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Abstract

We consider the discrete shrinking target problem for Teichmiiller geodesic flow
on the moduli space of abelian or quadratic differentials and prove that the discrete
geodesic trajectory of almost every differential will hit a shrinking family of targets
infinitely often provided the measures of the targets are not summable. This result
applies to any ergodic SL(2, R)-invariant measure and any nested family of spherical
targets. Under stronger conditions on the targets, we moreover prove that almost
every differential will eventually always hit the targets. As an application, we obtain
a logarithm law describing the rate at which generic discrete trajectories accumulate
on a given point in moduli space. These results build on work of Kelmer [Kel] and
generalize theorems of Aimino, Nicol, and Todd [ANT].

1 Introduction

In a finite measure space (X, u) with a measure preserving transformation 7': X — X, the
discrete shrinking target problem considers the question of which trajectories {T"(x)}nen
will hit a shrinking family of nested measurable subsets By D By D --- infinitely often.
More precisely, defining the hitting set for the family B = {B,, }nen to be

Er(B) = {x € X | T"(z) € B, for infinitely many n € N},

the goal of the shrinking target problem is to study Er(B) and characterize, for example,
when it has full or null measure. In the case of an ergodic transformation, it is easy to see
that E7(B) will have full measure whenever u(B,) does not converge to 0. On the other
hand, the Borel-Cantelli Lemma implies that p(E7(B)) = 0 whenever _ u(B;,) < co. In
the opposite case ), u(B,) = oo, the converse to the Borel-Cantelli Lemma implies that
&7 (B) has full measure provided the events {x | T"(z) € B, } are independent. There are
nevertheless many naturally occurring settings in which this independence condition fails
but the the hitting set Er(B) does has full measure.

Moduli space of differentials. This paper considers the discrete shrinking target prob-
lem for the Teichmiiller geodesic flow on the moduli spaces of unit area abelian or quadratic
differentials. Fix a finite type surface ¥ (not the thrice-punctured sphere) with x(X) < 0
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and let M = M(X) denote the moduli space of Riemann surface structures on ¥ up to biholo-
morphism. An abelian differential on a Riemann surface X € M is a holomorphic section w
of the holomorphic cotangent bundle, and a quadratic differential is a holomorphic section
q of its symmetric square. We write D(X) for the disjoint union of the vector spaces A(X)
and Q(X) of abelian and quadratic differentials on X, and write D1(X) = AY(X) U Q}(X)
for those differentials that have unit area with respect to the piecewise Euclidean structure
they induce on X; see §2.4 for details. The space D = D(X) of all abelian or quadratic
differentials forms a bundle D — M over moduli space. The subbundle Q — M of quadratic
differentials is canonically identified with the cotangent bundle T*(M), and the restriction
Q! — M to unit area quadratic differentials is the unit cotangent bundle for the Finsler
Teichmiiller metric on M. The group G = SL(2,R) acts on D and D! via affine adjust-

ment of the piecewise Euclidean structure; see §2.4. The action of the diagonal subgroup
gt = (eot 69,:) then gives the Teichmiiller geodesic flow on Q' = T*(M): unit-speed Te-
ichmiiller geodesics in M are precisely given by projections of the paths t — g,q for ¢ € Q'.

Shrinking targets. Our main result characterizes which shrinking targets in moduli
space, or more generally abelian or quadratic differential space, are hit by almost every
discrete geodesic trajectory. For the statement, a spherical subset of D is one that is invari-
ant under the action of the orthogonal subgroup K = SO(2) < G. Since K preserves each
fiber of w: Dt — M, preimage sets 7~ (B) C D! are automatically spherical.

Theorem 1.1. Let u be any ergodic, G = SL(2, R)—invariant, probability measure on D!.
Let By D By D --- be a nested family B of p-measurable spherical subsets B,, C D!, and

consider the hitting set €4(B) = {f €D | {neN|g,£€B,}is inﬁnite}.
1If S0 pw(By) < oo, then p(€4(B)) = 0.
2. If 307 (By) = 00, then €4(B) has full p—measure.

3. If, moreover, {nu(By)}nen is unbounded, then there is a subsequence n; such that

. #{1§Z§n1|glfean}
lim =
Pt n;1(Br,)

1 for p—almost every € € D

Remark 1.2. There are numerous measures—such as the extensively studied Masur—Veech
measures (see §2.5) or measures coming from arbitrary orbit closures—to which Theorem 1.1
applies. Any ergodic measure p is in fact supported on one of the subsets A' or Q', which
are both preserved by G. We have opted to work with their disjoint union D' simply to
economize on notation.

Remark 1.3. A random sequence £1,...,&, would land in a measurable subset B approx-
imately nu(B) times; thus the conclusion of Theorem 1.1.3 says there is a subsequence of
targets that are hit asymptotically the correct number of times.

In [ANT, Theorem 6.7], Aimino, Nicol, and Todd consider the continuous shrinking
target problem for the Teichmiiller geodesic and prove the continuous-time analog of The-
orem 1.1.1-2 for the Masur—Veech measure on the principle stratum (see §2.4) in the case
of targets that are preimages 7~ !(B;) of shrinking metric balls By C M. As requiring a
trajectory {g:{}tcr. to hit the targets at infinitely many integer times is more subtle and
restrictive than requiring {t € Ry | m(g:§) € B:} to be unbounded, Theorem 1.1 thus



strengthens the results in [ANT] while also extending them to arbitrary measures and more
general families of targets.

