
DASK: Driving-Assisted Secret Key Establishment
Edwin Yang*, Song Fang*, and Dakun Shen†

*University of Oklahoma, Norman, OK, 73019, {edwiny, songf}@ou.edu
†Central Michigan University, Mount Pleasant, MI, 48859, shen2d@cmich.edu

Abstract—Low-cost and easily obtained Global Navigation

Satellite System (e.g., GPS) receivers are broadly embedded into

various devices for providing location information. In this work,

we develop a secret key establishment by utilizing the driving

data obtained from GPS. Those data may exhibit randomness as

the driver may alternatively step on the accelerator and brake

pedals from time to time with varying force in order to adapt

to the road traffic during driving. A driving vehicle provides a

physically secure boundary as the devices co-located within the

vehicle can observe common GPS data, as opposed to devices that

do not experience the trip. We implement this key establishment

in a real-world environment on top of off-the-shelf GPS-equipped

devices as well as widely deployed GPS modules each connected

with Raspberry Pi. Extensive experimental results show that when

a user drives around 1.36 km for 1.32 minutes on average under

moderate traffic conditions, two legitimate GPS-equipped devices

in the vehicle can successfully establish a 128-bit secret key.

Meanwhile, an attacker following the target vehicle is unable to

establish a secret key with the legitimate devices.

I. INTRODUCTION

Global Navigation Satellite System (GNSS) has become
a ubiquitous technology and has been built into connected
vehicles and various other devices (e.g., smartphones, tablets,
or IoT devices). The data those devices collect often carry a
great potential of privacy risks in relation to the use of the
data and its access [1]–[3]. The popularity of GNSS-equipped
mobile devices demands a pairing scheme, so that each pair of
devices, which do not share prior knowledge with each other,
can communicate securely. This challenge has not yet been
fully addressed [1], [3].

On the other hand, with the advent of in-vehicle infotainment
(IVI) systems (such as Android Automotive [4]) and other
mobile devices with limited user interfaces (e.g., smartwatches),
there is an increasing need for a secure and spontaneous pairing
technique. In general, such a device pairing method should
satisfy the following four requirements.

• Lightweight: some devices are cheap and may not afford
complex computation, and thus the method must not
require complex and expensive hardware;

• Zero-effort: user interfaces are not always available, so it
may be unrealistic to require user involvement (e.g., typing
a password or bringing both devices close to communicate
via a Near Field Communication channel), and also human
involvement may cause usability concerns;

• Flexible: considering the scalability and portability of
such GPS-equipped devices, it should enable quick key
establishment and update;

• Secure: it should resist man-in-the-middle (MITM) at-
tacks, which are the common challenges in secure device

pairing [1], [5] in the absence of pre-authentication of each
encountered device.

Traditional cryptographic methods (e.g., Diffie-Hellman key
exchange) rely on computational hardness and are neither
lightweight nor flexible. Also, they often need user intervention
for authentication operations to prevent MITM attacks. For
example, one device generates a passkey and displays it to
the user, who is then required to type it into the other de-
vice [6]. The devices finally run a shared secret authentication
protocol which succeeds if the input passkey is correct. The
attacker’s connection request would be rejected without the
correct passkey. There is often a one-time inconvenient paring
phase when the user needs to enter a passkey shown in one
device into another. After that, the pairing would be automatic
by reusing the pre-negotiated passkey, which, however, can be
vulnerable to numerous attacks [7].

Instead, researchers have proposed various context-based
pairing mechanisms which can mitigate human involvement via
the common observation, e.g., a visual channel [8], ambient
audio patterns [9], [10], event timing [2], radio frequency
noise [11], wireless signal strength [12], [13] and wireless
channel [14], [15]. The uncertainty in the observed context
generates the randomness and thus provides the entropy for the
established key. However, they impart two major drawbacks.

First, the randomness embedded in those contexts is not
always enough to generate effective keys, leading that the users
may have to deliberately inject extra contexts. For example, [9]
requires the user to generate some noise in order to work in a
quiet environment while [2] needs the user to introduce extra
events to decrease the key generation time in a quiet house.
Such deliberate solutions obviously hinder the practicality in
terms of cost and usability [2].

Second, as there is no authentication of each party, most
existing work [10], [12]–[14] are subject to the MITM attack,
in which an adversary stealthily relays and possibly alters the
communication between two parties by establishing two distinct
keys, one with each party. Authors in [2] propose a secure
pairing technique that is resistant to MITM attacks by utilizing
common inter-event timing information, while this technique
targets the scenario when both devices are within a physical
home and the pairing time is inversely proportional to the
frequency of events.

In this paper, we develop a practical driving-assisted secret
key establishment, called DASK, with the aforementioned four
important features. The basic idea is to leverage the fact that
two GNSS-equipped devices in the same vehicle can capture

2022 IEEE Conference on Communications and Network Security (CNS)

978-1-6654-6255-6/22/$31.00 ©2022 IEEE 73

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
k

Se
cu

rit
y

(C
N

S)
 |

 9
78

-1
-6

65
4-

62
55

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CN

S5
61

14
.2

02
2.

99
47

24
1

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

Pairing

Fig. 1. GPS-equipped devices can use driving data for key establishment.

the same driving data and thus extract the same secret keys
from them. Specifically, each device quantizes the data into
initial binary bit sequences. Due to observation errors, there
may exist mismatched bits between the initial binary sequences.
Reconciliation is then applied to make both devices agree on an
identical secret key, with which the two devices can do secure
communication. For example, DASK can be used to connect a
mobile device to an in-vehicle infotainment (IVI) system, while
the current user-involved pairing process is often tedious and
unsafe to do while driving [16].

DASK is lightweight since GNSS receivers are inexpensive
and widely available across various devices. Second, it enables
devices to automatically establish a secret key using the ob-
served driving data without human involvement. Also, daily
driving normally embeds rich randomness in nature so that
humans are not required to generate deliberate contexts. Third,
it is flexible as each pair of devices put in the same driving
vehicle may launch the pairing and the established key can
be updated with a new driving trip. Also, only the devices
experiencing the same driving period for the key generation can
pair with each other. Thus, an attacker who does not locate in
the same vehicle with legitimate devices when key generation
is performed will not be able to extract the established key.
A vehicle provides a physically secure boundary and MITM
attacks can be effectively prevented.

