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A B S T R A C T 

We introduce a probabilistic approach to select 6 ≤ z ≤ 8 quasar candidates for spectroscopic follow-up, which is based on 

density estimation in the high-dimensional space inhabited by the optical and near-infrared photometry. Densities are modelled 

as Gaussian mixtures with principled accounting of errors using the extreme deconvolution (XD) technique, generalizing an 

approach successfully used to select lower redshift ( z ≤ 3) quasars. We train the probability density of contaminants on 1902 071 

7-d flux measurements from the 1076 de g 
2 o v erlapping area from the Dark Energy Camera Le gac y Surv e y (DECaLS) ( z), VIKING 

( YJHK s ), and un WISE ( W 1 W 2) imaging surv e ys, after requiring they dropout of DECaLS g and r , whereas the distribution of 
high- z quasars are trained on synthetic model photometry. Extensive simulations based on these density distributions and current 
estimates of the quasar luminosity function indicate that this method achieves a completeness of ≥ 56 per cent and an efficiency 

of ≥ 5 per cent for selecting quasars at 6 < z < 8 with J AB < 21.5. Among the classified sources are 8 known 6 < z < 7 quasars, 
of which 2/8 are selected suggesting a completeness � 25 per cent , whereas classifying the 6 known ( J AB < 21.5) quasars at z 
> 7 from the entire sky, we select 5/6 or a completeness of � 80 per cent . The failure to select the majority of 6 < z < 7 quasars 
arises because our quasar density model is based on an empirical quasar spectral energy distribution model that underestimates 
the scatter in the distribution of fluxes. This new approach to quasar selection paves the way for efficient spectroscopic follow-up 

of Euclid quasar candidates with ground-based telescopes and James Webb Space Telescope . 

K ey words: galaxies: acti ve – quasars: supermassive black holes – early Universe. 
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 INTRODUCTION  

uminous high-redshift quasars (QSOs) are amongst the best probes
f the primordial Universe at the end of the dark ages. Their
pectra provide important information regarding the properties of
he intergalactic medium (IGM) during the epoch of reionization
EoR). In fact, deep spectroscopy of z > 6 QSOs showed that the
GM is significantly neutral at z ≥ 7 (e.g. Ba ̃ nados et al. 2018 ; Davies
t al. 2018 ; Wang et al. 2020 ; Yang et al. 2020a ), but highly ionized
t z ≤ 6 (e.g. McGreer, Mesinger & Fan 2011 ; McGreer, Mesinger &
’Odorico 2015 ; Yang et al. 2020b ). 
In addition, the engines of the most distant QSOs, the super
assive black holes (SMBHs), are crucial for understanding the

ormation mechanisms of the first generation of black hole seeds
see Inayoshi, Visbal & Haiman 2020 , for a recent re vie w). Their
xistence up to z = 7.6 (e.g. Wang et al. 2021 ), and hence formation
ince 0.7 Gyr after the big bang, poses the most stringent constraints
n the masses of black hole seeds. In fact, making the standard
ssumptions about Eddington-limited accretion, current BH masses
n the highest- z quasars appear to rule out the expected ∼ 100 M �
 E-mail: nanni@strw .leidenuniv .nl 
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eeds from Pop III remnants, and instead require more massive seeds
10 4 −6 M �; e.g. Volonteri & Begelman 2010 ; Volonteri 2012 ). 

As of today, more than 200 quasars have been disco v ered at redshift
 ≥ 6 (e.g. Fan et al. 2001 ; Wu et al. 2015 ; Ba ̃ nados et al. 2016 ; Jiang
t al. 2016 ; Matsuoka et al. 2016 ; Reed et al. 2017 ; Wang et al. 2017 ;
ang et al. 2019 ; Matsuoka et al. 2019b ) thanks to the advent of wide-
eld multiband optical and NIR imaging surv e ys such as: the Sloan
igital Sky Survey ( SDSS ; e.g. Fan et al. 2001 ), the Canada–France–
awaii Telescope Legacy Survey (CFHTLS; e.g. Willott et al. 2009 ),

he Panoramic Survey Telescope and Rapid Response System 1 (Pan-
TARRS1; e.g. Ba ̃ nados et al. 2016 ), the United Kingdom Infrared
elescope Infrared Deep Sk y Surv e y (UKIDSS; e.g. Mortlock et al.
011 ), the VISTA Kilo-degree Infrared Galaxy survey (VIKING; e.g.
enemans et al. 2013 ), the VLT Surv e y Telescope ATLAS (VST-
LTAS; e.g. Carnall et al. 2015 ), the Dark Energy Surv e y (DES;

.g. Reed et al. 2015 ), the DESI Le gac y Imaging Surv e ys (DELS;

.g. Wang et al. 2017 ), the UKIRT Hemisphere Surv e y (UHS; e.g.
ang et al. 2019 ), and the Hyper Suprime-Cam surv e y (HSC; e.g.
atsuoka et al. 2016 ). 
At the highest redshifts, there are only eight quasars known at z
7 (Mortlock et al. 2011 ; Ba ̃ nados et al. 2018 ; Wang et al. 2018 ;

ang et al. 2019 , 2020b ; Matsuoka et al. 2019a , b ; Wang et al. 2021 )
ith two of them at z = 7.5 (Ba ̃ nados et al. 2018 ; Yang et al. 2020a ),
© The Author(s) 2022. 
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nd the most distant one at z = 7.6 (Wang et al. 2021 ). This sample
f z ≥ 7 QSOs is still very limited – owing to the opacity of the
ntervening high- z IGM, distant quasars are brightest redward of 
heir Ly α emission line which is redshifted to NIR wavelengths at 
 ≥ 7, making both imaging and spectroscopic observations more 
hallenging. Furthermore, the expected number density of z ≥ 7 
uasars is low (10 −3 deg −2 at J = 21; Wang et al. 2019 ), while the
ontaminants, mostly Galactic cool dwarfs and early-type galaxies, 
re far more numerous ( ≈20 deg −2 at J = 21). As a result, the
uccess rate in finding quasars in this redshift range is extremely low
 ∼ 1 per cent based on our experience and pri v ate communication 
ith Ba ̃ nados), and thus requires large amounts of telescope time for

pectroscopic confirmation, making it extremely challenging to find 
ore bright z > 7 quasars with existing data sets. 
On the other hand, the advent of the next generation photometric 

nd spectroscopic telescopes, such as Euclid or the James Webb 
pace Telescope ( JWST ), should pro v e to be a watershed moment
n high-redshift quasar studies (Euclid Collaboration 2019 ). In fact, 
uclid’s wide field IR imaging should enable the disco v ery of ∼100
uasars with 7.0 < z < 7.5, and ∼ 25 beyond the current record
f z = 7.6, including ∼ 8 beyond z = 8.0 (Euclid Collaboration
019 ), and JWST will deliver exquisite spectra of them. Ground- 
ased telescopes will play an essential role in disco v ering the
righter Euclid quasars, whereas fainter J AB > 21.5 ones will likely 
equire JWST . Although current selection methods based on simple 
olour-cuts were able to disco v er most of the z > 7 known QSOs
Ba ̃ nados et al. 2018 ; Yang et al. 2020a ; Wang et al. 2021 ), their low
bservational success rate (private communication) is far too low to 
ake confirmation of the on average fainter Euclid QSOs feasible, 

s this would require e xcessiv e amounts of ground-based and JWST
bservations. It is thus clear that more efficient selection methods 
re required. 

So f ar, tw o different methods for selecting high- z QSOs that
re not based solely on colour-cuts have been proposed. The first
ne is based on Bayesian model comparison (BMC) technique by 
ortlock et al. ( 2012 ), while the second uses a simpler minimum-

2 model fitting method to the quasars’ spectral energy distribution 
SED; Reed et al. 2017 ). These methods are based on impro v ed
opulation models for the key contaminants: MLT dwarf types, 
nd compact early-type galaxies, and they both require model 
olours for each population. The BMC method additionally requires 
 model for the surface density of each source as a function of
pparent magnitude. Although these methods have been successfully 
sed in the past to select high- z QSOs (Mortlock et al. 2011 ,
012 ; Reed et al. 2017 ), including the VIKING surv e y (Barnett
t al. 2021 ), they mostly rely on constructing a contaminant model
f the entire sky in the colour-range in question to very faint
agnitudes, which is a challenging task given our currently poor 

nowledge about the different types of contaminants. Another quasar 
earch method that has been employed uses the random forests 
achine learning algorithm in conjunction with colour-cuts for 

uasar selection and photometric redshift estimation (Schindler 
t al. 2017 , 2018 , 2019 ; Wenzl et al. 2021 ). While this method
as been demonstrated to successfully select quasars at lower- z, its
rimary drawback is that it cannot properly account for photometric 
ncertainties. 
In this paper, we describe our probabilistic high- z quasar selection 

echnique, which uses density estimation in flux space to compute the 
robability of being a high- z quasar for each candidate. For density
stimation, we use the extreme deconvolution method (XD; Bovy, 
ogg & Roweis 2011a , b ), which generalizes the familiar machine

earning approach of describing a probability density with a mixture 
f Gaussians to the case of heteroscedastic noise. XD enables one
o deconvolve errors for noisy training data to construct the true
nderlying noiseless probability density, and then reconvolution of 
he associated noise to e v aluate the probability at new arbitrary test
ocations. In the context of high- z quasar selection, the main merits
f this approach are: (1) it is fully Bayesian, and thus similar to the
pproach of Mortlock et al. ( 2012 ) (if the contaminant and quasar
odels are perfectly known), (2) the contaminant model is fully 

mpirical and requires making no assumptions, (3) it fully accounts 
or errors in a principled fashion, i.e. noiseless distributions are 
nferred via deconvolution and then reconvolved with the given target 
ncertainties. In the end, the target selection/classification problem 

ecomes the task of training good number-density models for both 
he target population and the contaminant population to maximize 
he efficiency and completeness of the survey. We applied our target
election technique (hereafter XDHZQSO) to a set of possible high- z 
andidates that are selected with the use of optical, NIR and MIR
urv e ys, and construct our XDHZQSO quasar targeting catalogue. 
his catalogue will be used for future spectroscopic follow-up to 
onfirm new high- z QSOs in the NIR ground-based surv e y area,
hile this technique provides a better method for classifying and 
rioritize high- z QSOs candidates in the near future, especially with
he advent of Euclid in 2022. 

This paper is structured as follows. We present the XDHZQSO 

ethod in Section 2 . In Section 3 , we discuss the data used to
rain our probabilistic classifier, and in Section 4 we describe the
onstruction of the XDHZQSO models from the training data and 
ts application to classify our candidates. In Section 5 , we provide
 detailed description of the analysis of source completeness and 
fficiency. In Section 6 , we show the results of our code in classifying
oth the known high- z QSOs in the VIKING surv e y area, and the
nown z > 7 QSOs on the entire sky. In Section 7 , we discuss the
imitations of our selection technique, compare it to other methods, 
nd describe various extensions to the basic method described in this
aper. We conclude in Section 8 . Throughout the paper, we adopt
 flat cosmological model with H 0 = 68.5 km s −1 Mpc −1 (Betoule
t al. 2014 ), �M = 0.3, and �� = 0.7. All the magnitudes are given in
he AB system, while the uncertainties of our reported measurements 
re at 1 σ confidence level. Throughout the paper, we use F and ˆ F to
ndicate the ‘true’ noiseless and the real noisy flux es, respectiv ely,
hereas we use a generic f to express both the noiseless and the noisy
uxes in the displayed figures. 