We also consider the finer question of which differentials eventually always hit the targets.
Given a shrinking family B = {B,, }nen in D!, say that £ € D! hits the target B, if g;£ € B,
for some 1 < ¢ < n. We then let 83(8) denote the set of differentials that hit B,, for all
sufficiently large n. If £ € £5(B), then for all large n we may choose 1 < j, < n so that
9;.& € B, C Bj,. Clearly this sequence {j,} is unbounded unless ¢ lies in g_(N,B,,) for
some k € N. As Uggi (N, By,) has measure zero when u(B,,) — 0 and otherwise €,(5) has
full measure (Theorem 1.1.2), we conclude that £3(B) C €,(B) up to a set of measure zero.
The next theorem gives conditions ensuring this smaller set has full measure and, moreover,
that generic differentials hit all small targets approximately the expected number of times.

Theorem 1.4. Let p and B = {Bp}nen be as in Theorem 1.1, and set
&5(B) = {f €D [ {gi&, ..., 9u€} N B, # 0 for all sufficiently large n}

1. If there is an increasing sequence ni,na, ... in N with 3 (njp(Bn,,,))"" finite, then
€5(B) has full p-measure.

2. If there exists X > 1 and an increasing sequence nq,ng, ... in N with Zj(nj,u(anH))’l
finite and nj1p(Bp,) < Anju(Bn,,,) for all j, then p-almost every & € DI satisfies

J

1 1<i< i§ € By .
— < #{lsisn|gd € Bu} < 2A for all sufficiently large n.
2\ ny(By)

Remark 1.5. While the hypotheses of Theorem 1.4.1-2 may seem restrictive, they in fact
hold in many natural situations. For example, they are automatically satisfied (with n; = 27)
provided the the targets B,, decay at the rate u(B,) < n~" for some 0 < k < 1. We will
use these always-hitting results to obtain the strong logarithm laws in Theorem 1.6 below.

Theorems 1.1 and 1.4 extend Kelmer’s work on shrinking targets for discrete time flows
on hyperbolic manifolds to the context of Teichmiiller geodesic flow and may be viewed as
analogues of Theorems 1 and 2, respectively, in [Kel].

Logarithm laws. Since the geodesic flow is ergodic, the orbit closure {g,& | n € N} of
almost every differential ¢ € D! will equal the support of the measure. That is, the se-
quence {g,&} ultimately accumulates on almost every point &. It is natural to quantify
this phenomenon by asking how long it takes for g,£ to land within some fixed distance of
&o or how close the orbit gets to & in its first n steps. Our shrinking target results imply
logarithm laws describing these quantities.

More precisely, consider the path metric dy¢ that Moduli space inherits from the Te-
ichmiiller metric on T; see §2.2. For any Riemann surface X € M and differential ¢ € D!,

we then let
dn(§7 X) = OSjlgn dM (W(gjf), X)

denote the closest that the projected orbit comes to X in its first n > 0 steps and dually let
(&, X) = inf{n € N [ dx(7(gn&), X) <7}

denote the first time the orbit is within » > 0 of X. Calculating the decay/growth rate of
d, and 7, requires fine estimates for the measure of small metric balls in M. Such estimates



are most readily obtained (Lemma 2.5) in the case of the Masur—Veech measure /\}3 on the
principle stratum Q!(a) where a = (—1,...,—1,1,...,1;—1); see §2.4 and §2.6 for details.

Theorem 1.6. Fiz a Riemann surface X € M and let A}, denote the Masur—Veech measure
on the principle stratum Q'(c) of unit-area quadratic differentials. Then for AL -almost
every ¢ € Q' one has

log(d, (g, X)) B 1 . log(7-(¢, X))

I - d
nooe log(l/m)  dimg) ¢ 0T log(1/)

We emphasize that Theorem 1.6 provides actual limits describing the decay and growth
of d,, and 7., rather than merely limits superior as is typically the strongest consequence of
shrinking target results as in Theorem 1.1. Here we obtain precise limits by employing the
stronger results from Theorem 1.4.

Remark 1.7. Applying dynamical shrinking target results to geometric questions about
logarithm laws requires using measures that are related to the geometry of moduli space,
since to quantitatively use Theorem 1.1 one must know how the measure of a metric ball
decays with its radius. This is the reason we obtain Theorem 1.6 only for the Masur—Veech
measure A} and not for general ergodic SL(2, R)-invariant measures; see §2.6.

Historical Context. This work builds on a long history of shrinking target problems and
dynamical Borel-Cantelli lemmas in various settings. Sullivan’s 1982 paper [Sul] established
a logarithm law for cusp excursions of the geodesic flow on finite-volume hyperbolic mani-
folds; this was later extended to the general setting of diagonal flows on homogeneous spaces
by Kleinbock and Margulis [KM]. These results take horospherical cusp neighborhoods as
the shrinking targets; turning instead to precompact targets, Maucourant [Mau] solved the
continuous shrinking target problem for metric balls in hyperbolic manifolds and obtained a
logarithm law describing the rate that typical geodesic trajectories approach a given point.
These results were later refined and extended to discrete geodesic flows by Kleinbock and
Zhao [KZ]. In the setting of the Teichmiiller geodesic flow, Masur [Mas2] proved a loga-
rithm law for cusp excursions of typical geodesics in a Teichmiiller disk, and as mentioned
above, Aimino, Nicol, and Todd [ANT] recently solved a continuous-time shrinking target
problem for the case of nested metric balls. Their approach is combinatorial in nature and
is based on Rauzy-Veech-Zorich renormalization on the space of interval exchange maps and
the application of this framework to Teichmiiller geodesic flow on the space of translation
surfaces. For more related result, see also [Dol] [Gad] [Gal] [GS] [GNO] [HNPV] [Phi] and
[Ath] for a nice survey of this area.