Our design is based on two key insights. On one hand, a
driver may alternately step on or release the accelerator and
brake pedals with varying force in order to adapt to the road
traffic. Consequently, the vehicle may switch among different
states, i.e., accelerated, decelerated, and uniform motions. Such
states can be captured by in-vehicle GNSS-equipped devices.
Meanwhile, the road traffic is normally dynamic, diverse, and
random, so is the vehicle’s state transition sequence. Thus, the
inherent randomness in the vehicle’s states during driving can
be utilized as a source for extracting a secret key between these
devices, as shown in Figure 1.

On the other hand, a following vehicle may track the
trajectory of the target (preceding) vehicle. However, it is
almost impossible for a stalker (i.e., the driver in the following
vehicle) to calculate or copy exactly each driving behavior of
the preceding driver, considering the line of sight blocking
introduced by unpredictable traffic or complex roadside envi-
ronment. Especially under certain crowded traffic slots, there
may generate a lot of minute state transitions that cannot be
repeated by the stalker. For example, the driver in the target
vehicle steps on the brake pedal lightly to decelerate a little bit,
and then soon switch to stepping on the accelerator pedal to

accelerate. Thus, the following car may miss those minute state
transition details. With the driving data that is different from
the target user, the stalker would generate a key different from
the key established between the devices in the target vehicle.

Some recent studies propose to establish keys with inertial
measurement unit (IMU) sensors for intra-vehicle devices [16],
[17]. However, DASK has two advantages over them.

First, accelerometer data can be easily disturbed by device
orientation/motion [16], [17] while GPS is less affected by
those factors. Specifically, to eliminate the effect of device
movement, [16] uses an adhesive tape to fix the devices while
[17] strictly fixes the devices with belts. Also, [16] requires
that the legitimate devices in the vehicle must be placed in the
same orientation. To relax the requirement of device orientation
consistency, [17] proposes a calibration method by combining
accelerometer and gyroscope data. However, an extra sensor
(i.e., gyroscope) is required. Any device movement may affect
the accelerometer and gyroscope readings, leading to failure of
the key establishment, as pointed out by [17].

Second, unlike permission-protected sensors (e.g., GPS, mi-
crophone, and camera), IMU sensors are normally considered
insensitive and accessible by any mobile application without
special privilege [18], [19], while applications’ permission to
access GPS is user-manageable and thus it would be more
secure to utilize GPS data to generate secret keys.

Our main contributions are summarized as follows.
• We build a customized method to separate useful driving

data that exhibit randomness and investigate the practical
application of using such data in key generation.

• Compared with IMU sensor based secret key establish-
ment schemes, DASK is more robust to device deployment
and movement, and more secure by employing permission-
protected location data as the key source.

• Our real-world experiments show with moderate driving
time/distance, DASK enables various GPS-equipped de-
vices to establish a secret key, demonstrating the feasibil-
ity, effectiveness, and robustness.

• DASK is resilient to MITM attacks as an attacker without
experiencing the same driving trip of key establishment
with legitimate devices is unable to extract the secret key.

II. ADVERSARY MODEL

In a general scenario, Alice and Bob aim to establish a
secret key. Either party could be any GPS-equipped device
brought into the vehicle. The utilized vehicle is a standard
family car with width, length, and height of about 1.8, 4.8, and
1.5 meters, respectively. We assume that no adversary appears
in the car during the key establishment period. This assumption
follows the basic rule for all context-based key establishment
schemes (e.g., [2], [16], [17], [20]). For example, [2] utilizes the
physical boundaries of a house to separate legitimate devices
and adversaries. Also, it is easy to detect an active GPS device
with a readily available GPS Bug Detector. For a passive one,
as the recording cannot be accessed until the attacker gets
the tracker back after some time, it would be difficult for the

2022 IEEE Conference on Communications and Network Security (CNS)

74

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

GPS
Data

Data
Preprocessing

Noise Reduction

Event
Detection

Start Point
Determination

Key
Extraction

Redundancy Removal

Generated
Key

Quantization

Mismatch
Correction

Interpolation

Fig. 2. DASK scheme flow chart.

attacker to determine effective data for the key establishment
from a huge amount of recorded data.

We consider that an attacker, Eve, can launch non-invasive
secret key inference attacks by stalking the target vehicle. Due
to the line-of-sight obstruction of various traffic factors, Eve
is unable to directly observe the driving movement of the
preceding vehicle for the whole key generation period. Note
that this process may require dedicated speed measurement
systems, also if Eve follows the target vehicle too close for a
long time, the exposure risk would be dramatically increased.
Instead, the attacker takes another intuitive strategy, i.e., using
her observed GPS data to infer the key. Moreover, Eve has
knowledge of the applied secret key establishment algorithm.

III. SYSTEM DESIGN

A. Scheme Outline

Alice and Bob, co-located within a vehicle, both continu-
ously capture GPS when the vehicle runs. In this work, we
focus on the velocity information as the time-derivative of
its gathered position data. The velocity variation shows the
driving vehicle states, which are the results of pedal controls
performed by the driver. With recorded GPS, each device
derives the velocity as well as the corresponding timestamp
information. To launch DASK, both devices first pre-agree on
a start point of the key generation. Then, each performs a
data pre-processing phase in which the noise and bias in the
GPS measurements, as well as the redundant driving data (i.e.,
a long-time stop or cruise) without exhibiting randomness,
will be eliminated. Next, each device computes a binary bit
sequence from the pre-processed data with the customized
quantization method. Finally, a reconciliation process is per-
formed to correct mismatches between the generated sequences
on both sides. Figure 2 shows the flow chart of DASK.

B. Event Detection

1) GPS Accuracy: The accuracy of GPS observations de-
pends on multiple factors, including the satellites’ positions,
surrounding landscape, and receiver hardware characteris-
tics [21]. For Alice and Bob within a normal-sized vehicle,
the effects of the first two factors are almost the same. GPS
requires a direct line of sight between the receiver and the
satellite. Its accuracy suffers due to reflections and attenuations,
especially in urban environments with dense obstacles such as
high buildings and trees. However, as the distance between
Alice and Bob is much smaller compared with the length of
the signal path from the satellite to the receiver, the fluctuation
of GPS accuracy is consistent across both devices.

On the contrary, the hardware difference between GPS
receivers (e.g., frequency band, antenna, and positioning algo-
rithm) may bring disparities between their respective records.

Intuitively, a low-cost receiver may be insensitive to weak
GPS signals and thus have more errors, while a high-end
dual frequency, the survey-grade receiver would get a more
accurate measurement. In Section IV-A, we test various off-the-
shelf GPS-equipped devices and widely deployed GPS receiver
modules to explore the measurement differences.

