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ABSTRACT

We introduce a probabilistic approach to select 6 < z < 8 quasar candidates for spectroscopic follow-up, which is based on
density estimation in the high-dimensional space inhabited by the optical and near-infrared photometry. Densities are modelled
as Gaussian mixtures with principled accounting of errors using the extreme deconvolution (XD) technique, generalizing an
approach successfully used to select lower redshift (z < 3) quasars. We train the probability density of contaminants on 1902 071
7-d flux measurements from the 1076 deg? overlapping area from the Dark Energy Camera Legacy Survey (DECaLS) (z), VIKING
(YJHK;), and unWISE (W1W2) imaging surveys, after requiring they dropout of DECaLS g and r, whereas the distribution of
high-z quasars are trained on synthetic model photometry. Extensive simulations based on these density distributions and current
estimates of the quasar luminosity function indicate that this method achieves a completeness of > 56 per cent and an efficiency
of > 5 per cent for selecting quasars at 6 < z < 8 with J45 < 21.5. Among the classified sources are 8 known 6 < z < 7 quasars,
of which 2/8 are selected suggesting a completeness 2~ 25 per cent, whereas classifying the 6 known (Jag < 21.5) quasars at z
> 7 from the entire sky, we select 5/6 or a completeness of >~ 80 per cent. The failure to select the majority of 6 < z < 7 quasars
arises because our quasar density model is based on an empirical quasar spectral energy distribution model that underestimates
the scatter in the distribution of fluxes. This new approach to quasar selection paves the way for efficient spectroscopic follow-up

of Euclid quasar candidates with ground-based telescopes and James Webb Space Telescope.
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1 INTRODUCTION

Luminous high-redshift quasars (QSOs) are amongst the best probes
of the primordial Universe at the end of the dark ages. Their
spectra provide important information regarding the properties of
the intergalactic medium (IGM) during the epoch of reionization
(EoR). In fact, deep spectroscopy of z > 6 QSOs showed that the
IGM is significantly neutral at z > 7 (e.g. Banados et al. 2018; Davies
et al. 2018; Wang et al. 2020; Yang et al. 2020a), but highly ionized
at z < 6 (e.g. McGreer, Mesinger & Fan 2011; McGreer, Mesinger &
D’Odorico 2015; Yang et al. 2020b).

In addition, the engines of the most distant QSOs, the super
massive black holes (SMBHs), are crucial for understanding the
formation mechanisms of the first generation of black hole seeds
(see Inayoshi, Visbal & Haiman 2020, for a recent review). Their
existence up to z = 7.6 (e.g. Wang et al. 2021), and hence formation
since 0.7 Gyr after the big bang, poses the most stringent constraints
on the masses of black hole seeds. In fact, making the standard
assumptions about Eddington-limited accretion, current BH masses
in the highest-z quasars appear to rule out the expected ~ 100 Mg
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seeds from Pop III remnants, and instead require more massive seeds
(10*%Mg; e.g. Volonteri & Begelman 2010; Volonteri 2012).

As of today, more than 200 quasars have been discovered at redshift
7> 6(e.g. Fanetal. 2001; Wu et al. 2015; Bafiados et al. 2016; Jiang
et al. 2016; Matsuoka et al. 2016; Reed et al. 2017; Wang et al. 2017;
Yang etal. 2019; Matsuoka et al. 2019b) thanks to the advent of wide-
field multiband optical and NIR imaging surveys such as: the Sloan
Digital Sky Survey (SDSS; e.g. Fan et al. 2001), the Canada—France—
Hawaii Telescope Legacy Survey (CFHTLS; e.g. Willott et al. 2009),
the Panoramic Survey Telescope and Rapid Response System 1 (Pan-
STARRSI; e.g. Banados et al. 2016), the United Kingdom Infrared
Telescope Infrared Deep Sky Survey (UKIDSS; e.g. Mortlock et al.
2011), the VISTA Kilo-degree Infrared Galaxy survey (VIKING; e.g.
Venemans et al. 2013), the VLT Survey Telescope ATLAS (VST-
ALTAS; e.g. Carnall et al. 2015), the Dark Energy Survey (DES;
e.g. Reed et al. 2015), the DESI Legacy Imaging Surveys (DELS;
e.g. Wang et al. 2017), the UKIRT Hemisphere Survey (UHS; e.g.
Wang et al. 2019), and the Hyper Suprime-Cam survey (HSC; e.g.
Matsuoka et al. 2016).

At the highest redshifts, there are only eight quasars known at z
> 7 (Mortlock et al. 2011; Bafados et al. 2018; Wang et al. 2018;
Yang et al. 2019, 2020b; Matsuoka et al. 2019a, b; Wang et al. 2021)
with two of them at z = 7.5 (Banados et al. 2018; Yang et al. 2020a),
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and the most distant one at z = 7.6 (Wang et al. 2021). This sample
of z > 7 QSOs is still very limited — owing to the opacity of the
intervening high-z IGM, distant quasars are brightest redward of
their Ly o emission line which is redshifted to NIR wavelengths at
z > 7, making both imaging and spectroscopic observations more
challenging. Furthermore, the expected number density of z > 7
quasars is low (1072 deg™2 at J = 21; Wang et al. 2019), while the
contaminants, mostly Galactic cool dwarfs and early-type galaxies,
are far more numerous (20 deg‘2 at J = 21). As a result, the
success rate in finding quasars in this redshift range is extremely low
(~ 1 per cent based on our experience and private communication
with Bafiados), and thus requires large amounts of telescope time for
spectroscopic confirmation, making it extremely challenging to find
more bright z > 7 quasars with existing data sets.

On the other hand, the advent of the next generation photometric
and spectroscopic telescopes, such as Euclid or the James Webb
Space Telescope (JWST), should prove to be a watershed moment
in high-redshift quasar studies (Euclid Collaboration 2019). In fact,
Euclid’s wide field IR imaging should enable the discovery of ~100
quasars with 7.0 < z < 7.5, and ~ 25 beyond the current record
of z = 7.6, including ~ 8 beyond z = 8.0 (Euclid Collaboration
2019), and JWST will deliver exquisite spectra of them. Ground-
based telescopes will play an essential role in discovering the
brighter Euclid quasars, whereas fainter Jag > 21.5 ones will likely
require JWST. Although current selection methods based on simple
colour-cuts were able to discover most of the z > 7 known QSOs
(Bafiados et al. 2018; Yang et al. 2020a; Wang et al. 2021), their low
observational success rate (private communication) is far too low to
make confirmation of the on average fainter Euclid QSOs feasible,
as this would require excessive amounts of ground-based and JWST
observations. It is thus clear that more efficient selection methods
are required.

So far, two different methods for selecting high-z QSOs that
are not based solely on colour-cuts have been proposed. The first
one is based on Bayesian model comparison (BMC) technique by
Mortlock et al. (2012), while the second uses a simpler minimum-
%2 model fitting method to the quasars’ spectral energy distribution
(SED; Reed et al. 2017). These methods are based on improved
population models for the key contaminants: MLT dwarf types,
and compact early-type galaxies, and they both require model
colours for each population. The BMC method additionally requires
a model for the surface density of each source as a function of
apparent magnitude. Although these methods have been successfully
used in the past to select high-z QSOs (Mortlock et al. 2011,
2012; Reed et al. 2017), including the VIKING survey (Barnett
et al. 2021), they mostly rely on constructing a contaminant model
of the entire sky in the colour-range in question to very faint
magnitudes, which is a challenging task given our currently poor
knowledge about the different types of contaminants. Another quasar
search method that has been employed uses the random forests
machine learning algorithm in conjunction with colour-cuts for
quasar selection and photometric redshift estimation (Schindler
et al. 2017, 2018, 2019; Wenzl et al. 2021). While this method
has been demonstrated to successfully select quasars at lower-z, its
primary drawback is that it cannot properly account for photometric
uncertainties.

In this paper, we describe our probabilistic high-z quasar selection
technique, which uses density estimation in flux space to compute the
probability of being a high-z quasar for each candidate. For density
estimation, we use the extreme deconvolution method (XD; Bovy,
Hogg & Roweis 2011a, b), which generalizes the familiar machine
learning approach of describing a probability density with a mixture
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of Gaussians to the case of heteroscedastic noise. XD enables one
to deconvolve errors for noisy training data to construct the true
underlying noiseless probability density, and then reconvolution of
the associated noise to evaluate the probability at new arbitrary test
locations. In the context of high-z quasar selection, the main merits
of this approach are: (1) it is fully Bayesian, and thus similar to the
approach of Mortlock et al. (2012) (if the contaminant and quasar
models are perfectly known), (2) the contaminant model is fully
empirical and requires making no assumptions, (3) it fully accounts
for errors in a principled fashion, i.e. noiseless distributions are
inferred via deconvolution and then reconvolved with the given target
uncertainties. In the end, the target selection/classification problem
becomes the task of training good number-density models for both
the target population and the contaminant population to maximize
the efficiency and completeness of the survey. We applied our target
selection technique (hereafter XDHZQSO) to a set of possible high-z
candidates that are selected with the use of optical, NIR and MIR
surveys, and construct our XDHZQSO quasar targeting catalogue.
This catalogue will be used for future spectroscopic follow-up to
confirm new high-z QSOs in the NIR ground-based survey area,
while this technique provides a better method for classifying and
prioritize high-z QSOs candidates in the near future, especially with
the advent of Euclid in 2022.

This paper is structured as follows. We present the XDHZQSO
method in Section 2. In Section 3, we discuss the data used to
train our probabilistic classifier, and in Section 4 we describe the
construction of the XDHZQSO models from the training data and
its application to classify our candidates. In Section 5, we provide
a detailed description of the analysis of source completeness and
efficiency. In Section 6, we show the results of our code in classifying
both the known high-z QSOs in the VIKING survey area, and the
known z > 7 QSOs on the entire sky. In Section 7, we discuss the
limitations of our selection technique, compare it to other methods,
and describe various extensions to the basic method described in this
paper. We conclude in Section 8. Throughout the paper, we adopt
a flat cosmological model with Hy = 68.5 km s~! Mpc~! (Betoule
etal. 2014), @y = 0.3, and 2, = 0.7. All the magnitudes are given in
the AB system, while the uncertainties of our reported measurements
are at 1o confidence level. Throughout the paper, we use F and Fto
indicate the ‘true’ noiseless and the real noisy fluxes, respectively,
whereas we use a generic fto express both the noiseless and the noisy
fluxes in the displayed figures.