Many of these results utilize exponential decay of correlations and require some sort
of regularity on the targets considered. In our case of the Teichmiiller geodesic flow on
the moduli space of quadratic differentials, the shrinking target results in [ANT] rely on the
exponential mixing for Holder observables proven by Avila-Gouézel-Yoccoz [AGY]. Indeed,
the restriction to metric balls here is due in part to the necessity of using Hélder observables.

Kelmer [Kel] recently introduced a new spectral theory approach that utilizes effective
mean ergodic theorems (see also [GK]) to conclude strong shrinking target results—which
apply to very general targets—for both the discrete geodesic and discrete horocyclic flows
on hyperbolic manifolds. These ideas were subsequently extended to homogeneous spaces
by Kelmer and Yu [KY]. We follow Kelmer’s approach and adapt it to the Teichmiiller flow
setting by using Eskin and Mirzakhani’s result [EM] that every ergodic SL(2, R)—invariant



probability measure pu on D! is algebraic and Avila and Gouézel’s result [AG] that the
Laplacian operator on L?(D?!, ;1) has a spectral gap for any such measure p.

Outline. In §2 we establish notation and review the necessary background material, in-
cluding the unitary representation theory of SL(2,R) (§2.1), and the moduli space of differ-
entials (§2.4) along with its period coordinates and invariant measures (§2.5). Additionally,
in §2.6 we derive estimates for the measures of balls in M. Our main results are proven in
83, with §3.3 and §3.4 respectively devoted to Theorem 1.1 and Theorem 1.4. The key in-
gredients for these proofs are established in §3.1, where we follow Kelmer’s [Kel] approach in
deriving an effective mean ergodic theorem for spherical functions in L?(D*', 1), and in §3.2,
where we formulate the quasi-independence needed for the converse to the Borel-Cantelli
lemma. Finally, the logarithm laws of Theorem 1.6 are proven in §4.
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2 Preliminaries

Throughout, G will denote the Lie group G = SL(2,R) of real 2 x 2 matrices with determi-
nant one. For ¢t € R and 6 € R consider the elements

(et 0 and g — [ CosO  sin®
9=\0 et = \—sinf cosh)"
Varying t, 6, these respectively comprise the diagonal A = {g; | t € R} and rotation sub-

groups K = {rp | 0 € R} = SO(2). The Lie algebra of G is the vector space g of 2 x 2 real
matrices with trace 0; it has a basis given by

W:(_Ol é) Q:(é _01> and V:((l) (1)) (2.1)

2.1 Unitary representation theory of SL(2,R)

We briefly review the necessary representation theory of the Lie group G = SL(2,R). For
details, we direct the reader to [Kna]. A wnitary representation of G is a homomorphism
m: G — U(H) of G into the unitary group U(H) of a complex Hilbert space H such that the
induced action map G x H — H is continuous. Two such representations m;: G — U(H;) are
unitarily equivalent if there is a unitary isomorphism ¢: H; — Hs so that ¢m(g) = m2(9)p
for all g € G. We refer to a representation simply by the name of its Hilbert space H and
use the notation ¢ - v, where g € G and v € H, as shorthand for 7(g)(v). A subspace V
of a unitary representation H is invariant if g -V C V for all g € G; the representation is
irreducible if the only closed invariant subspaces are {0} and K.

A vector v in a unitary representation 3 is a C*¥-vector, where k € N U {co}, if the
assignment ¢ — ¢ - v defines a C* map G — H. The set of C™vectors is dense in H. A
vector v € H is spherical if k-v = for all k € K and is K —finite if K - v is contained in a
finite-dimensional closed subspace of .



Each Lie vector X € g determines an unbounded operator Lx on any unitary represen-
tation H defined on the subspace of C'-vectors by the rule

Coexp(tX)-v—vw

The Casimir operator of H is then defined on the space of C?-vectors as
Q= (Liy — L — LY,) /4,

where {W,Q,V} is the basis of g specified in (2.1). From the elementary calculation
(Lx(v),w) = —(v, Lx(w)) we see that Q is symmetric: (Q(v),w) = (v, Q(w)) for all C*-
vectors v, w € H. It is known that closure of 2 is self-adjoint and that 2 commutes with Lx
for every X € g and with 7(g) for each g € G: Q(g-v) = g- Q(v). When K is irreducible,
Schur’s Lemma therefore provides a scalar A = A(H) such that Q(v) = v for all C?—vectors
v € H; the fact that 2 is symmetric assures that A(H) € R. The spectrum of the unitary
representation H is

A(H) = {x € C| Q@ — AI does not have a bounded inverse} C R.

A function G — C of the form g — (g-v, w), where v,w € H, is called a matriz coefficient
of the unitary representation H. Much is known about the asymptotic behavior of matrix
coefficients along the diagonal subgroup A = {g; | t € R}, especially when v and w are
K-finite; see for example [Kna, VIII.§13]. We shall only require the following basic lemma
which is derived from Ratner’s work [Rat].

Lemma 2.2. There exists a universal constant Cy such that the following holds. Fix 0 <

0 < 1 and let H be a unitary representation of G without nonzero invariant vectors and such
2

that A(30) N (0,25) = 0. Then for any spherical vectors v,w € H and t > 1 we have

(g - v, w)| < Co [l [|w]] te™* =),

Proof. The lemma follows immediately from the quantitative version of [Rat, Theorem 3]
that Matheus gives in [Mat]. For this, set A = B(3) = inf (A(H) N (0, 1)) (note that our
Casimir operator  is the negative of that used in [Mat]). The relevant terms from [Mat)
are then the function

te™t, A> i
bac(t) = ba(t) = te—(1=v 174/\)2 0<A< i
te 2, A<0

and the constant
Ky = Ky < max {(1+2v2)e + 582520 3e + ¢ + gy, ¢} = Co.