 PR  OB  ABILISTIC  CLASSIFICATION  METHOD  

igh-redshift quasar selection is essentially a probabilistic classifi- 
ation problem in which objects are classified into one of a discrete
et of classes, based on their measured physical attributes. These 
lasses can be modelled using a set of objects with class assignments
vailable on which we can train the classification algorithm. Although 
his is a classical problem in data analysis/machine learning, the 
hysical attributes of astronomical targets are rarely measured 
ithout substantial and heteroscedastic measurement uncertainties, 

nd often there is also the problem of sources with no observational
o v erage in one or more bands of study. Knowing that, classification
lgorithms for astronomical target selection have to deal with these 
omplications by naturally degrading the probability of an object 
eing in a certain class if the measurement uncertainties imply that
he object o v erlaps sev eral classes. 

Consider an object O with ‘true’ attributes { F i } that we wish to
lassify into class A or class B . In our specific case, we would like
o classify an object O into classes ‘high- z QSO’ or ‘contaminant’
MNRAS 515, 3224–3248 (2022) 
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Table 1. Surv e y properties. 

Surv e y Filters 5 σ depth 

VIKING ZYJHK s 23.1, 22.3, 22.1, 21.5, 21.2 
DECaLS grz 23.95, 23.54, 22.50 
un WISE W 1 W 2 20.72, 19.97 
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ased on its physical noiseless { F i } and noisy { ̂  F i } attributes (e.g.
uxes, magnitudes, colours, or relative fluxes), and the associated
rrors { σ i } . This can be expressed using Bayes’ theorem to relate
he probability ratio that object O belongs to class A or B to the
ensity in attribute space 

P ( O ∈ A |{ ̂  F i } ) 
P ( O ∈ B|{ ̂  F i } ) 

= 

P ( O ∈ A ) 

P ( O ∈ B) 
× p( { ̂  F i }| O ∈ A ) 

p( { ̂  F i }| O ∈ B) 
, (1) 

here the two fractions on the right-hand side are the prior probability
atio and the Bayes factor, respectively. In equation ( 1 ), we distin-
uish between discrete probabilities P and continuous probabilities
 . The p( { ̂  F i }| O ∈ A ) factor in the numerator of the right-hand side
f equation ( 1 ) is the density in attribute space e v aluated at the
argets’s attributes { ̂  F i } , while P ( O ∈ A ) is proportional to the total
umber of A objects in a prior probability. The denominator p( { ̂  F i } )
s a normalization factor, and expresses the total probability that the
bject O belongs to either class A or class B . It is easy to see that this
robability is a true probability since it al w ays lies between zero and
ne, and the sum of the probabilities for the two classes is equal to
ne. 
Measurement uncertainties are handled in this framework through
arginalization o v er the ‘true’ properties { F i } giv en the ob-

erved ones { ̂  F i } and the measurement-uncertainty distribution
( { ̂  F i }|{ F i } ): 

( { ̂  F i }| O ∈ A ) = 

∫ 
d { F i } p( { F i }| O ∈ A ) p( { ̂  F i }|{ F i } ) . (2) 

e take p( { ̂  F i }|{ F i } ) to be Gaussian, which is an extremely
ood approximation for flux measurements. XD provides a simple
echanism to (1) infer the true underlying ‘noise deconvolved

istribution’ P ( O ∈ A |{ ̂  F i } ), as well as (2) performs the con-
olution integral in equation ( 2 ). Since the model is a mixture
f Gaussians and the errors are Gaussian, the normally complex
perations of decon volution/con volution reduce to trivial algebraic
perations. 
Compared to other probabilistic selection methods, the great

dvantage of our approach is that the poorly understood contaminants
re modeled fully from the data, 1 rather than relying on empirical
odels (e.g. Mortlock et al. 2012 ; Barnett et al. 2021 ), and the

ontaminant classes are all grouped into a single all-inclusive
ontaminant class. In this way, the density models for the contaminant
lass can be simply trained using real data from the entire sky. This
ethod was already applied in the past to select SDSS QSOs (Bovy

t al. 2011b ; Bovy et al. 2012 ), and was shown to be effective even
n the challenging redshift range 2.5 ≤ z ≤ 3 where the stellar
ontamination is significant. 

 TRAINING  DATA  

o construct probability density models we trained on either real
r simulated photometry, depending on whether we are considering
contaminants’ or ‘quasars’. Contaminants were trained on 1076 deg 2 

f o v erlapping imaging from VIKING ( YJHK s ), DECaLS ( grz ), and
nWISE ( W 1 W 2). 2 In Table 1 , we summarize the properties of the
NRAS 515, 3224–3248 (2022) 

 Ho we ver, the high- z QSOs are trained on empirical models. 
 To compute the area co v ered by the sources in our sample we used the 
ealpy PYTHON package, based on the Hierarchical Equal Area isoLatitude 
ixelization ( HEALPIX ). We used healpy to subdivide a spherical surface in 
00 pixels, in which each pixel covers the same surface area as every other 
ixel, and summed the areas of the pixels that includes one or more sources 
rom the VIKING surv e y area. 
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hree surv e ys we used for our selection. The quasar models were
rained on synthetic photometry from the McGreer et al. ( 2013 )
simqso’ simulator. 3 This section describes the data used to train
hese density classification models. 

.1 Contaminant data 

he contaminant training set is generated using photometry from
eep optical, and near- and mid-IR imaging surv e ys. 

At NIR wavelengths, we used Y , J , H , and K s bands coming from
IKING DR4. The VIKING data were obtained from the VISTA
cience Archive. 4 For optical bands, we mainly used data from

he DESI Le gac y Imaging Surv e ys (DELS), 5 which combines three
ifferent imaging surv e ys: the DECaLS, the Beijing-Arizona Sky
urv e y (BASS; e.g. Zou et al. 2019 ), and the Mayall z-band Le gac y
urv e y (MzLS). These three surv e ys jointly image ∼14 000 deg 2 

f the extragalactic sky visible from the Northern hemisphere in
hree optical bands ( g , r , and z). The sky coverage is approximately
ounded by −18 ◦ < δ < + 84 ◦ in celestial coordinates, and | b | > 18 ◦

n Galactic coordinates, and it o v erlaps with most ( ≈ 80 per cent ) of
he VIKING surv e y footprint. An o v erview of the DELS surv e ys can
e found in Dey et al. ( 2019 ). When available, we also included Pan-
TARRS (PS1) photometric data in our selection, which provides
 π sk y co v erage ( ≈ 70 per cent o v erlap with the VIKING footprint)
n five different filters: g PS 1 , r PS 1 , i PS 1 , z PS 1 , and y PS 1 . As described
elow, these data were used to further refine our training catalog. In
he MIR, we used the W 1 and W 2 bands coming from the un WISE
elease (Schlafly, Meisner & Green 2019 ), that comes from the
oaddition of all publicly available 3–5 μm WISE imaging (Wright
t al. 2010 ), including that from the ongoing NEOWISE (Mainzer
t al. 2011 ) post-cryogenic phase mission. The steps used to construct
ur catalogue are illustrated schematically in Fig. 1 , which we
escribe in detail in the following. 
As we are interested in finding 6 ≤ z ≤ 8 QSOs, we used the J

and as the ‘detection band’ to construct our contaminant training
ample. In fact, at the very high-redshift ( z > 7) the Ly α drop falls
n the Y band, preventing the detection of very high- z QSOs, while
he VIKING J band reaches a depth of 22.1 (at 5 σ ). So, we selected
ll the sources with J band signal-to-noise ratio SNR ( J ) ≥ 5. We
lso remo v ed bright sources ( J < 17), as we found they were often
rtifacts or bright stars, after performing a visual inspection of them.
hen, we cross-matched the VIKING catalogue with the DELS, PS1,
nd unWISE ones, using a radius 2 arcsec. For sources covered by
he DELS footprint but with no counterpart detected in the surv e y
ithin 2 arcsec, we performed forced photometry on the DECaLS

mages with an aperture radius 1.5 arcsec. At this stage, since z ≥
 QSOs drop out in the bluest optical filters, we further required
ur objects to have SNR( g , r ) < 3, 6 and, when available, SNR( g PS1 ,
 https:// github.com/imcgreer/ simqso/ 
 http:// horus.roe.ac.uk/ vsa/ 
 https://www.legac ysurve y.org/
 Sources detected in DELS have already forced photometry for the DECaLS- 
rz and the un WISE - W 1 W 2 filters. 

https://github.com/imcgreer/simqso/
http://horus.roe.ac.uk/vsa/
https://www.legacysurvey.org/
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Figure 1. General steps (red ellipses) performed to construct the contaminant training sample. The blue boxes represent the conditions that the sources must 
satisfy to make it to the next step, while yellow boxes provide more information about some specific steps. After the match with other surv e ys (DELS, unWISE, 
and PS1), sources are divided into two sub-catalogues depending on their DELS counterpart: sources with a DELS detected counterpart (DELS detected), and 
sources with no detected counterpart but with DELS co v erage (DELS undetected). Sources with neither DELS counterpart nor DELS co v erage are simply 
remo v ed. † At this step we also remo v ed sources with SNR( g PS1 , r PS1 ) ≥ 3, or SNR( i PS1 ) ≥ 5 and i − z < 2, when these data are available. 
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Table 2. Selection criterion on the ‘contaminant’ training catalogue. 

Data sample Number of sources 

VIKING catalogue 94 819 861 
SNR( J ) ≥ 5 45 968 999 
J ≥ 17 44 191 759 
VIKING cross-matched a 36 057 930 
SNR( g , r ) < 3 b 2871 420 
Sources with data in all bands 1902 071 

a Specifically, there are 33 633 899 sources with a DELS detected counterpart, 
and 2424 031 sources with no DELS detected counterpart but co v ered by the 
DELS surv e y. 
b At this step we also remo v ed all the sources with SNR( g PS1 , r PS1 ) ≥ 3, or 
SNR( i PS1 ) ≥ 5 and i − z < 2, when these data are available. 
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 PS1 ) < 3. We also remo v ed objects with SNR( i PS1 ) ≥ 5 and i − z

 2, when these data were available. For the surviving sources, we
erformed forced photometry on the VIKING images ( YHK s filters),
sing an aperture radius 1.5 arcsec, while we also performed forced
hotometry on the un WISE images, with an aperture radius 7 arcsec,
or those sources with no DELS detected counterpart. Finally, we
emo v ed sources that have no coverage in all the requested filters
VIKING- YHK S , DECaLS- z, and un WISE - W 1 W 2). 7 

The resulting final ‘contaminant’ training catalogue contains
902 071 sources, while the number of sources that survived each
ltering step are presented in Table 2 . Among the final sources,
e identified eight known 6 ≤ z ≤ 7 QSOs, indicating that the

ontamination of the contaminant training set with high- z quasars is
mall. Therefore, we did not remo v e these known QSOs from the
raining set. 