2 PROBABILISTIC CLASSIFICATION METHOD

High-redshift quasar selection is essentially a probabilistic classifi-
cation problem in which objects are classified into one of a discrete
set of classes, based on their measured physical attributes. These
classes can be modelled using a set of objects with class assignments
available on which we can train the classification algorithm. Although
this is a classical problem in data analysis/machine learning, the
physical attributes of astronomical targets are rarely measured
without substantial and heteroscedastic measurement uncertainties,
and often there is also the problem of sources with no observational
coverage in one or more bands of study. Knowing that, classification
algorithms for astronomical target selection have to deal with these
complications by naturally degrading the probability of an object
being in a certain class if the measurement uncertainties imply that
the object overlaps several classes.

Consider an object O with ‘true’ attributes {F;} that we wish to
classify into class A or class B. In our specific case, we would like
to classify an object O into classes ‘high-z QSO’ or ‘contaminant’
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based on its physical noiseless {F;} and noisy {F;} attributes (e.g.
fluxes, magnitudes, colours, or relative fluxes), and the associated
errors {o;}. This can be expressed using Bayes’ theorem to relate
the probability ratio that object O belongs to class A or B to the
density in attribute space

P(O € Al{F}) PO eA)  p({F}0 €A
P(O € Bl{F;))  P(O€B) " p({F}|0€B)

where the two fractions on the right-hand side are the prior probability
ratio and the Bayes factor, respectively. In equation (1), we distin-
guish between discrete probabilities P and continuous probabilities
p. The p({£;}|O € A) factor in the numerator of the right-hand side
of equation (1) is the density in attribute space evaluated at the
targets’s attributes {£;}, while P(O € A) is proportional to the total
number of A objects in a prior probability. The denominator p({F}})
is a normalization factor, and expresses the total probability that the
object O belongs to either class A or class B. It is easy to see that this
probability is a true probability since it always lies between zero and
one, and the sum of the probabilities for the two classes is equal to
one.

Measurement uncertainties are handled in this framework through
marginalization over the ‘true’ properties {F;} given the ob-
served ones {F;} and the measurement-uncertainty distribution
pAE}I(Fi)):

ey

p({F:}10 € A) = /d{F;}p({Fi}lo e Ap({EYI{FD. 2)

We take p({I:}}l{F,-}) to be Gaussian, which is an extremely
good approximation for flux measurements. XD provides a simple
mechanism to (1) infer the true underlying ‘noise deconvolved
distribution’ P(O € A|{£}}), as well as (2) performs the con-
volution integral in equation (2). Since the model is a mixture
of Gaussians and the errors are Gaussian, the normally complex
operations of deconvolution/convolution reduce to trivial algebraic
operations.

Compared to other probabilistic selection methods, the great
advantage of our approach is that the poorly understood contaminants
are modeled fully from the data,' rather than relying on empirical
models (e.g. Mortlock et al. 2012; Barnett et al. 2021), and the
contaminant classes are all grouped into a single all-inclusive
contaminant class. In this way, the density models for the contaminant
class can be simply trained using real data from the entire sky. This
method was already applied in the past to select SDSS QSOs (Bovy
et al. 2011b; Bovy et al. 2012), and was shown to be effective even
in the challenging redshift range 2.5 < z < 3 where the stellar
contamination is significant.

3 TRAINING DATA

To construct probability density models we trained on either real
or simulated photometry, depending on whether we are considering
‘contaminants’ or ‘quasars’. Contaminants were trained on 1076 deg?
of overlapping imaging from VIKING (YJHKj), DECaLS (grz), and
unWISE (W1W2).2 In Table 1, we summarize the properties of the

"However, the high-z QSOs are trained on empirical models.

2To compute the area covered by the sources in our sample we used the
healpy PYTHON package, based on the Hierarchical Equal Area isoLatitude
Pixelization (HEALPIX). We used healpy to subdivide a spherical surface in

200 pixels, in which each pixel covers the same surface area as every other
pixel, and summed the areas of the pixels that includes one or more sources
from the VIKING survey area.
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Table 1. Survey properties.

Survey Filters 5o depth
VIKING ZYJHK; 23.1,22.3,22.1,21.5,21.2
DECaLS grz 23.95, 23.54,22.50
unWISE WIw2 20.72, 19.97

three surveys we used for our selection. The quasar models were
trained on synthetic photometry from the McGreer et al. (2013)
‘simqgso’ simulator.’ This section describes the data used to train
these density classification models.

3.1 Contaminant data

The contaminant training set is generated using photometry from
deep optical, and near- and mid-IR imaging surveys.

At NIR wavelengths, we used Y, J, H, and K, bands coming from
VIKING DR4. The VIKING data were obtained from the VISTA
Science Archive.* For optical bands, we mainly used data from
the DESI Legacy Imaging Surveys (DELS),” which combines three
different imaging surveys: the DECaLS, the Beijing-Arizona Sky
Survey (BASS; e.g. Zou et al. 2019), and the Mayall z-band Legacy
Survey (MzLS). These three surveys jointly image ~14000 deg?
of the extragalactic sky visible from the Northern hemisphere in
three optical bands (g, r, and z). The sky coverage is approximately
bounded by —18° < § < 4-84° in celestial coordinates, and |b| > 18°
in Galactic coordinates, and it overlaps with most (= 80 per cent) of
the VIKING survey footprint. An overview of the DELS surveys can
be found in Dey et al. (2019). When available, we also included Pan-
STARRS (PS1) photometric data in our selection, which provides
37 sky coverage (& 70 per cent overlap with the VIKING footprint)
in five different filters: gpsi, rpsi, ipsi> Zpsi, and yps;. As described
below, these data were used to further refine our training catalog. In
the MIR, we used the W1 and W2 bands coming from the unWISE
release (Schlafly, Meisner & Green 2019), that comes from the
coaddition of all publicly available 3—5 um WISE imaging (Wright
et al. 2010), including that from the ongoing NEOWISE (Mainzer
etal. 2011) post-cryogenic phase mission. The steps used to construct
our catalogue are illustrated schematically in Fig. 1, which we
describe in detail in the following.

As we are interested in finding 6 < z < 8 QSOs, we used the J
band as the ‘detection band’ to construct our contaminant training
sample. In fact, at the very high-redshift (z > 7) the Ly « drop falls
in the Y band, preventing the detection of very high-z QSOs, while
the VIKING J band reaches a depth of 22.1 (at 50). So, we selected
all the sources with J band signal-to-noise ratio SNR (/) > 5. We
also removed bright sources (J < 17), as we found they were often
artifacts or bright stars, after performing a visual inspection of them.
Then, we cross-matched the VIKING catalogue with the DELS, PS1,
and unWISE ones, using a radius 2 arcsec. For sources covered by
the DELS footprint but with no counterpart detected in the survey
within 2 arcsec, we performed forced photometry on the DECalLS
images with an aperture radius 1.5 arcsec. At this stage, since z >
6 QSOs drop out in the bluest optical filters, we further required
our objects to have SNR(g, r) < 3,9 and, when available, SNR(gps1,

3https://github.com/imcgreer/simqso/

“http://horus.roe.ac.uk/vsa/

Shttps://www.legacysurvey.org/

6Sources detected in DELS have already forced photometry for the DECaLS-
grz and the unWISE-W1W?2 filters.
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Figure 1. General steps (red ellipses) performed to construct the contaminant training sample. The blue boxes represent the conditions that the sources must
satisfy to make it to the next step, while yellow boxes provide more information about some specific steps. After the match with other surveys (DELS, unWISE,
and PS1), sources are divided into two sub-catalogues depending on their DELS counterpart: sources with a DELS detected counterpart (DELS detected), and
sources with no detected counterpart but with DELS coverage (DELS undetected). Sources with neither DELS counterpart nor DELS coverage are simply
removed. T At this step we also removed sources with SNR(gps;, 7ps1) > 3, or SNR(ips;) > 5 and i — z < 2, when these data are available.
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Table 2. Selection criterion on the ‘contaminant’ training catalogue.

Data sample Number of sources

VIKING catalogue 94819861
SNR(J) > 5 45968 999
J=>17 44191759
VIKING cross-matched® 36057930
SNR(g, r) < 3° 2871420
Sources with data in all bands 1902071

“Specifically, there are 33 633 899 sources with a DELS detected counterpart,
and 2424 031 sources with no DELS detected counterpart but covered by the
DELS survey.

b At this step we also removed all the sources with SNR(gpsi, rps1) > 3, or
SNR(ips1) > 5 and i — z < 2, when these data are available.

rps1) < 3. We also removed objects with SNR(ips;) > 5 and i — 2
< 2, when these data were available. For the surviving sources, we
performed forced photometry on the VIKING images (YHK; filters),
using an aperture radius 1.5 arcsec, while we also performed forced
photometry on the unWISE images, with an aperture radius 7 arcsec,
for those sources with no DELS detected counterpart. Finally, we
removed sources that have no coverage in all the requested filters
(VIKING-YHKj, DECalLS-z, and unWISE-W1W2).

The resulting final ‘contaminant’ training catalogue contains
1902071 sources, while the number of sources that survived each
filtering step are presented in Table 2. Among the final sources,
we identified eight known 6 < z < 7 QSOs, indicating that the
contamination of the contaminant training set with high-z quasars is
small. Therefore, we did not remove these known QSOs from the
training set.

3.2 Quasar data

We used a sample of 440000 6 < z < 8 QSOs simulated from the
‘simqgso’ code from McGreer et al. (2013), using the updated version
described in Yang et al. (2016). The simgso code was used to generate
a grid with a uniform distribution in redshift over the range 6 < z <
8, and in magnitude over the range 17 <J < 22.5. Assuming that the
QSO spectral energy distributions (SEDs) do not evolve with redshift
(Kuhn et al. 2001; Yip et al. 2004; Jiang et al. 2006; Bafiados et al.
2018), the quasar spectrum is modelled as a power-law continuum
with a break at 1200 A. For redder wavelength coverage, we added
four breaks at 2850, 3645, 6800, and 30 000 A. The slope («;,) from
1200t0 2850 A follows a Gaussian distribution with mean w(ay200) =
—0.5 and dispersion o («1200) = 0.3; the range from 2850 to 3645 A
has a slope drawn from a Gaussian distribution with pt(a2850) = —0.6
and o (aags0) = 0.3; from 3645 to 6800 A we adopted a Gaussian
with pt(ases5) = 0.0 and o (3645) = 0.3; finally, from 6800 to 30000
A, we used m(aggo0) = 0.3 and o (aeg00) = 0.3. These different
break points and power-law exponents are designed to reproduce
the template from Selsing et al. (2016). The parameters of emission
lines are derived from the composite quasar spectrum from (Glikman,
Helfand & White 2006), and the lines are added to the continuum
as Gaussian profiles, where the Gaussian parameters (wavelength,
equivalent width, and full with half-maximum) are drawn from
Gaussian distributions. These distributions recover trends in the

7 Although, XD can menage the problem of sources with missing data by
using a very large uncertainty variance for them, we decided to train our
models using the best data available (i.e. removing sources with no coverage
in all the filters of study). We plan to use the XD feature that allows to deal
with missing data in future works.