Our hypothesis on A(H) implies A > =% and accordingly —(1 — vT—4X) < —(1 — 4).
Since —2 < —1 < —(1 — §) as well, in any case we have bg(t) < te=*179),

We may now apply [Mat, Theorem 2] to estimate |(g; - v, w)|. Since our vectors v, w are
spherical, they satisfy Ly (v) = Ly (w) = 0 and therefore the bound reduces to

(g - v, w)| < Ko [[o] wll bac(t) < Colfoll [|w] te™* =), H

Remark 2.3. Related estimates on [{g; - v, w)| hold more generally but are more involved
when v, w are not spherical. It is likely that our arguments could be carried out, albeit with
more technical considerations, in the case of shrinking targets that are merely K-finite.



2.2 Teichmiiller space and its metric

Throughout we let ¥ denote a fixed orientable closed surface ¥ of genus g > 0 equipped
with a (potentially empty) finite set P C X of distinguished points that we term punctures.
Writing p = |P| > 0, we assume that x(2\P) < 0 and that (g, p) # (0, 3), which is equivalent
to 3g—3+p > 0. We write T = T(X) for the Teichmiiller space of Riemann surface structures
on ¥ up to isotopy fixing P. The mapping class group Mod(X) is the quotient of the group
Homeo™ (X, P) of orientation-preserving homeomorphisms of ¥ that setwise preserve P by
the path component Homeog (X, P) of the identity. The group of homeomorphisms naturally
acts on the set of Riemann surface structures—a homeomorphism ¢ sends a Riemann surface
structure with atlas {z,: ¥ D U, — C} to the structure defined by the atlas {2, 0 ¢~ }—
and this descends to an action of Mod(X) on T. The quotient is the moduli space M = M(X)
of Riemann surfaces of genus g with p distinguished points.

The Teichmiiller distance dg between two Riemann surface structures X and Y on X is
the infimum of 1 log(Ky(X,Y)) over all maps ¢ € Homeoy (X, P) that are quasiconformal
with respect to these structures, where Ky(X,Y) denotes the quasiconformal constant of
¢. Topologically, T is a smooth manifold homeomorphic to R69=6+2P and there is a Finsler
metric on T such that the Teichmiiller distance dy(X,Y") is realized as the shortest Finsler
length of a path from X to Y. This metric is invariant under the Mod(X) action and thus
descends to a Finsler metric on M with associated path metric dy

2.3 Notation

Given some parameter ¢ (such as a point in space or a measure on that space) we use the
notation A <5 B or B >s A to mean that there is a constant ¢ > 0, depending only on our
fixed surface X and the parameter §, such that A < ¢B. We write A <5 B to mean A <5 B
and B <5 A. We similarly use < and < when the constant ¢ depends only on X.

2.4 Moduli space of differentials

An abelian differential on a Riemann surface structure X € J(X) is a holomorphic 1-form,
that is, a section of the holomorphic cotangent bundle of X. A quadratic differential is
a section of the symmetric square of the meromorphic cotangent bundle whose poles are
all simple and occur in the distinguished set P. Abelian and quadratic differentials may,
respectively, be concretely represented in local coordinates {z,: U, — C} by families of
functions hq, ¢a: 24(Us) — C such that on any two overlapping charts z, and zg one has

2
hs(zg) (dza) = ho(2a) or, respectively, 0s(2p) (dZB) = ¢0(2a)

dzg

and, furthermore, the functions h, are holomorphic while the functions ¢, have only simple
poles and are holomorphic on ¥ \ P. In particular, the location and multiplicities of the
zeros and poles of an abelian/quadratic differential on X are well-defined. From this it
is clear that each abelian differential w or quadratic differential ¢ gives rise to a natural
coordinate atlas {z4: U, — C} for X such that each U, contains at most one zero and the
above functions take the form hy(z4) = 2F or ¢4 (24) = 2z when U, contains a zero of order
k > —1 and otherwise have the form h, = 1 or ¢, = 1. We call these the translation charts
of w or ¢ since they define a translation surface structure on X \ {zeros of w} in the abelian
case, or a half-translation surface structure on X \ {zeros of ¢} in the quadratic case. In



this translation structure, an order—k zero of w acquires a cone angle of 2w (k + 1) whereas
an order—k zero of ¢ acquires a cone angle of 7(k + 2).

We write A(X) and Q(X) for the C—vector spaces of abelian and quadratic differentials,
respectively, on a Riemann surface X € J. For a tuple 8 = (81,...,8,;0) where n > p
and B; > 0 are integers such that . 3; = 29 — 2 and f; > 1 for i > p, we let A(X,f)
denote the subset of abelian differentials on X that have zeros of orders {31, ..., 0,} at the

punctures and n — p other zeros of orders {Bp+1, ..., B, }. Similarly for kK = (K1, ..., kn;€),
where n > p, e € {£1}, and k; > —1 are integers with )", x; =49 — 4 and k; > 1 for i > p,
we write Q(X, k) for the subset of quadratic differentials with zeros of orders {x1,...,%p}
at the punctures and n — p other zeros or orders {k,11,...,kn} that are, if e = 1, or are
not, if e = —1, the square of an abelian differential.