.2 Quasar data 

e used a sample of 440 000 6 ≤ z ≤ 8 QSOs simulated from the
simqso’ code from McGreer et al. ( 2013 ), using the updated version
escribed in Yang et al. ( 2016 ). The simqso code was used to generate
 grid with a uniform distribution in redshift o v er the range 6 ≤ z ≤
, and in magnitude o v er the range 17 ≤ J ≤ 22.5. Assuming that the
SO spectral energy distributions (SEDs) do not evolve with redshift

Kuhn et al. 2001 ; Yip et al. 2004 ; Jiang et al. 2006 ; Ba ̃ nados et al.
018 ), the quasar spectrum is modelled as a power-law continuum
ith a break at 1200 Å. For redder wavelength coverage, we added

our breaks at 2850, 3645, 6800, and 30 000 Å. The slope ( αλ) from
200 to 2850 Å follows a Gaussian distribution with mean μ( α1200 ) =
0.5 and dispersion σ ( α1200 ) = 0.3; the range from 2850 to 3645 Å

as a slope drawn from a Gaussian distribution with μ( α2850 ) = −0.6
nd σ ( α2850 ) = 0.3; from 3645 to 6800 Å we adopted a Gaussian
ith μ( α3645 ) = 0.0 and σ ( α3645 ) = 0.3; finally, from 6800 to 30000
, we used μ( α6800 ) = 0.3 and σ ( α6800 ) = 0.3. These different
reak points and power-law exponents are designed to reproduce
he template from Selsing et al. ( 2016 ). The parameters of emission
ines are derived from the composite quasar spectrum from (Glikman,
elfand & White 2006 ), and the lines are added to the continuum

s Gaussian profiles, where the Gaussian parameters (wavelength,
qui v alent width, and full with half-maximum) are drawn from
aussian distributions. These distributions reco v er trends in the
NRAS 515, 3224–3248 (2022) 

 Although, XD can menage the problem of sources with missing data by 
sing a very large uncertainty variance for them, we decided to train our 
odels using the best data available (i.e. removing sources with no coverage 

n all the filters of study). We plan to use the XD feature that allows to deal 
ith missing data in future works. 

m  

w  

8

9

ean and scatter of the line parameters as a function of continuum
uminosity, e.g. the Baldwin effect (Baldwin 1977 ), and blueshifted
ines (Gaskell 1982 ; Richards et al. 2011 ). The simulator also models
bsorption from from neutral hydrogen absorption in Ly α forests
ased on the work of Worseck & Prochaska ( 2011 ). As a reference,
e provide in Fig. 2 the mean spectrum of 20 000 z ∼ 6 simulated
SOs (red line), and the spectra corresponding to the 16th and 84th
ercentiles (blue lines), normalized at 1450 Å. The final noiseless
hotometry of simulated QSOs is derived from the model spectra by
ntegrating them against the respective filter curves. 

 XDHZQSO  DENSITY  MODEL  

o estimate the density of contaminants and quasars in flux space
the p( { ̂  F i }| O ∈ A ) factor from equation ( 1 )], we used the XDGMM 

8 

mplementation of extreme deconvolution from Holoien, Marshall &
echsler ( 2017 ). XDGMM is a PYTHON package that utilizes the

cikit-learn API (Pedregosa et al. 2011 ; Buitinck et al. 2013 ) for
aussian mixture modelling. It performs density estimation of noisy,
eterogenous, and incomplete data and uses the XD algorithm 

9 (Bovy
t al. 2011b ) for fitting, sampling, and determining the probability
ensity at new locations. As described by Bovy et al. ( 2011b ), XD
odels the underlying, deconvolved, distribution as a sum of N
aussian distributions, where N is a model complexity parameter

hat needs to be set using an e xternal objectiv e. It assumes that the
ux uncertainties are known, as is in our case, and consists of a fast
nd robust algorithm to estimate the best-fitting parameters of the
aussian mixture. In Section 4.2 , we follow the approach used by
ovy et al. ( 2011b ) to construct the flux density model of the two
lasses. 

Finally, since Gaussian mixture models are unit-normalized, to
ompute the probability of an object belonging to a certain class,
e require a separate prior to get the correct relative weighting of

he two populations. In practice, we need to estimate the number
ounts of both quasars and contaminants [the P ( O ∈ A ) factor from
quation ( 1 )]: i.e. these are the prior factors of our Bayesian approach.
or the contaminants, we compute this factor empirically from the
umber counts ( J -band magnitude distribution of contaminants),
hile for the quasars we derived them from the high- z QSO

uminosity function. Ho we ver, to deri ve the true number counts for
he QSOs, which includes the surv e y incompleteness at the faint
nd, we used the empirical data to compute the incompleteness for
he VIKING surv e y, and apply it to the QSO number counts. In
ection 4.3 , we provide details about the computation of these prior
actors. 

.1 The binning approach 

he full model consists of fitting the probability density [the
 ( { ̂  F i }| O ∈ A ) and p ( { ̂  F i }| O ∈ B) factors from equation ( 1 )] in a
umber of bins in J -band magnitude for the two classes of objects.
e opted to bin in J band because the probability density of quasars
ill have a dominant power-law shape corresponding to the number

ounts as a function of apparent magnitude, whereas the colour
istribution is much flatter. While the latter can be represented well by
ixtures of Gaussian distributions, the power-law behaviour cannot
ithout using large numbers of Gaussians. Thus the slow variation
 ht tps://github.com/t holoien/XDGMM 

 https:// github.com/jobovy/ extreme-deconvolution 

https://github.com/tholoien/XDGMM
https://github.com/jobovy/extreme-deconvolution


Paving the Way for Euclid and JWST 3229 

Figure 2. Rest-frame mean spectrum of 20 000 z ∼ 6 simulated QSOs (red line), and the spectra corresponding to the 16th and 84th percentiles (blue lines), 
normalized at 1450 Å. The spectra are modelled as a power-law continuum with a break at 1200 Å, so to reproduce the template from Selsing et al. ( 2016 ), 
while the parameters of emission lines are derived from the composite quasar spectrum from (Glikman et al. 2006 ), and the lines are added to the continuum as 
Gaussian profiles. 
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Figure 3. Double sigmoid function that displays the right edges and the 
width of the bins used to train the contaminant model. 
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f the colour distributions with magnitude is captured by our model, 
ince we use narrow bins in J -band magnitude. 

The full contaminant model consists of 50 o v erlapping bins where
he right edges are uniformly distributed in the range J = 20 − 22.5
ith a step of 0.05 mag, while the width is given by a broken sigmoid

unction: 

 = b w + ( b s 1 − b w) 
1 

1 + e 
J bre −m th 1 

�m 

for J bre ≤ 22 , 

 = b w + ( b s 2 − b w) 
1 

1 + e 
J bre −m th 2 

�m 

for J bre > 22 (3) 

here, J bre is the J -band bin right edge, bw = 0.1 represents the
inimum bin width and bs 1 = 5, bs 2 = 1 represent the maximum bin
idths in the two J -band ranges, m th 1 = 21, m th 2 = 22, and � m =
.1. The broken sigmoid for the contaminants is shown in Fig. 3 .
he use of a variable bin width is driven by the need of having a
odel that is as continuous as possible, as the XD fits can jump

etween local maximums. In fact, this procedure guarantees that 
any ( > 20 per cent ) of the objects in the bins o v erlap for adjacent

ins, and thus the model varies smoothly. Furthermore, the use of
 broken sigmoid guarantees that both at the bright and faint ends,
here fewer objects are present, the bins are large enough to contain a

ufficient number of sources. In fact, we have > 2000 training objects
n each bin to build the contaminant models. 

As for the quasar model, we used 11 uniform spaced bins with a
idth 0.5 mag in the range J = 17 − 22.5, and we further divided the
uasar class into three subclasses corresponding to ‘low-redshift’ (6 
z ≤ 6.5), ‘medium-redshift’ (6.5 ≤ z ≤ 7), and ‘high-redshift’ (7 
z ≤ 8) quasars, constructing a QSO model for each bin. We opted
o divide the QSO into these three redshift bins, instead of working
ith a broad 6 ≤ z ≤ 8 bin, for the following reasons: 

(i) As shown in Section 5.1 , the efficiency and completeness of
ur selection method strongly depends on the z-bin in question owing
o the changing o v erlap between quasars and contaminants. 

(ii) While the 6 ≤ z ≤ 7 range has been largely investigated in the
ast, few objects have been found at 7 ≤ z ≤ 8, making it the highest
riority range that we are interested in investigating. 
(iii) Spectroscopic wavelength coverage is different for different 

nstruments, with the dividing line between optical and near-IR 
MNRAS 515, 3224–3248 (2022) 
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10 For each bin we sampled a number of sources equal to the number of real 
VIKING sources from that bin. 
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pectrographs typically occurring around ≈10 000 Å ( z Ly α = 7.2).
hus, not all the 6 ≤ z ≤ 8 QSOs can simply be confirmed with
 single instrument, and multiple instruments could be required to
onfirm candidates o v er such a broad redshift range. Hence, the
edshift bins we adopted also facilitates in efficiently conducting
ollo w-up observ ations. 

Ho we ver, in the future we plan to introduce the redshift as one of
he modelled quantities as done by Bovy et al. ( 2012 ), so that one
ould no longer needs to construct models in different redshift bins,

s this approach also provides photometric redshifts, which can be
sed to select candidates o v er an y desired redshift range. 

.2 Construction of the model 

he XD code fits for all the J -band magnitude bins for a given class
re initialized using the best-fitting parameters for the previous bin,
o to guarantee the continuity of the mode. The starting bin (the one
hat is not initialized) is the closest to J = 21, where we know we
l w ays have a quite large sample of objects ( > 10 5 ) for the training.
ereafter, we describe the model in a single bin first for a single

xample class, using the contaminant class as the example. 
In a single bin in J -band magnitude, we separate the absolute flux

rom the flux relative to the J band in the likelihood in equation ( 1 )
s follows: 

( { ̂  F i }| O ∈ “cont. ′′ ) = p( { ̂  F i / ̂  F J }| ̂  F J , O ∈ “cont. ′′ ) 

×p( ̂  F J | O ∈ “cont. ′′ ) , (4) 

here { ̂  F i } are the z, Y , H , K , W 1, W 2 fluxes, { ̂  F i / ̂  F J } are the fluxes
elative to J band, and ˆ F J is the J -band flux. We model the two factors
f the right-hand side of equation ( 4 ) separately. 
We modelled the p( { ̂  F i / ̂  F J }| ̂  F J , O ∈ “cont. ′′ ) factor using XD in

arrow bins in J -band magnitude. We use relative fluxes rather than
olours since the observational uncertainties are closer to Gaussian
or relative fluxes than they are for colours. Also, for sources where
he flux measurement can be ne gativ e the magnitudes are badly
ehav ed, while relativ e flux es remain well behav ed in this case. To
 v aluate the XD probabilities during training, we al w ays convolved
he underlying model with the object’s relative-flux uncertainties
ssuming that they are Gaussian distributed, such that the convolution
f the Gaussian mixture with the Gaussian uncertainty results in
nother Gaussian mixture. Although the ratio of two noisy Gaussian
eviates is not itself Gaussian distributed, Gaussianity is a good
pproximation provided that the J -band flux errors are small. The
alidity of this approximation is discussed further in Appendix A .
ote also that since all other fluxes are divided by the J -band
ux, the resulting uncertainties are covariant, and we provide the
unctional form of this covariance matrix in A . To train for the QSO
odels, since the simulated quasar fluxes are noiseless, we simply

eed to fit their flux densities without deconvolving to derive the
nderlying deconvolved quasar model. Ho we ver, to a v oid singular
nverse variances for the effectively noiseless model data, we added a
iny error (0.01) to the simulated noiseless relative fluxes drawn from
 Gaussian distribution, and used for consistency this small value of
he error as the input error on the photometry in the XD code. In Fig. 4 ,
e show the relative-flux relative-flux diagrams of our training data:

he contaminants are displayed using black contours, while a sub-
ample (5000) of simulated 6 ≤ z ≤ 8 QSOs are shown as coloured
oints. For display purposes, we added to the displayed quasars real
rrors drawn from a noise model based on our contaminant catalogue
hich is described in Appendix B . 
NRAS 515, 3224–3248 (2022) 
We modelled the 6D deconvolved relative fluxes { F i / F J } , using 20
aussian components. The number 20 was chosen after performing
D fits with 10, 15, 20, and 25 components. While fits with less

han 20 components o v erly smoothed the observed distribution,
odels with more than 20 components used the extra components to
t extremely low significance features in the observed distribution.
he same number of components was also adopted by Bovy et al.
 2011b ). Similarly, we also used 20 Gaussian components to fit for
he quasar models. 

