among mobile-IoT apps than
non-IoT apps, making them important for IoT security analysis.

Result 6 (R6) – I�TS������’s di�erential analysis approach
identi�ed 19,939 IoT library package names.

Note that a naive approach of identifying IoT libraries by solely
searching for the package name in online repositories (e.g., Maven)
and analyzing the description would not be e�ective. To elaborate,
crawling Maven to search for descriptions of the 522,285 third-party
library package names present in mobile-IoT apps resulted in only
4.8% (i.e., 25,321/522,285) matches. Furthermore, when we parsed
the pom �le of 25,321 jar �les to extract the library description,
we found that only 40% jar �les contained descriptive text about
the library, which would essentially yield descriptions of 2% of the
library 520k package names found in mobile-IoT apps, analyzing
which would lead to an even smaller set of eventual IoT libraries.
In contrast, our approach of comparing the usage of libraries in
mobile-IoT vs non-IoT apps allows us to identify over 19k library
packages that are widely more popular in mobile-IoT apps than
non-IoT, indicating a speci�c relevance to IoT, without any manual
e�ort. Next, we characterize the most popular packages among
these IoT libraries to identify families.

Characterizing top IoT libraries into families: To characterize
the libraries obtained from our di�erential analysis, we further
selected the top 50 IoT library package names that were used by
maximum number of apps, and used them to identify library fami-
lies. For this, we manually searched the library package names on
search engines and clustered pre�xes to create library families, i.e.,
packages with the same pre�x, resulting in the discovery of 11 such
library families. We further searched for the common library pre-
�xes representing each family in our mobile-IoT snapshot, which

led to the discovery of the use of several packages belonging to
each family in a large number of mobile-IoT apps. The top library
families are described in Table 2.

As shown in Table 2, 10/11 of the library families provide func-
tionality associated with IoT services, except javax.jmdns, which
helps with DNS (useful for IoT, but not exclusively). This speaks to
the e�ectiveness of our approach for identifying IoT libraries.

Result 7 (R7) – Our di�erential analysis approach is e�ective in
isolating IoT-related libraries, as it leads to the discovery of 10/11
most popular library families (among apps in the mobile-IoT
snapshot) that provide IoT-relevant functionality.

Vulnerabilities in IoT and non-IoT libraries: To understand
the security characteristics of IoT libraries in terms of the CVEs
associated with individual library packages, we crawled the Maven
repository with all 19,939 IoT library package names identi�ed by
I�TS������. To perform a comparative analysis of general mobile
app libraries, i.e., all libraries barring the 19k IoT libraries, we would
need to similarly crawl Maven for over 1.2 million general/non-IoT
library packages found in our 2 million non-IoT apps. However, as
Maven employs strict rate limits, crawling for all 1.2 million non-
IoT library packages would be infeasible (e.g., crawling for 19k IoT
libraries took around 3 weeks). Therefore, we instead sample 5000
non-IoT library packages in two even subsets that balance impact
with the need for an unbiased analysis: (i) 2,500 most used library
packages (among all non-IoT apps), and (ii) 2,500 randomly sampled
package names from the 1.2 million non-IoT library packages.

Upon crawling the Maven repository, we identi�ed several IoT
libraries to be vulnerable, leading to the following �nding.

Security Finding 1 (F1) – 65 IoT libraries (481 unique versions)
are vulnerable, i.e., subject to 79 CVEs.

On repeating the analysis for non-IoT libraries, we found 73
vulnerable libraries (7,203 versions), i.e., the subject of 193 CVEs.

Security Finding 2 (F2) – The 19k IoT libraries are less vul-
nerable relative to 5,000 non-IoT libraries, with the top 2500
non-IoT libraries contributing signi�cantly more vulnerabili-
ties (193 CVEs, 63 libraries, 7,105 versions), relative to the the
random 2,500 (7 CVEs, 10 libraries, 98 versions).

Table 3 lists the top 10 CVEs in IoT and non-IoT libraries.

Use of vulnerable libraries in apps: We now describe our analy-
sis of the use of vulnerable IoT and general libraries in mobile-IoT
and non-IoT apps, respectively. To identify the use of vulnerable
IoT libraries, we used LibScout to analyze all mobile-IoT apps from
our snapshot with >50k installs, i.e., a total of 5,380 popular apps.
For a comparable analysis in the non-IoT context, we randomly
sampled 5,380 non-IoT apps, repeatedly sampling until we found a
set with the same popularity distribution (as indicated by its CDF of
installs) as the 5,380 mobile-IoT apps (see the online appendix [39]
for a detailed description of the sampling process).

In mobile-IoT apps, we found 29 vulnerable libraries being used,
of which we discarded 2/29 that are not used for IoT-speci�c func-
tionality. Upon exploring the apps using LibScout, and identi�ed
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Table 2: Top IoT third-party library families.

Library Family Functionality # Apps # Packages # Classes # Versions Developer

com.tuya IoT framework 1,362 4,427 71,742 1,379 Tuya, China
no.nordicsemi.android BLE & �rmware services 1,097 324 6,284 192 Nordic Semiconductor, Norway
javax.jmdns DNS services 852 24 347 24 Ho� et. al.
com.amazonaws.mobileconnectors IoT cloud services 751 110 1,372 211 Amazon Web Services, USA
com.connectsdk Device control 378 69 2,041 24 Frolov et. al.
com.inuker.bluetooth BLE services 358 106 1,488 42 dingjikerbo et. al.
com.clj.fastble BLE services 333 21 351 11 Chen et. al.
com.hi�ying Device control 285 36 323 1 High-Flying, China
com.telink Device control 250 95 1,631 3 Telink, China
com.hikvision Device control 191 1,340 29,286 34 Hikvision, China
org.fourthline.cling Device control 187 190 3,176 7 4th Line, Switzerland

Table 3: Top CVEs a�ecting vulnerable IoT and non-IoT/general
mobile libraries. Top CVEs a�ecting both sets are underlined.