To economize on notation, we let D(X) be the disjoint A(X) U Q(X). Further, for
any integer vector o = (aq, ..., an;€) we respectively define D(X, a) to mean A(X,a) or

Q(X, ) in the cases that « satisfies the conditions on g or k above. For any such space, the
notation A!, Q!, or D! will indicate the corresponding subset of differentials that induce
(half) translation structures with total area 1. As X varies in 7 we obtain vector bundles
AT and QT over Teichmiiller space which, under the quotient by the action of the mapping
class group, descend to bundles A, Q — M whose disjoint union D = D(X) is stratified by
the associated subsets D(«).

The bundles AT and QT are endowed with an action of the group G = SL(2,R) of real
2 x 2 matrices as follows: Given a differential £ with translation charts {z,: U, — C},
postcomposing by A € G defines translations charts {A o z,} for a new differential A with
the same total area and orders of zeros, but over a potentially different Riemann surface.
This commutes with the action of Mod(X) by precomposition and so descends to an action
G ~ D that preserves all the strata D'(«a) introduced above.

2.5 Invariant measures

A (quadratic or abelian) differential £ allows one to develop any path v in ¥ in the translation
charts and measure its “total displacement” in C. In this way the differential £ defines a
relative cohomology class ®(&) € HY(X, Z(€); C), where Z(£) C X denotes the union of P
with the zeros of §&. Choosing a symplectic basis {71, ...,vVm} allows us to view this class in
coordinates as

d(¢) € HY(X, Z(€);C) = Hom(H, (%, Z(£); C),C) = C™.

By consistently choosing symplectic bases of Hy (32, Z(£'); C) for all ¢’ in some neighborhood
of £, in this way we obtain locally defined maps

®,: D(a) —» C™e

on each stratum. These period coordinates are local diffeomorphisms and endow each stra-
tum with a canonical complex affine structure. Pulling back Lebesgue measure from C™«
defines a canonical Masur—Veech measure A, on each stratum D(«a) that is independent
of the choice of basis. Furthermore, )\, induces a measure Al on the subset D!(«) of
unit area differentials by the rule AL (U) = A\, ({tU : t € (0,1]}). Since SL(2,R) acts via
area-preserving transformations of the translation charts, the Masur—Veech measures A, are
invariant under the SL(2,R) action.

It is a fundamental result of Masur [Mas1] and Veech [Vee] that each measure Al has
finite total mass and is ergodic for the SL(2,R) action on D. While there are many other



ergodic measures on D (for example, coming from orbit closures G¢), the celebrated work
of Eskin and Mirzakhani [EM] shows that every such measure is affine in the sense that it
essentially arises from the Lebesgue measure of an immersed submanifold Y & D(«a) that
is a affine in the period coordinates of some stratum.

Given any probability measure p on the space D! of unit-area (abelian or quadratic)
differentials, we may consider the Hilbert space L?(D!,u) of square-integrable functions.
The SL(2,R) action makes this into a unitary representation of G in which A € G sends a
function f € L?(D*, i) to the new function & — (A - f)(&) = f(A7LE). We rely crucially on
the following result of Avila and Gouézel, which, in this formulation, itself depends on the
affine structure provided by Eskin and Mirzakhani [EM]:

Theorem 2.4 (Avila-Gouézel [AG]). Let p be any SL(2,R)—invariant, ergodic probability
measure on DY. Then the Casimir operator for the unitary representation L?(D*Y, 1) has a

spectral gap. More precisely, A(L*(D*, 1)) N (0, #) = for some 0 < § < 1.

2.6 The measures of balls

In order to derive logarithm laws for the geodesic flow, we need to know the measure of
certain geometrically significant subsets of D'. For this, we consider the principle stratum
D(a) = Q) where @ = (—1,...,—1,1,...,1;—1). The associated measure )\, pushes
forward, under the bundle map 7: Q — M, to a measure n = 7,(AL) on M. The Finsler
metric on M induces a Buseman volume form that in turn gives rise to an associated measure
v on M; in fact v is the Hausdorff measure for the Teichmiiller metric [APT, Bus]. Using
Masur’s result that the Teichmiller geodesic flow is Hamiltonian [Mas3], in [DDM, Corollary
4.7] it was shown that the measures v and n are absolutely continuous and in fact related
by inequalities ¢in < v < con for some scalar co > ¢; > 0. This gives rise to the following
estimate:

Lemma 2.5. Fiz X € M. For all sufficiently small v > 0 the n—-measure of the Teichmiller
metric ball Bx(r) C M of radius r satisfies

n(BX (T‘)) =x ,r6g—6+2n

Proof. Choose a coordinate chart ¢: V — R%976+27 on some compact set V' C M whose
interior contains X. Let v¥ and B%(r) denote the Riemannian volume and metric balls
associated to the standard Riemannian metric in ¢-coordinates. Since all norms on R*
are equivalent and V' is compact, there is a constant ¢ > 1 so that the Euclidean norm in
p—coordinates agrees with the Teichmiiller Finsler norm up to a multiple of c¢. It follows
that the measures v¥ and v agree up to a multiple of ¢®9=6+2P and that for all sufficiently
small » > 0 we have Bx(r) < B%(rc¢) and B%(r) C Bx(rc). The lemma now follows by
noting

n(Bx(r)) < v(Bx(r)) <. v?(B%(r)) < rb9-6+2n, O

3 Shrinking targets

For the entirety of this section, we fix an ergodic, G—invariant probability measure p on the
moduli space D' of unit area abelian or quadratic differentials on 3. The Hilbert space £ =
L?(DY, i) of square-integrable complex-valued functions is then a unitary representation of
G on which A € G sends f € £ to the function A - f given by & — (A - f)(&) = f(A7LE).