2) Synchronization of Start Points: DASK does not imme-
diately initialize the key establishment when the vehicle starts,
and instead waits until the vehicle runs for a while. The period
from the ignition to the start point of key establishment is
called the preparation phase, which aims to make the key
establishment efficient considering that the vehicle state may
be easily observed and shows less frequent variation during
this phase. Each device then records the candidate start point,
i.e., the time when the observed vehicle speed firstly reaches a
threshold of Vs, which will be set based on the observation that
the vehicle state varies gradually more frequently afterward.

Due to GPS measurement errors or signal delay, the candi-
date start points identified by Alice and Bob may not be exactly
the same. To solve this problem, DASK enables one party
(e.g., who launches the key establishment) to notify the other
party of the start point with the corresponding GPS timestamp
which can be sent simultaneously with other information during
the reconciliation, as discussed in Section III-D. The GPS
timestamps are accurate and synchronized as they originate
from each satellite’s high precision atomic clocks, which are
periodically corrected by the Master Control Station [22], i.e.,
the central control node for the GPS satellite constellation. Both
devices then select a same timestamp as the common start point
of the key establishment.

C. Data Pre-processing

1) Interpolation: There is no guarantee that Alice and Bob
always successfully obtain GPS signals due to the dynamic
variation of the environment outside the vehicle, and each
device sometimes receives empty GPS data (i.e., null values).
Therefore, GPS data should be interpolated, and we utilize
linear interpolation to estimate the missing velocity values.

2) Noise Reduction: It is observed that the frequencies of
the variations in GPS velocity due to vehicle control primarily
lie at low frequencies. To preserve valuable signal components
and mitigate the random high-frequency noise introduced by
environmental interference or hardware imperfection in GPS
velocity data, we thus adopt a Butterworth low-pass filter [23].

3) Redundancy Removal: As mentioned earlier, when the
vehicle stops or moves at a constant speed with cruise control,
the observed velocity would be stable and easily discovered
by out-of-the-vehicle observers (i.e., the velocity of the vehicle
may not provide sufficient randomness).

Stop Period Detection: When the vehicle stops, the obtained
velocity may slightly deviate from 0 due to the noise or
unexpected GPS signal lagging. Let vt and pt denote the
pre-determined maximum measurement errors of speed and
coordinate, respectively. When the vehicle stops or moves at
a speed less than vt, the GPS coordinate usually maintains a

2022 IEEE Conference on Communications and Network Security (CNS)

75

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

v

𝑎𝑖1

𝑎𝑖2

𝑎𝑖3

𝑡𝑡0 + 8𝑡0 + 2𝑡0

v

t0 tt0 + 8

𝑎𝑖

(a) Outer Interval (b) Inner Interval

Fig. 3. An example of an outer interval and corresponding inner intervals: the
acceleration of the outer interval is ai, and the acceleration values of the three
inner intervals are denoted with ai1, ai2 and ai3. As ai1<ai, ai2>ai, and
ai3<ai, the three inner intervals are quantized into “0”, “1” and “0”.

consistent value (i.e., the variation pt is very small). We thus
utilize such a phenomenon to distinguish stop periods.

Cruise Period Detection: When a vehicle is in cruise mode,
the observed velocity normally varies significantly small among
consecutive samples. The maximum speed variance is set as
Vmax, which depends on the velocity fluctuation during cruise
and can be pre-obtained through an empirical profile. Let v =
[v1, v2, · · · , vN] denote the N -sample velocity sequence after
noise reduction. We utilize a sliding window method to detect
a set C of cruise periods each with no less than w0 successive
samples. Initially, let C = ;, the current window size w = w0

and the index i = 1, and we then iteratively do the following
steps.
(a) From v, obtain the candidate cruise period, c =

[vi, · · · , vi�1+w].
(b) Calculate the speed variance �

2= 1
w

P
i�1+w

j=i
(vj� v̄)2 over

the candidate cruise period, where v̄= 1
w

P
i�1+w

j=i
vj .

(c) If �2
< Vmax, w = w + 1 and jump to step (a).

(d) If w > w0, a cruise period is detected and we have C =
C [{c} and i = i + w, otherwise, we reset i = i + 1;
jump to step (a) until all samples are processed.

With the detected stop and cruise periods, each party will
then remove them. Let R = [(ts1 , te1), · · · , (tsr , ter)] denote
the identified r-segment redundancy time information, where
tsi , tei (i 2 {1, · · · , r}) represent the start and end time
of every segment respectively. Though the detected periods
between legitimate devices are quite similar empirically, they
may not perfectly match. To eliminate the inconsistencies, an
intuitive method is to enable both legitimate devices to share
detected redundancy time information. However, redundancy
information exchange will introduce extra costs and slow the
key establishment. To increase the efficiency of key establish-
ment, DASK only requires one party to detect the redundancy
and deliver such information to the other party so that both can
filter out the same redundant periods.

D. Key Extraction

DASK develops a customized quantization method to enable
each device to generate an initial binary sequence based on
the pre-processed velocity data. As the sequences generated at
both devices after quantization may not perfectly match due to
various measurement errors, the technique of secure sketch [24]
is then utilized to correct those mismatches.

1) Quantization: To maintain the stability and fuel efficiency
of a vehicle, a driver usually pivots the foot to the brake/gas
pedal accordingly and adjusts the vehicle state every a moderate
time (e.g., several seconds). For traditional value based quan-
tization methods with a single threshold, a sample value above
a pre-determined threshold will be encoded as 1 while the rest
will be encoded as 0. If such a quantization method is enforced,
it may frequently generate a series of all 1 or all 0 sequences.
Thus, they are not appropriate for extracting randomness from
the GPS velocity stream. On the other hand, for a multi-level
quantizer, it is difficult to determine the optimal number of
quantization thresholds, and also more levels may make the
key extraction more vulnerable to measurement errors.