To provide a visual example of the model generated by the
DHZQSO code, we display in Fig. 5 the 20.67 < J < 21.2 deconvolved
ontaminant model (black contours) compared to the 20.5 < J <
1.0 QSO models in the three redshift bins: 6 ≤ z ≤ 6.5 (blue), 6.5
z ≤ 7 (green), and 7 ≤ z ≤ 8 (red). To generate the displayed

amples, we drew 50 000 sources from the deconvolved contaminant
odel, and 50 000 objects from the three redshift-bins deconvolved
SO models. It is apparent that the large o v erlap between the

ontaminant and the 6.5 ≤ z ≤ 7 and 7 ≤ z ≤ 8 QSO contours
ill greatly lower the efficiency in selecting QSO candidates in these

wo redshift ranges, as better explained in Section 5.1 . To asses
he quality of our contaminant deconvolved models, we sampled
he deconvolved models in each J -band bin, 10 re-added the errors
o the deconvolved fluxes following our noise modelling procedure
escribed in Appendix B , and compared the relative-flux distribution
f the reconvolved sample with the original real noisy data. In Fig. 6 ,
e compare a simulated set of samples (red contours) from the
econvolved 20.67 < J < 21.2 contaminant model with the real data
istribution (black), while in Fig. 7 we compare the same simulated
ample after adding the errors, following Appendix B (red), with
he real contaminant distribution (black). It is apparent that, after
e-adding the errors to the deconvolved quantities, we obtain a
istribution that is consistent with the 20.67 < J < 21.2 real data. 

.3 Computation of the priors 

he second factor of equation ( 4 ), p( ̂  F J | O ∈ “cont. ′′ ) is expressed
s 

( ̂  F J | O ∈ “cont. ′′ ) = 

NC cont. ( ̂  F J ) 

( NC cont. ( ̂  F J ) + NC Q ( ̂  F J )) 
, (5) 

here NC cont. ( ̂  F J ) and NC Q ( ̂  F J ) are the number counts of con-
aminants and QSOs at a specific ˆ F J , respectively. Since the
enominator ( NC cont. ( ̂  F J ) + NC Q ( ̂  F J )) factors out in equation ( 1 ),
( ̂  F J | O ∈ “cont. ′′ ) can be expressed simply by the number counts of
ontaminants (or quasars) as a function of apparent magnitude, and
s al w ays e xpressed in units of de g −2 . F or the contaminant class, we
odelled the number counts directly using the number counts of the

raining data, by fitting the histogram of J -band magnitude number
ounts per square degree. We used a 40-order polynomial to perform
 robust fit to the range J ≤ 21.4, while at J > 21.4 we used a cubic
pline to interpolate the histogram, namely to capture the drop-off
ue to catalogue incompleteness. In order to model the effect of the
ncompleteness on the real data distribution, we fit a power law to
he range 20.7 ≤ J ≤ 21.4: 

 ( J ) = cJ α for 20 . 7 ≤ J ≤ 21 . 4 , (6) 

here log ( c ) = −95.3 and α = 73.0, and extrapolated this power-
aw fit to J > 21.4. The ratio between the value given by the power



Paving the Way for Euclid and JWST 3231 

Figure 4. Noisy relative-flux plots for both the contaminant (black contours and points) and a sub-sample (5000) of high- z QSO training data (coloured points). 
The colourbar shows the redshift of the simulated QSOs, while the labelled quantities are relative fluxes (i.e. fluxes in different bands divided by the J -band 
flux). For display purposes, we added to the simulated noiseless quasars the real errors coming from our contaminant catalogue as explained in Appendix B , 
while the black line and coloured filled circles represent the colour–redshift relation predicted using our simulated QSOs. Although we do not know the real 
nature of our contaminants, we expect that most of them are cool brown dwarves and early type galaxies. 
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aw and the cubic spline interpolated number counts gives us the 
ncompleteness correction term to apply to our QSO number counts 
t J > 21.4. We show in Fig. 8 (black line) the p( ̂  F J | O ∈ “cont. ′′ )
actor. 

For the ‘quasar’ class, we used a model for the z ∼ 6.7 quasar
uminosity function (LF) from Wang et al. ( 2019 ) to compute the
umber density of quasars as a function of the apparent J -band
agnitude, in the three redshift bins (6 ≤ z ≤ 6.5, 6.5 ≤ z ≤ 7,

nd 7 ≤ z ≤ 8). This LF is characterized by a double power law: 

 ( M 1450 , z ) = 

� 
∗( z ) 

10 0 . 4( α+ 1)( M 1450 −M 
∗) + 10 0 . 4( β+ 1)( M 1450 −M 

∗) 
, (7) 
here M 1450 is the absolute magnitude at 1450 Å, α and β are the
aint-end and bright-end slopes, respectively, M 

∗ is the characteristic 
agnitude, and � 

∗( z) = � 
∗( z = 6) × 10 k ( z − 6) is the normalization,

here k = −0.72 as measured by Jiang et al. ( 2016 ) for 5 < z <

 QSOs. We fixed the four parameters to the z ∼ 6.7 LF measured
y Wang et al. ( 2019 ): α = −1.9, β = −2.54, M 

∗ = −25.2, and
og 10 ( � 

∗) = −8.5. To express the LF as a function of J -band apparent
agnitude we convert the M 1450 to J -band magnitude ( m J ) using: 

 J = M 1450 + DM + k −corr , (8) 
MNRAS 515, 3224–3248 (2022) 
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Figure 5. Noiseless relative-flux relative-flux contours for the J = 20.67 − 21.2 deconvolved contaminant model (black), and for the deconvolved J = 

20 . 5 − 21 . 0 6 ≤ z ≤ 6 . 5 (blue), 6.5 ≤ z ≤ 7 (green), and 7 ≤ z ≤ 8 (red) QSO models. The labelled quantities are relativ e flux es (i.e. flux es in different bands 
divided by the J -band flux). To generate the displayed samples, we sampled 50 000 sources from the contaminant model, and 50 000 objects from each of the 
three QSO models. 
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here DM is the distance module and k -corr the k -correction from
ichards et al. ( 2006 ): 

 −corr = −2 . 5(1 + αν) log 10 (1 + z) 

− 2 . 5 ∗ αν log 10 

(
145(nm) 

1254(nm) 

)
, (9) 

here αν = −0.5. Then, we multiplied in the surv e y incompleteness
t J > 21.4 that we computed from the contaminant distribution.
e show in Fig. 8 , the p( ̂  F J | O ∈ “6 ≤ z ≤ 6 . 5 quasar ′′ ) factor (blue

ine), the p( ̂  F J | O ∈ “6 . 5 ≤ z ≤ 7 quasar ′′ ) factor (green line), and
he p( ̂  F J | O ∈ “7 ≤ z ≤ 8 quasar ′′ ) factor (red line). 
NRAS 515, 3224–3248 (2022) 
 HIGH-  z QSO  SELECTION  

n this section, we present the XDHZQSO source classification
or all the objects selected by our initial cuts described in Sec-
ion 3.1 . This catalogue was also used to train the contaminant
odel as described in Section 4 , since we argued that the frac-

ion of high- z QSOs contained in this catalog is negligible. Us-
ng the models of quasar and contaminant deconvolved relative
uxes, we computed the probability that every object is a high-
 QSO or a contaminant using equation ( 4 ). Specifically, we
sed the models from the previous section as follows. For an
bject with J -band magnitude J , we first found the bin whose
idpoint is the closest to this magnitude. Then, we used this bin

art/stac1944_f5.eps
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Figure 6. Relative-flux relative-flux contours for the (noiseless) deconvolved 20.67 < J < 21.2 contaminant model (red), compared to the real (noisy) data 
distribution (black). The labelled quantities are relativ e flux es (i.e. flux es in different bands divided by the J -band flux). Overall, the red contours are tighter 
compared to the black ones showing the efficacy of XDHZQSO in deconvolving the noisy distributions. 
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o e v aluate the relati ve-flux density p( { ̂  F x / ̂  F J }| ̂  F J , O ∈ “cont. ′′ )
or this object’s relative fluxes 11 by convolving the underlying 
0 Gaussian mixture model with the object’s uncertainties. This 
ncertainty convolution is simply adding the object’s uncertainty 
ovariance to the intrinsic model covariance for each compo- 
ent. 
Finally, we e v aluated the number density as a function of the

bject’s apparent magnitude in J band, using the interpolated 
elations described in Section 4.2 . We did this for each of the
lasses (contaminant and the three quasar classes) and compute the 
robabilities using equation ( 1 ). 
1 Where ˆ F x is the flux in an arbitrary band other than J . 

t  

t  

F

In Fig. 9 , we show the distribution of XDHZQSO quasar proba-
ilities for the sources we classified in the VIKING surv e y area in
he three redshift bins defined in Section 4.1 . Since the catalogue
s expected to contain mostly contaminant sources, the probability 
istribution is peaked at zero in each redshift bin, with a few
xceptions at higher probabilities that represent our best candidate 
uasars for future spectroscopic confirmation. It is also apparent 
hat the number of the best candidates for spectroscopic follow-up 
i.e. those with P QSO > 0.1) decreases as the redshift increases.
his results from the combination of two factors: (1) the number
ensity of QSOs decreases as redshift increases, (2) the o v erlap in
he relati ve-flux-relati ve-flux space between the higher- z QSOs and
he contaminants is larger, in particular in the 6.5 ≤ z ≤ 7 range (see
ig. 5 ). 
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Figure 7. Relative-flux relative-flux contours for the noise added deconvolved 20.67 < J < 21.2 contaminant model shown in Fig. 6 (red), compared to the real 
(noisy) data distribution (black). Errors have been added as explained in Appendix B . The labelled quantities are relative fluxes (i.e. fluxes in different bands 
divided by the J -band flux). It is apparent that, after re-adding the errors to the deconvolved quantities, we obtain a distribution that is consistent with the 20.67 
< J < 21.2 real data. 
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.1 Completeness and efficiency computation 

o select high- z QSO candidates for spectroscopic follow-up confir-
ation, we defined a probability threshold ( P th ) that effects a balance

etween contamination and completeness: this threshold should be
mall enough to a v oid missing many high- z QSOs, so that the sample
ompleteness is high, and it should be large enough to keep the
umber of contaminants low to increase the efficiency of the selection
ethod. From a practical perspective, the completeness can be seen

s a proxy for the expected fraction of recovered high- z QSOs as
 function of the probability threshold, in a certain sky area, while
he efficiency is a proxy for the expected spectroscopic confirmation
fficiency of the candidates at the telescope. 
NRAS 515, 3224–3248 (2022) 

P  
The completeness (C) is defined as: 

 ≡ N Q ( P ≥ P th ) 

N Qtot 
, (10) 

here N Q ( P ≥ P th ) is the number of high- z QSOs per square degree
ith a probability P ≥ P th , and N Qtot is the total number of QSOs per

quare degree down to J ≤ 21.5, while the efficiency (E) is defined
s: 

 ≡ N Q ( P ≥ P th ) 

N Q ( P ≥ P th ) + N C ( P ≥ P th ) 
, (11) 

here N C ( P ≥ P th ) is the number of contaminants with a probability
 ≥ P th per square degree. In the limit where the classification of all
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Figure 8. Number counts p( ̂  F J | O ∈ “clas s ′′ ) priors for the contaminant (black line and points), and the 6 ≤ z ≤ 6.5 (blue line), 6.5 ≤ z ≤ 7 (green line), 7 ≤
z ≤ 8 (red line) QSO classes as a function of the J -band magnitude. The black points are the real contaminant data from the VIKING surv e y, while we used a 
40-order polynomial to perform a robust fit to the range J ≤ 21.4, and at J > 21.4 we used a cubic spline to interpolate the histogram, namely to capture the 
drop-off due to catalogue incompleteness (black line). To model the effect of the incompleteness on the real data distribution, we fit a power law to the range 
20.7 ≤ J ≤ 21.4, and extrapolated it to J > 21.4 (black dashed line). The ratio between the v alue gi ven by the po wer law and the cubic spline interpolated 
number counts gives us the incompleteness correction term to apply to our QSO number counts at J > 21.4. The 1 σ Poissonian errors are shown as short blue 
lines. The other three QSO colored lines show the z ∼ 6.7 quasar LF from Wang et al. ( 2019 ), after the inclusion of the incompleteness. The corresponding 
extrapolation of the LF at J > 21.4 without the incompleteness correction is shown as a dashed line. 
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he sources in our surv e y is known, we could compute both C and E
irectly from the VIKING surv e y area. Ho we ver, as we do not know
he real classification of most of the sources in our sample, we used
imulations to compute the completeness and the efficiency of our 
election method, as we now describe. 