MNRAS 515, 3224-3248 (2022)

mean and scatter of the line parameters as a function of continuum
luminosity, e.g. the Baldwin effect (Baldwin 1977), and blueshifted
lines (Gaskell 1982; Richards et al. 2011). The simulator also models
absorption from from neutral hydrogen absorption in Ly « forests
based on the work of Worseck & Prochaska (2011). As a reference,
we provide in Fig. 2 the mean spectrum of 20000 z ~ 6 simulated
QSOs (red line), and the spectra corresponding to the 16th and 84th
percentiles (blue lines), normalized at 1450 A. The final noiseless
photometry of simulated QSOs is derived from the model spectra by
integrating them against the respective filter curves.

4 XDHZQSO DENSITY MODEL

To estimate the density of contaminants and quasars in flux space
[the p({ﬁ,- }1O € A) factor from equation (1)], we used the XDGMM?
implementation of extreme deconvolution from Holoien, Marshall &
Wechsler (2017). XDGMM is a PYTHON package that utilizes the
scikit-learn API (Pedregosa et al. 2011; Buitinck et al. 2013) for
Gaussian mixture modelling. It performs density estimation of noisy,
heterogenous, and incomplete data and uses the XD algorithm® (Bovy
et al. 2011b) for fitting, sampling, and determining the probability
density at new locations. As described by Bovy et al. (2011b), XD
models the underlying, deconvolved, distribution as a sum of N
Gaussian distributions, where N is a model complexity parameter
that needs to be set using an external objective. It assumes that the
flux uncertainties are known, as is in our case, and consists of a fast
and robust algorithm to estimate the best-fitting parameters of the
Gaussian mixture. In Section 4.2, we follow the approach used by
Bovy et al. (2011b) to construct the flux density model of the two
classes.

Finally, since Gaussian mixture models are unit-normalized, to
compute the probability of an object belonging to a certain class,
we require a separate prior to get the correct relative weighting of
the two populations. In practice, we need to estimate the number
counts of both quasars and contaminants [the P(O € A) factor from
equation (1)]: i.e. these are the prior factors of our Bayesian approach.
For the contaminants, we compute this factor empirically from the
number counts (J-band magnitude distribution of contaminants),
while for the quasars we derived them from the high-z QSO
luminosity function. However, to derive the true number counts for
the QSOs, which includes the survey incompleteness at the faint
end, we used the empirical data to compute the incompleteness for
the VIKING survey, and apply it to the QSO number counts. In
Section 4.3, we provide details about the computation of these prior
factors.

4.1 The binning approach

The full model consists of fitting the probability density [the
p({I‘A“,-}|O € A) and p({F,-}|0 € B) factors from equation (1)] in a
number of bins in J-band magnitude for the two classes of objects.
We opted to bin in J band because the probability density of quasars
will have a dominant power-law shape corresponding to the number
counts as a function of apparent magnitude, whereas the colour
distribution is much flatter. While the latter can be represented well by
mixtures of Gaussian distributions, the power-law behaviour cannot
without using large numbers of Gaussians. Thus the slow variation

Shttps://github.com/tholoien/XDGMM
“https://github.com/jobovy/extreme-deconvolution
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Figure 2. Rest-frame mean spectrum of 20 000 z ~ 6 simulated QSOs (red line), and the spectra corresponding to the 16th and 84th percentiles (blue lines),
normalized at 1450 A. The spectra are modelled as a power-law continuum with a break at 1200 A, so to reproduce the template from Selsing et al. (2016),
while the parameters of emission lines are derived from the composite quasar spectrum from (Glikman et al. 2006), and the lines are added to the continuum as

Gaussian profiles.

of the colour distributions with magnitude is captured by our model,
since we use narrow bins in J-band magnitude.

The full contaminant model consists of 50 overlapping bins where
the right edges are uniformly distributed in the range J = 20 — 22.5
with a step of 0.05 mag, while the width is given by a broken sigmoid
function:

1
w = bw + (bS] — bw)ﬂ for Jore < 22,
1l+e om !
1
w = bw + (bs, — bw)Tmmz for  Jpe > 22 3)
l+e am ™

where, Jy is the J-band bin right edge, bw = 0.1 represents the
minimum bin width and bs; =5, bs, = 1 represent the maximum bin
widths in the two J-band ranges, m,, = 21, m;,, = 22, and A,, =
0.1. The broken sigmoid for the contaminants is shown in Fig. 3.
The use of a variable bin width is driven by the need of having a
model that is as continuous as possible, as the XD fits can jump
between local maximums. In fact, this procedure guarantees that
many (> 20 per cent) of the objects in the bins overlap for adjacent
bins, and thus the model varies smoothly. Furthermore, the use of
a broken sigmoid guarantees that both at the bright and faint ends,
where fewer objects are present, the bins are large enough to contain a
sufficient number of sources. In fact, we have >2000 training objects
in each bin to build the contaminant models.

As for the quasar model, we used 11 uniform spaced bins with a
width 0.5 mag in the range J = 17 — 22.5, and we further divided the
quasar class into three subclasses corresponding to ‘low-redshift’ (6
<z <6.5), ‘medium-redshift’ (6.5 < z < 7), and ‘high-redshift’ (7
< z < 8) quasars, constructing a QSO model for each bin. We opted

Bin width [mag]
R 5 2

—
T
'

20.0 205 210 215 22.0 225
J-band right bin edge [mag]

Figure 3. Double sigmoid function that displays the right edges and the
width of the bins used to train the contaminant model.

to divide the QSO into these three redshift bins, instead of working
with a broad 6 < z < 8 bin, for the following reasons:

(1) As shown in Section 5.1, the efficiency and completeness of
our selection method strongly depends on the z-bin in question owing
to the changing overlap between quasars and contaminants.

(i1) While the 6 < z < 7 range has been largely investigated in the
past, few objects have been found at 7 < z < 8, making it the highest
priority range that we are interested in investigating.

(iii) Spectroscopic wavelength coverage is different for different
instruments, with the dividing line between optical and near-IR

MNRAS 515, 3224-3248 (2022)
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spectrographs typically occurring around 210000 A (Zrya = 7.2).
Thus, not all the 6 < z < 8 QSOs can simply be confirmed with
a single instrument, and multiple instruments could be required to
confirm candidates over such a broad redshift range. Hence, the
redshift bins we adopted also facilitates in efficiently conducting
follow-up observations.

However, in the future we plan to introduce the redshift as one of
the modelled quantities as done by Bovy et al. (2012), so that one
would no longer needs to construct models in different redshift bins,
as this approach also provides photometric redshifts, which can be
used to select candidates over any desired redshift range.

4.2 Construction of the model

The XD code fits for all the J-band magnitude bins for a given class
are initialized using the best-fitting parameters for the previous bin,
so to guarantee the continuity of the mode. The starting bin (the one
that is not initialized) is the closest to J = 21, where we know we
always have a quite large sample of objects (>10°) for the training.
Hereafter, we describe the model in a single bin first for a single
example class, using the contaminant class as the example.

In a single bin in J-band magnitude, we separate the absolute flux
from the flux relative to the J band in the likelihood in equation (1)
as follows:

pU{E} O € “cont.”) = p({F;/F}|F;. O € “cont.”)
x p(F;|0 € “cont.”), @)

where {£;} are the z, Y, H, K, W1, W2 fluxes, {F;/F,} are the fluxes
relative to J band, and £ is the J-band flux. We model the two factors
of the right-hand side of equation (4) separately.

We modelled the p({F;/F,}|F;, O € “cont.”) factor using XD in
narrow bins in J-band magnitude. We use relative fluxes rather than
colours since the observational uncertainties are closer to Gaussian
for relative fluxes than they are for colours. Also, for sources where
the flux measurement can be negative the magnitudes are badly
behaved, while relative fluxes remain well behaved in this case. To
evaluate the XD probabilities during training, we always convolved
the underlying model with the object’s relative-flux uncertainties
assuming that they are Gaussian distributed, such that the convolution
of the Gaussian mixture with the Gaussian uncertainty results in
another Gaussian mixture. Although the ratio of two noisy Gaussian
deviates is not itself Gaussian distributed, Gaussianity is a good
approximation provided that the J-band flux errors are small. The
validity of this approximation is discussed further in Appendix A.
Note also that since all other fluxes are divided by the J-band
flux, the resulting uncertainties are covariant, and we provide the
functional form of this covariance matrix in A. To train for the QSO
models, since the simulated quasar fluxes are noiseless, we simply
need to fit their flux densities without deconvolving to derive the
underlying deconvolved quasar model. However, to avoid singular
inverse variances for the effectively noiseless model data, we added a
tiny error (0.01) to the simulated noiseless relative fluxes drawn from
a Gaussian distribution, and used for consistency this small value of
the error as the input error on the photometry in the XD code. In Fig. 4,
we show the relative-flux relative-flux diagrams of our training data:
the contaminants are displayed using black contours, while a sub-
sample (5000) of simulated 6 < z < 8 QSOs are shown as coloured
points. For display purposes, we added to the displayed quasars real
errors drawn from a noise model based on our contaminant catalogue
which is described in Appendix B.

MNRAS 515, 3224-3248 (2022)

We modelled the 6D deconvolved relative fluxes { F;/F;}, using 20
Gaussian components. The number 20 was chosen after performing
XD fits with 10, 15, 20, and 25 components. While fits with less
than 20 components overly smoothed the observed distribution,
models with more than 20 components used the extra components to
fit extremely low significance features in the observed distribution.
The same number of components was also adopted by Bovy et al.
(2011b). Similarly, we also used 20 Gaussian components to fit for
the quasar models.