Algorithm 1 Two-level Interval Based Quantization
Input: A velocity stream v with N samples; outer and inner

interval sizes so and sin

Output: A binary bit sequence KQ

1: KQ ;, d bN/(so � 1)c, n bso/sinc
2: for i = 1 to d do

3: Oend= i ⇤ so, Ostart=Oend�(so � 1)

4: ai
⇣

v[Oend]�v[Ostart]
so�1

⌘
outer interval

5: for k = 1 to n do

6: Iend=Ostart+k ⇤ sin � 1, Istart=Iend�(sin � 1)

7: aik
⇣

v[Iend]�v[Istart]
sin�1

⌘
inner interval

8: if aik > ai then

9: KQ [KQ; 1]
10: else

11: KQ [KQ; 0]
12: end if

13: end for

14: end for

Instead of quantizing the velocities one by one with fixed
thresholds, we develop a two-level interval based quantization
method, which comes from the observation that a driver usually
utilizes non-uniform force to operate the pedals, leading that the
acceleration varies even during a small period. Specifically, the
proposed method takes two steps: 1) Division: divide the whole
velocity stream into consecutive sub-sequences, called outer
intervals, and split each outer interval into non-overlapping
sub-subsequences, called inner intervals; and 2) Reconstruc-

tion: calculate the acceleration values of each outer interval
and corresponding inner intervals, and each inner interval is
encoded by 1 if its acceleration value is larger than that of
its corresponding outer interval while otherwise 0. Figure 3
shows an example of the proposed two-level interval based
quantization method with a 9-sample outer interval and 3-
sample inner interval. As a result, each outer interval with n

inner intervals can generate n bits. Algorithm 1 presents the
pseudocode for the proposed quantization method.

The selection of interval sizes is a tradeoff between the key
length and the randomness of the generated bitstream. The inner
interval size must be smaller than the outer interval size. Also,
the total number of inner intervals is equal to the length of

2022 IEEE Conference on Communications and Network Security (CNS)

76

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

Bob

Pre-processing

AliceGPS collection GPS collection

Key extraction

K=REC(!", $%)

Pre-processing

Key extraction

'()= start point

*% = redundancy

A	tuple	('() , *%,$%)

$% = SS(!%)

'(-= start point

*" = redundancy

Update '(- to '()

Update *" to *%

. = !%: 0	1⋯1	0 !": 0	1⋯1	0

Fig. 4. Timing diagram for DASK.

the quantized bits. Meanwhile, a small inner interval size may
bring a series of all 1 or all 0 sequences when the vehicle
state changes slowly. In general, the selection of the interval
sizes may adjust based on the specific driving situation. Both
legitimate devices can utilize a heuristic method to determine
the interval size, i.e., gradually increase the length of each
interval size until a secret key is obtained that satisfies both
the length and randomness requirements.

2) Mismatch Correction: Ideally, if two devices observe
exactly the same GPS velocities, they would obtain the same
quantization outputs. However, due to hardware differences
and random noise, GPS velocity records at both devices may
result in a small number of mismatched bits between the two
generated binary bit sequences. Therefore, we use a secure
sketch to make both devices agree on an identical secret key.

Specifically, with the input sequence, Alice calculates the
parity bits according to a selected ECC rule to obtain a sketch,
which can be then made public. Take a Reed-Solomon (RS)
ECC RS(n, k) as an example, which has n symbols of s bits
each. The first k of the n symbols are called information bits,
and the rest parity bits are calculated based on the RS algorithm
and the information bits. That means, for a sequence with k ⇤s
bits, the calculated sketch has (n� k) ⇤ s bits. Given a symbol
size s, the maximum length of the codeword C is m = 2s� 1,
so n  m should hold. Correspondingly, the RS decoder can
correct any n�k

2 symbol errors in the codeword.
Figure 4 presents the timing diagram for DASK. Alice

generates the secret key bits K and then publishes a tuple of
information (i.e., start point timestamp TSA , start and end time
of each detected redundant segment RA, and the sketch SA)
to launch the key establishment. Note that which party to send
the tuple (i.e., launch the key establishment) may depend on
the agreement between Alice and Bob or who firstly generates
the required key length. On the other hand, with TSA and RA,
Bob updates corresponding values and makes the pre-processed
velocity stream consistent with that of Alice in time. Bob then
utilizes a recovery procedure to obtain the secret key. Once
the length of the quantized bits reaches the required length of
the information bits of a chosen ECC, the recovery procedure
combines them with the received sketch (i.e., parity bits) to
obtain an ECC codeword and decode it, and the information
bits in the decoded codeword are recovered key (i.e., K).

E. Security Analysis

1) Passive Attack: In general, a passive adversary cannot
directly observe or measure the minute state transitions of the
target vehicle for a long time from outside due to various
obstacles that block the direct line-of-sight path. Instead, she

0.94 0.96 0.98 1

Similarity Score x

0

0.5

1

E
m

p
ir
ic

a
l C

D
F

P(r
pi-mt

 < x)

P(r
pi-nx

 < x)

P(r
pi-g8

 < x)

P(r
pi-i6

 < x)

P(r
pi-i8

 < x)

P(r
pi-aw

 < x)

Fig. 5. CDFs of cross-correlation.

may attempt to launch the stalking attack: trying to maintain the
same driving state by following the target vehicle to make her
collected GPS data similar to that utilized for key generation
between legitimate devices. We explore the impact of such an
attack in Sections IV-D and IV-E.

We further consider a stronger passive attack, i.e., the at-
tacker can measure a target vehicle’s velocity by installing
multiple cameras on the road, utilizing a drone with a camera,
or employing a speed radar gun. However, we note that legiti-
mate devices in the same vehicle experience highly similar GPS
errors (that contribute to the derived key) while the attacker
cannot obtain/control it. We demonstrate the impact of the
speed measurement attack in Section IV-D.

2) Active Attack: GPS is vulnerable to spoofing attacks
where adversaries may try to inject falsified GPS signals over
the air to the victim’s GPS receivers [25], [26]. However,
to launch such attacks, the adversaries must carefully select
spoofed routes to make them consistent with the physical road
network, otherwise, there often exists a noticeable contradiction
between the vehicle’s actual routing on physical roads and the
corresponding GPS driving record [26]. Meanwhile, a GPS
receiver may cross-check the collected GPS data with dead
reckoning results based on IMU sensors (e.g., accelerome-
ter) [26] or with the messages received from the mobile cellular
network [27] to detect GPS spoofing attacks.

IV. EXPERIMENTAL EVALUATION

Our prototype consists of two legitimate devices and an
adversary device. Each could be an Android device (LG Nexus
5X or LG G8X smartphone/Lenovo Moto Tab tablet), an iOS
smartphone (iPhone 6S+/8), a smartwatch (Apple Watch Series
3), or a Raspberry Pi 3 connected with a NEO-6M module [28].
The user puts two legitimate devices (Dev A and Dev B) in a
vehicle, and they launch DASK with the collected GPS time
series when the vehicle moves. The attacker drives another
vehicle with the adversary device (Dev E) and follows the
user’s vehicle. We use the following metrics:

• Bit generation rate (BGR): This is the number of gener-
ated secret bits per second, using the GPS data collected
in a driving duration.

