
1

Efficient and Provably Secure Data Selective
Sharing and Acquisition in Cloud-based Systems

Kan Yang Senior Member, IEEE, Jiangang Shu Member, IEEE, and Ruitao Xie Member, IEEE

Abstract—Towards the large amount of data generated every-
day, data selective sharing and acquisition is one of the most
significant data services in cloud-based systems, which enables
data owners to selectively share their data to some particular
users, and users to selectively acquire some interested data.
However, it is challenging to protect data security and user
privacy during data selective sharing and selective acquisition,
because cloud servers are curious about the data or user’s
interests, and even send data to some unauthorized users or some
uninterested users. In this paper, we propose an efficient and
provably secure Data selective Sharing and Acquisition (DSA)
scheme for cloud-based systems. Specifically, we first formulate a
generic data selective sharing and acquisition problem in cloud-
based systems by identifying several design goals in terms of
correctness, soundness, security and efficiency. Then, we propose
the DSA scheme to enable data owners to control the access of
their data in a fine-grained manner, and enable users to refine
the data acquisition without revealing their interests. Technically,
a brand new cryptographic framework is developed to integrate
attribute-based encryption with searchable encryption. Finally,
we prove that the proposed DSA scheme is correct, sound, secure
in the random oracle model, and efficient in practice.

Index Terms—Cloud-based System, Selective Sharing, Selective
Acquisition, Access Control, Searchable Encryption

I. INTRODUCTION

Due to the economical, flexible and scalable storage and
computing resources, cloud computing is becoming the most
appropriate platform to store and process the ever-increasing
amount of data generated every day [1]. Data sharing is one
of the most fundamental services in cloud-based systems,
where data owners rely on the cloud server to share data
with other users. However, considering the confidentiality of
data, data owners prefer to selectively share their data to
some authorized users rather than all the users. On the other
hand, considering the huge amount of data, users also want
to selectively acquire some interested data instead of all the
data shared by data owners. For example, existing healthcare
cloud service providers (e.g., Amazon, Google, Microsoft,
IBM, etc.) usually provide the service direct to the clinic or
hospital, which means that the clinic or hospital will manage
the healthcare data. However, it is a trend that patients are
more willing to take control of their healthcare data as the data
owners. Specifically, patients may selectively share their health

This work was supported by NSF DGE-2146427 and NSFC (62102204 and
62272316). Corresponding authors: Kan Yang, Jiangang Shu.

Kan Yang is with the Department of Computer Science, University of
Memphis, TN, USA 38152. Email: kan.yang@memphis.edu.

Jiangang Shu is with the Department of New Networks, Peng Cheng Na-
tional Laboratory, Shenzhen 518000, China. Email: jiangangshu@gmail.com.

Ruitao Xie is with the College of Computer Science and Software Engi-
neering, Shenzhen University, China. Email: drtxie@gmail.com.

data to certain types of users, e.g., doctors, health assessors
in insurance companies or other patients suffering from the
same health problems, meanwhile doctors (e.g., cardiologists)
want to receive health data from selective patients (e.g., who
have cardiovascular problems). However, public cloud service
providers (e.g., Amazon, Google, Microsoft) cannot be fully
trusted to enforce the data selective sharing and selective
acquisition. Basically, there are two fundamental security and
privacy requirements, namely: 1) Data Confidentiality: The
shared data should not be known by the cloud server and any
unauthorized users; and 2) User Privacy: The users’ interests
should not be known by the cloud server.

To selectively share their data, data owners define access
policies of their data, but it is challenging to enforce these
access policies because cloud servers are not fully trusted to
evaluate access policies and make access decisions. A possible
approach is to encrypt the shared data and only authorized
users are given decryption keys. However, traditional public
key encryption methods are not suitable for data encryption,
because they usually produce multiple copies of ciphertexts for
each data in the system, the number of which is proportional to
the number of users. Alternatively, Attribute-Based Encryption
(ABE) [2]–[4] is a good option for data encryption here,
because: 1) it enables data owners to define fine-grained access
policies over attributes; 2) access policies are enforced by
cryptography rather than a trusted central server; and 3) it
produces a single copy of ciphertexts regardless of the number
of users. Based on ABE, many attribute-based access control
schemes have been proposed for cloud storage systems with
focus on access policy update [5] and attribute revocation [6].

However, the data encryption makes it difficult for data users
to selectively acquire data by searching on the encrypted data.
To cope with this problem, researchers propose to abstract a
set of keywords from the data before being encrypted, and
allow users to do the keyword search by providing a search
trapdoor. However, the keywords will also reveal some private
information of users to untrusted servers. For example, in a
healthcare system, interest in psychological data reveals that
the user or his/her relatives/friends may suffer from some
kind of mental illness. To protect user privacy, Searchable
Encryption (SE) schemes [7]–[9] have been developed to
encrypt the keywords and enable users to generate encrypted
trapdoors and search on encrypted keywords.

Individually, ABE and SE do a reasonably good job, but
we have not yet developed the ability to simultaneously
address data security and user privacy issues during data
selective sharing and acquisition. To integrate ABE and SE,
there are two approaches: Policy-then-Keyword evaluation and

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4234-9596
https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0002-7198-9261

2

Keyword-then-Policy evaluation.

• Policy-then-Keyword Evaluation will first evaluate the
access policies then evaluate the keyword matching.
Under this framework, several attribute-based searchable
encryption schemes [10]–[15] have been developed by
applying ABE to control the keyword search, where only
the authorized users can do the keyword search. However,
when applying ABE to encrypt the keyword, the output
keyword index depends on the access policy. In particular,
when two files have the same keyword but with different
access policies, we cannot put two files on the same
keyword file list due to different indices. The searching
complexity for a single keyword is O(Nw ·Np) where Nw
is the total number of keywords and Np is the max number
of different access policies for any single keyword.

• Keyword-then-Policy Evaluation will first evaluate the
keyword matching then evaluate the access policy. In such
scenario, the access policy is associated with each file
rather than just the keywords, so we can put different
files under the file list of the same keyword regardless
of their access policies. The searching complexity for a
single keyword is O(Nw +Np).

When a large number of access policies are associ-
ated to the files with the same keyword set, Policy-then-
Keyword Evaluation is not as efficient as Keyword-then-
Policy Evaluation. To achieve Keyword-then-Policy Evalu-
ation, we cannot simply combine ABE and SE together
(i.e., SE(keyword)||ABE(data)) [16], when the untrustworthy
remote server can skip the keyword matching process and
directly send data to those users who can decrypt successfully
but have no interests at all. In practice, the server is highly
incentive to conduct such behaviors, e.g., sends advertisement
to users who have no interests. More specifically, the cloud
server will launch the following bypass attacks: a) Index
Forging Attack. It tries to forge the index, which is easy if the
index can be generated by the public key; b) Index Swapping
Attack. It swaps the indices of two ciphertexts; c) Trapdoor
Swapping Attack. It uses the trapdoors of other users to match
the index and deliver the data to users with no interests.

To resist these attacks, our idea is to bind the data and the
index together, and tie the trapdoor and the transformed key
together as well, such that the ciphertext can be decrypted
correctly if and only if the index matches the trapdoor and the
attributes of users satisfy the access policy. Specifically, we
design a provably secure data selective sharing and acquisition
(DSA) scheme, where data owners encrypt both data and
keywords to obtain ciphertexts and indices; users generate
a transformed secret key and a trapdoor for data query; the
cloud server will first evaluate whether an index can match
the trapdoor, if not move to the next index; when a keyword
is matched, the cloud evaluates whether the access policy
associated with the ciphertext can be satisfied by the attributes
associated with the transformed secret key.

Considering that the cloud server will help users pre-decrypt
data, the indistinguishable security against chosen plaintext
attack (IND-CPA) is not sufficient for data security, because
IND-CPA is only defined for the “passive” eavesdropping. In

DSA scheme, we define a new data security model, called
selective and replayable indistinguishable security against
chosen ciphertext attack (selective IND-RCCA), which is
identical to IND-CCA2 except for allowing the cloud server to
generate new ciphertexts that decrypt to the same plaintext as
a given ciphertext. We also define a relaxed version of indis-
tinguishable security against chosen keyword attack (selective
IND-CKA) for index security. Toward the trapdoor security,
we define a weaker security model which only requires the
trapdoor generation algorithm to be one-way (when given the
trapdoor, it is hard to know the inside keyword).

In summary, as shown in Table I, the novelty of our DSA
scheme includes: 1) our DSA scheme applies the keyword-
then-policy evaluation framework so that the computation
complexity is improved from O(Nw ·Np) to O(Nw+Np); 2) our
DSA scheme can resist the keyword matching bypass attacks
and achieve the soundness by binding the data and the index
together and integrating the trapdoor and the transformed key
together; 3) our DSA scheme enables the cloud server to eval-
uate both the keywords matching and attribute matching, and
further help partially decrypt the data when both conditions are
met, which can significantly reduce the computation cost on
the users. The main contributions are summarized as follows.

1) We formulate a generic data selective sharing and ac-
quisition problem in cloud-based systems and identify
several design goals in terms of correctness, soundness,
security and efficiency.

2) We propose the DSA scheme that enables: a) data
owners to control the data sharing in a fine-grained way;
b) users to refine the data acquisition without revealing
their interests; and c) the cloud server to partially decrypt
the data if the data is interesting to the user and the user
has privileges to access the data.