In order to reduce the statistical fluctuations we simulated a large 
umber of both high- z QSOs and contaminants. High- z QSOs were
imulated by sampling the z ≥ 6 LF from equation ( 7 ) (Wang et al.
019 ), using a Monte Carlo Simulation (MCS) approach. Namely, 
his equation can be interpreted as the 2D probability distribution 
f the quasars as a function of redshift and magnitude, and MCS
s a convenient method to generate samples. Again, we expressed 
he LF as a function of redshift and apparent J -band magnitude,
y converting the M 1450 to J -band magnitude using the k -correction
rom equation ( 9 ), and multiplied it by the incompleteness found in
ection 4.2 for the VIKING J -band magnitude distribution. We then 
sed the MCRS method to sample the redshift and J -band magnitude
istributions of 400 000 QSOs with 6 ≤ z ≤ 8, and 17 ≤ m J ≤ 22.
iven the redshift and J -band magnitude of each source, we used
ur deconvolved quasar models to sample the noiseless fluxes for 
he 300 000 simulated QSOs, and added representative photometric 
rrors according to our noise model in Appendix B . Then, the
imulated QSOs were divided into the three redshift bins adopted 
reviously, and we computed their probability of being quasars using 
quation ( 1 ), to derive the N Q ( P ≥ P th ) needed for equations ( 10 ) and
 11 ). 
To simulate the contaminants, we drew 100 million 17 ≤ m J ≤ 22
ources from the J -band magnitude distribution of the contaminant 
raining catalog (upper-left panel Fig. 8 ). We again sampled the
econvolved contaminant models to generate the noiseless fluxes 
or our simulated sources, and added the errors as explained in
ppendix B . Then, we e v aluated the probability that these synthetic

ampled ‘sky’ objects are quasars using equation ( 1 ), which is needed
o determine the N C ( P ≥ P th ) term from equation ( 11 ). Finally, we
escaled the numbers of simulated contaminants and high- z QSOs 
o reflect the prior number count distributions shown in Fig. 8 , and
e used equations ( 10 ) and ( 11 ) to compute the completeness and

f ficiency, do wn to a J -band magnitude of 21.5. This magnitude limit
as introduced since it is representative of what can be realistically

onfirmed with a near-IR instrument on an 8-m class telescope in
 reasonable exposure time, and is also close to the 5 σ limit of the
IKING data we use. Fainter objects would require longer exposure 

imes and excellent observing conditions making them much more 
hallenging to spectroscopically confirm. 

In Fig. 10 , we display the number count distribution of quasar
robabilities, d N/ (d �/ d P ), for simulated QSOs and contaminants.
his quantity is defined such that the integral over probability P
ields the number of objects per square degree. Fig. 11 shows
he efficiency (black) and the completeness (red) of our selection 

ethod as a function of the probability threshold ( P th ), in the three
edshift bins: 6 ≤ z ≤ 6.5 (top), 6.5 ≤ z ≤ 7 (central), and 7

z ≤ 8 (bottom). It is apparent that lowering the threshold will
MNRAS 515, 3224–3248 (2022) 
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Figure 9. Probability distributions of sources from our VIKING candidate 
catalogue in three different redshift ranges: 6 ≤ z ≤ 6.5 (top), 6.5 ≤ z ≤ 7 
(central), and 7 ≤ z ≤ 8 (bottom). This catalogue has also been used to train the 
contaminant models, as most of these sources are expected to be contaminants. 
The three distributions are obtained by doing model comparison between the 
contaminant model and, separately, each of the three high-redshift quasar 
models, as explained in Section 4.1 . The downward red arrows highlight the 
probability of known high- z QSOs in the VIKING surv e y area. Candidates 
with P ∼ 0 are pinpointed with arrows plotted on top of each other. In the 
bottom panel, downward blue arrows highlight the probability of known z > 

7 QSOs in the entire sky. 

Figure 10. Probability distributions of simulated contaminants (black) and 
high- z QSOs (red) per square degrees, in three different redshift ranges: 6 ≤
z ≤ 6.5 (top), 6.5 ≤ z ≤ 7 (central), and 7 ≤ z ≤ 8 (bottom). The blue dashed 
vertical line marks our adopted probability threshold. 
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l w ays increase the completeness, but this comes at the cost of a
o wer ef ficiency, thus increasing the number of contaminants that are
pectroscopically followed up. It is also evident that the completeness
nd efficiency are generally higher in the 6 ≤ z ≤ 6.5 range, where the
 v erlap between the QSO and contaminant relative-flux distributions
s smaller compared to the 6.5 ≤ z ≤ 7, and 7 ≤ z ≤ 8 cases (i.e.
he red and green contours o v erlap the black contours in Fig. 5 more
han the blue contours). 
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Figure 11. Efficiency (black solid line) and completeness (red dashed line) 
of the XDHZQSO selection method as a function of probability threshold 
( P th = 0.01). The three panels show the results for the three redshift bins: 6 
≤ z ≤ 6.5 (top), 6.5 ≤ z ≤ 7 (central), and 7 ≤ z ≤ 8 (bottom). The blue 
dashed vertical line marks our adopted probability threshold. It is apparent that 
lowering the threshold will al w ays increase the incompleteness but this comes 
at the cost of lower efficiency, thus increasing the number of contaminants 
selected for spectroscopic follow-up. It is also evident that both the efficiency 
and completeness are lower at 6.5 ≤ z ≤ 7, and 7 ≤ z ≤ 8, where the QSO 

properties largely o v erlap with the contaminant distribution (see the o v erlap 
between the red and green o v er the black contours in Fig. 5 ). 
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Since the expected number density of high- z QSOs is very low,
he choice of the P th is mostly determined by the need to have a high
ompleteness to a v oid missing the co v eted highest redshift sources.
n fact, by integrating the LF in equation ( 7 ) down to J = 21.5, we
xpect to find ≈15, ≈5, and ≈2 QSOs in the ranges 6 ≤ z ≤ 6.5,
.5 ≤ z ≤ 7, and 7 ≤ z ≤ 8, respectively, in the 1076 deg 2 VIKING
urv e y area. Reco v ering this small number of expected sources would
equire a relatively high completeness (possibly C ≈ 85 per cent ). 
s such, we chose to use the completeness as the main criterion for

etting the probability threshold P th , whereas the efficiency plays a
ivotal role in setting P th when a high completeness corresponds to
 < 5 per cent . To visualize the trade-off between completeness and

fficiency (both of which are parametrized by P th ), we plot in Fig. 12
he efficiency as a function of the completeness for the three redshift
ins. 
In the 6 ≤ z ≤ 6.5 range, the 85 per cent completeness requirement 

orresponds to P th = 0.01 and E = 50 per cent (Fig. 12 , top panel).
n the 6.5 ≤ z ≤ 7 range the high completeness requirement 
 C = 85 per cent ) cannot be achieved without lowering the efficiency
o an unacceptable value ( E ≈ 10 −3 per cent ; see Fig. 12 , central
anel), while a 56 per cent completeness (achie v able with P th = 0.01)
orresponds to E ≈ 5 per cent , which is a more reasonable efficiency
alue to work with. For the 7 ≤ z ≤ 8 range, the same probability
hreshold adopted for the lower redshift bins ( P th = 0.01) provides
 completeness of 66 per cent and an efficiency of 5 per cent . The
ery lo w v alue of ef ficiency in the two highest redshift ranges is
aused by the large o v erlap between the 6.5 ≤ z ≤ 8 QSOs and the
ontaminant models, as is apparent in Fig. 5 (see the larger o v erlap
f the green and red with the black contours). Consequently, also the
umber of QSO candidates with probability abo v e the threshold in
hese redshift ranges is lower compared to the 6 ≤ z ≤ 6.5 range. 

To summarize, we report in Table 3 the three probability thresholds
erived from our completeness and efficiency analysis, and the corre- 
ponding completeness, efficiency, and number of candidates N ( P QSO 

P th ) with P QSO ≥ P th that are selected for future spectroscopic
ollow-up. For the 7 ≤ z ≤ 8 range, we obtain an efficiency that
s 5 per cent , whereas quasar selections based on colour-cuts work 
t a lo wer le vel ef ficiency in this redshift range (Ba ̃ nados et al.
018 ; Wang et al. 2021 ). The higher efficiency that we derive results
rom the combination of two primary factors: (1) our probabilistic 
ensity estimation takes advantage of the full feature space (all flux
atios) at once without strict boundaries, making it more ef fecti ve and
nclusive than simple colour-cuts, and (2) our effort to compile as
uch panchromatic photometry as possible impro v es the efficiency, 

elative to previous efforts (Mortlock et al. 2011 ; Ba ̃ nados et al. 2018 ;
ang et al. 2020a ; Wang et al. 2021 ), to select z > 7 quasars using
olour cuts. On the other hand, an efficiency of 5 per cent for the
.5 ≤ z ≤ 7 range is lower compared to some colour-cut selections
erformed in the past (i.e. Ba ̃ nados et al. 2016 ). This likely results
rom the fact that our study does not include the PS1- zy filters, which
reatly impro v es the selection of 6.5 ≤ z ≤ 7 QSOs, since in this
edshift range the Ly α line enters the PS1- y filter and drops out of
he PS1- z filter, while the broader DECaLS- z filter co v ers both the
forementioned PS1 filters. In a future study, we plan to include the
S1- zy filters to impro v e our selection efficiency for this particular
edshift range. 