• Bit mismatch rate (BMR): This is the percentage of bits
in disagreement between the initial binary bit sequences
after the quantization process at the two devices.

• Randomness: We measure the key randomness with the
standard NIST randomness test suite [29].

2022 IEEE Conference on Communications and Network Security (CNS)

77

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

A. Device Impact

Cross-correlation is widely used to measure the similarity

between two time series. Let va = [vai , · · · , vai+T�1] and
vb = [vbi , · · · , vbi+T�1] denote two collected T samples of
normalized GPS velocities. The cross-correlation Rvavb(l) can
be calculated by a function of the lag l 2 [0, T � 1] applied to
vb, i.e.,

P
T

j=1 vai+j�1 ·vbi+j�1�l , where vbi = 0 if i  0. To ac-
commodate for different amplitudes of the two series, the cross-
correlation can be normalized as R

0
vavb

(l)=
Rvavb

(l)p
Rvava (0)·Rvbvb

(0)
,

which lies in the range of [�1, 1] at lag l, with 1 indicating
perfect correlation, -1 denoting perfect anticorrelation, and 0
showing uncorrelation. We derive the largest absolute value
of cross-correlation, max

l

(|R0
vavb

(l)|) to quantify the similarity
between two velocity streams.

We enable the user to wear Apple Watch 3, referred to as aw,
and place the other six test devices in the same vehicle, includ-
ing Lenovo Moto Tab, LG Nexus 5X, LG G8X, iPhone 6S+,
iPhone 8, and a Raspberry Pi 3 connected with a NEO-6M GPS
module, referred to as mt, nx, g8, i6, i8, and Pi respectively.
All devices collect the driving data simultaneously. We repeat
the experiment 100 times, each with 180 GPS samples. Let
rPi�var (var 2 {mt, nx, g8, i6, i8, aw}) denote the calculated
cross-correlation between the velocity sequences collected by
the Raspberry Pi and corresponding one of the other devices.
Figure 5 shows the empirical cumulative distribution functions
(CDFs) of each respective cross-correlation value. We can see
that all cross-correlation values reach above 0.9911 with a
probability of at least 95.26%, implying that acquired GPS
data from different devices are highly consistent. It is worth
mentioning that though the smartwatch frequently moves as the
user has to operate the steering wheel, its recorded GPS data
are still highly similar to those recorded by the rest devices.

B. Trip-dependent Uniqueness of GPS Data

We enable a target user to drive on the same typical urban
road 100 times, and a stalker driving another car follows the
target user. The legitimate devices and the adversary device all
collect GPS data for each driving trip.

As an example, Figure 6 shows the obtained GPS velocities
by legitimate devices as well as the adversary device. First, we
observe that the velocity fluctuates from time to time. Next, we
see that the velocities of two legitimate devices are quite similar
while both significantly deviate from that of the adversary
device. Besides, starting from the 80th to 130th second, the
adversary has to wait for the traffic light while the target user
keeps moving. Such a situation further increases the differences
between their respective velocity observations.

Figure 7 plots the CDFs of the cross-correlation rab between
the velocity sequences of Dev A and Dev B, rae between
that of the Dev E and Dev A, as well as rself between
the velocity sequences obtained by the same device for two
different driving trips on the same road. We can observe that
rself is less than 0.47 with a probability of 0.95, meaning that
each driving trip on the same road would generate quite a
different velocity stream. Also, there is a clear gap between

0 60 120 180

Time (sec)

0

50

100

V
e

lo
ci

ty
 (

km
/h

)

Dev_A

Dev_B

Dev_E

Fig. 6. Observed velocities.

0.2 0.4 0.6 0.8 1

Cross-correlation x

0

0.5

1

E
m

p
ir
ic

a
l C

D
F

P(r
ab

<x)

P(r
self

<x)

P(r
ae

<x)

Fig. 7. CDFs of rab, rself and rae.

rae and rab, demonstrating that legitimate devices in the target
vehicle will always observe similar velocity streams while the
stalker in the following car would obtain a different one.

C. Quantization Interval Selection

With the two-level interval based quantization method, the
selection of the inner and outer interval sizes (i.e., sin and so)
is important as they are related to the quantization error, bit
generation rate, as well as the randomness of the generated
bit sequence. Meanwhile, to secure private communication, the
established key should have a suitable length. We observe when
so � 10, the quantized bit stream often has a series of all 1
or all 0 sequences. Considering both the key generation speed
and avoiding low randomness in the generated bit stream, we
enable so = 9. As sin < so, we then vary sin from 2 to 8
in increments of 1. For each sin, we perform 100 attempts of
quantizing a bit stream of length L (L 2 {128, 160, 192}).

Figure 8 shows the average bit mismatch rate between two
generated binary bit sequences at two legitimate devices when
different interval value is utilized. We have the following three
observations. First, the bit mismatch rate is always below 0.09
regardless of the interval size. Next, the bit mismatch rate varies
slightly for different key lengths. This consistency demonstrates
that the mismatched bits are almost uniformly distributed over
the time series of binary sequences. Finally, the bit mismatch
rate gradually increases when sin increases until sin = 4 and
maintains stable when sin � 4. This is because when sin is
closer to so, the acceleration of the inner interval is closer to
that of the outer interval, causing the quantization result to be
more easily affected by interference.

Figure 9 shows the average bit generation rate. We observe
that the bit generation rate decreases with the interval size
increasing from 2 to 5 while the bit generation rate for
sin � 5 remains unchanged. This is because each 9-sample
outer interval will be converted into a binary sequence of
length b9/sinc, which decreases when sin increases from 2
to 5 while does not change when sin � 5. Also, the actual bit
generation rate is often less than its ideal maximum value (e.g.,
bso/sinc

so
· fs, where fs is the GPS sampling rate) which can be

obtained when the collected data have no redundancy. Besides,
we can see that no matter which interval size is used, the bit
generation rate maintains consistency for different key lengths.

D. Passive Attack Resistance

Stalking Attack: We measure the bit mismatch rate between
the binary bit sequences after quantization. Figure 10 shows

2022 IEEE Conference on Communications and Network Security (CNS)

78

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

0

0.1

0.2

2 3 4 5 6 7 8

Bi
t M

is
m

at
ch

 R
at

e

Inner Interval Size (sin)

𝘓 = 192
𝘓 = 160
𝘓 = 128

Fig. 8. BMR vs. sin (legitimate).