3) We formally define the correctness, soundness and se-
curity of the DSA scheme, and prove that it is correct,
sound, secure under the security models and random
oracle model, and efficient in practice.

The remaining part of this paper is organized as follows. In
Section II, we give the literature review on the data sharing
and acquisition in cloud storage systems. Before describing
the system model and design goals in Section III, we describe
some preliminary definitions in Section IV. In Section V, we
define the DSA scheme and its correctness, soundness and
security. The detailed construction of DSA scheme is proposed
in Section VI. The correctness and soundness are proved in
Section VII, and the security proof and performance analysis
are given in Section VIII. Then, we summarize the paper in
Section IX. In Appendix A and Appendix B, the detailed
security proofs are described.

II. RELATED WORK

To protect the data from being seen by the cloud server
or other unauthorized users, data are usually encrypted by
the data owner before sending to the cloud. Attribute-based
Encryption (ABE) [2]–[4] is a promising data encryption
technique. There are two complementary forms of ABE,
namely Key-Policy ABE (KP-ABE) [2] and Ciphertext-Policy

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I
COMPARISON WITH EXISTING SCHEMES

Scheme Selective Selective Soundness Access Combination Searching Main IdeaSharing Acquisition Policy Approach Complexity
[10]–[15] X X ⇥ w policy-then-keyword O(Nw ·Np) SE(ABE(w))

[16] X X ⇥ m keyword-then-policy O(Nw +Np) ABE(m)+SE(w)
[17] ⇥ X X n/a keyword-then-policy O(Nw +Np) PKE(m)+PEKS(w)+MAC

Our DSA X X X m keyword-then-policy O(Nw +Np) SE(m)! R! ABE(m+R)

m: data; w: keywords; R: randomness; Nw: the total number of keywords; Np: max # of access policies for any single keyword.

ABE (CP-ABE) [3], [4]. Based on ABE, several attribute-
based access control (ABAC) schemes [18], [19] have been
proposed to ensure the data confidentiality in cloud-based
systems. Specifically, ABAC allows data owners to define an
access structure on attributes and encrypt the data under this
access structure, such that data owners can define the attributes
that the user needs to possess in order to decrypt the ciphertext.

To support the keyword search on encrypted data, Song et
al. [7] proposed one of the first schemes for searching on
encrypted data, which leverages symmetric key techniques
and only allows the data encryptor to search. Boneh et al.
[8] proposed Public Key Encryption with Keyword Search
(PEKS), where anyone can encrypt the data by using the public
key while only allow the owner of the corresponding secret key
to search. To enable multiple users to search on the encrypted
data, Hwang and Lee [20] proposed a multiuser public key en-
cryption with conjunctive keyword search scheme. Camenisch
et al. [21] proposed public key encryption with oblivious
keyword search (PEOKS) where users can obtain trapdoors
from the secret key holder without revealing the keywords. Li
et al. [22] propose a multi-keyword ranked search on encrypted
data by employing a secure K-nearest neighbors scheme.

Due to the advantages of ABE, attentions are paid to
combine ABE with PEKS by constructing attribute-based
encryption with keyword search (ABEKS) schemes [10]–
[15]. In [11], the authors propose an attribute-based proxy
re-encryption scheme that can re-encrypt both the index and
the trapdoor into the same key that can be evaluated by the
cloud. In [23], an extended CP-ABE scheme is proposed to
support single keyword search. However, the extension of
keyword search (i.e., the query secret key skquery) will break
the security of the CP-ABE. It is easy to get the master
secret key of the system msk = ga from the secret key of
ABE skabe and the query secret key skquery by calculating
skabe/skquery = ga gat/(gatgua) = (ga)1�u, because u is se-
lected by users. Once the master key is obtained, the user
can decrypt all the ciphertexts regardless of his/her attributes.
In [13], [14], KP-ABE is employed to encrypt the keyword
with a set of attributes and construct the trapdoor under access
policies. In [10], [12], [15], CP-ABE is used to encrypt the
keywords. However, in data selective sharing and acquisition,
anyone is allowed to search, and the access policy is defined
on the data encryption not on the index encryption. Moreover,
the soundness is not considered in previous works, where the
cloud server can bypass the trapdoor and still deliver the data
to users who do not have interests.

The soundness challenge was initially introduced by an

Cloud Server

…

UsersData Owners Authority

pk

pk sk$

(CT, I) (TD, tk$)CT-

CT:	data	ciphertext
I:	data	index

TD:	trapdoor
tk$:	transformed	sk

CT- :	pre-decrypted	datapk:	public	key
sk$:	secret	key

Fig. 1. Cloud-based Data Selective Sharing and Acquisition System

index swap attack (swapping the indices of two messages) in
[17] when people consider to combine Public Key Encryption
(PKE) with Public Key Encryption with Keyword Search
(PEKS). As mentioned in [17], a trivial solution is to simply
append an authentication tag generated with a shared key
between the data owner and data user. While it works, the
solution destroys the asymmetric nature of public key encryp-
tion. The authors in [17] proposed a solution to combine PEKS
with ElGamal based on the MAC produced with identity-based
encryption [24]. However, the security requires the PKE is
secure against plaintext checking attack (PCA). In [25], the
authors propose a generic combination of PEKS and PKE,
but still with an MAC. In this paper, we propose an integrate
framework that internally ties the attribute-based encryption
with searchable encryption, without needing any MAC.

III. SYSTEM MODEL AND DESIGN GOALS

A. System Model and Threat Model

We consider the cloud-based data selective sharing and
acquisition system, as shown in Fig.1, which consists of four
entities: data owners, the cloud server, users, and an authority.

Data Owners. Data owners are the owners of data and
in most cases are also the producers of data. They will
selectively share their data to users, such that users with
different privileges have different views of the data. However,
they do not trust the cloud server to control the sharing of
their data. Hence, before sending data to the cloud server,
data owners define an access policy for the shared data and
encrypt them under this access policy. They also generate a
set of indices for the shared data. Data owners are assumed
to be fully trusted in the system.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

4

Cloud Server. The cloud server stores the data and is
responsible for evaluating whether the index can match the
trapdoor and whether the user’s attributes can satisfy the access
policy. If both of these two conditions can be satisfied, the
cloud server will help users pre-decrypt the data with the
transformed secret key provided by the users together with the
trapdoor. We assume that the cloud will follow the protocol to
pre-decrypt and deliver those data which can satisfy both of
the conditions, but it is also curious about the data shared by
data owners. Moreover, we assume that the cloud server will
try to send data to those unauthorized users or send data to
those uninterested users.

Users. Each user holds a set of attributes that describe the
role or identity of the user in the system. Accordingly, the user
receives a secret key that is associated with the attributes. To
selectively acquire his/her interested data, the user generates
a trapdoor (used to filter the data) and a transformed his/her
secret key (used to pre-decrypt the data), and send both of
them to the cloud in one query. Users can collude with each
other, but they will not send their secret keys to the cloud
server or other adversaries.

Authority. The authority is the key management in the
system. Specifically, it is responsible for managing the users’
roles in the system by assigning different sets of attributes to
them. According to the granted attributes of each user, it then
issues a corresponding secret key to the user. It also publishes
the public key that can be used for data encryption and index
generation. We assume that the authority is fully trusted in
the system, and there exists a secure communication channel
between the authority and each user. We assume the authority
will not collude with the cloud server or other adversary.
For example, the trusted authority can be some agencies that
are managed and audited by the government or other public
organizations (similar to root DNS servers).

B. Design Goals

The ultimate goal of this paper is to design an efficient and
provably secure data selective sharing and selective acquisition
scheme for cloud-based systems, which allows data owners to
selectively share their data and users to selectively acquire
their interested data. Specifically, the scheme should achieve
several design goals in terms of correctness, soundness, secu-
rity and efficiency.

• Correctness: When access policy associated with the data
can be satisfied by user’s attributes, and the index of the
data can match the trapdoor provided by the user, the data
can be decrypted correctly by the user.

• Soundness: Users should not receive any data that cannot
be decrypted or have no interests.

• Security: The data should be kept private against the cloud
server or other unauthorized users. Neither the index nor
the trapdoor should reveal user’s interests.

• Efficiency: The scheme should not involve too much com-
munication overhead and computation cost, especially for
the computation cost on users who use mobile devices
with limited resources to access data.

IV. PRELIMINARIES

A. Linear Secret-Sharing Scheme (LSSS) Structure
Definition 1 (LSSS [26]): A secret-sharing scheme P over

a set of parties P is called linear (over Zp) if
1) The shares for each party form a vector over Zp.
2) There exists a matrix M called the share-generating

matrix for P. The matrix M has n rows and l columns.
For all i= 1, · · · ,n, the i-th row of M is labeled by a party
r(i) (r is a function from {1, · · · ,n} to P). If the column
vector v = (s,r2, · · · ,rl) is considered, where s 2 Zp is
the secret to be shared and r2, · · · ,rl 2Zp are randomly
chosen, then Mv is the vector of n shares of the secret s
according to P. The share (Mv)i belongs to party r(i).

According to the above definition, the LSSS structure enjoys
the linear reconstruction property: Suppose that P is an LSSS
for the access structure A. Let S 2 A be any authorized set,
and let I ⇢ {1,2, · · · ,n} be defined as I = {i : r(i) 2 S}. Then,
there exist constants {ci 2Zp}i2I , s.t. for any valid shares {li}
of a secret s according to P, we have Âi2I cili = s. These
constants {ci} can be found in polynomial time with the size
of the share-generating matrix M, and for unauthorized sets,
no such constants {ci} exist.