To provide a visual example of the model generated by the
XDHZQSO code, we display in Fig. 5 the 20.67 < J < 21.2 deconvolved
contaminant model (black contours) compared to the 20.5 < J <
21.0 QSO models in the three redshift bins: 6 < z < 6.5 (blue), 6.5
< z <7 (green), and 7 < z < 8 (red). To generate the displayed
samples, we drew 50 000 sources from the deconvolved contaminant
model, and 50 000 objects from the three redshift-bins deconvolved
QSO models. It is apparent that the large overlap between the
contaminant and the 6.5 < z < 7 and 7 < z < 8 QSO contours
will greatly lower the efficiency in selecting QSO candidates in these
two redshift ranges, as better explained in Section 5.1. To asses
the quality of our contaminant deconvolved models, we sampled
the deconvolved models in each J-band bin,'” re-added the errors
to the deconvolved fluxes following our noise modelling procedure
described in Appendix B, and compared the relative-flux distribution
of the reconvolved sample with the original real noisy data. In Fig. 6,
we compare a simulated set of samples (red contours) from the
deconvolved 20.67 < J < 21.2 contaminant model with the real data
distribution (black), while in Fig. 7 we compare the same simulated
sample after adding the errors, following Appendix B (red), with
the real contaminant distribution (black). It is apparent that, after
re-adding the errors to the deconvolved quantities, we obtain a
distribution that is consistent with the 20.67 < J < 21.2 real data.

4.3 Computation of the priors

The second factor of equation (4), p(ﬁ;lO € “cont.”) is expressed
as
Nccom.(ﬁf)

p(F;]0 € “cont.”) = ~ —,
(NCeont.(Fy) + NCqo(Fy))

(&)

where NCeon (Fy) and N CQ(I:" 7)) are the number counts of con-
taminants and QSOs at a specific £, respectively. Since the
denominator (N Ccom,(ﬁ’ )+ N CQ(F 7)) factors out in equation (1),
p(F;|O € “cont.”) can be expressed simply by the number counts of
contaminants (or quasars) as a function of apparent magnitude, and
is always expressed in units of deg~2. For the contaminant class, we
modelled the number counts directly using the number counts of the
training data, by fitting the histogram of J-band magnitude number
counts per square degree. We used a 40-order polynomial to perform
a robust fit to the range J < 21.4, while at / > 21.4 we used a cubic
spline to interpolate the histogram, namely to capture the drop-off
due to catalogue incompleteness. In order to model the effect of the
incompleteness on the real data distribution, we fit a power law to
the range 20.7 <J < 21.4:

f(Hh=cJ® for 20.7<J <214, ©6)

where log(c) = —95.3 and o = 73.0, and extrapolated this power-
law fit to J > 21.4. The ratio between the value given by the power

19For each bin we sampled a number of sources equal to the number of real
VIKING sources from that bin.
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Figure 4. Noisy relative-flux plots for both the contaminant (black contours and points) and a sub-sample (5000) of high-z QSO training data (coloured points).
The colourbar shows the redshift of the simulated QSOs, while the labelled quantities are relative fluxes (i.e. fluxes in different bands divided by the J-band
flux). For display purposes, we added to the simulated noiseless quasars the real errors coming from our contaminant catalogue as explained in Appendix B,
while the black line and coloured filled circles represent the colour—redshift relation predicted using our simulated QSOs. Although we do not know the real
nature of our contaminants, we expect that most of them are cool brown dwarves and early type galaxies.

law and the cubic spline interpolated number counts gives us the
incompleteness correction term to apply to our QSO number counts
at J > 21.4. We show in Fig. 8 (black line) the p(ﬁj|0 € “cont.”)
factor.

For the ‘quasar’ class, we used a model for the z ~ 6.7 quasar
luminosity function (LF) from Wang et al. (2019) to compute the
number density of quasars as a function of the apparent J-band
magnitude, in the three redshift bins (6 < z < 6.5, 6.5 <z <7,
and 7 < z < 8). This LF is characterized by a double power law:

®*(z)

O (Musso. 2) = 1004+ D(M1s50—M*) - [Q0AB+D(Miaso—M") 0

where M 450 is the absolute magnitude at 1450 A, o and B are the
faint-end and bright-end slopes, respectively, M* is the characteristic
magnitude, and ®*(z) = ®*(z = 6) x 10~ 9 is the normalization,
where k = —0.72 as measured by Jiang et al. (2016) for 5 < z <
6 QSOs. We fixed the four parameters to the z ~ 6.7 LF measured
by Wang et al. (2019): « = —1.9, B = —2.54, M* = —25.2, and
logo(®*) = —8.5. To express the LF as a function of J-band apparent
magnitude we convert the M450 to J-band magnitude (m1,) using:

my = M1450 + DM +k—COIT, (8)

MNRAS 515, 3224-3248 (2022)
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Figure 5. Noiseless relative-flux relative-flux contours for the J = 20.67 — 21.2 deconvolved contaminant model (black), and for the deconvolved J =
20.5—-21.06 <z < 6.5 (blue), 6.5 <z <7 (green), and 7 < z < 8 (red) QSO models. The labelled quantities are relative fluxes (i.e. fluxes in different bands
divided by the J-band flux). To generate the displayed samples, we sampled 50 000 sources from the contaminant model, and 50 000 objects from each of the

three QSO models.

where DM is the distance module and k-corr the k-correction from
Richards et al. (2006):

k—corr = —=2.5(1 4+ «,)logo(1 + 2)

)5 1 145(nm) ©)
—25%a,lo — |

@ 10810  1254(nm)
where «, = —0.5. Then, we multiplied in the survey incompleteness

at J > 21.4 that we computed from the contaminant distribution.
We show in Fig. 8, the p(ﬁj|0 € “6 < z < 6.5 quasar”) factor (blue
line), the p(F;|0 € “6.5 <z <7 quasar”) factor (green line), and
the p(F;|0 e “T <z <38 quasar”) factor (red line).

MNRAS 515, 3224-3248 (2022)

5 HIGH-z QSO SELECTION

In this section, we present the XDHZQSO source classification
for all the objects selected by our initial cuts described in Sec-
tion 3.1. This catalogue was also used to train the contaminant
model as described in Section 4, since we argued that the frac-
tion of high-z QSOs contained in this catalog is negligible. Us-
ing the models of quasar and contaminant deconvolved relative
fluxes, we computed the probability that every object is a high-
z QSO or a contaminant using equation (4). Specifically, we
used the models from the previous section as follows. For an
object with J-band magnitude J, we first found the bin whose
midpoint is the closest to this magnitude. Then, we used this bin

220Z JaqWIBAON 2z uo Jasn Aselqi euozuy Jo AusieAiun Aq 9ZE6199/v2ZE/E/S 1L S/a10ne/seiuw/woo dno olwapeose//:sdiy woll papeojumod


art/stac1944_f5.eps

Paving the Way for Euclid and JWST 3233

A 20.67 <) <21.2
Q
K
o
=~ o
z
o
\)
K
5
v
Y-
~—
v
s
Q
Pas
i
Q
| h
‘J:-E_n K
G
o®
o]
R
/’\63
=0
—
]
S v
N
N
Y- °
RS
=
Q

PO

fz/ f{ fY/ ﬁ

fulf)

fislfy fwa/f)

Figure 6. Relative-flux relative-flux contours for the (noiseless) deconvolved 20.67 < J < 21.2 contaminant model (red), compared to the real (noisy) data
distribution (black). The labelled quantities are relative fluxes (i.e. fluxes in different bands divided by the J-band flux). Overall, the red contours are tighter
compared to the black ones showing the efficacy of XDHZQSO in deconvolving the noisy distributions.

to evaluate the relative-flux density p({ﬁx / F)F,, O € “cont.)
for this object’s relative fluxes'! by convolving the underlying
20 Gaussian mixture model with the object’s uncertainties. This
uncertainty convolution is simply adding the object’s uncertainty
covariance to the intrinsic model covariance for each compo-
nent.

Finally, we evaluated the number density as a function of the
object’s apparent magnitude in J band, using the interpolated
relations described in Section 4.2. We did this for each of the
classes (contaminant and the three quasar classes) and compute the
probabilities using equation (1).

"'Where F, is the flux in an arbitrary band other than J.

In Fig. 9, we show the distribution of XDHZQSO quasar proba-
bilities for the sources we classified in the VIKING survey area in
the three redshift bins defined in Section 4.1. Since the catalogue
is expected to contain mostly contaminant sources, the probability
distribution is peaked at zero in each redshift bin, with a few
exceptions at higher probabilities that represent our best candidate
quasars for future spectroscopic confirmation. It is also apparent
that the number of the best candidates for spectroscopic follow-up
(i.e. those with Pgso > 0.1) decreases as the redshift increases.
This results from the combination of two factors: (1) the number
density of QSOs decreases as redshift increases, (2) the overlap in
the relative-flux-relative-flux space between the higher-z QSOs and
the contaminants is larger, in particular in the 6.5 < z < 7 range (see
Fig. 5).

MNRAS 515, 3224-3248 (2022)
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Figure 7. Relative-flux relative-flux contours for the noise added deconvolved 20.67 < J < 21.2 contaminant model shown in Fig. 6 (red), compared to the real
(noisy) data distribution (black). Errors have been added as explained in Appendix B. The labelled quantities are relative fluxes (i.e. fluxes in different bands
divided by the J-band flux). It is apparent that, after re-adding the errors to the deconvolved quantities, we obtain a distribution that is consistent with the 20.67

< J < 21.2 real data.

5.1 Completeness and efficiency computation

To select high-z QSO candidates for spectroscopic follow-up confir-
mation, we defined a probability threshold (Py,) that effects a balance
between contamination and completeness: this threshold should be
small enough to avoid missing many high-z QSOs, so that the sample
completeness is high, and it should be large enough to keep the
number of contaminants low to increase the efficiency of the selection
method. From a practical perspective, the completeness can be seen
as a proxy for the expected fraction of recovered high-z QSOs as
a function of the probability threshold, in a certain sky area, while
the efficiency is a proxy for the expected spectroscopic confirmation
efficiency of the candidates at the telescope.