IoT Libraries Non-IoT Libraries

CVE ID # Libraries CVE ID # Libraries

CVE-2020-15250 31 CVE-2017-18349 43
CVE-2022-25647 15 CVE-2020-15250 13
CVE-2022-24329 7 CVE-2021-35515 12
CVE-2020-29582 7 CVE-2021-35516 11
CVE-2021-29425 7 CVE-2021-35517 6
CVE-2021-4104 7 CVE-2021-36090 5
CVE-2020-8908 5 CVE-2020-8908 5
CVE-2020-15522 5 CVE-2020-25649 5
CVE-2022-23302 4 CVE-2020-13956 5
CVE-2022-23305 3 CVE-2020-36179 5

92 mobile-IoT apps that use the remaining 27/29 libraries. We man-
ually validated this result and identi�ed 52 false positives (due to
LibScout’s imprecision), and 40 true positives, i.e., 40 mobile-IoT
apps that indeed use vulnerable IoT libraries.

Security Finding 3 (F3) – 40 popular mobile-IoT apps are
vulnerable because of vulnerable IoT library usage, out of which
6 have more than 1 million installs.

Similarly, we identi�ed 73 vulnerable non-IoT libraries being
used by 777 popular non-IoT apps. Manual validation revealed 268
false positives, and con�rmed that 509 non-IoT apps indeed used
vulnerable libraries, of which 73 have >1 million installs.

Security Finding 4 (F4) – The use of vulnerable non-IoT li-
braries in popular (>50k install) non-IoT apps is signi�cantly
higher, i.e., 12.7X (509/40) apps, relative to the use of vulnerable
IoT libraries in mobile-IoT apps.

There are three possible reasons for this result: First, as F2 shows,
popular non-IoT libraries are generally more vulnerable than IoT
libraries, and hence, popular but vulnerable non-IoT libraries af-
fect several non-IoT apps; e.g., all 1,441 versions of the popular
com.amazonaws/aws-java-sdk-core library [18] are a�ected by at least
6 CVEs, compounding its impact on apps. Second, the use of top
general/non-IoT libraries in non-IoT apps signi�cantly exceeds
the use of top IoT libraries in mobile-IoT apps, thus amplifying
vulnerability-impact on the former, e.g., the com.google.�rebase li-
brary is imported by 68.5% non-IoT apps in the entire non-IoT app
set (2 million apps), whereas the most popular IoT-speci�c library,
no.nordicsemi.android/dfu, is used in 2.9% of our 37K mobile-IoT apps.
Finally, mobile-IoT apps may use non-IoT libraries, but our analy-
sis of the presence of vulnerable IoT libraries in mobile-IoT apps
naturally excludes non-IoT libraries (hence reducing their impact

on the security posture of mobile-IoT apps). This decision is jus-
ti�ed as our original goal is to characterize the security impact of
vulnerable IoT libraries on mobile-IoT apps. That said, as mobile-IoT
apps are concentrated in some app categories (e.g., over 35.5% in
tools) relative to the more even distribution of non-IoT apps, and
are on average much simpler than non-IoT apps (e.g., do not use
social network SDKs, or complex UIs), we believe that they may
only use a few general/non-IoT libraries.

Finally, the vulnerabilities due to IoT libraries can lead to serious
security implications in the IoT context, as we explore in Section 8.

6 CRYPTOGRAPHIC API MISUSE ANALYSIS
The correct use of cryptography is key data security in modern
software. Particularly in the case of mobile-IoT apps, misuse of
crypto-APIs can lead to severe vulnerabilities that may allow at-
tackers to steal or modify security-critical data (e.g., authentication
tokens, credentials, �rmware), and use it to escalate privilege to
devices and the overall IoT system (see Section 8). Thus, we perform
a systematic analysis to understand the prevalence and nature of
crypto API misuse vulnerabilities in popular mobile-IoT apps.

6.1 Methodology
We analyze mobile-IoT apps using two static analysis security tools
that specialize in detecting crypto-API misuse, CryptoGuard [55]
and CogniCrypt [46], chosen as they are currently maintained and
popular in practice; e.g., CryptoGuard is a part of Oracle testing
suite [52], while CogniCrypt is available as an Eclipse plugin.