B. Bilinear Pairing
Let G1, G2 and GT be three multiplicative groups with

the same prime order p. A bilinear pairing is a mapping e :
G1⇥G2!GT with the following properties:

• Bilinearity: e(ua,vb) = e(u,v)ab for all u 2 G1, v 2 G2
and a,b 2Zp.

• Non-degeneracy: There exist u 2 G1, v 2 G2 such that
e(u,v) 6= I, where I is the identity element of GT .

• Computability: e can be efficiently computed.

C. Decisional q-parallel Bilinear Diffie-Hellman Exponent
Assumption

Definition 2 (Decisional q-parallel BDHE [4]): Let G and
GT be two groups of order p, where p > 2l is a prime.
Suppose that there exists a bilinear map e : G⇥G!GT . Let
a,s,b1, · · · ,bq 2Zp be chosen randomly and g be a generator
of G. If an adversary is given by

~y = (g,gs,ga, · · · ,g(aq), ,g(a
q+2), · · · ,g(a2q),

81 jq gs·b j , ga/b j , · · · ,g(aq/b j), ,g(a
q+2/b j), · · · ,g(a2q/b j),

81 j,kq,k 6= j ga·s·bk/b j , · · · ,g(aq·s·bk/b j)),

it must be hard to distinguish a valid tuple e(g,g)aq+1s 2 GT
from a random element R in GT .
An algorithm B that outputs z 2 {0,1} has advantage e in
solving q-parallel BDHE in G if
���Pr[B(~y,T = e(g,g)aq+1s) = 0]�Pr[B(~y,T = R) = 0]

���� e.

Definition 3: The decisional q-parallel BDHE assumption
holds if no polynomial time algorithm has a non-negligible
advantage in solving the q-parallel BDHE problem. (It is
generically secure as shown in Appendix C of [4].)

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

5

D. Decisional Linear (DLIN) Assumption
Definition 4 (DLIN): The challenger chooses a group G

of prime order p. Let a,b,x,y 2 Zp be chosen randomly and
g,h be generators of G. When given ~z = (g,h,ga,gb,gax,gby),
the adversary must distinguish a valid tuple hx+y 2G from a
random element R in G. An algorithm B that outputs z2 {0,1}
has advantage e in solving DLIN in G if

��Pr[B(~z,T = hx+y) = 0]�Pr[B(~z,T = R) = 0]
��� e.

Definition 5: The decisional linear (DLIN) assumption holds
if no polynomial time algorithm has a non-negligible advan-
tage in solving the DLIN problem.

V. DEFINITIONS

A. Definition of DSA
To meet all the requirements illustrated in Section III-B, we

define the data selective sharing and acquisition scheme as
Definition 6 (DSA): A Data Selective Sharing and Acquisi-

tion scheme consists of the following algorithms:
• Setup(1l) ! (msk,pk). The setup algorithm takes the

security parameter l as input. It outputs the master secret
key msk and the public key pk for the system.

• SKGen(msk,pk,Su) ! sku. The secret key generation
algorithm takes as inputs the master secret key msk, the
public key pk, and a set of attributes Su assigned to each
user u. It outputs a secret key sku for each user u.

• Encrypt(pk,(m,w),A)! (CT, I). The encryption algo-
rithm takes as inputs the public key pk, the data m from
the data space M and a keyword w from the keyword
space W describing the data1, and an access policy A
defined over attributes. It consists of two subroutines:

– IndexGen(pk,w)! (I,RI). The index generation sub-
routine outputs the data index I corresponding to the
keyword w and a random index stamp RI associated
with this index. RI will be used for encrypting each
data in the keyword file list.

– DataEnc(pk,m,A,RI) ! CT. The data encryption
subroutine takes as input the random index stamp
RI and outputs a ciphertext CT.

It outputs a tuple (CT, I), where CT is the data ciphertext
and I is the index.

• Query(sku,pk,w)! (TD, tku, ŝku). The trapdoor gener-
ation algorithm takes as inputs the user’s secret key sku,
the public key pk and a keyword w describing his/her
interests. It also consists of two subroutines:

– SKTran(sku)! (tku, ŝku). The secret key transfor-
mation subroutine outputs a transformed secret key
tku and a decryption key ŝku.

– TDGen(sku, ŝku,pk,w)! TD. The trapdoor genera-
tion subroutine takes the decryption key ŝku as one of
its inputs, and generates the trapdoor TD associated
with this decryption key.

1For each keyword w in the keyword sets, we first run the IndexGen
to generate a single index regardless of access policies. Then, we run the
DataEnc algorithm to encrypt all the data in the file list according to their
access policies. Without loss of generality, here we focus on a simple case
with single keyword and single data.

It outputs the trapdoor TD, the transformed secret key
tku, and the corresponding decryption key ŝku.

• Test(pk,(TD, I),(tku,CT,A))! ĈT or ?. The test al-
gorithm takes as inputs the public key pk, the pair of
trapdoor TD and the index I, the transformed secret key
tku, the data ciphertext CT and its associated access
policy A. It also contains two testing subroutines:

– KTest(pk,TD, I)! (R,Q) or ?. The keyword test
subroutine evaluates whether the keyword in the
trapdoor TD can match the keyword in the index I. If
they do not match, it terminates all the test algorithm
and exits with a symbol ?. Otherwise, the subroutine
will recover the random element R used during the
encryption, as well as another element Q containing
the randomness of the index.

– ATest(pk, tku,CT,A,R,Q) ! ĈT or ?. The at-
tribute test subroutine takes the random elements
(R,Q) as part of inputs. It first evaluates whether
the attributes contained in the transformed secret key
tku can match the access policy A associated with the
ciphertext CT. If they do not match, it terminates the
test algorithm and exits with a symbol ?. Otherwise,
it outputs the pre-decrypted ciphertext ĈT.

• Decrypt(ŝku, ĈT)! m. The decryption algorithm takes
as inputs the decryption key ŝku and the pre-decrypted
ciphertext ĈT. It outputs the data m.

B. Definition of Correctness
The correctness of the scheme requires that if the keyword

in the trapdoor can match the keyword in the index, and the
user’s attributes can satisfy the access policy associated with
the data, then the user can finally decrypt the data successfully.

Definition 7 (Correctness): A data selective sharing and
selective acquisition scheme DSA is correct, if 8l 2 N, and
Su satisfying A, we have

Pr[Decrypt
�
ŝku,Test(pk,(TD, I),(tku,CT,A))

�
= m] = 1,

where the probability is taken over the choice of

(msk,pk) Setup(1l),

sku SKGen(msk,pk,Su),

(CT, I) Encrypt(pk,(m,w),A),
(TD, tku, ŝku) Query(sku,pk,w).

C. Definition of Soundness
In DSA, we follow the Keyword-then-Policy evaluation.

What happens if a malicious cloud directly sends the data to
those users who can decrypt (policy match) but has no interests
(keyword does not match). This cannot be covered by security.
So, we define the soundness to cover three cases as follows.

• Case 1 (Soundness of KTest): If the keyword inside the
trapdoor does not match the keyword inside the index,
then the probability to pass the KTest is negligible.

• Case 2 (No Bypass of KTest): If the data can be decrypted
but are not interested by this user, the cloud server should
not be able to correctly pre-decrypt the data for this user.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

6

• Case 3 (Soundness of Decrypt): The pre-decrypted data is
user-specific, which means that a user cannot successfully
decrypt a pre-decrypted data generated for a different user
with non-negligible probability.

D. Definitions of Security

We now give formal definitions of security for the data
selective sharing and selective acquisition scheme.

1) Data Security: To prevent the cloud server and other
adversaries from “passive” eavesdropping the data shared
by the owners, the data encryption subroutine should be
semantically secure against chosen plaintext attacks (IND-
CPA). When considering the whole encryption algorithm
(containing both the data encryption subroutine and the in-
dex generation subroutine), we employ a relaxed version of
IND-CPA, called selective IND-CPA, where both of the two
challenged plaintexts have the same keyword that does not
equal to either challenged plaintext (i.e., (m0,w),(m1,w), and
w 6= m0,w 6= m1). The keyword is selected in an initial phase
at the very beginning of the security game2.

Besides launching the “passive” eavesdropping, the cloud
server is also required to help users pre-decrypt the data ci-
phertext (i.e., transform the original data ciphertext to another
data ciphertext that can be decrypted more easily). We employ
a relaxed version of IND-CCA2 security (semantic security
against adaptive chosen ciphertext attacks) defined in [27],
called IND-Replayable CCA (IND-RCCA) security, which is
identical to IND-CCA2 except for allowing the cloud server to
generate new ciphertexts that decrypt to the same plaintext as a
given ciphertext. This IND-RCCA model has also been applied
in [28] for the decryption outsourcing of ABE. Following
the similar definition, we define the Selective IND-RCCA
Security for the data encryption through a Selective-IND-
RCCA-Game.

Definition 8 (Selective-IND-RCCA-Game): The
Selective-IND-RCCA-Game is defined between a challenger
C and an adversary A whose running time is probabilistic
polynomial in a security parameter l as follows.

• Init: A gives the challenge access policy A⇤ and the
challenge keyword w⇤ to C.

• Setup: C runs Setup(1l) to generate (msk,pk), and gives
pk to A.