MNRAS 515, 3224-3248 (2022)

The completeness (C) is defined as:

No(P > Pp)
NQtol

C= , (10)
where No(P > Py,) is the number of high-z QSOs per square degree
with a probability P > Py,, and Ny is the total number of QSOs per
square degree down to J < 21.5, while the efficiency (E) is defined
as:

No(P = Py)
No(P = Py) + Nc(P > Py)’

E

an

where Nc(P > Py,) is the number of contaminants with a probability
P > Py, per square degree. In the limit where the classification of all
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Figure 8. Number counts p(ﬁ 710 € “class”) priors for the contaminant (black line and points), and the 6 < z < 6.5 (blue line), 6.5 < z < 7 (green line), 7 <
z < 8 (red line) QSO classes as a function of the J-band magnitude. The black points are the real contaminant data from the VIKING survey, while we used a
40-order polynomial to perform a robust fit to the range J < 21.4, and at J > 21.4 we used a cubic spline to interpolate the histogram, namely to capture the
drop-off due to catalogue incompleteness (black line). To model the effect of the incompleteness on the real data distribution, we fit a power law to the range
20.7 < J < 21.4, and extrapolated it to J > 21.4 (black dashed line). The ratio between the value given by the power law and the cubic spline interpolated
number counts gives us the incompleteness correction term to apply to our QSO number counts at / > 21.4. The 1o Poissonian errors are shown as short blue
lines. The other three QSO colored lines show the z ~ 6.7 quasar LF from Wang et al. (2019), after the inclusion of the incompleteness. The corresponding
extrapolation of the LF at J > 21.4 without the incompleteness correction is shown as a dashed line.

the sources in our survey is known, we could compute both C and E
directly from the VIKING survey area. However, as we do not know
the real classification of most of the sources in our sample, we used
simulations to compute the completeness and the efficiency of our
selection method, as we now describe.

In order to reduce the statistical fluctuations we simulated a large
number of both high-z QSOs and contaminants. High-z QSOs were
simulated by sampling the z > 6 LF from equation (7) (Wang et al.
2019), using a Monte Carlo Simulation (MCS) approach. Namely,
this equation can be interpreted as the 2D probability distribution
of the quasars as a function of redshift and magnitude, and MCS
is a convenient method to generate samples. Again, we expressed
the LF as a function of redshift and apparent J-band magnitude,
by converting the M 459 to J-band magnitude using the k-correction
from equation (9), and multiplied it by the incompleteness found in
Section 4.2 for the VIKING J-band magnitude distribution. We then
used the MCRS method to sample the redshift and J-band magnitude
distributions of 400000 QSOs with 6 < z < 8, and 17 < m; < 22.
Given the redshift and J-band magnitude of each source, we used
our deconvolved quasar models to sample the noiseless fluxes for
the 300 000 simulated QSOs, and added representative photometric
errors according to our noise model in Appendix B. Then, the
simulated QSOs were divided into the three redshift bins adopted
previously, and we computed their probability of being quasars using
equation (1), to derive the No(P > Py,) needed for equations (10) and
(11).

To simulate the contaminants, we drew 100 million 17 < m; <22
sources from the J-band magnitude distribution of the contaminant
training catalog (upper-left panel Fig. 8). We again sampled the
deconvolved contaminant models to generate the noiseless fluxes
for our simulated sources, and added the errors as explained in
Appendix B. Then, we evaluated the probability that these synthetic
sampled ‘sky’ objects are quasars using equation (1), which is needed
to determine the Nc(P > Py,) term from equation (11). Finally, we
rescaled the numbers of simulated contaminants and high-z QSOs
to reflect the prior number count distributions shown in Fig. 8, and
we used equations (10) and (11) to compute the completeness and
efficiency, down to a J-band magnitude of 21.5. This magnitude limit
was introduced since it is representative of what can be realistically
confirmed with a near-IR instrument on an 8-m class telescope in
a reasonable exposure time, and is also close to the 5o limit of the
VIKING data we use. Fainter objects would require longer exposure
times and excellent observing conditions making them much more
challenging to spectroscopically confirm.

In Fig. 10, we display the number count distribution of quasar
probabilities, dN /(dS2/d P), for simulated QSOs and contaminants.
This quantity is defined such that the integral over probability P
yields the number of objects per square degree. Fig. 11 shows
the efficiency (black) and the completeness (red) of our selection
method as a function of the probability threshold (Py,), in the three
redshift bins: 6 < z < 6.5 (top), 6.5 < z < 7 (central), and 7
< z < 8 (bottom). It is apparent that lowering the threshold will

MNRAS 515, 3224-3248 (2022)
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Figure 9. Probability distributions of sources from our VIKING candidate
catalogue in three different redshift ranges: 6 < z < 6.5 (top), 6.5 <z <7
(central), and 7 < z < 8 (bottom). This catalogue has also been used to train the
contaminant models, as most of these sources are expected to be contaminants.
The three distributions are obtained by doing model comparison between the
contaminant model and, separately, each of the three high-redshift quasar
models, as explained in Section 4.1. The downward red arrows highlight the
probability of known high-z QSOs in the VIKING survey area. Candidates
with P ~ 0 are pinpointed with arrows plotted on top of each other. In the
bottom panel, downward blue arrows highlight the probability of known z >
7 QSOs in the entire sky.
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Figure 10. Probability distributions of simulated contaminants (black) and
high-z QSOs (red) per square degrees, in three different redshift ranges: 6 <
7 < 6.5 (top), 6.5 < z <7 (central), and 7 < z < 8 (bottom). The blue dashed
vertical line marks our adopted probability threshold.

always increase the completeness, but this comes at the cost of a
lower efficiency, thus increasing the number of contaminants that are
spectroscopically followed up. Itis also evident that the completeness
and efficiency are generally higher in the 6 < z < 6.5 range, where the
overlap between the QSO and contaminant relative-flux distributions
is smaller compared to the 6.5 < z <7, and 7 < z < 8 cases (i.e.
the red and green contours overlap the black contours in Fig. 5 more
than the blue contours).
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Figure 11. Efficiency (black solid line) and completeness (red dashed line)
of the XDHZQSO selection method as a function of probability threshold
(P, = 0.01). The three panels show the results for the three redshift bins: 6
<z < 6.5 (top), 6.5 < z < 7 (central), and 7 < z < 8 (bottom). The blue
dashed vertical line marks our adopted probability threshold. It is apparent that
lowering the threshold will always increase the incompleteness but this comes
at the cost of lower efficiency, thus increasing the number of contaminants
selected for spectroscopic follow-up. It is also evident that both the efficiency
and completeness are lower at 6.5 < z <7, and 7 < z < 8, where the QSO
properties largely overlap with the contaminant distribution (see the overlap
between the red and green over the black contours in Fig. 5).
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Since the expected number density of high-z QSOs is very low,
the choice of the Py, is mostly determined by the need to have a high
completeness to avoid missing the coveted highest redshift sources.
In fact, by integrating the LF in equation (7) down to J = 21.5, we
expect to find &15, ~5, and &2 QSOs in the ranges 6 < z < 6.5,
6.5 <z <7, and 7 < z <8, respectively, in the 1076 deg® VIKING
survey area. Recovering this small number of expected sources would
require a relatively high completeness (possibly C =~ 85 per cent).
As such, we chose to use the completeness as the main criterion for
setting the probability threshold Py,, whereas the efficiency plays a
pivotal role in setting Py, when a high completeness corresponds to
E < 5 per cent. To visualize the trade-off between completeness and
efficiency (both of which are parametrized by Py,), we plot in Fig. 12
the efficiency as a function of the completeness for the three redshift
bins.

Inthe 6 <z < 6.5 range, the 85 per cent completeness requirement
corresponds to Py, = 0.01 and E = 50 per cent (Fig. 12, top panel).
In the 6.5 < z < 7 range the high completeness requirement
(C = 85 per cent) cannot be achieved without lowering the efficiency
to an unacceptable value (E ~ 1072 per cent; see Fig. 12, central
panel), while a 56 per cent completeness (achievable with Py, = 0.01)
corresponds to E & 5 per cent, which is a more reasonable efficiency
value to work with. For the 7 < z < 8 range, the same probability
threshold adopted for the lower redshift bins (Py, = 0.01) provides
a completeness of 66 per cent and an efficiency of 5 per cent. The
very low value of efficiency in the two highest redshift ranges is
caused by the large overlap between the 6.5 < z < 8 QSOs and the
contaminant models, as is apparent in Fig. 5 (see the larger overlap
of the green and red with the black contours). Consequently, also the
number of QSO candidates with probability above the threshold in
these redshift ranges is lower compared to the 6 < z < 6.5 range.

To summarize, we report in Table 3 the three probability thresholds
derived from our completeness and efficiency analysis, and the corre-
sponding completeness, efficiency, and number of candidates N(Pgso
> Py) with Pgso > Py, that are selected for future spectroscopic
follow-up. For the 7 < z < 8 range, we obtain an efficiency that
is 5 per cent, whereas quasar selections based on colour-cuts work
at a lower level efficiency in this redshift range (Banados et al.
2018; Wang et al. 2021). The higher efficiency that we derive results
from the combination of two primary factors: (1) our probabilistic
density estimation takes advantage of the full feature space (all flux
ratios) at once without strict boundaries, making it more effective and
inclusive than simple colour-cuts, and (2) our effort to compile as
much panchromatic photometry as possible improves the efficiency,
relative to previous efforts (Mortlock et al. 2011; Bafiados et al. 2018;
Yang et al. 2020a; Wang et al. 2021), to select z > 7 quasars using
colour cuts. On the other hand, an efficiency of 5 per cent for the
6.5 < z < 7 range is lower compared to some colour-cut selections
performed in the past (i.e. Bafiados et al. 2016). This likely results
from the fact that our study does not include the PS1-zy filters, which
greatly improves the selection of 6.5 < z < 7 QSOs, since in this
redshift range the Ly « line enters the PS1-y filter and drops out of
the PS1-z filter, while the broader DECaLS-z filter covers both the
aforementioned PS1 filters. In a future study, we plan to include the
PS1-zy filters to improve our selection efficiency for this particular
redshift range.

6 CLASSIFICATION OF KNOWN HIGH-z
QUASARS

By integrating the z = 6.7 LF from Wang et al. (2017) in the 17
< J < 21.5 range, we expect to find ~21 (*28) QSOs at 6 < z <

MNRAS 515, 3224-3248 (2022)
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Figure 12. Efficiency versus completeness in the three redshift bins: 6 < z <
6.5 (top), 6.5 <z <7 (central), and 7 < z < 8 (bottom). The red point marks the
efficiency and completeness at the value of the chosen probability threshold
(Pwn). The low overlap between the 6 < z < 6.5 QSO and contaminant
contours allows us to work with high values of efficiency (68 per cent) and
completeness (90 per cent). However, at 6.5 < z <7 and 7 < z < 8 the overlap
with the contaminant properties is so large that we are forced to work at a
lower efficiency (10 per cent) to have a high completeness (> 75 per cent).
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6.5, &7 (®9) QSOs at 6.5 < z <7, and &3 (=4) QSOs at 7 < z
< 8, depending on whether (or not) we consider the effect of the
J-band photometric incompleteness in the VIKING survey. Thus,
after performing the spectroscopic follow-up of the targets with P >
Py, we expect to discover high-z QSOs among our candidates with
numbers consistent with these estimates.