For f € £ we write | f|l, = (/ ffdu)'/? for the norm of f in £. Let Lo < £ be the closed
subspace of G-invariant vectors, and let L3~ denote its orthogonal complement. For any
f e L, welet fO € Ly denote its orthogonal projection to £y and set f' = f — f0 € L.
Since the action G ~ D! is ergodic, every G-invariant function is p—almost everywhere
constant. Thus {1} is a basis for £y and f° is equal in £ to the constant function (f,1).
Observe that f’ is spherical if and only if f is spherical.

By Theorem 2.4 there exists 0 < § < 1 so that the A(£) and hence also A(Lg) is disjoint

2 . . . .
from (0, %). Since £3 does not have nonzero invariant vectors, if follows from Lemma 2.2

that there exists a constant ¢ > 0 depending only on g such that
(ge - fLR) <|1F |lo |10 |5 te™ for all > 1 and all spherical f,h € L. (3.1)

3.1 Effective mean ergodic theorem

Consider the average of a function f € £ over the first n > 1 iterates of the geodesic flow:

@18 + -+ flgn€)

n

%Z o so (BalME) = (3.2)

The Birkhoff ergodic theorem implies that the images 5, (f) of f under the operators
Bn: £ — £ pointwise almost everywhere converge to the constant function [ fdu = (f,1) as
n — oo. When f is spherical, {3,(f)}» in fact converges in £ at a definite rate depending
on || f|l, as described by the following effective mean ergodic theorem:

Theorem 3.3. For any spherical f € £ = L?>(D', ) and n > 1, we have

[8() ~ £°], < 21

Proof. Since f° € Lg is invariant under 8, we first observe that

Bu(f) = Bulf* + f') = Bu(f°) + Bulf") = [ + Bulf").
Therefore ||3,(f) — f0H2 = ||8n(f")|l5- To bound latter quantity, we write

i g ==y 100 (34

n
j=1k=1

1
n2

18 (f)3 =

n

I
—

1
*:i”& EMS

J

(J,k) | g,k =1,...,n with k — j = i} is at most n for

Noting that the quantity C;
< ') = (g - 77, 1), equation (3.4) gives

every 4, and using the fact

n—1 n—1
Bl = | S - = 5| S a1 < 23 N £,
7=1 k=1 i=1—n =0

Invoking equation (3.1) and using Y ;- ie~*" < oo, we now conclude the required estimate

n—1 2
182(F) = £II5 = 18, ()5 < = ||f 12 (14—226 ) < ”1;“2_ -

As we will see in §3.3 below, in the case of spherical shrinking targets B = {B,, }nen with
{nu(B,)} unbounded, the effective mean ergodic theorem provides strong results about
typical hitting frequencies and the hitting sets €,(B) and €5(B). In the absence of this
strong condition on {nu(B,)}, we must take a different approach based on independence:

10



3.2 Quasi-independence

Consider a family B of spherical, y—measurable shrinking targets B; D By D --- in D'. We
are are interested in the associated sets

E, = gﬁl(Bn) = {5 e D! | gn€ € Bn}.

Notice that p(E,) = p(Bp). As mentioned in the introduction, if the events E, were
independent in the sense that u(E,, N---NE,, ) = u(Ey,) - pu(Ey,) for all distinct indices
ni,..., N, the converse to the Borel-Cantelli lemma would imply p(€4(B)) = 1. In general,
this independence condition need not hold for the family B, but the spectral theory of
L = L*(D', i) guarantees that a weaker form of quasi-independence does:

Proposition 3.5. Let By D By D --- be a sequence of p—measurable spherical subsets
B, C D'. Forn >1 set E, = g, (By). Then for all N > M > 1 we have

N N
Z (N(Em NEp) — ,U(Em),u(En)> <u Z w(Bn)-
m,n=M n=M

Proof. For n > 1, let f,, = xp, be the characteristic function for the nth target, and note
that f,, is spherical. Consider f0 = (f,,1) = u(B,) and f! = f, — f0 € Lg. We have

”fr/L”; = <fn - Svfn - f,2> = <fn7fn> - /’L(Bn)<1afn> - M(Bn)<fna 1> +< 7(z)7f1(1)>
= pu(By) — N(Bn)2 < u(Bn).

Observe that (g_, - f2)(&) = xB, (gn€) for all ¢ € D!, showing that g_,, - f, = xE, . Hence

,U(Em N En) = <g—m : fmyg—n : fn> = < Swfr(z)> + <gn—mfrlmf7/L>
= M(BW)M(BTL) + <gn—mf7/n7 f’r/L>

for all m,n > 1. Using equation (3.1) and the fact pu(E,) = u(B,), it follows that
R = (1B 0 En) = p(Ew)it(B) ) < /(B i(By) [n = m| e~ 7=
whenever |n —m| > 1. On the other hand, R, ,, = u(E,)(1 — u(E,)) < u(E,) for all n.