• Phase 1: C initializes an empty table T (recording all
transformed secret key queries), an empty set D (record-
ing the corrupted users), and an integer j = 0. A can
adaptively make any of the following queries:

– TKQuery(S j): A queries the transformed key by
giving a set of attributes S j. C sets j := j + 1 and
runs the SKGen to compute the corresponding secret
key sk j. C then transforms sk j into the transformed
secret key tk j and the decryption key ŝk j. C stores
the entry (j,S j, ŝk j, tk j) and returns tk j to A.

– DKQuery(i): A cannot corrupt any key responding
to the challenge access policy A⇤. If there exists an

2We can also define a stronger selective IND-CPA, where the keyword is
selected during the challenge phase.

ith entry in table T , C checks whether Si can satisfy
A⇤. If not, it sets D := D[i and obtains the entry
(i,Si, ŝki, tki). Then, it returns the decryption key 3

ŝki to A. If no such entry exists or Si can satisfy A⇤,
it then returns ?.

– Decrypt(i,CT,A): If there exists an ith entry
(i,Si, ŝki, tki) in table T and Si can satisfy A, C

decrypts the CT by running Test and Decrypt. Then,
it returns the output to A. Otherwise, it returns ?.

• Challenge: A submits two equal-length messages m0 and
m1, neither of which equals to the challenge keyword
w⇤. C flips a random coin t , and encrypts mt under A⇤
and generates the index for keyword w⇤. Then, both the
ciphertext CT and the index I are given to A.

• Phase 2: Phase 1 is repeated with the restriction that A
cannot make a trivial decryption query, which means that
Decrypt queries will be answered as in Phase 1, except
that if the outputs would be either m0 or m1, then C

responds with a special message test instead. 4

• Guess: A outputs a guess t 0 of t .
We define A’s advantage in Selective-IND-RCCA-Game by

AdvSelective-IND-RCCA-Game
DSA,A = 2Pr[t 0 = t]�1.

2) Index Security: To protect the keyword security in
the index, we require the adversary cannot distinguish two
indices generated from two equal-length keywords, unless
any corresponding trapdoor is revealed. We also require the
index generation should be semantically secure against chosen
keyword attacks (IND-CKA), where trapdoors can be queried
adaptively. Considering that the index generation is only
one subroutine of the encryption algorithm, we assume that
both of the two challenge keywords are associated with the
same challenge data. By selecting the challenge data in an
initial phase, we define Selective IND-CKA security via the
following Selective-IND-CKA-Game.

Definition 9 (Selective-IND-CKA-Game): The Selective-
IND-CKA-Game is defined between a challenger C and an
adversary A whose running time is probabilistic polynomial
in a security parameter l as follows.

• Init: A gives the challenge data m⇤ to C.
• Setup: C runs the Setup(1l) algorithm to generate
(msk,pk). It gives pk to A.

• Phase 1: A is allowed to query trapdoors for any keyword
w j.

• Challenge: A submits two equal-size keywords w0,w1.
The only restriction is that neither w0 nor w1 has been
queried in Phase 1. C first flips a random coin t , and
responses the index It to A by running the Encrypt
algorithm.

• Phase 2: Same as Phase 1 as long as the challenged
keywords are not queried.

• Guess: A outputs a guess t 0 of t .

3The decryption key query has already implied secret key query, as the
secret key can be constructed by the transformed key and the decryption key.

4Instead of comparing the ciphertext (c = c⇤) in CCA game, this RCCA
security game compares the decrypted plaintexts.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

7

We define A’s advantage in Selective-IND-CKA-Game by

AdvSelective-IND-CKA-Game
DSA,A = 2Pr[t 0 = t]�1.

3) Trapdoor Security: As for the keyword privacy in the
trapdoor, if the index is generated with private keys, then
we can also define that the trapdoor should be semantically
secure against chosen keyword attacks (IND-CKA). Similar
to the index security, intuitively, the trapdoor security requires
that the adversary is not able to distinguish two trapdoors of
two equal-length keywords, unless any corresponding index is
revealed.

However, if the index can be generated with public key, it
is impossible to achieve the indistinguishable security against
chosen keyword attacks (IND-CKA) unless the keyword space
is sufficient large. This is called offline keyword-guessing
attack, where the adversary can generate indices by guessing
keywords, and use them to distinguish the two challenge
trapdoors. Our DSA scheme is a public key encryption scheme
where the index generation only needs the public key. Here,
we define a weaker security model for trapdoor security, which
only requires that the trapdoor security is one-way (when given
the trapdoor, it is hard to know the inside keyword).

Definition 10 (Selective-IND-RCCA): A DSA scheme is
Selective-IND-RCCA secure if all probabilistic polynomial-
time adversaries have at most a negligible advantage in the
above Selective-IND-RCCA-Game.

Definition 11 (Selective-IND-CKA): A DSA scheme is
Selective-IND-CKA secure if all probabilistic polynomial-
time adversaries have at most a negligible advantage in the
above Selective-IND-CKA-Game.

Definition 12 (DSA Security): A DSA scheme is secure if it
is Selective-IND-RCCA secure, Selective-IND-CKA secure
and the trapdoor generation is one-way.

Remark 1: In the selective security definition, we assume
that w0 = w1 or m0 = m1. We say that this security definition
has already implied the case where w0 6= w1 and m0 6= m1:

• (m0,w0) IND (m0,w1): Selective IND-CKA for index
(when adversary cannot get the tokens for W0 and W1)

• (m0,w1) IND (m1,w1): Selective IND-CPA for data
(when adversary cannot get sufficient attributes)

Then, we can say: (m0,w0) IND (m1,w1).

VI. CONSTRUCTION OF DSA

A. System Initialization by Authority
The authority initializes the system by running the setup

algorithm as
Setup(1l) ! (msk,pk). It chooses two multiplicative

groups G and GT with the same prime order p(p> 2l) and the
bilinear map e :G⇥G!GT between them. Let g be a gener-
ator of G. Let H : {0,1}⇤ !G be the hash function that maps
an arbitrary attribute to an element in group G. It also defines a
set of hash functions H0 : {0,1}l !G, H1 :GT ! {0,1}l , H2 :
GT ! {0,1}⇤, H3 : {0,1}⇤ !Z⇤p, and H4 : {0,1}⇤ ! {0,1}l .
It chooses random numbers a, b , a, b, c 2 Z⇤p and sets the
master secret key as msk = (a, b , a, b, c). The public key
is set as

pk= (p,g,G,GT ,e,H,H0,H1,H2,H3,H4,

ga,gb,gabc,gb ,e(g,g)a).

According to the attributes assigned to the data owner, the
authority generates a corresponding secret key for the owner
by running the secret key generation algorithm as

SKGen(msk,pk,Su)! sku. For each user u who possesses
the attribute set Su, it chooses a random number rsub 2Z⇤p and
generates the secret key as

sku =
⇣
(ac,bc), K = ga gbu, Ka = g

a
a g

bu
a , Kb = g

a
b g

bu
b ,

K0 = gu, 8x 2 Su : Kx = H(x)u
⌘
.

where u is randomly chosen from Z⇤p.

B. Data Encryption by Owners
To encrypt the data, the data owner first defines an access

policy over attributes of users. In our construction, the access
policy is described by an LSSS structure (M,r), where M is
an n⇥ l access matrix and r maps the rows of M to attributes.
The data owner then runs the following encryption algorithm
to encrypt the data m5. We follow the construction of [28]
to transform the selective CPA secure CP-ABE to be RCCA
secure.

Encrypt(pk,(m,w),(M,r)) ! (CT, I). It consists of two
subroutines:

• IndexGen(pk,w)! (I,RI). The index generation subrou-
tine first selects a random string R {0,1}l and two
random numbers s1,s2 2 Z⇤p and sets st = s1 + s2. Then,
it computes the ciphertext of the keyword w as

cw = e
⇣

H0(w),gabc
⌘st

.

Then, it outputs the index as

I=
⇣

I1 = R�H1(cw), I2 = H2(cw),

L1 = (gb)s1 , L2 = (ga)s2 , L3 = gst ·H0(w)st
⌘

and the random index stamp RI = (R,st).
• DataEnc(pk,m,(M,r),RI)! CT. Following the RCCA

construction in [28], the data encryption subroutine first
chooses a random string k {0,1}l and computes
sa = H3(k,m) as the encryption secret. Then, it shares
sa through a random vector ~v = (sa,y2, · · · ,yl). For i = 1
to n, it computes li = Mi ·~v, where Mi is the vector
corresponding to the i-th row of M. It takes as input the
random index stamp (R,st) and outputs the ciphertext as

CT=
⇣

C0 = m�H4(k),

C = k · e(g,g)asa , C0 = gsa+st ·H0(R),

{Ci = gbli ·H(r(i))�ri , Di = gri}i2[1,n]

⌘
.

where r1, . . . ,rn are randomly chosen in Z⇤p.
The data owner then uploads the data and its index to the cloud
server in I||CT||(M,r). Note that the access policy (M,r) is
explicitly associated with the ciphertext.