While wewould want to analyze all 37k apps from themobile-IoT
snapshot, we are limited by the runtime performance and detection
ability of existing analyses. To elaborate, we observed that Crypto-
Guard needs 8 minutes on average to analyze one app, signi�cantly
higher than CogniCrypt’s 0.67 minutes; hence, analyzing all 37k
apps with CryptoGuard would be prohibitively time consuming.
However, we cannot choose to abandon CryptoGuard for perfor-
mance and only run CogniCrypt, given CryptoGuard’s more recent
development (and ruleset), which may lead it to �nd a larger and
diverse set of vulnerabilities relative to CogniCrypt (as we indeed
�nd in Section 6.2). Therefore, for a tractable and impactful analysis
that balances the need to �nd vulnerabilities while also considering
runtime performance, we choose to analyze a sample of popular
mobile-IoT apps from the snapshot, i.e., those with >1 million in-
stalls. Our sample consists of 917 mobile-IoT apps. We manually
validated these 917 apps to con�rm 91.385% (i.e., 838/917) are indeed
mobile-IoT, which is slightly higher than the 88.4% true positive
rate for a random validated sample from our snapshot (see R2).

com.amazonaws/aws-java-sdk-core
com.google.firebase
no.nordicsemi.android/dfu
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Table 4: The number of mobile-IoT (and non-IoT) apps that violate
CryptoGuard’s rules, i.e., contain at least one vulnerability/violation
of each rule-type (sorted by # vulnerable mobile-IoT apps). Crypto-
Guard assigns severity to rules, as we annotate in the table (high
severity= [H], medium severity= [M], low=unmarked).

CryptoGuard’s Rules (IDs as per [55]) # Vulnerable Apps

ID Rule Name Mobile-IoT Non-IoT

9 Insecure PRNGs (e.g., java.util.Random) [M] 842 870
16 Insecure cryptographic hash (e.g., SHA1, MD5) [H] 825 865
1 Predictable/constant cryptographic keys [H] 577 669
7 Occasional use of HTTP [H] 438 441
14,11 *64-bit block ciphers (e.g., DES, RC4), ECB mode [M] 406 376
5 Custom TrustManager to trust all certi�cates [H] 380 302
4 Custom Hostname veri�ers to accept all hosts [H] 293 269
12 Static IVs in CBC mode symmetric ciphers [M] 239 208
6 SSLSocketFactory w/o hostname veri�cation [H] 186 86
3 Predictable/constant passwords for KeyStore [H] 142 60
13 Fewer than 1,000 iterations for PBE 70 26
15 Insecure asymmetric cipher use 66 19
2,10 *Predictable passwords, static salts in for PBE [H/M] 63 47
8 Predictable/constant PRNG seeds [M] 50 23

- Number of apps that violated at least one rule 863 883

* = CryptoGuard reports combined results for rules indicated by combined rule IDs.

To understand how mobile-IoT apps fare relative to non-IoT in
terms of crypto-API vulnerabilities, we repeated the analysis on
917 popular non-IoT apps randomly sampled out of 41,041 non-IoT
apps with >1 million installs, by repeatedly sampling until we found
a set with the same popularity distribution as indicated by its CDF
of installs (see the online appendix [39] for details).

Experiment Setup: Our analysis was carried out on an 8-core
Ubuntu machine with 32 GB RAM. CryptoGuard took 8.22 minutes
on average to analyze each app (i.e., in both the mobile-IoT and non-
IoT sets), and 251.38 hours in total, whereas CogniCrypt took 0.67
minutes on average, and 20.46 hours in total. We aggregated the
results provided by both CryptoGuard and CogniCrypt and built
parsers to map the identi�ed misuse to violating method/statements
in apps, as well as the justi�cation provided by the tools.

6.2 Results: Cryptographic API Misuse
Tables 4 and 5 illustrate the number of unique apps that were
found vulnerable to crypto-API misuse by CryptoGuard and Cog-
niCrypt, respectively, omitting 17/44 of CogniCrypt’s rules that
no app violated.Across all rules, CryptoGuard �nds vulnerabili-
ties in 863/917 mobile-IoT apps, and 883/917 non-IoT apps, while
CogniCrypt �nds vulnerabilities in 599/917 mobile-IoT and 658/917
non-IoT apps. Further, CryptoGuard �nds 38,486 rule violations
across all 917 mobile-IoT apps, and 40,218 violations across all 917
non-IoT apps, while CogniCrypt �nds 4,686 and 4,363 rule viola-
tions across mobile-IoT and non-IoT apps, respectively, as shown
in our online appendix [39].

Security Finding 5 (F5) – 94.11% (863/917) of the mobile-IoT
apps with over 1 million installs have at least one crypto-API
misuse vulnerability as detected by CryptoGuard, which is ap-
proximately equal to the fraction of non-IoT apps �agged as
vulnerable, i.e., 96.29% (883/917).

This �nding couldmean that popularmobile-IoT apps are roughly
as vulnerable as a proportionate sample of non-IoT apps. Prior work

Table 5: The number of mobile-IoT (and non-IoT) apps that violate
CogniCrypt’s rules, i.e., contain at least one vulnerability/violation
of each rule-type (sorted by # vulnerable mobile-IoT apps).

CogniCrypt’s Rules (IDs as per [46] # Vulnerable Apps

ID Rule SPEC Mobile-IoT Non-IoT

36 MessageDigest 492 619
10 javax.net.ssl.SSLContext 186 157
2 javax.crypto.Cipher 161 119
1 javax.net.ssl.TrustManagerFactory 123 110
43 java.security.Signature 114 79
34 javax.crypto.spec.SecretKeySpec 103 68
32 javax.crypto.spec.IvParameterSpec 74 56
16 javax.crypto.SecretKeyFactory 60 38
39 javax.crypto.spec.PBEKeySpec 47 26
12 SSLSocketFactory 28 5
4 java.security.KeyPairGenerator 27 16
25 javax.crypto.Mac 27 12
22 java.security.KeyStore 24 14
24 javax.crypto.KeyGenerator 16 10
37 javax.crypto.CipherInputStream 13 10
21 javax.net.ssl.KeyManagerFactory 12 1
30 javax.crypto.CipherOutputStream 9 7
31 java.security.SecureRandom 7 5
41 javax.crypto.spec.GCMParameterSpec 6 3
15 java.security.DigestOutputStream 5 5
35 javax.crypto.spec.PBEParameterSpec 5 4
26 SSLSocket 4 1
5 java.security.cert.TrustAnchor 2 1
3 java.security.AlgorithmParameters 1 0
8 javax.net.ssl.SSLParameters 1 0
17 java.security.DigestInputStream 1 2
27 java.security.cert.PKIXBuilderParameters 1 0