Past works already studied the VIKING area and searched for z
> 6 QSOs (e.g. Venemans et al. 2013, 2015; Barnett et al. 2021).
For example, both Venemans et al. (2013) and Barnett et al. (2021)
used the ZYJHK; filters from the VIKING survey to find z > 6.5
QSOs: Venemans et al. (2013) applied colour-cuts and found three
new QSOs, while Barnett et al. (2021) selected four known QSOs
and 17 QSO candidates using the BMC method, but no new QSOs
were found. Other QSOs were found in the VIKING footprint from
past works, as they searched for high-z QSOs in other surveys that
partially overlap with the VIKING area: i.e. the CFHTLS (Willott
et al. 2009), the Pan-STARRS1 (Banados et al. 2016), the VST-
ATLAS (Carnall et al. 2015), the DELS (Wang et al. 2017), and the
HSC (Matsuoka et al. 2016, 2018a, b, ¢, 2019a, b). So, we expect
to have some known high-z QSOs in our VIKING data set, and to
recover them among our candidates. In Section 6.1, we provide a
summary of the known QSOs that are covered within our search area
but that are not in our VIKING data set due to our selection criteria.
Then, we describe the performance of XDHZQSO in recovering and
classitying both the known high-z QSOs in the VIKING survey area
(Section 6.2), as well as the known z > 7 QSOs (Section 6.3) over
the entire sky.

6.1 Missed high-z QSOs

From past works (Willott et al. 2009; Venemans et al. 2013; Bafiados
etal. 2016; Matsuoka et al. 2016, 2018a, b, ¢, 2019a, b), we identified
32 known z > 6 QSOs in the DECaLS + VIKING area. However,
the imposition of our selection criteria reduced this number in our
final VIKING area data set, as 20 QSOs are lost because they do
not satisfy SNR(J) > 5, and another four QSOs are not selected as
they do not have data in all the bands considered in our study. That
leaves eight known z > 6 quasars in the VIKING area data set whose
probabilistic classification is described in the following section.

6.2 Classification of known high-z QSOs in the VIKING
Survey Area

Among the classified sources there are eight known high-z QSOs
that were found in the VIKING survey area from past works: DELS
J1217 + 0131 (z = 6.17; Bafados et al. 2016; Wang et al. 2017), AT-
LAS J025.6821-33.4627 (z = 6.31, hereafter J0142—3327; Carnall
et al. 2015), HSC J11374-0045 (z = 6.4; Matsuoka et al. 2019b),
J0148—2826 (z = 6.54; Yang et al. 2020b), HSC J0921+0007
(z = 6.56; Matsuoka et al. 2018b), VIK J0305—3400 (z = 6.604;
Venemans et al. 2013), DELS J1048—0109 (z = 6.63; Wang et al.
2017), HSC J1205—0000 (z = 6.74; Matsuoka et al. 2016). These
sources and their main properties are listed in Table 4, while their
probabilities of being high-z QSOs are pinpointed with red arrows
in Fig. 9.

In the range 6 < z < 6.5, our models are able to correctly classify
one known QSO out of three, J0142—3327 (Pgso A 98.4 per cent),
but our selection threshold in this redshift range (Py, = 1 per cent)
does not allow us to recover DELS J1217+0131 (Pgso ~ 3 x
1076 per cent), and HSC J1137+0045 (Pgso ~ 4 x 107° per cent).
The probability of these three quasars are also reported in Table 4
and shown in Fig. 9 (upper panel). The low probability of the
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Table 3. Number of selected candidates in the three redshift bins.

z range Py, (per cent) Cy, (per cent) E (per cent) N(Pgso = Pw) Nexp Nrec
6.0-6.5 1 85 50 58 15 10
6.5-7.0 1 56 5 80 5 1
7.0-8.0 1 66 5 43 2 2

Note. Summary of the probability threshold (Py,) adopted in each redshift bin to select high-z QSO candidates for
spectroscopic follow-up, and the corresponding completeness (Ci), efficiency (Et,), and number of candidates selected
(N(Pgso > Puw)). The last two columns represent the number of QSOs expected (Nexp) according to our adopted LF
(equation (7)) down to J = 21.5, and how many of them we expect to recover among our candidates (Nrec).

Table 4. Known QSOs in the VIKING survey area.

Name z J Pgso Ref.

DELS J12174-0131 6.17 21.28 +0.14 3x107° per cent Baiados et al. (2016); Wang et al. (2017)
ATLAS J025.6821—33.4627 6.31 19.02 £ 0.02 98.4 per cent Carnall et al. (2015)

HSC J11374-0045 6.4 21.51 +0.20 4x107° per cent Matsuoka et al. (2019b)

JO148—2826 6.54 21.09 £ 0.13 4 x 1073 per cent Yang et al. (2020b)

HSC J0921+0007 6.56 20.9 £0.26 2 x 1077 per cent Matsuoka et al. (2018b)

VIK J0305—-3400 6.61 20.07 + 0.09 1.2 per cent Venemans et al. (2013)

DELS J1048—-0109 6.63 20.99 +0.12 0.07 per cent Wang et al. (2017)

HSC J1205—-0000 6.75 21.95 +0.21 3x 10712 per cent Matsuoka et al. (2016)

latter one is not surprising, considering that HSC J11374-0045 is
a very faint QSO (J = 21.51 and SNR(J) = 5.4), selected from
the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP)
survey (Aihara et al. 2018), and that apparently lacks strong Ly « in
emission (Matsuoka et al. 2019b). However, to better understand
the low probability values obtained for these two quasars, we
compared their photometric properties with those sampled from our
XD deconvolved models. For each of the three known 6 < z <
6.5 QSOs, we simulated 10000 contaminants and 10000 6 < z <
6.5 QSOs, using the XDHZQSO models in the magnitude bins that
include the J-band magnitudes of the three QSOs. To visualize the
probability of selecting a known quasar, we draw samples from the
‘deconvolved’ (i.e. noise free) XDHZQSO contaminant and quasar
models, and overplot the relative flux measurements of the real
quasars, with ellipses indicating their (covariant) 1o errors. This
is shown in Fig. 13, where we plot the deconvolved relative-flux
relative-flux contours for the simulated contaminants (black) and 6
<z < 6.5 QSOs (blue), compared to the properties of the known 6
< z < 6.5 QSOs from the VIKING survey area. The reason we
are creating 10000 copies of contaminant and 10000 of QSOs
for each known high-z QSO is that the contaminant and quasar
models are magnitude dependent. Thus formally, we would need to
show a plot for each object, where we compare its properties with
those from the sampled contaminants and QSOs. However, given
that these magnitude dependencies are subtle, we chose to simply
simulate 10000 copies of sources at each magnitude and aggregate
them on to a single plot. It is apparent that in some sub-plots of
Fig. 13 (especially those with f,/f; and fy/f)), the relative fluxes of
both HSC J1137+0045 and DELS J1217+0131 are not consistent
with the simulated 6 < z < 6.5 QSOs relative flux distributions (blue
contours), consequently lowering the classification probability of
these two objects. Considering that HSC J11374-0045 is a QSO that
apparently lacks strong Ly « in emission (Matsuoka et al. 2019a),
while DELS J1217+0131 exhibits a strong Ly« emission line
(Wang et al. 2017), we conclude that the properties of the ‘simqso’
simulated high-z QSOs, that have been used for the training of
our XDHZQSO QSO models, are too rigid to include these two
sources.

In the range 6.5 < z < 7, as reported in Table 4 and displayed
in Fig. 9 (middle panel), our method is able to recover one
QSO (based on our Py = 1 per cent), VIK J0305—3400 (Pgso ~
1.2 per cent), while the other four are consistent with being contam-
inants (Pgso < 107! per cent). Among them, J0921+4-0007 (Pgso ~
2 x 1077 per cent) is also an HSC selected QSO (J = 20.9) that
has similar optical colors to Galactic brown dwarfs (Matsuoka et al.
2018b). Adopting the same procedure as described above to generate
10000 contaminants and 6.5 < z <7 QSOs for each known QSO, we
show in Fig. 14 the deconvolved relative-flux relative-flux contours
for the simulated contaminants (black) and high-z QSOs (blue),
compared to the properties of the known 6.5 < z <7 QSOs from the
VIKING survey area. Also in this case, it is apparent that the relative
fluxes of the four QSOs with Pyso < 107! per cent are inconsistent
with the deconvolved QSO model properties (blue contours in
Fig. 14) in some sub-plots: (1) JO148—2826 is inconsistent with
panels showing fu, fw1, and fy», (2) HSC J09214-0007 is inconsistent
with panels showing fw;, and fy», (3) DELS J1048—0109 is not
consistent with panels showing fy, and fy», and (4) HSC J11205—-0000
is not consistent with the QSO distribution in any panel. We provide
a more detailed discussion of these discrepancies between real and
simulated QSO properties in Section 7.1.

6.3 Classification of the z > 7 QSOs

While we tested in Section 6.2, the ability of our models to recover
the known 6 < z <7 QSOs in the VIKING survey area, testing our
classification models for the highest redshift range was not possible as
there are no known z > 7 QSOs in the VIKING footprint. Therefore,
we applied our method to the z > 7 QSOs that have been discovered
so far over the entire sky, using published photometric measurements.