5In real application, data m is first encrypted with a content key by using
symmetric encryption methods. The content key is further encrypted by
running the encryption algorithm Encrypt. For simplification, we directly
use the data m.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

8

C. Query Generation by Users
To generate a query for a keyword, the users will run the

following algorithm:
Query(sku,pk,w⇤)! (TD, tku, ŝku). It also consists of two

subroutines:
• SKTran(sku)! (tku, ŝku). The secret key transformation

subroutine selects a random number z 2 Z⇤p and trans-
forms the user’s secret key sku to a transformed secret
key tku as

tku =
⇣

K̂ = (K)z = gazgbuz, K̂0 = (K0)z = guz,

8x 2 Su : K̂x = (Kx)
z = H(x)uz

⌘

and set the decryption key as ŝku = z.
• TDGen(sku, ŝku,pk,w) ! TD. The trapdoor generation

subroutine takes the decryption key ŝku as one of its
inputs, and generates the trapdoor TD by randomly
choosing t1, t2 2Z⇤p:

TD=
⇣

T1 = gact1H0(w⇤)ac+act1 , T̂1 = (Kb)
z(gH0(w⇤))act2 ,

T2 = gbct1H0(w⇤)bc+bct1 , T̂2 = (Ka)
z(gH0(w⇤))bct2 ,

T3 = (gabc)t1 , T̂3 = (gabc)t2
⌘

It sends the query (TD, tku) to the cloud server, and keeps the
corresponding decryption key ŝku.

D. Query Test by Cloud Server
Upon receiving the data and the query, the cloud server will

test whether the keyword in the index can match the keyword
in the trapdoor, and whether the attributes associated with the
transformed secret key can match the access policy associated
with the data ciphertext by running the test algorithm as

Test(pk,(TD, I),(tku,CT,A))! ĈT or ?. The test algo-
rithm also contains both two testing subroutines: keyword test
subroutine and attribute test subroutine.

• KTest(pk,TD, I)! (R,Q) or ?. The keyword test sub-
routine evaluates whether the keyword in the trapdoor TD
can match the keyword in the index I. It first recovers the
keyword ciphertext as

cw⇤ =
e(T1,L1) · e(T2,L2)

e(T3,L3)
. (1)

Then, it tests whether H2(cw⇤)
?
= I2. If not, it aborts the

test algorithm with a symbol?. Otherwise, we have cw⇤ =
cw. Then, the subroutine will recover the random element
R used during the encryption as R = I1�H1(cw⇤), and
another element Q containing the randomness of the index

Q =
e(T̂1,L1) · e(T̂2,L2)

e(T̂3,L3)
. (2)

It outputs (R,Q).
• ATest(pk, tku,CT,A,R,Q)! ĈT or ?. The attribute test

subroutine takes as inputs the random elements (R,Q).
It first evaluates whether the attributes contained in the
transformed secret key tku can match the access policy

(M,r) associated with the ciphertext CT. If they do not
match, it terminates the test algorithm and exits with a
symbol ?. Otherwise, the subroutine can find a set of
constants {ci}, s.t., Âi2I ciMi = (1,0, · · · ,0), where I is
defined as I = {i : r(i) 2 Su}. Recall li = Mi ·~v, we have
Âi cili = sa. It then computes

P = ’
i2I

�
e(Ci, K̂0) · e(Di, K̂r(i))

�ci (3)

and Ĉ0 =C0/H0(R). Finally, the subroutine computes

Ĉ =
e(Ĉ0, K̂)

P ·Q = e(g,g)azsa (4)

It outputs the pre-decrypted ciphertext as

ĈT=(C0 =m�H4(k), C = k ·e(g,g)asa , Ĉ = e(g,g)azsa).

E. Data Decryption by Users

Upon receiving the pre-decrypted data, the user can effi-
ciently decrypt the data by running the decryption algorithm:

Decrypt(ŝku, ĈT)! m. The decryption algorithm takes as
inputs the decryption key ŝku and the pre-decrypted ciphertext
ĈT= (C0,C,Ĉ). It first computes

k =
C

Ĉ
1

ŝku

=
k · e(g,g)asa

(e(g,g)azsa)
1
z
.

Then, it recovers the data

m =C0�H4(k).

Now, it recomputes the s0 = H3(k,m) and checks whether the
following two equations can hold: C ?

= k · e(g,g)as0 and Ĉ ?
=

e(g,g)as0z If it does, the data m is accepted.
It is easy to find that the user only performs simple

decryption computation, which is independent with the number
of attributes in the ciphertext. The lightweight decryption
algorithm can be easily implemented in many mobile devices
with limited computation resources.

VII. CORRECTNESS AND SOUNDNESS PROOFS

A. Correctness Proof

Correctness of KTest: cw⇤ can be computed as in Eq. 1:

e(T1,L1) · e(T2,L2)

e(T3,L3)

=
e
�
gact1H0(w⇤)ac+act1 ,(gb)s1

�
e
�
gbct1H0(w⇤)bc+bct1 ,(ga)s2

�

e(gabct1 ,gst ·H0(w)st)

=
e(g,g)abct1(s1+s2)e(H0(w⇤),g)abc(s1+s2)e(H0(w⇤),g)abct1(s1+s2)

e(g,g)abct1st e(H0(w),g)abct1st

(5)

If the keyword in the trapdoor matches the keyword in the
index, then

cw⇤ = e(H0(w⇤),g)abcst = e(H0(w),g)abcst = cw

So, we have
H(cw⇤) = H(cw).

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

9

Correctness of ATest: If w⇤ = w, Eq. 2 can be expressed
as

Q =
e(T̂1,L1) · e(T̂2,L2)

e(T̂3,L3)

=
e
⇣

g
az+buz

b (gH0(w⇤))act2 ,gbs1
⌘

e
⇣

g
az+buz

a (gH0(w⇤))bct2 ,gas2
⌘

e(gabct2 ,gst ·H0(w)st)

=
e(g,g)azst e(g,g)buzst e(g,g)abct2st e(H0(w⇤),g)abct2st

e(g,g)abct2st e(H0(w),g)abct2st

=e(g,g)azst · e(g,g)buzst

(6)

and the Eq. 3 can be computed as

P =’
i2I

�
e(Ci, K̂) · e(Di, K̂r(i))

�ci

=’
i2I

⇣
e(gbli ·H(r(i))�ri ,guz) · e(gri ,H(r(i))uz)

⌘ci

=’
i2I

e(g,g)buzcili = e(g,g)buzsa

Then, Eq. 4 can be verified as

Ĉ =
e(Ĉ0, K̂)

P ·Q =
e(gsa ·gst ,gazgbuz)

e(g,g)buzsa · e(g,g)azst · e(g,g)buzst

=
e(g,g)azsae(g,g)azst · e(g,g)buzsa · e(g,g)buzst

e(g,g)buzsa · e(g,g)azst · e(g,g)buzst
= e(g,g)azsa

B. Soundness Proof
Here, we show how to resist the bypass attacks defined

in the soundness. We first prove the case 1 of soundness
(soundness of KTest). Due to the collision resistance of hash
functions, we say that two keywords w⇤,w 2W,w⇤ 6= w, the
probability that these two keywords get the same hash values
is negligible in l . So, if w⇤ 6= w, the probability of passing
KTest is also negligible.

For case 2 of soundness, suppose the index Iw can be
matched by using another trapdoor TDu2,w generated by user
u2, then the cloud server can use this trapdoor to pass the
KTest and get the keyword ciphertext cw by Eq. 1. However,
obtaining cw does not help the pre-decryption, because the
computation of component Q also requires the match of
keywords in both index Iw and the trapdoor TDu1,w⇤ . From
Eq. 2, we can see that if H0(w⇤) 6= H1(w), the component
e(H0(w⇤),g)abct2st and e(H0(w),g)abct2st cannot be canceled.
Therefore, only when H0(w⇤) = H0(w),w⇤ 6= w, Q can be
recovered to e(g,g)buzst .

For case 3 of soundness, let’s see what will happen if it
uses the transformed secret key of user u2 to compute the
component Q. Note that both P and Q are closely related to u
and z, which are user-specific. If the cloud server uses trapdoor
and transformed secret key from another user u2, then the pre-
decrypted ciphertext cannot be decrypted correctly unless the
decryption keys of both user u1 and user u2 are the same.

VIII. SECURITY PROOF AND PERFORMANCE EVALUATION

A. Security Proof
We prove that the DSA scheme is secure in the random

oracle model [29] by the following theorems:

Theorem 1: The DSA scheme is Selective-IND-RCCA
secure in random oracle model, if the decisional q-parallel
Bilinear Diffie-Hellman assumption holds.

Proof: The encryption algorithm in DSA scheme is con-
structed based on an adapted CP-ABE [4], which is proved
to be selective CPA secure under the decisional q-parallel
BDHE assumption. We also follow the construction of [28]
to transform the selective CPA secure CP-ABE to be RCCA
secure. Now, we prove that if there exists a polynomial time
adversary A can play the Selective-IND-RCCA-Game with
non-negligible advantage e , we can build a simulator B that
can break the selective CPA security of CP-ABE scheme in
[4] with advantage e plus a negligible amount. The detailed
proof is described in Appendix A.

Theorem 2: The DSA scheme is Selective-IND-CKA secure
in random oracle model, if the decisional linear (DLIN)
assumption holds.

Proof: We reduce the Selective-IND-CKA security of
the DSA to the decisional linear (DLIN) assumption. That
is, if there is a polynomial time adversary A can win the
Selective-IND-CKA-Game with non-negligible advantage
e =AdvSelective-IND-RCCA-Game

DSA,A , we show how to build another
polynomial time simulator B that plays the DLIN problem
with non-negligible advantage. Please also refer to Appendix
B for the detailed proof.

Then, due to the hardness of discrete logarithm problem,
it is easy to find that the trapdoor generation is one-way in
polynomial time, thus we can say that the DSA scheme is
secure in the random oracle model according to Definition 12.