- Number of apps that violated at least one rule 599 658

by Ka�e et al. [44] has observed a similar trend in the (narrower)
context of SSL/TLS vulnerabilities, i.e., that vulnerability prevalence
in a small set of mobile-IoT apps is similar to that in a prior measure-
ment of general Android apps by Fahl et al. [30]. Alternately, there
is one other explanation: that we simply drew a short straw when
sampling 917 non-IoT apps from the 41,041 non-IoT apps with >1
million downloads, i.e., collected apps that were more vulnerable
(whereas the 917 mobile-IoT apps are all mobile-IoT apps with mil-
lion+ downloads). Given that we ensures a proportionate non-IoT
sample in terms of the distribution of installs, the only way to avoid
such a possibility would be to analyze all 41,041 non-IoT apps with
>1 million installs, which is infeasible (would take roughly 234 days
in compute time for CryptoGuard). However, F5 makes one thing
clear: despite being a newer class of apps, mobile-IoT apps are not
substantially better than non-IoT apps in terms of using cryptog-
raphy correctly, which results in serious consequences in the IoT
context, as we further discuss in Section 8.

High and Medium severity vulnerabilities: CryptoGuard as-
signs a severity to each rule based on the potential risk, in terms
of how easily the attacker may exploit the associated vulnerability,
and the potential impact. We leverage this additional context to
further understand the nature of crypto-API misuse in mobile-IoT
apps, using the high [H] and medium [M] severity rules annotated
in Table 4. Particularly, we observe that 2/3 top rules with the most
vulnerable apps are high severity, and overall, most apps violate at
least one high severity rule (i.e., rule #16, with 825 vulnerable apps).
The signi�cant prevalence of bad cryptographic hashes (e.g., MD5,
SHA1) (rule #16, H) can be easily exploited to violate integrity of
protected objects (e.g., signatures, when used in conjunction with
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Figure 5: The number of mobile-IoT and non-IoT apps with the
Janus vulnerability, distributed over the install count.

SSL/TLS). Similarly, constant cryptographic keys (rule #1, H) can be
leveraged to steal con�dential data in transit or at rest (e.g., authen-
tication tokens, user credentials). Similarly, we �nd high severity
SSL/TLS vulnerabilities, e.g., hostname veri�ers that accept all hosts
(rule#4, H), or custom trust manager’s that trust all certi�cates
(rule#5, H) prevalent in mobile-IoT apps, which is concerning as
these vulnerabilities have been leveraged using Man-in-the-middle
(MiTM) attacks to escalate privilege to connected IoT devices [44].

Several vulnerable mobile-IoT apps support security and privacy-
critical devices. For example, Eye4 (1 million installs), which allows
remote control of video systems, has 293 violations (CryptoGuard),
and violates 10 of its rules. Similarly, TP-Link’s Tether app (10 mil-
lion installs), which allows access to TP-Link’s routers and range
extenders, has 81 violations (according to CogniCrypt). Our case
study explores the IoT security implications of these vulnerabili-
ties (Section 8). Next, we leverage the severity annotations from
CryptoGuard to validate a meaningful sub-sample of its results.

Manually Validating CryptoGuard’s results for mobile-IoT:
The crypto-API misuse violations detected in mobile-IoT apps are
only signi�cant if they are true positives, which must be manually
validated. As it is infeasible to manually validate the thousands of
violations generated in our analysis, we select a sample of the viola-
tions to validate. Particularly, CryptoGuard’s severity-annotations
provide us with a criteria to sample violations to validate. To bal-
ance the volume of violations as well as popularity, we selected
10 mobile-IoT apps for validation, split between 5 mobile-IoT apps
with highest number of violations reported by CryptoGuard (e.g.,
Eye4 [63], 293 violations), and 5 apps with highest install counts
(e.g., Samsung Health, 1 billion+ installs). Using Jadx [28] to de-
compile the APKs, we manually analyzed 589 high [H] severity
violations found in the aforementioned 10 apps (after removing
obfuscated cases), by con�rming their use from within the app, i.e.,
that the method containing the violation is invoked, and there is
some valid control �ow from the method’s invocation to the viola-
tion. We found that a majority of the violations were indeed true
positives, leading to the following result.

Security Finding 6 (F6) – 82.5% (i.e., 486/589) high severity
violations detected by CryptoGuard in popular mobile-IoT apps
are true positives, i.e., used/called from within the apps.

7 APP SIGNATURE ANALYSIS
The Android package (APK) �le is a special Java archive �le con-
taining all app �les needed for execution, such as resource and dex
�les. To protect the integrity of these �les, the JAR signing scheme
v1was introduced to sign all �les and store signature �les in META-
INF folder. This folder contains three �les listing �le hash results:
the MANIFEST.MF, CERT.SF and CERT.(RSA|DSA|EC). However,
the metadata �les in META-INF folder are not protected by the
JAR signing scheme, which makes it vulnerable to the Janus vul-
nerability (CVE-2017-13156) [11] in Android versions 5.0 to 8.0. By
exploiting the Janus vulnerability that exploits the v1 scheme, an
attacker can inject a malicious dex �le into an APK without tam-
pering with its signatures [64]. A countermeasure for protecting
the entire APK is to use the signing schemes v2, v3, and v4, which
calculate signatures based on all bytes contained within the APK.