 CLASSIFICATION  OF  KNOWN  HIGH-  z 
UASARS  

y integrating the z = 6.7 LF from Wang et al. ( 2017 ) in the 17
J ≤ 21.5 range, we expect to find ≈21 ( ≈28) QSOs at 6 ≤ z ≤
MNRAS 515, 3224–3248 (2022) 
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Figure 12. Efficiency versus completeness in the three redshift bins: 6 ≤ z ≤
6.5 (top), 6.5 ≤ z ≤ 7 (central), and 7 ≤ z ≤ 8 (bottom). The red point marks the 
efficiency and completeness at the value of the chosen probability threshold 
( P th ). The low o v erlap between the 6 ≤ z ≤ 6.5 QSO and contaminant 
contours allows us to work with high values of efficiency (68 per cent) and 
completeness (90 per cent). Ho we ver, at 6.5 ≤ z ≤ 7 and 7 ≤ z ≤ 8 the o v erlap 
with the contaminant properties is so large that we are forced to work at a 
lo wer ef ficienc y (10 per cent) to hav e a high completeness ( ≥ 75 per cent ). 
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.5, ≈7 ( ≈9) QSOs at 6.5 ≤ z ≤ 7, and ≈3 ( ≈4) QSOs at 7 ≤ z

8, depending on whether (or not) we consider the effect of the
 -band photometric incompleteness in the VIKING surv e y. Thus,
fter performing the spectroscopic follow-up of the targets with P ≥
 th , we expect to discover high- z QSOs among our candidates with
umbers consistent with these estimates. 
Past works already studied the VIKING area and searched for z
6 QSOs (e.g. Venemans et al. 2013 , 2015 ; Barnett et al. 2021 ).

 or e xample, both Venemans et al. ( 2013 ) and Barnett et al. ( 2021 )
sed the ZYJHK s filters from the VIKING surv e y to find z > 6.5
SOs: Venemans et al. ( 2013 ) applied colour-cuts and found three
ew QSOs, while Barnett et al. ( 2021 ) selected four known QSOs
nd 17 QSO candidates using the BMC method, but no new QSOs
ere found. Other QSOs were found in the VIKING footprint from
ast works, as they searched for high- z QSOs in other surv e ys that
artially o v erlap with the VIKING area: i.e. the CFHTLS (Willott
t al. 2009 ), the Pan-STARRS1 (Ba ̃ nados et al. 2016 ), the VST-
TLAS (Carnall et al. 2015 ), the DELS (Wang et al. 2017 ), and the
SC (Matsuoka et al. 2016 , 2018a , b , c , 2019a , b ). So, we expect

o have some known high- z QSOs in our VIKING data set, and to
eco v er them among our candidates. In Section 6.1 , we provide a
ummary of the known QSOs that are co v ered within our search area
ut that are not in our VIKING data set due to our selection criteria.
hen, we describe the performance of XDHZQSO in reco v ering and
lassifying both the known high- z QSOs in the VIKING surv e y area
Section 6.2 ), as well as the known z > 7 QSOs (Section 6.3 ) o v er
he entire sky. 

.1 Missed high- z QSOs 

rom past works (Willott et al. 2009 ; Venemans et al. 2013 ; Ba ̃ nados
t al. 2016 ; Matsuoka et al. 2016 , 2018a , b , c , 2019a , b ), we identified
2 known z ≥ 6 QSOs in the DECaLS + VIKING area. However,
he imposition of our selection criteria reduced this number in our
nal VIKING area data set, as 20 QSOs are lost because they do
ot satisfy SNR( J ) > 5, and another four QSOs are not selected as
hey do not have data in all the bands considered in our study. That
eaves eight known z > 6 quasars in the VIKING area data set whose
robabilistic classification is described in the following section. 

.2 Classification of known high- z QSOs in the VIKING 

ur v ey Area 

mong the classified sources there are eight known high- z QSOs
hat were found in the VIKING surv e y area from past works: DELS
1217 + 0131 ( z = 6.17; Ba ̃ nados et al. 2016 ; Wang et al. 2017 ), AT-
AS J025.6821-33.4627 ( z = 6.31, hereafter J0142 −3327; Carnall
t al. 2015 ), HSC J1137 + 0045 ( z = 6.4; Matsuoka et al. 2019b ),
0148 −2826 ( z = 6.54; Yang et al. 2020b ), HSC J0921 + 0007
 z = 6.56; Matsuoka et al. 2018b ), VIK J0305 −3400 ( z = 6.604;
enemans et al. 2013 ), DELS J1048 −0109 ( z = 6.63; Wang et al.
017 ), HSC J1205 −0000 ( z = 6.74; Matsuoka et al. 2016 ). These
ources and their main properties are listed in Table 4 , while their
robabilities of being high- z QSOs are pinpointed with red arrows
n Fig. 9 . 

In the range 6 ≤ z ≤ 6.5, our models are able to correctly classify
ne known QSO out of three, J0142 −3327 ( P QSO ≈ 98 . 4 per cent ),
ut our selection threshold in this redshift range ( P th = 1 per cent )
oes not allow us to reco v er DELS J1217 + 0131 ( P QSO ≈ 3 ×
0 −6 per cent ), and HSC J1137 + 0045 ( P QSO ≈ 4 × 10 −9 per cent ).
he probability of these three quasars are also reported in Table 4
nd shown in Fig. 9 (upper panel). The low probability of the
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Table 3. Number of selected candidates in the three redshift bins. 

z range P th ( per cent ) C th ( per cent ) E th ( per cent ) N ( P QSO ≥ P th ) N exp N rec 

6.0–6.5 1 85 50 58 15 10 
6.5–7.0 1 56 5 80 5 1 
7.0–8.0 1 66 5 43 2 2 

Note. Summary of the probability threshold ( P th ) adopted in each redshift bin to select high- z QSO candidates for 
spectroscopic follow-up, and the corresponding completeness ( C th ), efficiency ( E th ), and number of candidates selected 
( N ( P QSO ≥ P th )). The last two columns represent the number of QSOs expected ( N exp ) according to our adopted LF 
(equation ( 7 )) down to J = 21.5, and how many of them we expect to recover among our candidates ( N rec ). 

Table 4. Known QSOs in the VIKING surv e y area. 

Name z J P QSO Ref. 

DELS J1217 + 0131 6.17 21.28 ± 0.14 3 × 10 −6 per cent Ba ̃ nados et al. ( 2016 ); Wang et al. ( 2017 ) 
ATLAS J025.6821 −33.4627 6.31 19.02 ± 0.02 98.4 per cent Carnall et al. ( 2015 ) 
HSC J1137 + 0045 6.4 21.51 ± 0.20 4 × 10 −9 per cent Matsuoka et al. ( 2019b ) 
J0148 −2826 6.54 21.09 ± 0.13 4 × 10 −3 per cent Yang et al. ( 2020b ) 
HSC J0921 + 0007 6.56 20.9 ± 0.26 2 × 10 −7 per cent Matsuoka et al. ( 2018b ) 
VIK J0305 −3400 6.61 20.07 ± 0.09 1.2 per cent Venemans et al. ( 2013 ) 
DELS J1048 −0109 6.63 20.99 ± 0.12 0.07 per cent Wang et al. ( 2017 ) 
HSC J1205 −0000 6.75 21.95 ± 0.21 3 × 10 −12 per cent Matsuoka et al. ( 2016 ) 
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atter one is not surprising, considering that HSC J1137 + 0045 is
 very faint QSO ( J = 21.51 and SNR( J ) = 5.4), selected from
he Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) 
urv e y (Aihara et al. 2018 ), and that apparently lacks strong Ly α in
mission (Matsuoka et al. 2019b ). Ho we ver, to better understand
he low probability values obtained for these two quasars, we 
ompared their photometric properties with those sampled from our 
D deconvolv ed models. F or each of the three known 6 ≤ z ≤
.5 QSOs, we simulated 10 000 contaminants and 10 000 6 ≤ z ≤
.5 QSOs, using the XDHZQSO models in the magnitude bins that 
nclude the J -band magnitudes of the three QSOs. To visualize the
robability of selecting a known quasar, we draw samples from the 
deconvolved’ (i.e. noise free) XDHZQSO contaminant and quasar 
odels, and o v erplot the relativ e flux measurements of the real

uasars, with ellipses indicating their (covariant) 1 σ errors. This 
s shown in Fig. 13 , where we plot the deconvolved relative-flux
elative-flux contours for the simulated contaminants (black) and 6 

z ≤ 6.5 QSOs (blue), compared to the properties of the known 6
z ≤ 6.5 QSOs from the VIKING surv e y area. The reason we

re creating 10 000 copies of contaminant and 10 000 of QSOs
or each known high- z QSO is that the contaminant and quasar
odels are magnitude dependent. Thus formally, we would need to 

how a plot for each object, where we compare its properties with
hose from the sampled contaminants and QSOs. Ho we ver, gi ven
hat these magnitude dependencies are subtle, we chose to simply 
imulate 10 000 copies of sources at each magnitude and aggregate 
hem on to a single plot. It is apparent that in some sub-plots of
ig. 13 (especially those with f z / f J and f Y / f J ), the relative fluxes of
oth HSC J1137 + 0045 and DELS J1217 + 0131 are not consistent
ith the simulated 6 ≤ z ≤ 6.5 QSOs relative flux distributions (blue 

ontours), consequently lowering the classification probability of 
hese two objects. Considering that HSC J1137 + 0045 is a QSO that
pparently lacks strong Ly α in emission (Matsuoka et al. 2019a ), 
hile DELS J1217 + 0131 exhibits a strong Ly α emission line 

Wang et al. 2017 ), we conclude that the properties of the ‘simqso’
imulated high- z QSOs, that have been used for the training of
ur XDHZQSO QSO models, are too rigid to include these two 

ources. 

J  
In the range 6.5 ≤ z ≤ 7, as reported in Table 4 and displayed
n Fig. 9 (middle panel), our method is able to reco v er one
SO (based on our P th = 1 per cent ), VIK J0305 −3400 ( P QSO ≈
 . 2 per cent ), while the other four are consistent with being contam-
nants ( P QSO ≤ 10 −1 per cent ). Among them, J0921 + 0007 ( P QSO ≈
 × 10 −7 per cent ) is also an HSC selected QSO ( J = 20.9) that
as similar optical colors to Galactic brown dwarfs (Matsuoka et al.
018b ). Adopting the same procedure as described abo v e to generate
0 000 contaminants and 6.5 ≤ z ≤ 7 QSOs for each known QSO, we
how in Fig. 14 the deconvolved relati ve-flux relati ve-flux contours
or the simulated contaminants (black) and high- z QSOs (blue), 
ompared to the properties of the known 6.5 ≤ z ≤ 7 QSOs from the
IKING surv e y area. Also in this case, it is apparent that the relative
uxes of the four QSOs with P QSO ≤ 10 −1 per cent are inconsistent 
ith the deconvolved QSO model properties (blue contours in 
ig. 14 ) in some sub-plots: (1) J0148 −2826 is inconsistent with
anels showing f H , f W 1 , and f W 2 , (2) HSC J0921 + 0007 is inconsistent
ith panels showing f W 1 , and f W 2 , (3) DELS J1048 −0109 is not

onsistent with panels showing f H , and f W 2 , and (4) HSC J1205 −0000
s not consistent with the QSO distribution in any panel. We provide
 more detailed discussion of these discrepancies between real and 
imulated QSO properties in Section 7.1 . 

.3 Classification of the z ≥ 7 QSOs 

hile we tested in Section 6.2 , the ability of our models to reco v er
he known 6 ≤ z ≤ 7 QSOs in the VIKING surv e y area, testing our
lassification models for the highest redshift range was not possible as
here are no known z > 7 QSOs in the VIKING footprint. Therefore,
e applied our method to the z > 7 QSOs that have been discovered

o far o v er the entire sk y, using published photometric measurements.
There are, at the time of writing, a total of eight known z > 7

SOs: J2356 + 0017 ( z = 7.01; Matsuoka et al. 2019b ), J0252 −0503
 z = 7.02; Yang et al. 2019 ), J0038 −1527 ( z = 7.021; Wang et al.
018 ), J1243 + 0100 ( z = 7.07; Matsuoka et al. 2019a ), J1120 + 0641
 z = 7.085; Mortlock et al. 2011 ), J1007 + 2115 ( z = 7.515; Yang
t al. 2020a ), J1342 + 0928 ( z = 7.541; Ba ̃ nados et al. 2018 ), and
0313 −1806 ( z = 7.642; Wang et al. 2021 ). To classify them, we
MNRAS 515, 3224–3248 (2022) 
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Figure 13. Deconvolv ed relativ e-flux relativ e-flux contours for the simulated contaminants (black) and 6 ≤ z ≤ 6.5 QSOs (blue), compared to the real (noisy) 
properties of the known 6 ≤ z ≤ 6.5 QSOs from the VIKING surv e y area. The probability threshold to select these sources with our method is P th = 0.01. It 
is apparent that both J1217 and J1137 are ‘off’ from the QSO contours in the f z / f J sub-plots, while J1137 is also ‘off’ in the f Y / f J sub-plots, thus lowering their 
probabilities of being classified as high- z QSOs. 
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rst collected the photometric data in the seven bands of interest
DECaLS- z, VIKING- YJHK S , and WISE - W 1 W 2) from the literature,
hen available. Since some of these sources have public NIR data

oming from the Wide Field Infrared Camera (WFCAM) for the
K Infrared Telescope (UKIRT), we used the transformation equa-

ions between VISTA and WFCAM derived by Gonz ́alez-Fern ́andez
t al. ( 2018 ), to convert the UKIRT magnitudes into the VIKING
nes. For the missing flux measurements, we performed forced
hotometry. Since J0313 −1806 has no photometric measurements
n the Y and H bands, we used synthetic photometry computed by
ntegrating the observed spectrum of this source from Wang et al.
 2021 ) against the respective filter curves. Ho we ver, we excluded
NRAS 515, 3224–3248 (2022) 
rom our classification list both J2356 + 0017 and J1243 + 0100, as
hey are too faint (SNR( J ) < 5) to make it into our catalog. Finally,
e used our XDHZQSO models to classify the remaining six sources

ollowing the same procedure described in Section 5 . In Table 5 , we
ummarize the properties and results from our classification of these
ix z ≥ 7 QSOs. 