B. Performance Analysis
In this section, we show the communication overhead

between any two entities, and the computation cost on each
entity. In order to show the communication overhead between
any two entities in the DSA scheme, we first present the size
of each component in the following table.

TABLE II
SIZE OF EACH COMPONENT

Component Size example values
element size of G |p| 512 bits (a-curve)

user’s attribute set Su |Su| 5
attribute number of data m natt,m 5

keywords number of data m nkwd,m 5
public parameters pk 16|p| 8192 bits
user’s secret key sku (|Su|+5)|p| 5120 bits

ciphertext CT (2natt,m +3)|p| 6656 bits
index I (3nkwd,m +2)|p| 8704 bits

transformed secret key tku (|Su|+2)|p| 3584 bits
trapdoor TD (4nkwd,m +2)|p| 11264 bits

partially decrypted data ĈT 3|p| 1536 bits

In real applications, the size of shared data is usually larger
than the security parameter (e.g., 512 bits) in the elliptic curve.
So, the data m are firstly encrypted with a content key by using
symmetric encryption methods. The content key is further
encrypted by running DSA encryption algorithm. In this case,
the index size and trapdoor size only corresponding to the
number of keywords associated with the data. As shown in

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

10

2D Graph 2

Number of Attributes/Keywords

0 2 4 6 8 10 12 14 16

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

0.0

.1

.2

.3

.4

.5

.6

Data Encryption (vs Number of Attributes)
Index Generation (vs Number of Keywords)

(a) Data Owner

2D Graph 6

Number of Attributes/Keywords

0 2 4 6 8 10 12 14 16

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

0.0

.1

.2

.3

.4

.5

.6

Secret Key Transformation (vs Number of Attributes)
Trapdoor Generation (vs Number of Keywords)
Data Decryption (vs Number of Attributes)

(b) Users

2D Graph 2

Number of Attributes/Keywords

0 2 4 6 8 10 12 14 16

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

0.00

.02

.04

.06

.08

.10

.12

.14 KTest (vs Number of Keywords)
ATest (vs Number of Attributes)

(c) Cloud Server
Fig. 2. Computation Cost

TABLE III
COMMUNICATION OVERHEAD

From
To Authority Cloud Servers Data Owners Users

Authority |pk| |pk| |sku|
Cloud Servers n/a n/a |ĈT|
Data Owners n/a |CT|+ |I| n/a

Users n/a |tku|+ |TD| n/a

Table II, the index has only 8704 bits and the trapdoor is only
11264 bits long if we have 5 keywords associated with the
data.

The communication cost of data ciphertexts are fixed from
the data owner to the cloud server, and from the cloud server to
the users. Here, we only evaluate the communication overhead
of the designed DSA scheme which distributes the content
keys. Based on Table II, we give a communication overhead
analysis of the DSA scheme in Table III. We can see that
the data sent from the cloud server to users are independent
with the number of attributes it associated. This can reduce the
communication overhead significantly when there are multiple
data matching the trapdoor. The users only need to send the
transformed secret key for one time whose size is linear to the
number of attributes he/she holds, and receive data in constant
size which are independent with the number of attributes
associated with the data. The constant size data is actually
the content key of symmetric key encryption.

To show the computation cost on each entity, we also do
the experiments on a Unix system with an Intel Core i5 CPU
at 2.4GHz and 8.00GB RAM. The code in the DSA scheme
uses the Pairing-Based Cryptography (PBC) library version
0.5.12, and a symmetric elliptic curve a-curve, where the base
field size is 512-bit and the embedding degree is 2. All the
experimental results are the mean of 20 trials.

Fig. 2(a) shows the computation cost on data owners, which
consists of both data encryption and index generation. The
computation time of the data encryption is linear with the
number of attributes involved in the access policy. To generate
multiple indices for multiple keyword, the data owner can run
the index generation algorithm multiple times and generate the
index one by one. From Fig. 2(a), we can see that the data
encryption algorithm is very efficient, even is more efficient
than the index generation, when the number of keywords is
the same as the number of attributes. This is because there is
a pairing operation during each index generation.

Fig. 2(b) shows the computation cost on users, which
involves three operations: secret key transformation, trapdoor
generation and the data decryption. We can see that both
the secret key transformation and the data decryption only
incur less computation cost. Note that, the data decryption
here is independent with the number of attributes, and even is
more efficient than transforming the simplest secret key which
only consists one attribute. The trapdoor generation algorithm
can also be run repeatedly when there are multiple keywords
involved in the query.

Fig. 2(c) shows the keyword test KTest between the index
and the trapdoor, and the access policy test ATest if passing
the KTest. The ATest also help pre-decrypt data for users if
the access policy can be satisfied by the attributes associated
with the transformed secret key. We can see that the KTest is
linear to the number of keywords and the ATest is also linear
to the number of attributes. The cloud server does a major
decryption computation, which significantly reduces the data
decryption overhead on users.

From the above performance analysis, we can see that the
main computation loads are outsourced from the user to the
cloud by employing the predecryption on the cloud server. The
communication cost and storage overhead are also small on
the user side. Therefore, we can say that the DSA is efficient
to be implemented in practice, especially on users’ mobile
devices whose computation capabilities or battery are usually
limited.

IX. CONCLUSION

In this paper, we have studied the data selective sharing
and selective acquisition problem in cloud-based systems.
Specifically, we have first formulated the problem by identi-
fying several design goals in terms of correctness, soundness,
security and efficiency. Towards the security definition, we
have proposed three new security models for data security,
index security and trapdoor security, and further proposed
an efficient and provably secure DSA scheme to enable data
owners to control the sharing of their data in fine granularity
and users to refine the data acquisition without revealing their
interests. Finally, we have proved that the DSA is correct,
sound, secure under the security models and random oracle
model, and efficient in practice. In our future work, we are
going to explore trapdoors with more complex predicate over
keywords and extend to support multiple authorities.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

11

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” [Rec-
ommendations of the National Institute of Standards and Technology-
Special Publication 800-145], 2011.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en-
cryption for fine-grained access control of encrypted data,” in Proc. of
CCS’06. New York, NY, USA: ACM, 2006, pp. 89–98.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE symposium on security and privacy
(SP’07). IEEE, 2007, pp. 321–334.

[4] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proc. of PKC’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 53–70.

[5] K. Yang, X. Jia, K. Ren, R. Xie, and L. Huang, “Enabling efficient
access control with dynamic policy updating for big data in the cloud,”
in Proc. of INFOCOM’14. IEEE, April 2014, pp. 2013–2021.

[6] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “DAC-MACS: Effective
Data Access Control for Multiauthority Cloud Storage Systems,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 11, pp.
1790–1801, 2013.

[7] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of S&P’00. IEEE, 2000, pp. 44–55.

[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. of EUROCRYPT’04.
Springer, 2004, pp. 506–522.

[9] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory of cryptography. Springer, 2007, pp. 535–
554.

[10] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud,” in Proc. of INFOCOM’14. IEEE, 2014,
pp. 226–234.

[11] K. Liang and W. Susilo, “Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage,” IEEE Trans. Information
Forensics and Security, vol. 10, no. 9, pp. 1981–1992, 2015.

[12] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng, “Authorized keyword
search on encrypted data,” in European Symposium on Research in
Computer Security. Springer, 2014, pp. 419–435.

[13] H. Cui, Z. Wan, R. H. Deng, G. Wang, and Y. Li, “Efficient and expres-
sive keyword search over encrypted data in cloud,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 3, pp. 409–422,
2016.

[14] Y. Yu, J. Shi, H. Li, Y. Li, X. Du, and M. Guizani, “Key-policy attribute-
based encryption with keyword search in virtualized environments,”
IEEE Journal on Selected Areas in Communications, vol. 38, no. 6,
pp. 1242–1251, 2020.

[15] H. Yin, J. Zhang, Y. Xiong, L. Ou, F. Li, S. Liao, and K. Li, “Cp-abse:
A ciphertext-policy attribute-based searchable encryption scheme,” IEEE
Access, vol. 7, pp. 5682–5694, 2019.

[16] A. Michalas, “The lord of the shares: Combining attribute-based encryp-
tion and searchable encryption for flexible data sharing,” in Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, 2019, pp.
146–155.

[17] J. Baek, R. Safavi-Naini, and W. Susilo, “On the integration of public
key data encryption and public key encryption with keyword search,” in
International Conference on Information Security. Springer, 2006, pp.
217–232.

[18] K. Yang, X. Jia, and K. Ren, “Secure and verifiable policy update
outsourcing for big data access control in the cloud,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 12, pp. 3461–3470, Dec 2015.

[19] K. Yang, Z. Liu, X. Jia, and X. S. Shen, “Time-domain attribute-based
access control for cloud-based video content sharing: A cryptographic
approach,” IEEE Trans. on Multimedia, vol. 18, no. 5, pp. 940–950,
February 2016.

[20] Y. H. Hwang and P. J. Lee, “Public key encryption with conjunctive
keyword search and its extension to a multi-user system,” in Proc. of
Pairing’07. Springer, 2007, pp. 2–22.

[21] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy, “Blind and
anonymous identity-based encryption and authorised private searches
on public key encrypted data,” in International Workshop on Public Key
Cryptography. Springer, 2009, pp. 196–214.

[22] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. Shen, “Enabling efficient
multi-keyword ranked search over encrypted mobile cloud data through
blind storage,” IEEE Transactions on Emerging Topics in Computing,,
vol. 3, no. 1, pp. 127–138, 2015.