Methodology: To understand the prevalence of the Janus vulnera-
bility mobile-IoT apps, we analyze the signatures of all 37k apps
in our mobile-IoT snapshot. Moreover, we also analyze a propor-
tionate sample of 37,783 non-IoT apps with the same popularity
distribution. To automatically check for the signing scheme used
by an app, we use apksigner from Android SDK Build Tools [2].

7.1 Results: App Signature Analysis
We �nd that the number of mobile-IoT apps using the signing
schemes v1, v2, v3, and v4 are 36,220, 29,512, 14,529 and 0, re-
spectively. In comparison, the number of non-IoT apps using the
schemes v1, v2, v3, and v4 are 37,103, 29,891, 14,198, and 0, respec-
tively. Surprisingly, none of the apps use the v4 scheme, which was
released for Android version 11 (and onwards) on September 2020.

Figure 5 presents the distribution of mobile-IoT and non-IoT
apps with the Janus vulnerability over install counts. We �nd 8,172
mobile-IoT apps using the vulnerable v1 scheme, 7,887 of which
support at least one Android system version between 5.0 and 8.0.

Security Finding 7 (F7) – 7,887 (i.e., 20.87%) mobile-IoT apps
are susceptible to the Janus vulnerability, of which 263 have
over a million installs, and 33 have over 50 million installs.

Meanwhile, 7,816 non-IoT apps use the v1 scheme, of which 7,765
apps are vulnerable as they support an Android version between
5.0 and 8.0. As we observe in Figure 5, the prevalence of the Janus
vulnerability in popular mobile-IoT and non-IoT apps (i.e., those
with >1 million installs) is marginally di�erent (e.g., 116 vs 114
vulnerable apps with 1 - 5 million downloads). However, as the
popularity decreases, especially between 5k and 100k installs, we
observe that the number of vulnerable mobile-IoT apps signi�cantly
exceeds non-IoT (e.g., 1429 mobile-IoT vs 1057 non-IoT apps with
10-50k downloads). This trend reverses for apps with very few
installs (i.e., less than 500), i.e., unpopular or new non-IoT apps are
far more vulnerable in comparison to mobile-IoT.

Security Finding 8 (F8) – Non-IoT apps are overall similarly
vulnerable to Janus as mobile-IoT apps; however, moderately
popular mobile-IoT apps (5-100k installs) are far more vulnerable
than non-IoT, and in contrast, non-IoT apps with low popularity
(<500 installs) are far more vulnerable than mobile-IoT.
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8 CASE STUDY: A CONTEXTUALIZED
ANALYSIS OF IOT SECURITY

Vulnerabilities in mobile-IoT apps can lead to the compromise of
other components of IoT systems, such as the integrity/functionality
of physical devices [44], and the authenticity of data in the cloud
back-end [72]. In this section, we perform an in-depth case study
to understand what the vulnerabilities discovered in Section 5–
Section 7 mean in the IoT context, in terms of their impact on the
security of IoT devices and functionality.

Selecting mobile-IoT apps: We sampled 18 mobile-IoT apps from
those detected as vulnerable in Section 5 –Section 7, excluding apps
that were obfuscated or which failed to decompile. For maximum
impact, we selected apps that satis�ed (and generally exceeded) the
following criteria: (1) Vulnerability. The app is found susceptible
to more than one type of vulnerability, (2) IoT security impact.
The app supports at least one type of security/privacy sensitive
IoT device, such as security cameras and smart TVs, as identi�ed
by I�TS������’s product identi�cation model from Section 4.2,
and (3) User impact. The app is popular, i.e., impacts a large num-
ber of users, measured in terms of the install counts. Our online
appendix [39] provides the full list of apps.

Methodology: We use a systematic, manual, reverse engineering
methodology to con�rm the reachability and IoT-related impact of
the vulnerabilities in our set of 18 apps (decompiled using jadx [28]).
During our analysis, we take care to exclude vulnerabilities that do
not impact IoT-speci�c functionality in spite of being reachable; e.g.,
Amazon Fire TV contains a PasswordProviderFactory class with
a vulnerable TrustManager that accepts all certi�cates. While this
TrustManager is in use in the app, we exclude it from our results
as it does not impact IoT-speci�c functionality.

Results: We were able to connect vulnerabilities to important IoT
functions/components in 16/18 apps, all with >1 million installs.
We summarize these vulnerabilities, the IoT functionality impacted,
and the devices a�ected in Table 6, which lead to two key �ndings.

Security Finding 9 (F9) – Every class of vulnerabilities in-
vestigated in popular mobile-IoT apps (i.e., vulnerable libraries,
crypto misuse, and Janus) impacts critical IoT functions/compo-
nents, including �rmware integrity, app and device functionality,
app integrity, and user authentication and credentials.

Security Finding 10 (F10) – The 16 vulnerable mobile-IoT apps
where IoT functionality is impacted support security/privacy-
critical devices, of which security cameras are a majority.

We now describe the discovered impact in terms of each critical
IoT function/component a�ected.