0

0.5

1

1.5

2

2 3 4 5 6 7 8

Bi
t G

en
er

at
io

n
R

at
e

Inner Interval Size (sin)

𝘓 = 192
𝘓 = 160
𝘓 = 128

Fig. 9. BGR vs. sin(legitimate).

0.2

0.4

0.6

0.8

2 3 4 5 6 7 8

Bi
t M

is
m

at
ch

 R
at

e

Inner Interval Size (sin)

𝘓 = 192
𝘓 = 160
𝘓 = 128

Fig. 10. BMR (stalking attack).

0.2

0.4

0.6

0.8

2 3 4 5 6 7 8

Bi
t M

is
m

at
ch

 R
at

e

Inner Interval Size (sin)

𝘓 = 128
𝘓 = 160
𝘓 = 192

Fig. 11. BMR (measurement attack).

TABLE I
p-VALUE OF NIST TEST RESULT

NIST Test p-value NIST Test p-value
Frequency 0.8597 Cummulative Sums 0.7375

Block Frequency 0.8415 Runs 0.0132
DFT 0.8711 Serial 0.0129

Longest Run 0.1671 Approximate Entropy 0.0885

BMR at the adversary, where BMR is always above 0.48,
showing DASK can resist the stalking attack.

Speed Measurement Attack: We let an attacker contin-
uously measure a target vehicle’s velocity at a shoulder of
a road with a speed radar gun (BUSHNELL Velocity Speed
Gun, Model No.101911 [30]). We repeat the experiment 100
times. We see BMR at the attacker in Figure 11. First, the
attacker achieves slightly decreased BMR than in stalking
attack scenarios due to more accurate velocity measurements.
The adversary’s BMR is always above 0.41, which is clearly
higher than the legitimate devices’ BMR ( 0.09). This gap
lets the benign devices select an effective ECC that prevents
the attacker from obtaining the legitimate key.

E. Key Generation

After quantization, we utilize an error correction code (ECC)
based secure sketch to enable legitimate devices to agree on an
identical key. The criteria of a qualified ECC is that legitimate
devices can correct the bit discrepancies while the adversary
cannot recover the same key with the help of the ECC. We
define the error correction capability of an ECC as the ratio of
the maximum number of erroneous bits that can be recovered
to the total number of the bits in a codeword. For an example,
for a RS(n, k) ECC, its error correction capability is bn�k

2 c.
Therefore, the error correction capability of the chosen ECC
should lie between the bit mismatch rate at the legitimate
devices and that at the adversary.

We observe that the maximum BMR at the legitimate devices
is 0.07 while the minimum BMR at the adversary is 0.48.
Thus, an ECC whose error correction capability is above 0.07
while below 0.48 can guarantee that the legitimate devices
establish a secret key that is not available to the adversary. In
our experiment, we thus utilize RS(63,29), which can correct
up to 17 symbols among a 63-symbol codeword (i.e., error
correction capability of 0.27). To evaluate the key randomness,
we run 8 randomness tests in the NIST test suite, which has 16
different statistical tests in total; the bit sequences generated in
our work satisfy the input size recommendation of the chosen

TABLE II
MINIMUM, MAXIMUM, AVERAGE DRIVING DURATION AND DISTANCE TO

ESTABLISH A KEY.

Traffic L
Time (min) Distance (km)

Min Max Avg Min Max Avg

Light
128 1.20 3.77 1.52 0.95 3.24 1.49
160 1.47 4.03 1.86 1.22 3.68 2.06
192 1.73 4.30 2.19 1.76 4.26 2.44

Moderate
128 1.20 1.83 1.32 0.98 1.78 1.36
160 1.47 2.10 1.63 1.12 1.99 1.63
192 1.73 2.37 1.91 1.33 2.35 1.93

Heavy
128 1.22 2.80 1.53 0.86 1.69 1.34
160 1.48 3.07 1.84 1.06 2.11 1.65
192 1.75 3.33 2.15 1.34 2.47 1.95

8 tests only [29]. The result of each statistical test is typically
in the form of a p-value, which must exceed 0.01 in order to
pass a test. Table I shows the test results. We see the obtained
p-values are all greater than 0.01.

F. Impacts of Traffic and Road

Different traffic situations (congestion levels) and road fea-
tures (geometric design) may affect the driving behavior of a
driver. We identify three distinguishable traffic patterns (i.e.,
heavy, moderate, and light), and choose three specific road
segments, i.e., Curved, Straight, and a route with multiple turns
at intersections (abbreviated Turns).

Under Same Road and Different Traffic: We find three
traffic patterns during different time slots on regular weekdays
for a typical commuting route. Our observation matches with
the state transportation statistics. We choose 5-6 pm, 6-7 am,
and 9-10 pm for representing heavy, moderate, and light traffic.
The user then performs DASK when driving on the selected
route. For each traffic situation, we perform 100 experiments.

Table II shows the required driving duration and distance.
We observe that for each trip, the driving time (or distance)
varies for establishing a key with a certain length, and a larger
key size requires a longer driving distance or time for all traffic
situations. Overall, moderate traffic takes less time regardless
of the key size. This is because it has fewer redundant driving
slots that do not contribute to the key establishment. Also, light
traffic normally requires a longer driving distance due to the
higher average speed and longer driving time.

Under Same Traffic and Different Road: Figure 12 depicts
three selected road segments with different types. We perform
DASK 100 times for each route with a moderate traffic pattern.
Table III shows the obtained BGR on different road segments.
The average BGR is in the increasing order of Turns, Curved,

2022 IEEE Conference on Communications and Network Security (CNS)

79

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

(a) A curved route (b) A straight route (c) A route with turns
Fig. 12. Three different road segments.

TABLE III
MINIMUM, MAXIMUM, AND AVERAGE BGRS.

Road Type Bit Generation Rate (bit/sec)
Min Max Avg

Curved 0.6368 1.0 0.8835
Straight 0.5953 1.0 0.9848
Turns 0.4476 1.0 0.8000

and Straight. This is because, for the straight route, there are
relatively fewer redundancy segments compared with the other
two. For the route with turns, the user has to stop frequently,
leading to the lowest BGR.