[23] C. Wang, W. Li, Y. Li, and X. Xu, “A ciphertext-policy attribute-based
encryption scheme supporting keyword search function,” in Cyberspace
Safety and Security. Springer, 2013, pp. 377–386.

[24] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil
pairing,” in Proc. of CRYPTO’01. London, UK, UK: Springer-Verlag,
2001, pp. 213–229.

[25] R. Zhang and H. Imai, “Generic combination of public key encryption
with keyword search and public key encryption,” in International
Conference on Cryptology and Network Security. Springer, 2007, pp.
159–174.

[26] A. Beimel, “Secure schemes for secret sharing and key distribution,”
Ph.D. dissertation, Israel Institute of Technology, Technion, Haifa, Israel,
1996.

[27] R. Canetti, H. Krawczyk, and J. B. Nielsen, “Relaxing chosen-ciphertext
security,” in Advances in Cryptology-CRYPTO 2003. Springer, 2003,
pp. 565–582.

[28] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryption
of abe ciphertexts,” in Proc. of SEC’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 34–34.

[29] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. of CCS’93. New York, NY,
USA: ACM, 1993, pp. 62–73.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1. The DSA scheme is Selective-IND-RCCA
secure in random oracle model, if the decisional q-parallel Bi-
linear Diffie-Hellman Exponent (Decisional q-parallel BDHE)
assumption holds.

Proof: The encryption algorithm in DSA scheme is con-
structed based on an adapted ciphertext-policy attribute-based
encryption (CP-ABE) [4], which is proved to be selective CPA
secure under the decisional q-parallel BDHE assumption. We
also follow the construction of [28] to transform the selective
CPA secure CP-ABE to be RCCA secure. Now, we prove that
if there exists a polynomial time adversary A can play the
Selective-IND-RCCA-Game with non-negligible advantage
e , we can build a simulator B that can break the selective
CPA security of CP-ABE scheme in Appendix A of [4] with
advantage e plus a negligible amount. We use Cabe to denote
the challenger in the security game of the CP-ABE scheme in
Appendix A of [4].

Init: A chooses the challenge access policy (M⇤,r⇤) and
the challenge keyword w⇤, and sends them to the simulator B.
Then, B passes the challenge access policy (M⇤,r⇤) to Cabe.

Setup: B obtains the CP-ABE public parameters pkabe =
(p,g,G, GT ,e,gb ,e(g,g)a) from Cabe, and a description of
hash function H. Then, it also randomly selects a,b,c 2 Z⇤p
and adds ga,gb,gabc to pkabe to generate the public key

pk= (p,g,G,GT ,e,gb ,e(g,g)a ,ga,gb,gabc).

Then, B sends pk to the adversary A.
Phase 1: B initializes empty tables T,T0,T1,T2,T3,T4, an

empty set D, and an integer j = 0. It answers the adversary
A’s queries as follows.

• Random Oracle Hash H0(w): If there is an entry
(w,H0(w)) in T0, return H0(w). Otherwise, it chooses a
random number r0,w 2Z⇤p and sets H0(w) = gr0,w . Then, it
checks whether gr0,w equals to any existing values, if so,
it re-chooses another random number and checks again.
Then, it records (w,H0(w)= gr0,w) in T0 and return H0(w).

• Random Oracle Hash H1(cw): If there is an entry
(cw,H1(cw)) in T1, return H1(cw). Otherwise, it chooses

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

12

a random number r1,cw 2 {0,1}l and sets H1(cw) = r1,cw .
Then, it checks whether r1,cw equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (cw,H1(cw) = r1,cw) in T1
and return H1(cw).

• Random Oracle Hash H2(cw): If there is an entry
(cw,H2(cw)) in T2, return H2(cw). Otherwise, it chooses
a random number r2,cw 2 {0,1}⇤ and sets H2(cw) = r2,cw .
Then, it checks whether r2,cw equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (cw,H2(cw) = r2,cw) in T2
and return H2(cw).

• Random Oracle Hash H3(k,m): If there is an entry (k,m,
H3(k,m)) in T3, return H3(k,m). Otherwise, it chooses a
random number r3,k,m 2 Z⇤p and sets H3(k,m) = r3,k,m.
Then, it checks whether r3,k,m equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (k,m,H3(k,m) = r3,k,m) in
T3 and return H3(k,m).

• Random Oracle Hash H4(k): If there is an entry (k,H4(k))
in T4, return H4(k). Otherwise, it chooses a random
number r4,k 2 {0,1}l and sets H4(k) = r4,k. Then, it
checks whether r4,k equals to any existing values, if so,
it re-chooses another random number and checks again.
Then, it records (k,H4(k) = r4,k) in T4 and return H4(k).

• TKQuery(S j): Basically, A is able to query any trans-
formed key by giving a set of attributes S j. B sets
j := j+1. Considering that the adversary is not allowed to
query the secret key that can satisfy the challenge access
policy (M⇤,r⇤) in the security model of the CP-ABE
scheme in [4], but the adversary in our security model is
able to query the transformed secret key for any set of
attributes. Thus, the simulator B generates two different
types of transformed secret keys:

– If S j satisfies (M⇤,r⇤), the simulator B is not able
to receive the correct secret key corresponding to
S j from the challenger Cabe. Thus, the simulator
B generates a “special” transformed secret key as
follows: it chooses a random g 2 Z⇤p as the “master
key”, and generates a secret key sk0. Then, it sets the
transformed secret key as

tk j = (K = gg gbu j ,K0 = gu j ,8x 2 S j : Kx = H(x)u j).

and sets the decryption key ŝk j = g .
– If S j does not satisfy (M⇤,r⇤), the simulator B

obtains the secret key skabe, j from the challenger
Cabe,

skabe, j =(K = ga gbu j ,K0= gu j ,8x2 S j : Kx =H(x)u j),

and generates the transformed secret key as

tk j =(K̂ = gaz j gbu jz j , K̂0= gu jz j ,8x2 S j : K̂x =H(x)u jz j)

by choosing a random number z j 2 Z⇤p as the de-
cryption key ŝk j.

Finally, B stores the entry (j,S j, ŝk j, tk j) in Table T and
returns tk j to A.

• DKQuery(i): A cannot corrupt any key responding to the
challenge access policy A⇤. If there exists an ith entry in
table T and Si does not satisfy (M⇤,r⇤), it sets D := D[i
and obtains the entry (i,Si, ŝki, tki). Then, it returns the
decryption key ŝki to A. If no such entry exists or Si can
satisfy A⇤, it then returns ?.

• Decrypt(i,CT,A): Considering that the adversary A can
obtain all the transformed secret keys for any sets of
attributes, and it can also query the trapdoor TDw⇤

corresponding to the challenge keyword w⇤, the adversary
is able to obtain any pre-decrypted data. Thus, without
loss of generality, we assume that all the ciphertexts input
to this Decrypt oracle are already pre-decrypted to the
ElGamal form of

ĈT=(C0 =m�H4(k), C = k ·e(g,g)asa , Ĉ = e(g,g)azsa),

which is associated with an access policy (M,r). It then
obtains the ith entry (i,Si, ŝki, tki) in table T , where Si
can satisfy (M,r). If there is no such entry in table T1,
it returns ?. Then, it checks whether Si can satisfy the
challenge access policy (M⇤,r⇤) and proceeds as follows:

– If Si 2 (M⇤,r⇤), then the pre-decrypted data should
be in the form as

ĈT=(C0 =m�H4(k),C = k ·e(g,g)as,Ĉ = e(g,g)gs)

Then, it computes f = Ĉ1/g = e(g,g)s. For each entry
(R0,i, mi, si = H3(R0,i,mi)) in T3, the simulator B

checks if e(g,g)si ?
= f . If no entry matches, it outputs

? to A. If more than one matches are found, it aborts
the simulation. Suppose (k, m, s = H3(k,m)) is the
only match, it gets H4(k) and tests if C0 =m�H4(k),
C = k · e(g,g)as, and Ĉ = e(g,g)gs. If all tests are
passed, it sends m to the adversary A. Otherwise, it
returns ? to the adversary.

– If Si /2 (M⇤,r⇤), then the pre-decrypted data should
be in the normal form as

ĈT=(C0 =m�H4(k),C = k ·e(g,g)as,Ĉ = e(g,g)asz).

Then, it computes k = C
Ĉ1/z and obtains the record

(k, m, s=H3(k,m)) from table T3. If there is no such
record existing in T3, it aborts with ?. It then gets
H4(k) and tests if C0 = m�H4(k), C = k · e(g,g)as,
and Ĉ = e(g,g)asz. If all tests are passed, it sends m
to the adversary A. Otherwise, it returns ? to the
adversary.

Challenge: A submits two equal-length messages m0 and
m1, neither of which equals to the challenge keyword w⇤. C
then chooses a random string r2 {0,1}l and sets R0,0 =m0�r
and R0,1 = m1� r. It passes R0,0 and R0,1 to the challenger
Cabe. Cabe then flips a random coin t and outputs a ciphertext
CTabe,t associated with (M⇤,r⇤) as

CTabe,t = (Ct , C0abe, {Ci,Di}i2[1,n]).

B then choose two random strings C0,R 2 {0,1}l and a
random number st 2Z⇤p, and obtains the challenge ciphertext

CTt = (C0, Ct , C0 =C0abe ·gst ·H0(R), {Ci,Di}i2[1,n])

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

13

To simulate the index, the simulator B first computes the
ciphertext of the challenge keyword w⇤ as

cw⇤ = e
⇣

H0(w⇤),gabc
⌘st

.