1. Firmware: We found 3 top apps with vulnerabilities a�ecting
device �rmware updates. The Eye4 app uses HTTP links for down-
loading �rmware in plaintext, while also not verifying the checksum
of the downloaded �rmware, with serious implications for the in-
tegrity of the IP cameras it supports. Similarly, Hubble Connected

for Motorola, and JBL Music upgrade device �rmware using

Table 6: Summary of the results of the study of 18 mobile-IoT apps.

IoT Impact Vulnerabilities Vulnerable apps Devices A�ected
Firmware (Malicious Crypto (HTTP, Hubble Connected Camera
Modi�cation) no integrity JBL Music JBL Speaker

checks) Eye4 IP Camera
App/Device IoT Libraries SURE PTZ Camera
Functions (hijack, (multiple CVEs) IP Pro Smart TV
code execution) Vestel Smart Center Vestel Smart TV

Sricam IP Camera
LinkSys Wi-Fi Routers
Realme Link Watch, Bands

User Credentials, Crypto (MD5, EagleEyes(Lite) IP Camera, NVR
Authentication TrustManager, Cetusplay TVs, Chromecast

HTTP) Hubble Connected Camera
Admin Password Crypto (constant Eye4 IP Camera
Leakage password, HTTP)
App Integrity Janus ANT+ Plugins Service Activity trackers
(Malware) Amazon Alexa Echo Devices
General Data Crypto (DES, Remote for Samsung TV Smart TV
Security MD5, ECB mode) LG ThinQ Washer, AC, TV

Harmony Lights, Blinds, TV

HTTP links, enabling attackers to inject malicious �rmware into
their cameras and speakers via MiTM attacks.

2. IoT App/Device Functionality: We �nd 6 top mobile-IoT apps
using vulnerable IoT libraries, leading to critical vulnerabilities
that can allow attackers to compromise app/device functionality.
For example, the IP Pro (VR Cam, EseeCloud) app uses the
com.aliyun.alink.linksdk library which implements the Alink pro-
tocol [1] for app-device communication, but has several vulnera-
bilities (CVE-2017-18349 [6] and CVE-2019-11777 [7]). CVE-2017-
18349 can be exploited to gain remote code execution on IoT devices,
whereas CVE-2019-11777 allows one MQTT server to imperson-
ate another, allowing attackers to hijack app/device interactions
and control IoT-related functions. Similarly, Realme Link uses
the com.tuya.smart/tuyasmart-bizbundle-camera and com.tuya.smart/
tuyasmart-bizbundle-ota libraries for IP camera control and �rmware
updates, which are subject to 6 CVEs that allow attackers to attack
remote servers (e.g., CVE-2022-25845 [10]), perform denial of ser-
vice attacks (e.g., CVE-2021-36090 [9]), and execute arbitrary code
(e.g., CVE-2017-18349 [6]). Finally, the SURE - Smart Home and

TV Universal Remote app uses the com.willblaschko.android.alexa/
AlexaAndroid library to integrate with the Alexa platform, which
has a vulnerability (CVE-2021-29425 [8]) that enables unauthorized
access to parent directories, leaking sensitive IoT device data.

3. User Credentials and Authentication: The CetusPlay app
uses a vulnerable X509TrustManager during the device pairing pro-
cess, and hence, for exchanging sensitive data with devices/servers,
which is exposed to a MiTM attack. Further, the EagleEyes(Lite)
uses a HTTP link to load its login page. Such mixed use is vulnera-
ble to SSL stripping, wherein an attacker can potentially replace
this login page with a phishing page, compromising the user’s lo-
gin credentials. Similarly, Hubble Connected for Motorola app
sends and publishes commands to IoT devices in links using HTTP,
potentially leaking the device IP, port number and command strings,
which the attacker can not only read, but also modify in transit,
thereby impacting the integrity of the internal states of both the
app and the communicating device. Finally, we the Eye4 app uses
the vulnerable MD5 algorithm to create a password hash that is
then sent over HTTP, which is susceptible to replay attacks at a
minimum (i.e., as the hash is sent over in plaintext).

com.tuya.smart/tuyasmart-bizbundle-camera
com.tuya.smart/tuyasmart-bizbundle-ota
com.tuya.smart/tuyasmart-bizbundle-ota
com.willblaschko.android.alexa/AlexaAndroid
com.willblaschko.android.alexa/AlexaAndroid
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4. Admin Password Leakage. Aside from authentication issues,
we observed that some apps expose the password in plaintext in
the app-device communication. The Eye4 app uses HTTP links to
check device status in the CheckStatus and GetWifiDeviceList

activities, wherein it uses static links in which the IoT device admin
passwords are hardcoded. Such leakage would allow an adversary
to take over the IoT device, and is particularly worrisome in a
shared environment (e.g., smart buildings/o�ces) where users on
the network may not have authorized access to all devices.

5. The App’s Integrity. We found top IoT apps that are vulnerable
to the Janus vulnerability, such as the Amazon Alexa app, which
only uses the v1 signing scheme with a minimum Android v6.0
supported, making it vulnerable. This vulnerability would allow
attackers to inject dex �les without violating the signature check,
and hence signi�cantly impacts the integrity of the app, and every
device it controls. Since our analysis is based on apps crawled in
August 2021, we also checked the latest version of Amazon Alexa

(as of August 2022), which is signed with both v1 and v2 schemes,
and hence still vulnerable to the Janus vulnerability when installed
on Android 5.0-8.0 phones. Similarly, we also �nd many top apps
(e.g., ANT+ Plugins Service app which has 1 billion downloads)
that use only the v1 scheme with low minimum Android SDK
versions ( 5.0), which leads to them being vulnerable.