]
Since the targets are shrinking, we also have u(B,,) < u(B;,) whenever n < m. Combining
these observations, we find that

N N N N-n
Z Rm,n = Z Rn,n +2 Z Z Rn,n+i
m,n=M n=M n=M i=1
N N N-n
< Z w(Ey) +2 Z w(Bp)p(Bpyi)ie™*
n=M n=M i=1
N N N—n
< S uB) 23 wlBa) Y e
n=M n=M i=1
N o0
< Z w(By) <1+2Z’L€ w) O
n=M i=1



3.3 Hitting the targets

We now use the estimates from §§3.1-3.2 to obtain our main result on shrinking targets. Let
B be any family of spherical p~measurable shrinking targets By D By D --- in D!, where p
remains the arbitrary G-invariant measure specified at the start of §3. Set E,, = g, '(B,)
and consider the associated hitting set for B:

&,(B) = {¢ € D' | {neN|g,é € By} is infinite} = () | J En.

k=1n=k

Proof of Theorem 1.1.1. Suppose > -, ji(By,) < oo. Then we have

u(%(&)u(ﬂ U&)Sgﬁu(U n><1anM O

k=1n=k n==k

Proof of Theorem 1.1.2. Suppose that >~ , u(B,) = co. It has long been known, going
back to the work of Schmidt, that the conclusion pu(€4(B)) = 1 may be deduced from
this hypothesis and Proposition 3.5; for example, [Spr, Chapter 1, Lemma 10] gives an even
stronger conclusion. We include a brief proof here for completeness. Let ® y(z) = 22;1 XE,
and Sy = [@ndu = 25:1 w(Byp). Hence & € £,(B) iff {®Pn(€)} is unbounded. Using
Proposition 3.5, we see that

N
/(<I>N(€)—SN)2du(§)—/< Z XEm XE, — 20(Em) X5, + 1(En )u(En)> dp

N N
= > (B N Ba) = n(En)(Bn)) < > #(Ba) = Sy

Therefore [|®n — Sy |, <, vV Sn. Setting ¥y = %@N, it follows that

1
oy -1, <, —.
2 M /SN
Since Sy — oo by assumption, we conclude that W converges in £ to the constant function
1. After passing to a subsequence N;, it follows that Wy, (£) — 1 for p—almost-every £ € D!
(see, for example, [Fol, Corollary 2.32]). But by definition this implies ®y,(§) — oo and
hence & € £4(B). Therefore £,4(B) has full measure, as claimed. O

Proof of Theorem 1.1.3. Suppose the sequence {nu(B,)}nen is unbounded. Let f, be the
normalized characteristic function f, = ﬁxgn. For the averaging operator (3, from

(3.2), we have that

#{1§Z§n‘gz§€Bn}
nu(By) '

B (fn) (€ Zn%

Since f2 = (f,,1) =1 and | f.|, = ﬁ lIxB,|l; = 1/+/1(By), Theorem 3.3 implies that

- 1
Hmm%W%%%&: nu(Bn)

12



Choosing a subsequence n; so that n;u(B,,) — oo, it follows that 3, (f,;) converges to
the constant function 1 in £. Passing to a further subsequence, for p—almost-every & € D!
we conclude that

. #H{1<i<n;|g§ € By, .

tim 74 V9 EBLY _ iy, ()€ = 1. 0

j—oo njpu(Br;) jo0

3.4 Always hitting the targets

We next turn to Theorem 1.4 and the question of when differentials will eventually always hit
the targets. Again, fix a shrinking family B = {B), },en of p—measurable spherical targets.
Let f,, = xB, be the associated characteristic functions. For n,m € N, let

Wm,n: {EEDl | {glgv7gm£}mBn:®}

be the set of differentials whose first m iterates miss the target B,. Then

oo oo

&y(B)={¢¢€ D | ¢ ¢ W, for all sufficiently large n} = U ﬂ (D' = Wyn).  (3.6)
k=1n=k

We know from Theorem 3.3 that §,,(f,) converges to the constant function u(B,) =
(fn,1) as m — oo. To analyze those differentials for which this convergence is poor, for
each k > 1 and m,n € N let us set

<< ;
PO NIPTIEIETPI S

Brf) (©) ¢ 5 u(By). nu(Bnn} |

Now, for each € € Wy, ,, we have B,,,(fn)(€) = 0 by definition of 8, and W, ,,. Therefore

180 = B3 [ 18 () = (B i = Wi a5,

m,n

For each ¢ € Y, | we similarly have |8, (fn)(§) — u(Bn)| > (k — 1)s~ ' u(By) and hence

—1)?
185 = (B3 [ 1) = (B = ) 2
Since (fpn,1) = u(By) = ||fn||§, the effective mean ergodic theorem (Theorem 3.3) now gives
18 (fn) = 1(Bn)l3 172113 1
Wmn = = 9 d
) = S, ) M
(v )y < W Bn(fn) — n(Bullz ?
mnl S T = 12u(Ba)? " m(s— 1)2u(By)”

Proof of Theorem 1.4.1. Suppose n; is an increasing sequence in N with {(n;u(B,,,)) "'}
summable. Notice that whenever n; < n < nj;,1, we have W, ,, C W, by definition of
Why.,m and the fact B

Tj+1

n;+1 C Bn. Consequently, using (3.6) we may write

D -exB) = UWanc () U Waymer-

k=1n=k k=1n;>k

13



The always hitting set £5(B) therefore has full measure since by (3.7) its complement has

(- e3B) < nf [ 3 uWn) | < [ — 2| =0 O

E>1 E>1 (B,
= \n;>k = \n;>k it Bni)

Proof of Theorem 1.4.2. Suppose an increasing sequence n; in N with {(n;u(By,,,)) "'}
summable satisfies nj,11(By;) < Anju(B,,,,) for some A > 1. For any x > 1, let

"=NU {5 € D | Bu(fn)(6) & [fﬁ‘lu(Bn)mu(Bn)]} -NUv,

k=1n=k k=1 n==k

denote the set of differentials £ such that for each k& € N there is some n > k so that 5, (f)(€)
lies outside [k ~!u(B,), ku(By,)]. Then for each & ¢ Y* there exists some K = K (£) such
that for all n > K we have

#1<i<n|géeBa} _ Bulfn))
np(By) 1(Bn)

€[ k).