It then randomly chooses s1 2Z⇤p and sets s2 = st� s1. Then,
it outputs the index as

Iw⇤ =
⇣

I1 = R�H1(cw⇤), I2 = H2(cw⇤),

L1 = (gb)s1 , L2 = (ga)s2 , L3 = gst ·H0(cw⇤)
st
⌘

The simulator sends both (CTt , Iw⇤) to the adversary A.
Phase 2: Phase 1 is repeated with the restriction that A

cannot make a trivial decryption query, which means that
Decrypt queries will be answered as in Phase 1, except that if
the outputs would be either m0 or m1, then B responds with
a special message test instead.

Guess: A outputs a guess t 0 of t or abort. Now, the
simulator B searches through the table T3 to see if the values
R0,0, R0,1, m0 or m1 appears in any entry. If neither or both
values appear, B outputs the same t 0 as its guess. If only value
R0,t 00 appears, B just ignores the A’s guess and outputs t 00 as
its guess.

The advantage of the simulator in the CP-ABE game can
be computed as

A
Selective-IND-CPA
B =

1
2
· e + 1

2
· e0,

where e is the advantage of the adversary A in our secu-
rity game and e0 is the probability that there is an entry
(Rb,mb,sa = H3(Rb,mb)) in the table T3 and passes all the
following test: C0 = gsa and Cb = Rb ·e(g,g)asa . However, this
probability is negligible.

Therefore, we can say that if e is non-negligible,
A

Selective-IND-CPA
B is also non-negligible, which breaks the CP-

ABE scheme in [4].

APPENDIX B
PROOF OF THEOREM 2

Theorem 2. The DSA scheme is Selective-IND-CKA se-
cure in random oracle model, if the decisional linear (DLIN)
assumption holds.

Proof: We reduce the Selective-IND-CKA security of
the DSA to the decisional linear (DLIN) assumption. That
is, if there is a polynomial time adversary A can win the
Selective-IND-CKA-Game with non-negligible advantage
e =AdvSelective-IND-RCCA-Game

DSA,A , we show how to build another
polynomial time simulator B that plays the DLIN problem
with non-negligible advantage.

Init: A selects a challenge data m⇤ from the data space and
sends it to B.

Setup: B runs the Setup(1l) algorithm to generate

msk= (a, b , a, b, c).

The public key is set as

pk=
⇣

p,g,G,GT ,e,ga,gb,gabc,gb ,e(g,g)a
⌘
.

It gives pk to A.
Phase 1: A queries trapdoors for any keyword w j and

transformed secret keys for any set of attributes S j. To sim-
ulate the trapdoor generation algorithm, the simulator B first
simulates the random oracle of H0(w) by maintaining a table
T0. For a new keyword w not appeared in the table, it chooses
a random number r0,w 2 Z⇤p and sets H0(w) = gr0,w , where
H0(w) should not equal to any existing values. Otherwise, it
re-chooses another random number and checks again. Then,
it stores this entry (w,H0(w)) into the table T0. If there is
already an entry corresponding to the queried keyword w, it
just returns the existing value H0(w). Similarly, it use another
table T to simulate the random oracle of H(x) for any attribute
x by setting H(x) = grx , where rx 2 Z⇤p is randomly selected.
Moreover, it also simulates the random oracles of H1 and H2
as

• Random Oracle Hash H1(cw): If there is an entry
(cw,H1(cw)) in T1, return H1(cw). Otherwise, it chooses
a random number r1,cw 2 {0,1}l and sets H1(cw) = r1,cw .
Then, it checks whether r1,cw equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (cw,H1(cw) = r1,cw) in T1
and return H1(cw).

• Random Oracle Hash H2(cw): If there is an entry
(cw,H2(cw)) in T2, return H2(cw). Otherwise, it chooses
a random number r2,cw 2 {0,1}⇤ and sets H2(cw) = r2,cw .
Then, it checks whether r2,cw equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (cw,H2(cw) = r2,cw) in T2
and return H2(cw).

It first gets a secret key by querying the secret key genera-
tion algorithm SKGen for the attribute set S j as

sku =
⇣
(ac,bc), K = ga gbu, Ka = g

a
a g

bu
a , Kb = g

a
b g

bu
b ,

K0 = gu, 8x 2 Su : Kx = H(x)u
⌘
.

Note that, the secret key can be first queried from the secret
key generation oracle in the underlying CP-ABE scheme [4]
and then generates Ka and Kb from K, which means that the
CP-ABE can be used as a blackbox.

Then, it transforms the secret key to compute a transformed
secret key tku as

tku =
⇣

K̂ = (K)z = gazgbuz, K̂0 = (K0)z = guz,

8x 2 Su : K̂x = (Kx)
z = H(x)uz

⌘

and sends tku to the adversary A, but keeps the decryption
key as ŝku = z.

Note that, the adversary A can query any transformed secret
key corresponding to any sets of attributes in this game.
Actually, the challenge data is selected by the adversary, and
the ciphertext of the challenge data is independent with the
keyword. Therefore, we can say that the data ciphertext and
the transformed secret keys do not increase the advantage of
distinguishing the index.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

14

The simulator takes the decryption key and the secret key
as input, and runs TDGen to generate the trapdoor of w j as

TD j =
⇣

T1, j = gact1, j H0(w j)
ac+act1, j , T̂1, j = (Kb)

z(gH0(w j))
act2, j ,

T2, j = gbct1H0(w j)
bc+bct1 , T̂2, j = (Ka)

z(gH0(w j))
bct2, j ,

T3, j = (gabc)t1, j , T̂3, j = (gabc)t2, j
⌘

Challenge: A submits two equal-size keywords w0,w1. The
only restriction is that neither w0 nor w1 has been queried in
Phase 1. C first flips a random coin t , and runs the Encrypt
algorithm by taking (m⇤,wt) as inputs. Because the ciphertext
will not increase the advantage of distinguishing the index,
so we omit the ciphertext here. Suppose the random element
associated with the ciphertext is R. The simulator takes this
random element R as one of inputs and computes the ciphertext
of the keyword wb as

cwt = e
⇣

H0(wt),gabc
⌘st

.

It then randomly chooses s1 2 Z⇤p and set s2 = st � s1. Then,
it outputs the index as

Iwt =
⇣

I1 = R�H1(cwt), I2 = H2(cwt),

L1 = (gb)s1 , L2 = (ga)s2 , L3 = gst ·H0(wt)
st
⌘

Phase 2: Same as Phase 1 as long as the challenged
keywords are not queried.

Guess: A outputs a guess t 0 of t .
Because the random element R is uniformly distributed, I1 =

R�H1(cwt) is also uniformly distributed. Moreover, L1,L2 is
also uniformly distributed. If there is an adversary A wins
the above Selective-IND-CKA-Game with non-negligible
advantage, we can say that when given (ga,gb,gbs1 ,gas2), the
adversary can distinguish the tuple (h = g ·H0(wt),hs1+s2 =
(g ·H0(wt))st) from a (h,R) (where R is a random element in
G) with non-negligible advantage, which contradicts the DLIN
assumption.

Kan Yang received the B.Eng. degree in information
security from University of Science and Technology
of China in 2008, and the Ph.D. degree in computer
science with from City University of Hong Kong in
2013. He is currently an assistant professor with the
Department of Computer Science at the University
of Memphis, USA. His research interests include
data security, blockchain, AI security, network se-
curity, and applied cryptography. He is a senior
member of IEEE.

Jiangang Shu received the Ph.D degree in computer
science from City University of Hong Kong (CityU),
Hong Kong, in 2019. He is currently a Research
Scientist in Department of New Networks, Peng
Cheng National Laboratory, Shenzhen, China. He
was a postgraduate visiting student in Secure Mobile
Centre, Singapore Management School, Singapore,
and a Postdoctoral Fellow in CityU. His research
interests include AI privacy, crowdsourcing & cloud
security, IOT security, applied cryptography, data
security and privacy, searchable encryption.

Ruitao Xie received her PhD degree in Computer
Science from City University of Hong Kong in 2014,
and BEng degree from Beijing University of Posts
and Telecommunications in 2008. She is currently an
assistant professor in College of Computer Science
and Software Engineering, Shenzhen University. Her
research interests include AI networking and mobile
computing, distributed systems and cloud comput-
ing.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3216956

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Memphis Libraries. Downloaded on November 22,2022 at 17:38:32 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	System Model and Design Goals
	System Model and Threat Model
	Design Goals

	Preliminaries
	Linear Secret-Sharing Scheme (LSSS) Structure
	Bilinear Pairing
	Decisional q-parallel Bilinear Diffie-Hellman Exponent Assumption
	Decisional Linear (DLIN) Assumption

	Definitions
	Definition of DSA
	Definition of Correctness
	Definition of Soundness
	Definitions of Security
	Data Security
	Index Security
	Trapdoor Security

	Construction of DSA
	System Initialization by Authority
	Data Encryption by Owners
	Query Generation by Users
	Query Test by Cloud Server
	Data Decryption by Users

	Correctness and Soundness Proofs
	Correctness Proof
	Soundness Proof

	Security Proof and Performance Evaluation
	Security Proof
	Performance Analysis

	Conclusion
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Biographies
	Kan Yang
	Jiangang Shu
	Ruitao Xie