There are, at the time of writing, a total of eight known z > 7
QSO0s: J23564-0017 (z = 7.01; Matsuoka et al. 2019b), J0252—-0503
(z = 7.02; Yang et al. 2019), J0038—1527 (z = 7.021; Wang et al.
2018), J1243+0100 (z = 7.07; Matsuoka et al. 2019a), J1120+0641
(z = 7.085; Mortlock et al. 2011), J1007+2115 (z = 7.515; Yang
et al. 2020a), J1342+0928 (z = 7.541; Bafados et al. 2018), and
JO313—-1806 (z = 7.642; Wang et al. 2021). To classify them, we
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Figure 13. Deconvolved relative-flux relative-flux contours for the simulated contaminants (black) and 6 < z < 6.5 QSOs (blue), compared to the real (noisy)
properties of the known 6 < z < 6.5 QSOs from the VIKING survey area. The probability threshold to select these sources with our method is Py, = 0.01. It
is apparent that both J1217 and J1137 are ‘off” from the QSO contours in the f./f; sub-plots, while J1137 is also ‘off” in the fy/f; sub-plots, thus lowering their

probabilities of being classified as high-z QSOs.

first collected the photometric data in the seven bands of interest
(DECaLS-z, VIKING-YJHKg, and WISE-W1W2) from the literature,
when available. Since some of these sources have public NIR data
coming from the Wide Field Infrared Camera (WFCAM) for the
UK Infrared Telescope (UKIRT), we used the transformation equa-
tions between VISTA and WFCAM derived by Gonzélez-Fernandez
et al. (2018), to convert the UKIRT magnitudes into the VIKING
ones. For the missing flux measurements, we performed forced
photometry. Since JO313—1806 has no photometric measurements
in the Y and H bands, we used synthetic photometry computed by
integrating the observed spectrum of this source from Wang et al.
(2021) against the respective filter curves. However, we excluded

MNRAS 515, 3224-3248 (2022)

from our classification list both J2356+0017 and J1243+0100, as
they are too faint (SNR(J) < 5) to make it into our catalog. Finally,
we used our XDHZQSO models to classify the remaining six sources
following the same procedure described in Section 5. In Table 5, we
summarize the properties and results from our classification of these
six z > 7 QSOs.

Based on our defined probability threshold for the z
> 7 range (Py = 1percent), we are able to recover five
QSOs: J0252—-0503 (Pgso = 2.3 per cent), J11204+0641 (Pgso =
5.9 per cent), J100742115 (Pgso = 62.2 per cent), J1342+4-0928
(Pgso = 19.9 per cent), and J0103—1806 (Pyso = 6.5 per cent).
However, we fail to select JO038—1527 (Pgso = 0.07 per cent).
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Figure 14. Same as Fig. 13 but in the 6.5 < z < 7 bin. The probability threshold to select these sources with our method is Py, = 0.01. The four QSOs with
Pgso < 1072 per cent are inconsistent with the deconvolved QSO model properties (blue contours) in the following sub-plots: (1) JO148 is inconsistent with
panels showing fy, fi1, and fy2, (2) J0921 is inconsistent with panels showing fiy1, and fi», (3) J1048 is not consistent with panels showing f, and fy», and (4)
J1205 is not consistent with the QSO distributions in any panel.

Table 5. Known z > 7 QSOs classified by our XDHZQSO method.

JO038—1527 exhibits strong broad absorption line (BAL) features

Name

J

PQSO Ref.

(Wang et al. 2018), that can alter its colors, making it different
compared to our 7 < z < 8 QSO models, which do not attempt

J0252—-0503
J0038—1527
J1120+0641
J1007+4-2115
J1342+4-0928
JO313—-1806

7.02
7.021
7.085
7.515
7.541
7.642

21.13 £0.07
20.63 £ 0.08
21.22 £0.17
21.14 £0.18
21.24 £0.02
2092 £0.13

2.3 per cent Yang et al. (2019)
0.07 per cent Wang et al. (2018)
5.9 per cent Mortlock et al. (2011)
62.2 per cent Yang et al. (2020b)
19.9 per cent Banados et al. (2018)
6.5 per cent Wang et al. (2021)

to model BAL absorption. As in Section 6.2, we simulated a large
number of contaminants and 7 < z < 8 QSOs, and compare their
relative fluxes with those from the real z > 7 QSOs in Fig. 15.
It is evident that JO038—1527 deviates from the blue contours
(deconvolved 7 < z < 8 QSO models) in the sub-plot displaying f./f;
versus fy/f;, as the absorption from the BALs impacts the Y-band
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Figure 15. Deconvolved relative-flux relative-flux contours for the simulated contaminants (black) and 7 < z < 8 QSOs (blue), compared to the real (noisy)
properties of the known z > 7 QSOs to date. The probability threshold to select these sources with our method is Py, = 0.01. It is apparent that JO038—1527
deviates from the quasar locus indicated by the blue contours in the sub-plot displaying f./f; versus fy/f;, with the effect of lowering its QSO classification

probability.

flux. Again, we discuss the deviations of the real QSO properties
from the expected simulated ones in Section 7.1.

7 DISCUSSION

In Section 6, we showed that XDHZQSO is able to recover two 6 < z
<7QSO0s out of eight that passed our selection criteria (i.e. SNR(J) >
5, SNR(g, r) < 3, and no missing data) and made into our catalogue:
we select one QSO at 6 < 7 < 6.5 (ATLAS J025.6821—33.462 at 7 =
6.31), and one QSO at 6.5 < z <7 (VIK 0305—3400 at z = 6.61).
The application of XDHZQSO on the 7 < z < 8 QSOs found in the
entire sky, that meet our selection criteria, allows us to recover five
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out of six 7 < z < 8 QSOs (J0252—0503 at z = 7.02, 1120+0641 at
z7="17.085,J10074+2115 at z = 7.515,J1342+0928 at z = 7.541, and
J0313—1806 at z = 7.642). In Section 7.1, we discuss the limitations
of our selection technique that could explain our failure to select
of some of the known high-z QSOs in the VIKING area, while in
Section 7.2 we provide a comparison between our code and other
probabilistic classification methods.

7.1 Limitations of the XDHZQSO selection method

In Sections 6.2 and 6.3, we showed that our method is only able to
recover some of the known high-z QSOs. In fact, there are several
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reasons that can lead to the failure to select a source, and all of them
involve the source properties and corresponding errors being more
consistent with the XDHZQSO contaminant models rather than the
high-z QSO ones. Here we discuss the possible causes that lead to
the non-selection of some of the known z > 6 sources:

(i) Noisy data. In the case of a source with large photometric
errors, our method naturally degrades its probability of belonging
to high-z QSOs class if the data uncertainties imply that the object
overlaps with the contaminant class. On the other hand, this limitation
is not afflicting other selection methods. In fact, a colour-selection
technique that does not use photometric errors could select a noisy
object, whereas XD would spread that probability out, meaning it
might be more likely to be classified as a contaminant if, given the
errors, it significantly overlaps the contaminant locus. However, we
stress that taking errors into account is a feature not a flaw of our
method (i.e. not taking into account errors will generally result in an
overall lower efficiency then taking them into account).

(i) Photometric variability. Since the surveys considered in this
work were performed at different epochs, intrinsic variability of
sources could also play a role in lowering the computed probabilities
(see Ross & Cross 2020 for a study of the variability of 5 <z <7
quasars). However, since the variability of these objects is supposed
to be small (at most 10 per cent given low-z structure functions; e.g.
Vanden Berk et al. 2004; Kelly, Bechtold & Siemiginowska 2009;
Schmidt et al. 2010), we argue that this is probably not the main issue
we are facing.

(iii1) Inaccurate models. Since our method is a classification
technique, its validity strongly depends on the correct modelling
of the considered classes. If the XDHZQSO models are not a good
representation of the underlying deconvolved flux distributions of
one or more classes, then the computed probabilities are not reliable.
Although, that seems not the case for our contaminant class, as the
models are trained with the real data coming from our survey, it can be
an issue for our high-z QSO classes. In fact, our quasar models are
trained on synthetic photometry determined from simulated QSO
spectra whose properties are consistent with the mean spectrum
of low-z luminous QSOs (McGreer et al. 2013). However, these
simulated quasar spectra could not well represent the intrinsic relative
flux scatter of all the luminous QSOs, or the properties of peculiar
sources such as Broad Absorption Line QSOs (BALQSOs). For
example, JO038—1527 is a BALQSO (Wang et al. 2018), and its
Y-band relative flux is lower than expected compared to objects with
similar redshift and luminosity (see Fig. 15). Furthermore, in the
sub-panels showing H, K, W1, and W2 bands in Figs 13, 14, 15 it
is apparent that our XDHZQSO QSO models are too rigid, as the
simulated QSO deconvolved density distributions (blue contours)
appear too little scatter as compared to the real QSOs to be a
good representation of the intrinsic QSO scatter. For the W1W2-
bands, there could be also source confusion/deblending errors in the
photometry since we just performed aperture photometry, without
taking into account the large unWISE (=6 arcsec) point spread
function. A model that better reproduces the full distribution of the
relative fluxes of the luminous QSOs at low-z would provide a better
classification of our sources. Therefore, our conclusion is that the
‘simgso’ simulator was designed for colour-cuts, but it is not up to
the demands of a density estimation method.

As apparent from Figs 13—15, our current simulated quasar sample
fails to capture the full spectral diversity of the observed quasar
population, which is important for the density estimation method.
Hence, to improve on our quasar selection, we have to move
beyond modeling average quasar properties, for which ‘simqso’
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was originally designed, but rather capture the full relative flux
distribution of the full population. In the future, we plan to mitigate
these limitations by carefully modelling of the relative fluxes of QSOs
using empirical data coming from the SDSS and BOSS surveys,
which would capture the full distribution of quasar SEDs and hence
relative fluxes.

7.2 Comparison with other probabilistic classification methods

Compared to other probabilistic classification methods, our approach
has two main advantages:

(i) Our method accounts for the photometric errors by convolving
the underlying density distribution with the object’s uncertainties,
assuming that the relative-flux uncertainties are Gaussian. While this
approach is required to correctly estimate the probability that a noisy
object is a member of given class, standard random forest methods
ignore the photometric errors (e.g. Schindler et al. 2017; Wenzl et al.
2021), thus not utilizing all the information contained in the data.
For bright sources this should not be so problematic given the small
associated uncertainties. However, at high-z we have to take into
account that: (1) QSOs dropout of optical bands (e.g. grz) and so we
need to accurately treat low signal to noise dropout fluxes, and (2)
QSOs are rare at high-z and the LFs rise with decreasing flux. So,
to build-up statistics, the majority of targets will always be near the
flux limits of our data, while the inclusion of the photometric errors
in the analysis of fainter sources would prevent the overly optimistic
identification of contaminants as high-z QSO candidates.

(ii) The method proposed by Mortlock et al. (2012) is also

Bayesian, and is directly analogous to what we are doing, with the
caveat that they mostly rely on constructing the models of the key
contaminants (MLT dwarf types, and compact early-type galaxies).
This approach requires a perfect knowledge of both the properties
and the type of contaminants, whose feasibility is very challenging.
For example, even if brown dwarfs and early-type galaxies are the
majority among the contaminants, also Type-2 QSOs, reddened low-
z QSOs, and FeLoBAL QSOs could also contaminate the high-z
selection, whereas constructing models for the number density and
colors of all these sources would be a daunting task. Instead, our
model for the contaminant class is purely empirical and does not need
to construct SED models for the mean properties of each possible
contaminant.
This approach is more flexible as it captures the underlying decon-
volved distribution of the contaminant using real data, and includes
all the kind of possible contaminants without the need of modelling
them.