6. General Data Security. We found that Remote for Samsung

TV uses MD5 for validating cryptographic signatures in responses
received from its server during the device discovery process. Such
signature validation is meaningless due to the ease of �nding col-
lisions in MD5, and may be exploited by an attacker to forge re-
sponses to the TV. Similarly, the LG ThinQ app uses AES in ECB
mode to encrypt passwords in its Wi�Network class, using a hard-
coded key. Both the ECB mode and the hardcoded key render the
encryption meaningless. Finally, we �nd that the Harmony app uses
weak symmetric encryption standards and cryptographic hashes
(DES, MD5) to encrypt (and perform integrity checks on) important
authentication attributes such as the hubSecret and authToken.

The real impact of vulnerabilities demonstrated in our case stud-
ies a�ects millions of users (and billions in the case of some apps).
Our manual investigation is in no way exhaustive, and that we did
not �nd IoT impact in 2/18 apps does not indicate its absence. With
the mobile-IoT snapshot and artifacts generated by I�TS������,
our hope is to enable regular, contextual analysis of mobile-IoT
apps as they appear on the market, so as to proactively detect and
mitigate such vulnerabilities.

9 LESSONS
Our �ndings demonstrate critical gaps in the security of mobile-IoT
apps and libraries (F1–F8), and their impact on the IoT system (F9,
F10). This section discusses three key lessons from our research at
this critical intersection of mobile and IoT security.

Lesson 1:We need to focus e�orts onmobile-IoT apps –While
the security of mobile-IoT apps is understudied [44, 65], there is sig-
ni�cant body of work [15, 21, 22, 31, 44, 62, 70, 73] on the security
of another class of “apps” in the IoT domain, IoT apps, i.e., simple
trigger-action automation programs that run on popular IoT plat-
forms (e.g., SmartThings “SmartApps” [57] and NEST [51] routines).

Recent work [50] demonstrates that users may not be inclined to
(or need to) deploy developer-de�ned IoT apps, instead preferring
to create routines on their own via platform UIs. Moreover, IoT
apps may no longer be hosted by the platform (e.g., SmartThings
v3 [58]), instead being hosted entirely on third-party clouds (as
black boxes), making their acquisition and analysis infeasible. In
contrast, typical end-users need mobile-IoT apps, as they cannot
program complex Android apps (as opposed to simple routines).
Moreover, I�TS������makes it feasible to acquire mobile-IoT apps
at scale, and our analysis shows the signi�cant prevalence of vul-
nerabilities in them. Therefore, we argue that mobile-IoT apps are
both necessary and feasible to analyze, and given the severe vulner-
abilities uncovered in this paper, deserve greater attention from the
security community, at least equal to if not more than IoT apps.

Lesson 2: We need to address the key bottleneck in large-
scale mobile-IoT analysis – Despite developing a large snapshot
of mobile-IoT apps, the scale of our analyses was restricted by
the runtime performance of security and static analysis tools. For
instance, it cost us more than 10 days to analyze only 917/37k
mobile-IoT apps with CryptoGuard. Similarly, it took over 3 weeks
in compute time to search for the use of vulnerable libraries in
only 5,380/37k mobile-IoT apps (with >50k installs). Although this
lack of scalability is well-known, it is interesting to observe its
crippling e�ect on the large-scale analysis of mobile-IoT apps, even
when other challenges have been met, such as a suitable large-
scale snapshot of apps collected, and IoT libraries identi�ed. From
our observation, the main reason for the slowdown is its general
analysis of all areas of the app, including those that may not be
relevant to the domain impacted by the app (i.e., IoT, in this case).
One approach to resolve this bottleneck is to contextualize the
analysis to only examine those areas of code relevant to IoT, which
is nevertheless necessary to enable a more precise exploration of
mobile-IoT app security, as we discuss next.

Lesson 3: We need contextualized, automated, security analy-
ses for mobile-IoT – Cryptographic vulnerabilities are as preva-
lent inmobile-IoT apps as in general mobile apps (F5), which implies
that developers have continued to make similar mistakes in this
newer domain, but with a far worse impact on the user’s physical
environment (F9). Given this qualitative di�erence between the
implications of vulnerabilities in mobile-IoT and non-IoT domains,
we believe that it is necessary to contextualize existing Android
security analysis techniques to IoT, e.g., by adapting them to iden-
tify and prioritize areas of code relevant to IoT. Such an adapted
analysis would allow us to automatically reason about the security
implications of a vulnerability in the IoT context, saving manual
e�ort, while also reducing the compute-time required to analyze
an app due to the narrower focus. The recent focus on automated
and scalable compliance enforcement for mobile-IoT apps (e.g., by
standards organizations such as ioXt [41]) would further increase
the demand for such tools. We believe that the intuition from our
manual reverse-engineering (Section 8), as well as the intuition
behind our library-identi�cation approach, can be automated to
quickly triage apps for IoT-speci�c functionality. The techniques,
artifacts, and insights developed by I�TS������ enable us to pursue
such contextualized mobile security analysis in the future.
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10 THREATS TO VALIDITY
Our work aims to obtain a best e�ort estimate of the mobile-IoT
app presence on markets such as Google Play, to enable insights
that can only be obtained via large-scale analysis.