Based on our defined probability threshold for the z

7 range ( P th = 1 per cent ), we are able to reco v er fiv e
SOs: J0252 −0503 ( P QSO = 2 . 3 per cent ), J1120 + 0641 ( P QSO =
 . 9 per cent ), J1007 + 2115 ( P QSO = 62 . 2 per cent ), J1342 + 0928
 P QSO = 19 . 9 per cent ), and J0103 −1806 ( P QSO = 6 . 5 per cent ).
o we ver, we fail to select J0038 −1527 ( P QSO = 0 . 07 per cent ).

art/stac1944_f13.eps
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Figure 14. Same as Fig. 13 but in the 6.5 ≤ z ≤ 7 bin. The probability threshold to select these sources with our method is P th = 0.01. The four QSOs with 
P QSO ≤ 10 −2 per cent are inconsistent with the deconvolved QSO model properties (blue contours) in the following sub-plots: (1) J0148 is inconsistent with 
panels showing f H , f W 1 , and f W 2 , (2) J0921 is inconsistent with panels showing f W 1 , and f W 2 , (3) J1048 is not consistent with panels showing f H , and f W 2 , and (4) 
J1205 is not consistent with the QSO distributions in any panel. 

Table 5. Known z ≥ 7 QSOs classified by our XDHZQSO method. 

Name z J P QSO Ref. 

J0252 −0503 7.02 21.13 ± 0.07 2.3 per cent Yang et al. ( 2019 ) 
J0038 −1527 7.021 20.63 ± 0.08 0.07 per cent Wang et al. ( 2018 ) 
J1120 + 0641 7.085 21.22 ± 0.17 5.9 per cent Mortlock et al. ( 2011 ) 
J1007 + 2115 7.515 21.14 ± 0.18 62.2 per cent Yang et al. ( 2020b ) 
J1342 + 0928 7.541 21.24 ± 0.02 19.9 per cent Ba ̃ nados et al. ( 2018 ) 
J0313 −1806 7.642 20.92 ± 0.13 6.5 per cent Wang et al. ( 2021 ) 
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0038 −1527 exhibits strong broad absorption line (BAL) features 
Wang et al. 2018 ), that can alter its colors, making it different
ompared to our 7 ≤ z ≤ 8 QSO models, which do not attempt
o model BAL absorption. As in Section 6.2 , we simulated a large
umber of contaminants and 7 ≤ z ≤ 8 QSOs, and compare their
elativ e flux es with those from the real z > 7 QSOs in Fig. 15 .
t is evident that J0038 −1527 deviates from the blue contours
deconvolved 7 ≤ z ≤ 8 QSO models) in the sub-plot displaying f z / f J 
ersus f Y / f J , as the absorption from the BALs impacts the Y -band
MNRAS 515, 3224–3248 (2022) 
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M

Figure 15. Deconvolv ed relativ e-flux relativ e-flux contours for the simulated contaminants (black) and 7 ≤ z ≤ 8 QSOs (blue), compared to the real (noisy) 
properties of the known z ≥ 7 QSOs to date. The probability threshold to select these sources with our method is P th = 0.01. It is apparent that J0038 −1527 
deviates from the quasar locus indicated by the blue contours in the sub-plot displaying f z / f J versus f Y / f J , with the effect of lowering its QSO classification 
probability. 
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ux. Again, we discuss the deviations of the real QSO properties
rom the expected simulated ones in Section 7.1 . 

 DISCUSSION  

n Section 6 , we showed that XDHZQSO is able to reco v er two 6 ≤ z

7 QSOs out of eight that passed our selection criteria (i.e. SNR( J ) ≥
, SNR( g , r ) < 3, and no missing data) and made into our catalogue:
e select one QSO at 6 ≤ z ≤ 6.5 (ATLAS J025.6821 −33.462 at z =
.31), and one QSO at 6.5 ≤ z ≤ 7 (VIK 0305 −3400 at z = 6.61).
he application of XDHZQSO on the 7 ≤ z ≤ 8 QSOs found in the
ntire sky, that meet our selection criteria, allows us to reco v er fiv e
NRAS 515, 3224–3248 (2022) 
ut of six 7 ≤ z ≤ 8 QSOs (J0252 −0503 at z = 7.02, 1120 + 0641 at
 = 7.085, J1007 + 2115 at z = 7.515, J1342 + 0928 at z = 7.541, and
0313 −1806 at z = 7.642). In Section 7.1 , we discuss the limitations
f our selection technique that could explain our failure to select
f some of the known high- z QSOs in the VIKING area, while in
ection 7.2 we provide a comparison between our code and other
robabilistic classification methods. 

.1 Limitations of the XDHZQSO selection method 

n Sections 6.2 and 6.3 , we showed that our method is only able to
eco v er some of the known high- z QSOs. In fact, there are several
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easons that can lead to the failure to select a source, and all of them
nvolve the source properties and corresponding errors being more 
onsistent with the XDHZQSO contaminant models rather than the 
igh- z QSO ones. Here we discuss the possible causes that lead to
he non-selection of some of the known z > 6 sources: 

(i) Noisy data. In the case of a source with large photometric 
rrors, our method naturally degrades its probability of belonging 
o high- z QSOs class if the data uncertainties imply that the object
 v erlaps with the contaminant class. On the other hand, this limitation
s not afflicting other selection methods. In fact, a colour-selection 
echnique that does not use photometric errors could select a noisy
bject, whereas XD would spread that probability out, meaning it 
ight be more likely to be classified as a contaminant if, given the

rrors, it significantly o v erlaps the contaminant locus. Ho we ver, we
tress that taking errors into account is a feature not a flaw of our
ethod (i.e. not taking into account errors will generally result in an
 v erall lower efficiency then taking them into account). 
(ii) Photometric variability. Since the surv e ys considered in this 

ork were performed at different epochs, intrinsic variability of 
ources could also play a role in lowering the computed probabilities 
see Ross & Cross 2020 for a study of the variability of 5 < z < 7
uasars). Ho we ver, since the variability of these objects is supposed
o be small (at most 10 per cent given low- z structure functions; e.g.
anden Berk et al. 2004 ; Kelly, Bechtold & Siemiginowska 2009 ;
chmidt et al. 2010 ), we argue that this is probably not the main issue
e are facing. 
(iii) Inaccurate models. Since our method is a classification 

echnique, its validity strongly depends on the correct modelling 
f the considered classes. If the XDHZQSO models are not a good
epresentation of the underlying deconvolved flux distributions of 
ne or more classes, then the computed probabilities are not reliable. 
lthough, that seems not the case for our contaminant class, as the
odels are trained with the real data coming from our surv e y, it can be

n issue for our high- z QSO classes. In fact, our quasar models are
rained on synthetic photometry determined from simulated QSO 

pectra whose properties are consistent with the mean spectrum 

f low- z luminous QSOs (McGreer et al. 2013 ). However, these
imulated quasar spectra could not well represent the intrinsic relative 
ux scatter of all the luminous QSOs, or the properties of peculiar
ources such as Broad Absorption Line QSOs (BALQSOs). For 
xample, J0038 −1527 is a BALQSO (Wang et al. 2018 ), and its
 -band relative flux is lower than expected compared to objects with
imilar redshift and luminosity (see Fig. 15 ). Furthermore, in the 
ub-panels showing H , K , W 1, and W 2 bands in Figs 13 , 14 , 15 it
s apparent that our XDHZQSO QSO models are too rigid, as the
imulated QSO deconvolved density distributions (blue contours) 
ppear too little scatter as compared to the real QSOs to be a
ood representation of the intrinsic QSO scatter. For the W 1 W 2-
ands, there could be also source confusion/deblending errors in the 
hotometry since we just performed aperture photometry, without 
aking into account the large unWISE ( ≈6 arcsec) point spread 
unction. A model that better reproduces the full distribution of the 
elativ e flux es of the luminous QSOs at low- z would pro vide a better
lassification of our sources. Therefore, our conclusion is that the 
simqso’ simulator was designed for colour -cuts, b ut it is not up to
he demands of a density estimation method. 

As apparent from Figs 13 –15 , our current simulated quasar sample
ails to capture the full spectral diversity of the observed quasar 
opulation, which is important for the density estimation method. 
ence, to impro v e on our quasar selection, we have to mo v e
eyond modeling average quasar properties, for which ‘simqso’ 
as originally designed, but rather capture the full relative flux 
istribution of the full population. In the future, we plan to mitigate
hese limitations by carefully modelling of the relative fluxes of QSOs 
sing empirical data coming from the SDSS and BOSS surv e ys,
hich would capture the full distribution of quasar SEDs and hence

elativ e flux es. 

.2 Comparison with other probabilistic classification methods 

ompared to other probabilistic classification methods, our approach 
as two main advantages: 

(i) Our method accounts for the photometric errors by convolving 
he underlying density distribution with the object’s uncertainties, 
ssuming that the relative-flux uncertainties are Gaussian. While this 
pproach is required to correctly estimate the probability that a noisy
bject is a member of given class, standard random forest methods
gnore the photometric errors (e.g. Schindler et al. 2017 ; Wenzl et al.
021 ), thus not utilizing all the information contained in the data.
or bright sources this should not be so problematic given the small
ssociated uncertainties. Ho we v er, at high- z we hav e to take into
ccount that: (1) QSOs dropout of optical bands (e.g. grz ) and so we
eed to accurately treat low signal to noise dropout fluxes, and (2)
SOs are rare at high- z and the LFs rise with decreasing flux. So,

o build-up statistics, the majority of targets will al w ays be near the
ux limits of our data, while the inclusion of the photometric errors

n the analysis of fainter sources would prevent the o v erly optimistic
dentification of contaminants as high- z QSO candidates. 

(ii) The method proposed by Mortlock et al. ( 2012 ) is also
ayesian, and is directly analogous to what we are doing, with the
aveat that they mostly rely on constructing the models of the key
ontaminants (MLT dwarf types, and compact early-type galaxies). 
his approach requires a perfect knowledge of both the properties 
nd the type of contaminants, whose feasibility is very challenging. 
 or e xample, ev en if brown dwarfs and early-type galaxies are the
ajority among the contaminants, also Type-2 QSOs, reddened low- 
 QSOs, and FeLoBAL QSOs could also contaminate the high- z 
election, whereas constructing models for the number density and 
olors of all these sources would be a daunting task. Instead, our
odel for the contaminant class is purely empirical and does not need

o construct SED models for the mean properties of each possible
ontaminant. 
his approach is more flexible as it captures the underlying decon-
 olved distrib ution of the contaminant using real data, and includes
ll the kind of possible contaminants without the need of modelling
hem. 