8§ CONCLUSION

In this paper, we described the application of the XDHZQSO method
to select high-z (6 < z < 8) QSOs. Our approach is based on
density estimation in the high-dimensional space inhabited by the
optical-IR photometry. The main idea is that quasars and the far
more abundant contaminants (cool dwarf stars, red galaxies, lower-
z reddened, or absorbed QSOs) inhabit different regions of this
space. Thus, probability density ratios yield the probability that an
object is a quasar, which is used to select and prioritize candidates
for spectroscopic follow-up. Density distributions are modelled as
Gaussian mixtures with principled accounting of errors using the
XD algorithm. Compared to other probabilistic selection methods,
the great advantage of our approach is that the poorly understood
contaminants are modelled fully empirically.
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High-z quasars were trained on synthetic photometry in three
redshift bins (6 < z < 6.5, 65 <z <7,7 <z < 8), whereas
contaminants were trained on the VIKING (YJHK,) imaging survey
combined with deep DECaLS z-band and unWISE (W1W2), where
all sources were required to be g and r dropouts. The combination
of depth (J43 < 22) and wide field (1076 deg?) make this the
best panchromatic imaging for training quasar selection until Euclid
arrives.

From extensive simulations we determined the threshold (P > Py,)
required to obtain a completeness of 2 56 per cent in each redshift
bin, which results in selection efficiencies 2 5 per cent. These high
efficiencies indicate that the = 1 per cent efficiencies of recent
colour-cut based surveys are not necessary. The required thresholds
Py, and resulting efficiencies depend on the z-bin in question owing
to the changing overlap between quasars and contaminants, where
the higher redshift bins have lower efficiencies. With the adopted
Py = 0.01, we selected 58, 80, and 43 quasar candidates in the range
6 <7<6565<7z=<7 7<z<8in the VIKING footprint,
respectively. These targets have been scheduled for optical and NIR
spectroscopic follow-up, and the results will be published in a future
work (Nanni et al. in prep.).

In the VIKING footprint the there are eight known 6 < z <7
QSOs that meet our catalogue criteria, of which two are selected.
Since there are no z > 7 known QSOs in the VIKING footprint,
we applied our method to six out of eight known z > 7 QSOs in
the entire sky (we excluded two z > 7 QSOs as they do not meet
our catalog criteria), and recover five of them. We argued that the
XDHZQSO misses some of these quasars for two reasons: (1) the
existing quasar fluxes are noisy so that our model correctly assigns
them a low probability, and (2) the inaccuracies in our modeling of
quasars, namely that the synthetic quasar spectra we used do not
capture the scatter in the distribution of relative fluxes. We argued
that the first limitation is a feature rather than a flaw in our approach,
since we deliver reliable probabilities treating noise, and that this
overall will result in higher selection efficiency. As for the second, an
empirical model of luminous quasar spectra will definitely improve
our classification, which we will pursue in future work.

From the integration of the z = 6.7 LF down to J = 21.5, we
expect to find 15, &5, and 2 QSOs at 6 <7 <6.5,65 <7 <7,
7 < z < 8, respectively, in the VIKING survey area. Considering the
completeness we derived in the three redshift ranges and the fact that
three, and four J < 21.5 QSOs have been already discovered in the
VIKING footprint at 6 < z < 6.5, and 6.5 < z < 7, respectively, we
expect to discover ~10, 1, and 2 new QSOs at 6 <z <6.5,6.5 <
7 < 17,7 < z < 8, respectively, with future spectroscopic follow-up
of our candidates.

Future applications of this methodology will focus on three
data sets: UKIDSS, UHS, and Euclid. UKIDSS covers an area of
~4000 deg” with similar multifilter coverage as VIKING (ZYJHK),
making it the best ground to apply XDHZQSO after VIKING.
Instead, UHS covers a larger area (12700 deg?) but only with
three filters (JHK). To apply our method to UHS, whose sources
have no data in the Y band, we will simply re-score by setting the
errors in the bands with no measurements to a large number.

Finally, the advent of Euclid in 2022 will provide plenty of
optical/IR data with a better separation between high-z QSOs
and contaminants properties, as its six-yr wide survey will cover
15000 deg® of extragalactic sky in four bands: a broad optical
band O (5500-9000 A), and three NIR bands, Y (9650-11920 A),
J (11920-15440 A), and H (15440-20000 A), a depth of 24 mag at
5o (Laureijs et al. 2011). The Euclid’s wide field IR imaging should
enable the discovery of ~100 QSOs at z > 7, and ~25 beyond the
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current record of z = 7.6, including ~8 beyond z = 8.0 (Euclid
Collaboration 2019). Since no data have been delivered yet from
Euclid, we will need re-train XDHZQSO on the Euclid photometry
to get the contaminant model. Finally, the high efficiencies in finding
z > 7 QSOs reached by XDHZQSO suggest that we can do much
more efficient spectroscopic follow-up, while we have a framework
to solve the problem of performing low efficiency selection with
JWST.
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APPENDIX A: COVARIANCE COMPUTATION
AND APPLICATION

To construct the contaminant models during the training step, we
deconvolved the noisy relative fluxes of our contaminant sources,
assuming that the relative-flux uncertainties are Gaussian, and
providing the covariance matrix of the uncertainties of the single
objects. While the flux measurements in each filter are independent
of one another, i.e. their noise is uncorrelated, the relative flux errors
are correlated (i.e. they are the ratio of the flux in a given band flux
and the J-band flux). Thus, the covariance of a source with fluxes
f' ={f1, f2, ..., fv} and uncertainties sz ={0y,0p,....,0p,} com-
ing from N filters that include the J band one, can be computed
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In our case, the covariance matrix is:
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At first, to train our contaminant models we provided to the XD code
the noisy relative fluxes with covariance matrices computed using
equations (A2) and (A3). However, we noticed that for bins whose
J-band median point is Jy,, > 21 (i.e. SNR(Jp) < 10) the XD code is
not able to correctly deconvolve the contaminants properties. This is
apparent in Fig. A1, where we show the comparison between the real
data (black contours) and a noise added sample from the deconvolved
model (red contours) generated by the XD code in a faint bin (22.0
< J <223, SNR(Jyp) = 5): it is clear that we do not obtain a
noisy relative flux distribution that is consistent with the real one.
This deconvolved model was generated after providing a covariance
matrix in the form of equation (A2) plus (A3), while we added the
errors to the deconvolved sample as described in Appendix B. The
failure of the XD code to correctly deconvolve the relative fluxes
in the limit of faint J-band bins (SNR(J,,,;) < 10) arises from the
violation of our assumption that the relative-flux uncertainties are
Gaussian in this regime. In fact, the ratio of noisy quantities is in
general not Gaussian distributed, as we assumed in order to use
XD. However, this is a good approximation if #, has small errors
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Figure A1l. Relative-flux relative-flux contours comparison between the real (noisy) data (black) and a noise added sample from the deconvolved model (red)
generated by the XD code in the 22.0 < J < 22.3. Errors have been added as explained in Appendix B, while the model was generated providing a covariance
matrix in the form of equation (A2) plus A3. The labelled quantities are relative fluxes (i.e. fluxes in different bands divided by the J-band flux). It is apparent
that we do not obtain a noisy relative flux distribution that is consistent with the real one.

relative to 17}, whereas as F ; becomes noisier, one will generate
progressively stronger tails in F,/F,. To remedy this problem, we
decided to construct our faint (Jy,, > 21) deconvolved contaminant
models providing a diagonal covariance: with only elements on the
diagonal computed by equation (A3) and zeros elsewhere. Although,
this is not formally the correct approach to deal with non-independent
quantities, it simply provides good results during the training step.
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In Fig. A2, we show the comparison between the real data (black
contours) and a noise added sample from the deconvolved model
(red contours) generated by the XD code with a diagonal covariance.
The J-band bin and the real data are the same as those displayed in
Fig. Al. In this case, it is apparent that after re-adding the errors the
noisy simulated distributions are far more consistent with the real
ones.
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Figure A2. Relative-flux relative-flux contours comparison between the real (noisy) data (black) and a noise added sample from the deconvolved model (red)
generated by the XD code in the 22.0 < J < 22.3. Errors have been added as explained in Appendix B, while the model was generated providing a diagonal
covariance matrix in the form of equation (A3). The labelled quantities are relative fluxes (i.e. fluxes in different bands divided by the J-band flux). In this case,

the two distributions are consistent.

APPENDIX B: NOISE MODEL

As described in several parts in this paper, we often sampled a
huge number of simulated high-z QSOs and contaminants from our
XDHZQSO deconvolved models, and finally computed their prob-
abilities of being high-z QSOs based on their simulated properties.
However, the sampling of deconvolved models produces noiseless
relative fluxes that are not a real representation of the noisy properties
usually measured. We explain here our adopted procedure to add the
flux uncertainties to the simulated noiseless fluxes.

Lets consider for simplicity the case of a single noiseless source
sampled from our simulations of a specific J-band bin. The approach
we describe here can then be applied to an ensemble of such samples.

For each J-band bin, we compute the central J-band flux of the bin
as the median of the J-band fluxes of all the VIKING sources that
land in the bin. Now, to generate mock photometry for the source,
we multiply the median J-band flux for the bin with the noiseless
simulated relative fluxes obtained by sampling our Gaussian mixture
model, so as to obtain its noiseless fluxes in all the other bands
(VIKING-YHK,, DECaLS-z, and unWISE-W1W?2). To derive the
photometric error to add to these seven noiseless simulated fluxes,
we start by, for each photometric band, dividing the real noisy fluxes
from the VIKING data set (see description in Section 3.1) into 50
bins that roughly contain the same number of sources. For each filter
and for each of these bins, we construct the cumulative distribution
of the photometric error and archive them. To simulate a mock
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source, we locate the bin containing its flux level for each filter,
and draw samples from the respective cumulative distributions to
obtain standard deviations corresponding to the noise level in each
filter. We then create a realization of Gaussian noise using these
standard deviations, which are then added to the noiseless mock data
to construct a noisy mock observation. In this way, we can add the

MNRAS 515, 3224-3248 (2022)

real errors coming from our VIKING area data set to our simulated
noiseless fluxes: i.e. we capture the distribution of the noise at a given
flux level, instead of simply using its mean value.

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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