Hence to prove the theorem it suffices to show p(Y?*) = 0.
For this, observe that for each n; <n < n,;y1, the averaged function 5, (f,) satisfies

nj

By (Fny) < 22, (Fa) < Bulfa) < 0By (f) € 2B, ()

Nj+1 J

by the definition of 3,, and the fact that 0 < f,,,, < fn < fn,. Thus when 3, (fn)(§) >
ku(By,) we find that

=

nj

6";41 (fm)(g) Z njy1 Bn(fn)(g) >

nj
Kk (By) > —u(By,.
o #(Bn) 2 §#(Bn;)

(here we have used our hypothesis u(By,) > p(By,,,) > Tﬁ'; p(By;)). On the other hand,
when 8, (fn)(€) < k™ u(B,) we have

n; n; A
(fo, < il L (By) < Su(Bn,, ).
5% (fnJﬂ)(g) 'y ﬁn(fn)(f) < nik :“( n) > HN( n3+1)
Setting £ = 2X > 1, it follows that YQ)‘ C Yn2 e Y Y2 ni1m, Whenever nj <n < mnjig.

Since the numbers n; are increasing and the targets an are shrinking, we have that
njp(Br,,,) < ny+1M( ;) for all j € N. Therefore our hypothesis implies the sequences
{(njp(Bn,.,)) ' }jen and {(nj411(Bn,)) '}jen are both summable. Using these observa-
tions together with (3.7), we now conclude the desired estimate

(Y2)‘ _ﬂ<m U Yn2)7\1> m U 7"37”J+1 ”J+1’"7

k=1n=k k=1n;>k

4
< inf + ) =0. O
kZlank (’n’j/j‘(an+1) nj+1:u(an)

14



4 Logarithm Laws

Here we explicitly consider the Masur—Veech measure A, on the principle stratum Q!(«) =
DY(a) where a = (—1,...,—1,1,...,1;—1). Recall from §2.6 that we have used n = m,(\})
to denote the push-forward of measure under 7: Q1 — M. Recall also that dy(X,Y)
denotes the distance between points X and Y in the moduli space M and that for X €¢ M
and ¢ € D! we have defined

dn (8, X) = o2in dyi(m(g;€), X) and  7.(§, X) = inf{n € N | dn(7(gn&), X) <7}

—(to)
Proof of Theorem 1.6. For € > 0 fixed, set 7t = m-6:% and let Bt =7 Y Bx(rf)) c Q!
be the preimage of the radius r  metric ball about X. Consider the shrinking families

B* = {Bt},,cn. By Lemma 2.5 we have

1

N(BR) = n(Bx () =ux (r)® 07 = .

m

Therefore Y °_, AL(B;},) < co and Theorem 1.1.1 implies that AL (€,(BT)) = 0. The set Z
of £ € Q! such that 7(gr&) = X of some k € N also has measure zero. We claim that each
€ ¢ E4(BT) U Z satisfies

log(dm(&, X)) _  —1—c
log(m) T 6g—6+2p

for all sufficiently large m. (4.1)

Indeed if this is not the case we may choose indices m; tending to infinity and associated
indices k; < m; such that

0 < dyc(m(ge, ), X) = min d(w(ge&), X) = d, (&, X) < m; 5555 = v, <rf.
These inequalities imply that gx. & € Bkt, for each j while also forcing (since rf{lj — 0) the

set {k; | j € N} to be infinite. However, this contradicts £ ¢ €,(B"), proving the claim.
For B~, on the other hand, Theorem 1.4.1 implies that €(B7) has full measure since

=2 (27) ™ <.
j=1

For each § € €5(B™) we know that {g1¢, ..., gm&} N B, is nonempty for all sufficiently large
m. But this is equivalent to saying

oo

> (7ML (Byii) XZ
j=1

Jj=1

2]+1

—1+e

dm(§,X) = iriin dyi(m(gr€), X) < r,,, = mBi—6+2 for all sufficiently large m. (4.2)
<m

Since (4.1) and (4.2) each hold for a full measure set, we conclude that

6g—6+2p — m—oo log(m) mM—s00 log(m) 6g — 6+ 2p

for AL —almost every & € Q. Since € > 0 was arbitrary, the first claim follows.
For notational convenience, for y € R, let us now define

(¢, X) =d|, (& X) = min{dn(rm(g:£, X)) | i € Z with 0 < i < y}.

15
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Notice that lim,_,. W TN = CHCEST

the definition of 7,.(£, X) that

since ; — 1. Also observe from

(€, X) <y &= d,(§,X)<r and 7.(§X) >y = 4,5 X) > (4.3)
By the first result, there is a AL —full measure set of ¢ € Q! such that for any € > 0 we have

—(+e) _log(d) (& X))  —(1-¢
6g—6+2p — log(y) 69 —6+2p

for all sufficiently large y.

69—6+2p —(1£e)

Applying this to y = r SRED (so that r = y®—6+2r ) and invoking (4.3), it follows that

69—6+2p

6g9—6+2
r-0Fo < 71.(§,X)<r SeEDN for all sufficiently small r > 0.
Rearranging, we conclude that there is a AL —full measure set of & € Q! for which

69 —6+2p _ log(r.(§, X)) _ 69 —6+2p

holds for all sufficiently small » > 0.

1+e log(1/r) — 1—c¢
Since € > 0 is arbitrary, the result follows. O
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