 CONCLUSION  

n this paper, we described the application of the XDHZQSO method
o select high- z (6 ≤ z ≤ 8) QSOs. Our approach is based on
ensity estimation in the high-dimensional space inhabited by the 
ptical-IR photometry. The main idea is that quasars and the far
ore abundant contaminants (cool dwarf stars, red galaxies, lower- 
 reddened, or absorbed QSOs) inhabit different regions of this 
pace. Thus, probability density ratios yield the probability that an 
bject is a quasar, which is used to select and prioritize candidates
or spectroscopic follow-up. Density distributions are modelled as 
aussian mixtures with principled accounting of errors using the 
D algorithm. Compared to other probabilistic selection methods, 

he great advantage of our approach is that the poorly understood
ontaminants are modelled fully empirically. 
MNRAS 515, 3224–3248 (2022) 
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High- z quasars were trained on synthetic photometry in three
edshift bins (6 ≤ z ≤ 6.5, 6.5 ≤ z ≤ 7, 7 ≤ z ≤ 8), whereas
ontaminants were trained on the VIKING ( YJHK s ) imaging surv e y
ombined with deep DECaLS z-band and unWISE ( W 1 W 2), where
ll sources were required to be g and r dropouts. The combination
f depth ( J AB < 22) and wide field (1076 deg 2 ) make this the
est panchromatic imaging for training quasar selection until Euclid
rrives. 

From e xtensiv e simulations we determined the threshold ( P > P th )
equired to obtain a completeness of � 56 per cent in each redshift
in, which results in selection efficiencies � 5 per cent . These high
fficiencies indicate that the ≈ 1 per cent efficiencies of recent
olour-cut based surv e ys are not necessary. The required thresholds
 th and resulting efficiencies depend on the z-bin in question owing

o the changing o v erlap between quasars and contaminants, where
he higher redshift bins have lower efficiencies. With the adopted
 th = 0.01, we selected 58, 80, and 43 quasar candidates in the range
 ≤ z ≤ 6.5, 6.5 ≤ z ≤ 7, 7 ≤ z ≤ 8 in the VIKING footprint,
espectiv ely. These targets hav e been scheduled for optical and NIR
pectroscopic follow-up, and the results will be published in a future
ork (Nanni et al. in prep.). 
In the VIKING footprint the there are eight known 6 ≤ z ≤ 7

SOs that meet our catalogue criteria, of which two are selected.
ince there are no z > 7 known QSOs in the VIKING footprint,
e applied our method to six out of eight known z > 7 QSOs in

he entire sky (we excluded two z > 7 QSOs as they do not meet
ur catalog criteria), and reco v er fiv e of them. We argued that the
DHZQSO misses some of these quasars for two reasons: (1) the

xisting quasar fluxes are noisy so that our model correctly assigns
hem a low probability, and (2) the inaccuracies in our modeling of
uasars, namely that the synthetic quasar spectra we used do not
apture the scatter in the distribution of relative fluxes. We argued
hat the first limitation is a feature rather than a flaw in our approach,
ince we deliver reliable probabilities treating noise, and that this
 v erall will result in higher selection efficiency. As for the second, an
mpirical model of luminous quasar spectra will definitely impro v e
ur classification, which we will pursue in future work. 
From the integration of the z = 6.7 LF down to J = 21.5, we

xpect to find ≈15, ≈5, and ≈2 QSOs at 6 ≤ z ≤ 6.5, 6.5 ≤ z ≤ 7,
 ≤ z ≤ 8, respectively, in the VIKING survey area. Considering the
ompleteness we derived in the three redshift ranges and the fact that
hree, and four J ≤ 21.5 QSOs have been already discovered in the
IKING footprint at 6 ≤ z ≤ 6.5, and 6.5 ≤ z ≤ 7, respectively, we

xpect to discover ≈10, ≈1, and ≈2 new QSOs at 6 ≤ z ≤ 6.5, 6.5 ≤
 ≤ 7, 7 ≤ z ≤ 8, respectively, with future spectroscopic follow-up
f our candidates. 
Future applications of this methodology will focus on three

ata sets: UKIDSS, UHS, and Euclid . UKIDSS co v ers an area of
4000 deg 2 with similar multifilter coverage as VIKING ( ZYJHK ),
aking it the best ground to apply XDHZQSO after VIKING.

nstead, UHS co v ers a larger area ( ≈12 700 deg 2 ) but only with
hree filters ( JHK ). To apply our method to UHS, whose sources
ave no data in the Y band, we will simply re-score by setting the
rrors in the bands with no measurements to a large number. 

Finally, the advent of Euclid in 2022 will provide plenty of
ptical/IR data with a better separation between high- z QSOs
nd contaminants properties, as its six-yr wide surv e y will co v er
5 000 deg 2 of extragalactic sky in four bands: a broad optical
and O (5500–9000 Å), and three NIR bands, Y (9650–11920 Å),
 (11920–15440 Å), and H (15440–20000 Å), a depth of 24 mag at
 σ (Laureijs et al. 2011 ). The Euclid ’s wide field IR imaging should
nable the disco v ery of ∼100 QSOs at z > 7, and ∼25 beyond the
NRAS 515, 3224–3248 (2022) 
urrent record of z = 7.6, including ∼8 beyond z = 8.0 (Euclid
ollaboration 2019 ). Since no data have been delivered yet from
uclid , we will need re-train XDHZQSO on the Euclid photometry

o get the contaminant model. Finally, the high efficiencies in finding
 > 7 QSOs reached by XDHZQSO suggest that we can do much
ore efficient spectroscopic follow-up, while we have a framework

o solve the problem of performing low efficiency selection with
WST. 
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PPENDIX  A:  COVARIANCE  COMPUTATION  

ND  APPLICATION  

o construct the contaminant models during the training step, we 
econvolved the noisy relative fluxes of our contaminant sources, 
ssuming that the relative-flux uncertainties are Gaussian, and 
roviding the covariance matrix of the uncertainties of the single 
bjects. While the flux measurements in each filter are independent 
f one another, i.e. their noise is uncorrelated, the relative flux errors
re correlated (i.e. they are the ratio of the flux in a given band flux
nd the J -band flux). Thus, the covariance of a source with fluxes

 
 = { f 1 , f 2 , ..., f N } and uncertainties 
 σf = { σf 1 , σf 2 , ..., σf N } com-

ng from N filters that include the J band one, can be computed
s 
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n our case, the covariance matrix is: 
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t first, to train our contaminant models we provided to the XD code
he noisy relative fluxes with covariance matrices computed using 
quations ( A2 ) and ( A3 ). Ho we ver, we noticed that for bins whose
 -band median point is J mp > 21 (i.e. SNR( J mp ) < 10) the XD code is
ot able to correctly deconvolve the contaminants properties. This is 
pparent in Fig. A1 , where we show the comparison between the real
ata (black contours) and a noise added sample from the deconvolved 
odel (red contours) generated by the XD code in a faint bin (22.0
 J < 22.3, SNR( J mp ) = 5): it is clear that we do not obtain a
oisy relative flux distribution that is consistent with the real one.
his deconvolved model was generated after providing a covariance 
atrix in the form of equation ( A2 ) plus ( A3 ), while we added the

rrors to the deconvolved sample as described in Appendix B . The
ailure of the XD code to correctly deconvolve the relative fluxes
n the limit of faint J -band bins (SNR( J mp ) < 10) arises from the
iolation of our assumption that the relative-flux uncertainties are 
aussian in this regime. In fact, the ratio of noisy quantities is in
eneral not Gaussian distributed, as we assumed in order to use
D. Ho we ver, this is a good approximation if ˆ F J has small errors
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Figure A1. Relative-flux relative-flux contours comparison between the real (noisy) data (black) and a noise added sample from the deconvolved model (red) 
generated by the XD code in the 22.0 < J < 22.3. Errors have been added as explained in Appendix B , while the model was generated providing a covariance 
matrix in the form of equation ( A2 ) plus A3 . The labelled quantities are relative fluxes (i.e. fluxes in different bands divided by the J -band flux). It is apparent 
that we do not obtain a noisy relative flux distribution that is consistent with the real one. 
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elative to ˆ F x , whereas as ˆ F J becomes noisier, one will generate
rogressively stronger tails in ˆ F x / ̂  F J . To remedy this problem, we
ecided to construct our faint ( J mp > 21) deconvolved contaminant
odels providing a diagonal covariance: with only elements on the

iagonal computed by equation ( A3 ) and zeros elsewhere. Although,
his is not formally the correct approach to deal with non-independent
uantities, it simply provides good results during the training step.
NRAS 515, 3224–3248 (2022) 
n Fig. A2 , we show the comparison between the real data (black
ontours) and a noise added sample from the deconvolved model
red contours) generated by the XD code with a diagonal covariance.
he J -band bin and the real data are the same as those displayed in
ig. A1 . In this case, it is apparent that after re-adding the errors the
oisy simulated distributions are far more consistent with the real
nes. 
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Paving the Way for Euclid and JWST 3247 

Figure A2. Relative-flux relative-flux contours comparison between the real (noisy) data (black) and a noise added sample from the deconvolved model (red) 
generated by the XD code in the 22.0 < J < 22.3. Errors have been added as explained in Appendix B , while the model was generated providing a diagonal 
covariance matrix in the form of equation ( A3 ). The labelled quantities are relativ e flux es (i.e. flux es in dif ferent bands di vided by the J -band flux). In this case, 
the two distributions are consistent. 
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PPENDIX  B:  NOISE  MODEL  

s described in several parts in this paper, we often sampled a
uge number of simulated high- z QSOs and contaminants from our 
DHZQSO deconvolved models, and finally computed their prob- 

bilities of being high- z QSOs based on their simulated properties. 
o we ver, the sampling of deconvolved models produces noiseless 

elativ e flux es that are not a real representation of the noisy properties
sually measured. We explain here our adopted procedure to add the 
ux uncertainties to the simulated noiseless fluxes. 
Lets consider for simplicity the case of a single noiseless source 

ampled from our simulations of a specific J -band bin. The approach
e describe here can then be applied to an ensemble of such samples.
or each J -band bin, we compute the central J -band flux of the bin
s the median of the J -band fluxes of all the VIKING sources that
and in the bin. Now, to generate mock photometry for the source,
e multiply the median J -band flux for the bin with the noiseless

imulated relative fluxes obtained by sampling our Gaussian mixture 
odel, so as to obtain its noiseless fluxes in all the other bands

VIKING- YHK s , DECaLS- z, and un WISE - W 1 W 2). To derive the
hotometric error to add to these seven noiseless simulated fluxes, 
e start by, for each photometric band, dividing the real noisy fluxes

rom the VIKING data set (see description in Section 3.1 ) into 50
ins that roughly contain the same number of sources. For each filter
nd for each of these bins, we construct the cumulative distribution
f the photometric error and archive them. To simulate a mock
MNRAS 515, 3224–3248 (2022) 
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ource, we locate the bin containing its flux level for each filter,
nd draw samples from the respective cumulative distributions to
btain standard deviations corresponding to the noise level in each
lter. We then create a realization of Gaussian noise using these
tandard deviations, which are then added to the noiseless mock data
o construct a noisy mock observation. In this way, we can add the
NRAS 515, 3224–3248 (2022) 
eal errors coming from our VIKING area data set to our simulated
oiseless fluxes: i.e. we capture the distribution of the noise at a given
ux level, instead of simply using its mean value. 
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