1. A best-e�ort, market-scale snapshot: As discussed in Sec-
tion 4, we perform a comprehensive and systematic exploration to
obtain our snapshot and demonstrate its validity by considering
all possible avenues for collection, and manual validation of a sub-
sample that demonstrates 88.4% precision. However, we note that
this paper makes the �rst attempt to address the several challenges
in creating such a snapshot, and o�ers a valuable understanding
of the mobile-IoT presence on Google Play. Therefore, while there
is imprecision in our approach, we consider the engineering e�ort
needed to re�ne this snapshot, e.g., of further analyzing mobile-
IoT metadata to reveal increasingly distinguishing characteristics,
within the scope of future work.

2. False negatives: As described in Section 3.1, the two classi�ers
we train and use to identify mobile-IoT apps, BERT and BiLSTM,
may not always agree in their assessment for an app, and this dis-
joint set of apps that both disagree upon may contain several more
mobile-IoT apps. That is, I�TS������’s approach is not immune to
false negatives. We believe that along with improving the features
to further improve our models, future work may also explore the
use of out-of-band information (e.g., product titles sold on Amazon)
to further extract mobile-IoT apps from this set of ambiguous apps.

3. Scale of Analysis: While certain security analyses that were
performed (e.g., the library analysis) at the scale of the entire mobile-
IoT app snapshot, others were performed on smaller subsets for
practical reasons (mainly the time required for analysis tools and
manual analysis to scale). As a result, the �ndings resulting from
these analyses may not generalize to all 37k mobile-IoT apps.

4. Exploitability: We do not evaluate the exploitability of the
discovered vulnerabilities. That is, while some are certainly ex-
ploitable (e.g., the Janus vulnerability), others may only be so in
speci�c circumstances (e.g., the use of a vulnerable library for a
security-critical function). However, we note that the presence of
several critical vulnerabilities in popular mobile-IoT apps is in itself
a concern, as future code may accidentally make use of a vulnerable
piece of code that is currently unused.

11 RELATEDWORK
There has been signi�cant prior work on the security of IoT apps,
devices, and platforms. Our work di�ers from (and in many cases
complements) such prior work by enabling a market-scale char-
acterization of mobile-IoT apps, through the novel I�TS������
framework, the evolving mobile-IoT app snapshot that it develops,
its analysis of the snapshot and the resultant �ndings.

Past work on the analysis of mobile-IoT apps [23, 43, 66] is lim-
ited in terms of the scale and insights that I�TS������ enables.
The closest to I�TS������ is the work by Wang et al., who de-
velop a dataset of 2081 mobile-IoT apps. We deviate from Wang
et al. in key ways: (1)Wang et al. seek to obtain some mobile-IoT
apps for a speci�c analysis (identifying vulnerable components
across product-types), whereas I�TS������ is designed to obtain

a large body of mobile-IoT apps (i.e., a market-scale snapshot) to
enable diverse analyses, as we demonstrate in Section 5–Section 7.
I�TS������’s ML-approach generalizes observations from train-
ing data, obtaining a diverse set of mobile-IoT apps 18X larger
(37,783/2081) than Wang et al.’s set obtained via snowball sam-
pling that converges on a smaller set of apps similar to the seeds.
Moreover, we develop a novel approach for identifying IoT-relevant
libraries that identi�es 19k such packages, and our analysis yields
key results characterizing mobile-IoT apps and libraries (R1–R7),
and impactful security �ndings (F1–F10).

Further, prior work has analyzed IoT artifacts on a scale similar
to I�TS������’s, but from a di�erent perspective. Particularly, the
large scale network analysis by Kumar et.al. [47] answers impor-
tant questions about the use of IoT devices in consumer homes.
I�TS������ complements this work by answering the related but
unique questions of what IoT products (i.e., mobile-IoT apps) are
available on the market (rather than being used by consumers),
and more so, facilitates the large scale analysis of mobile-IoT apps,
which Kumar et al. do not analyze.

A large body of work has centered around identifying issues
related to automation [15, 21, 31, 44, 62, 70, 73] and built tools and
techniques [22, 42, 50] to mitigate risks associated with automations
facilitated by IoT platforms. Similarly, researchers have also focused
on analyzing the security of IoT devices to understand remote
binding [25], IoT protocols [75], and memory corruption [24] in
IoT devices. Both the mobile-IoT snapshot and insights generated
based on our analysis of the current state of IoT market can be
used to advance such research for more generalizable �ndings via
a comprehensive characterization of all relevant products.

Finally, there has been signi�cant work in mobile app security
research focusing on �ngerprinting [61, 71, 74], and library extrac-
tion [49, 67] of mobile apps. Our work builds on top of these tools
and frameworks to adapt the technique for our analysis. Similarly,
prior work has also separately leveraged cryptographic API misuse
detectors [46, 55] to study the app market. We envision that our
work is complementary and provides foundation for future work
to perform similar focused explorations of IoT.

12 CONCLUSION
In this paper, we develop a systematic understanding of what prod-
ucts constitute the IoT mobile app market by developing a market-
scale snapshot of 37k mobile-IoT apps, using the I�TS������ frame-
work. Our characterization of this snapshot leads to 7 key measure-
ment results (R1–R7), and our multi-faceted security analysis of it
leads to 10 security �ndings (F1–F10). Our �ndings demonstrate
prevalence of critical vulnerabilities in mobile-IoT apps, and their
serious impact on IoT security and privacy. These implications moti-
vate an increased focus on mobile-IoT apps, and the development of
mobile security analyses contextualized to IoT, which the intuition,
techniques, data, and artifacts developed in this paper enable.
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