G. User Study

We recruited 10 volunteer drivers and asked each to perform
DASK in their daily drive to establish a 128-bit key 100 times
over a three-month period. Our study has been reviewed and
approved by our institute IRB. Figure 13 shows the average
driving duration and distance of 10 users. The required driving
time and distance lie in the ranges of 1.07-1.27 min and 1.19-
1.65 km. The corresponding standard deviations of the driving
time and distance for different users are quite small (0.06 min
and 0.18 km). Besides, we see that users 5, 6, and 9 present
relatively short driving distances compared to other drivers
while they require similar driving durations. This is because
these three users drive more frequently during rush hours, with
frequent velocity variations and a slower mean velocity. These
results demonstrate convincingly that DASK is effective and
robust in practice for generating secret keys.

V. LIMITATIONS

GPS dependency. Same with existing context-based key es-
tablishment schemes, which only apply to two devices equipped
with the same corresponding sensors, DASK only works for
GPS-enabled devices. However, GPS receiver is much more
available and has been embedded into various devices, such as
vehicles (e.g., Chevrolet [31]), smartphones, tablets, wearable
devices, portable sensors (e.g., weather sensor PASCO PS-
3209 [32]) and on-the-go medical alert devices (e.g., Mobile
Guardian [33]).

The requirement of enough driving data. DASK sacri-
fices pairing time to remove user interaction during the key
establishment. Currently, our implementation shows that it
requires 1.52-minute driving to establish a 128-bit shared secret
key, which is at the rate of generating 1.41 bits a second
on average. The achieved bit generation rate in our scheme
already has significant improvement over existing autonomous
context-based pairing schemes (e.g., [2], [34]). For example,
[2] acquires 56.6 bits within an hour (i.e., the bit generation
rate ⇡ 0.02 bit per sec) for device pairing. Also, [34] obtains

1 2 3 4 5 6 7 8 9 10

User ID

0

0.5

1

1.5

T
im

e
 (

m
in

)

0

0.5

1

1.5

2

D
is

ta
n
ce

 (
km

)

Elapsed Time

Driving Distance

Fig. 13. Average driving time and distance for ten different drivers.

a bit generation rate of 368 bits per hour (⇡ 0.10 bit per sec).
Correspondingly, DASK is about 71 and 14 times faster than
the above two techniques, respectively.

VI. RELATED WORK

Traditional secret key establishment: With fixed key
management infrastructures, two devices may build a secure
communication channel by taking advantage of traditional cryp-
tography based methods (e.g., Diffie-Hellman key exchange).
However, such methods are infeasible for the large numbers
of mobile devices, with their limited resources. Also, many
devices with dedicated capabilities such as Bluetooth Secure
Simple Pairing [35] may require users to enter a passkey or
a “yes/no” response to complete the device pairing. Such an
interface is not always available, and human involvement may
bring usability concerns as relying on it is cumbersome [36].

Context-based secret key establishment: There are emerg-
ing research efforts performing context-based secret key es-
tablishments, which utilize the randomness inherent in the
observed environment and thus remove limitations of key man-
agement infrastructure in traditional cryptography. In particular,
a pair of communicators equipped with the corresponding
sensors observe the surrounding content, such as ambient
sound [9], audio and luminosity [36], wireless channel state
information [15], wireless signal strength [13], and wireless
channel impulse response [14]. Two drawbacks hurdle the
wide application of those approaches in practice. First, strict
reciprocity is hard to achieve and non-reciprocal interference
often brings a high error rate and slows the key establishment
speed. Second, without extra device authentication solutions,
those approaches suffer from MITM attacks [13], [14].

Some recent works propose countermeasures against MITM
attacks when performing device pairing. Authors in [37] utilize
speaker and microphone fingerprints due to manufacturing
imperfection to defend against the MITM attack. However, this
technique requires to pre-store the fingerprints of legitimate
devices in order to authenticate them. Another work [2] uses
the physical boundaries of a house to separate legitimate
devices and adversaries and thus counteracts the MITM attack.
Nevertheless, when the frequency of activities in the house is
low, it will take a quite long time to build a secure connection
between legitimate devices. DASK, unlike existing context-
based device pairing schemes, neither needs to pre-share in-
formation between devices nor needs to create randomness
deliberately. It extracts randomness in daily driving behaviors

2022 IEEE Conference on Communications and Network Security (CNS)

80

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

and defends against MITM attacks by observing the coexistence
of legitimate devices in a running vehicle.

Another study [38], based on a variable threshold-based
quantization method, allows GPS devices co-located within
a vehicle to derive the same key leveraging GPS data. On
the contrary, DASK proposes a two-level interval based quan-
tization technique and could achieve improved randomness
for generated bits. Also, DASK is designed by considering
stronger adversaries. Besides, we conduct more comprehensive
experiments to evaluate DASK by investigating the impacts of
traffic and road conditions as well as different drivers.

VII. CONCLUSION

We propose DASK for an autonomous and secure pairing
of two devices using vehicle movement information from
observed GPS readings. The insight is that multiple widely
deployed navigation receivers presented in a running vehicle
can capture the same rich randomness embedded in everyday
driving behaviors, i.e., frequently and alternatively pressing the
accelerator and brake pedals with varying force. Real-world
experimental results with off-the-shelf GPS-enabled devices
show that legitimate devices can successfully establish a 128-
bit secret key with less than a 1.4 km drive on average under
moderate traffic conditions. Meanwhile, an attacker following
the target vehicle is unable to recover the established key.

ACKNOWLEDGEMENT

We would like to thank our anonymous reviewers for their
insightful comments and feedback. This work was supported
in part by NSF under Grant No.1948547.

REFERENCES

[1] M. Fomichev, F. Álvarez, D. Steinmetzer, P. Gardner-Stephen, and
M. Hollick, “Survey and systematization of secure device pairing,” IEEE

Communications Surveys Tutorials, vol. 20, no. 1, pp. 517–550, 2018.
[2] J. Han, A. J. Chung, M. K. Sinha, M. Harishankar, S. Pan, H. Y. Noh,

P. Zhang, and P. Tague, “Do you feel what i hear? enabling autonomous
IoT device pairing using different sensor types,” in IEEE Symposium on

Security and Privacy (SP), 2018, pp. 836–852.
[3] T. J. Pierson, T. Peters, R. Peterson, and D. Kotz, “Proximity detection

with single-antenna IoT devices,” in ACM MobiCom, 2019.
[4] Google Developers, “Automotive OS,” https://developers.google.com/

cars/design/automotive-os, 2022.
[5] S. Mirzadeh, H. Cruickshank, and R. Tafazolli, “Secure device pairing:

A survey,” IEEE Communications Surveys Tutorials, 2014.
[6] E. Uzun, K. Karvonen, and N. Asokan, “Usability analysis of secure

pairing methods,” in Proc. of Int. Conf. on Financial Cryptography and

Workshop on Usable Security, 2007, pp. 307–324.
[7] J. Dunning, “Taming the blue beast: A survey of bluetooth based threats,”

IEEE Security Privacy, vol. 8, no. 2, pp. 20–27, 2010.
[8] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Secure device

pairing based on a visual channel: Design and usability study,” IEEE

Trans. on Info. Forensics and Security, vol. 6, no. 1, pp. 28–38, 2011.
[9] D. Schürmann and S. Sigg, “Secure communication based on ambient

audio,” IEEE Trans. on Mobile Computing, 2013.
[10] N. Karapanos, C. Marforio, C. Soriente, and S. Capkun, “Sound-proof:

Usable two-factor authentication based on ambient sound,” in USENIX

Security, 2015, pp. 483–498.
[11] W. Jin, M. Li, S. Murali, and L. Guo, “Harnessing the ambient radio

frequency noise for wearable device pairing,” in ACM CCS, 2020, pp.
1135–1148.

[12] A. Varshavsky, A. Scannell, A. LaMarca, and E. de Lara, “Amigo:
Proximity-based authentication of mobile devices,” in UbiComp: Ubiq-

uitous Computing, 2007, pp. 253–270.

[13] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari, and
S. V. Krishnamurthy, “On the effectiveness of secret key extraction from
wireless signal strength in real environments,” in ACM MobiCom, 2009.

[14] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik, “Radio-
telepathy: Extracting a secret key from an unauthenticated wireless
channel,” in ACM MobiCom, 2008, pp. 128–139.

[15] S. Fang, I. Markwood, and Y. Liu, “Wireless-assisted key establishment
leveraging channel manipulation,” IEEE Transactions on Mobile Com-

puting, vol. 20, no. 1, pp. 263–275, 2021.
[16] K. Lee, N. Klingensmith, D. He, S. Banerjee, and Y. Kim, “IvPair:

Context-based fast intra-vehicle device pairing for secure wireless con-
nectivity,” in ACM WiSec, 2020.

[17] M. Fomichev, J. Hesse, L. Almon, T. Lippert, J. Han, and M. Hollick,
“Fastzip: Faster and more secure zero-interaction pairing,” in ACM

MobiSys, 2021, p. 440–452.
[18] S. Zhuo, L. Sherlock, G. Dobbie, Y. S. Koh, G. Russello, and D. Lot-

tridge, “Real-time smartphone activity classification using inertial sen-
sors—recognition of scrolling, typing, and watching videos while sitting
or walking,” Sensors, vol. 20, no. 3, p. 655, 2020.

[19] A. Maiti, M. Jadliwala, J. He, and I. Bilogrevic, “Side-channel inference
attacks on mobile keypads using smartwatches,” IEEE Transactions on

Mobile Computing, vol. 17, no. 9, pp. 2180–2194, 2018.
[20] G. T. Amariucai, S. Barman, and Y. Guan, “An algebraic quality-time-

advantage-based key establishment protocol,” in ACM WiSec, 2018, pp.
144–153.

[21] National Coordination Office for Space-Based PNT, “GPS accuracy,”
https://www.gps.gov/systems/gps/performance/accuracy/, 2022.

[22] “Navstar GPS User Equipment,” https://www.hsdl.org/?view\&did=
22298, 1996.

[23] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems

(2Nd Ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.
[24] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How

to generate strong keys from biometrics and other noisy data,” SIAM J.

Comput., vol. 38, no. 1, pp. 97–139, 2008.
[25] N. Tippenhauer, C. Pöpper, K. Rasmussen, and S. Capkun, “On the

requirements for successful GPS spoofing attacks,” in ACM CCS, 2011.
[26] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and

Y. Yang, “All your GPS are belong to us: Towards stealthy manipulation
of road navigation systems,” in USENIX Security, 2018, pp. 1527–1544.

[27] G. Oligeri, S. Sciancalepore, O. A. Ibrahim, and R. Di Pietro, “Drive me
not: Gps spoofing detection via cellular network: (architectures, models,
and experiments),” in ACM WiSec, 2019, pp. 12–22.

[28] U-blox, “Neo-6 series,” https://www.u-blox.com/en/product/neo-6-series,
2021.

[29] National Institute of Standards & Technology, “Sp 800-22 rev. 1a. a
statistical test suite for random and pseudorandom number generators
for cryptographic applications,” Tech. Rep., 2010.

[30] Bushnell, “Velocity Speed Gun,” https://www.bushnell.com/
additional-products/speed-guns/velocity-speed-gun/BU-101911.html,
2022.

[31] Chevrolet, “In-vehicle technology,” https://www.chevrolet.com/
connectivity-and-technology/in-vehicle-technology, 2022.

[32] PASCO, “Wireless weather sensor with gps,” https://www.pasco.com/
products/sensors/environmental/ps-3209, 2021.

[33] Medical Guardian, “Mobile guardian,” https://www.medicalguardian.
com/products/mobile-guardian, 2021.

[34] M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan, “Revisiting
context-based authentication in IoT,” in Proc. of the 55th Annual Design

Automation Conf. (DAC). ACM, 2018.
[35] J. Padgette, J. Bahr, M. Batra, M. Holtmann, R. Smithbey, L. Chen, and

K. Scarfone, “Guide to bluetooth security,” NIST Special Publication, vol.
800, p. 121, 2017.

[36] M. Miettinen, N. Asokan, T. D. Nguyen, A.-R. Sadeghi, and M. Sobhani,
“Context-based zero-interaction pairing and key evolution for advanced
personal devices,” in ACM CCS, 2014, pp. 880–891.

[37] D. Han, Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “Proximity-
proof: Secure and usable mobile two-factor authentication,” in ACM

MobiCom, 2018, pp. 401–415.
[38] E. Yang and S. Fang, “GPSKey: GPS-based secret key establishment for

intra-vehicle environment,” in Workshop on Automotive and Autonomous

Vehicle Security (AutoSec) 2022, 2022.

2022 IEEE Conference on Communications and Network Security (CNS)

81

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on November 22,2022 at 15:52:24 UTC from IEEE Xplore. Restrictions apply.

