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Abstract

Cancer is primarily a disease of dysregulation — both at the genetic level and at the tissue organization
level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of
cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Viem, an
intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of
healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation
affects all three processes of carcinogenesis — initiation, promotion, and progression. Another
mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular
vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication
within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered
in cancer. To this end, the change in cell electrical state and in EV production are responsible for the
bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation
associated with carcinogenesis, including the TME and metastasis. We also look at the major ion
channels associated with cancer and current technologies and tools used to detect and manipulate
bioelectric properties of cells.

1. Introduction

Carcinogenesis, also termed oncogenesis or tumorigenesis, is rooted in two major theories or
hypotheses, both significantly different from one another. The somatic mutation theory (SMT), which
has been prevailing in cancer research for more than sixty years proposes that the origin of cancer can
be explained by an accumulation of several DNA mutations in a single somatic cell. Tumor
development is then a multistep process where successive mutations produce advantageous biological
compatibilities (1). The SMT explains many features of cancer such as hereditary cancers and the
success of gene-targeting cancer therapies (2). However, non-genotoxic carcinogens which induce
cancer without any DNA modifications (3) and the absence of mutations in some tumors (4) contradict
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this theory. Alternatively, the tissue organization field theory (TOFT) proposed in 1999, hypothesizes
that carcinogenesis is a problem of tissue organization instead of having a cellular level origin. Here,
the carcinogenic agents disrupt the reciprocal interactions between cells that maintain tissue
organization, repair, and homeostasis, hence creating altered microenvironments which allow the
parenchymal cells to exercise their ability to proliferate and migrate (5).

Bioelectric regulation is an important mechanism of cell communication and dysregulation of this
mechanism can result into alterations in tissue organization, fitting the tissue organization field theory
of carcinogenesis. While bioelectricity has been extensively studied in cells with neural origins, its role
in non-neural cell activity and functionality has only emerged more recently. With advances in
understanding the underlying bioelectric mechanisms of cancer and development of molecular tools to
measure and control these electric fields, we are now able to better identify the role of bioelectric
signaling in carcinogenesis. Another important mechanism that facilitates intercellular communication
for the maintenance of tissue homeostasis is the production and release of extracellular vesicles (EVs)
by cells of different tissue types. Cancer-derived EVs play a role in all steps of carcinogenesis by
mediating the communication between cancer cells and non-cancer cells as well as malignant cells and
non-malignant cells within the tumor microenvironment (TME) (6). Furthermore, the production of
EVs is aberrant during cancer which in turn plays an important role in disturbing the bioelectrical
signaling pathways between cells.

Several review papers (7-10) focusing on the bioelectric control of one or the other aspect of cancer,
such as migration or metastasis, have been published. In this paper, we provide a more extensive review
of bioelectric regulation in multiple cancer processes including initiation, promotion, the tumor
microenvironment, and metastasis. We also look at the major ion channels implicated in cancer and
current technologies and tools used to measure and manipulate bioelectric properties of cells in vivo.

2. Bioelectricity and Endogenous Electric Fields — An Overview

Membrane potential (Vimem) is an electrical property associated with any cell, specific to its origin and
function. The electric nature of the membrane potential produces endogenous electric fields (EFs) due
to the segregation of charges by molecular machines such as pumps, transporters and ion channels that
are primarily located in the plasma membrane of the cell (11). These transmembrane voltage gradients
have been established to control not only neural signaling via gap junctions, but also cell proliferation,
migration, differentiation, and orientation in both, excitable and non-excitable cells (12, 13).

Depending on the presence of relative charges, all excitable and non-excitable cells possess an electric
gradient across their plasma membrane (Figure 1A). When the cytoplasm becomes more positively
charged relative to the extracellular space, the cell is said to be depolarized and will have a less negative
Vmem. When the cytoplasm becomes more negatively charged relative to the extracellular space, the
cell in said to be hyperpolarized and will have a more negative Vmem (Figure 1B). It is worthwhile to
note that Vmem 1s not only a key intrinsic cellular property, but also an integral part of the
microenvironment where it acts both, spatially and temporally, to guide cellular behavior (9). It does
so by enabling the cells to make decisions based on the states of their neighbors (14). Physiological
Vmem can range from -90 to -10 mV, depending on the cell type and physiological state (13, 15).
Furthermore, as Vimem 1s primarily established by ion channels that are gated post-translationally, two
cells that are in the exact same genetic and transcriptional states could theoretically be in very different
bioelectric states (16).
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3. Bioelectricity in Cancer Processes

Bioelectric properties of cells and the electrical state of cells in the microenvironment are known to
control several key behaviors of relevance to cancer (17-24). Here we first introduce some major ion
channels implicated in cancer. Then we look at the role of bioelectricity in cancer initiation and
progression, the tumor microenvironment, and migration and metastasis.

3.1 Ion Channels and Cancer

Ion channels are membrane proteins that create ionic concentration gradients by regulating the flow of
ions across the plasma membrane. The primary function of ion channels is to maintain cellular
homeostasis by regulating the inward and outward ion flux, but they are also higher order regulators
of many downstream molecular signaling pathways (7). The four main ions that play a role in
establishing the resting Vmem of a cell are: Ca®", Na*, K*, and CI". The Goldman equation links the
overall transmembrane potential to the concentrations and permeabilities of various ion species. The
resting potential Vimem depends on the internal and external K¥, Na*, and CI” concentrations, ambient
temperature, and permeability of each ion specie. Alterations in ion channel expression and activity
are associated with the initiation, proliferation, and metastasis of cancer cells (21, 25). For instance,
there is a host of ion channels whose expression is dysregulated in cancer cells and have been found to
be associated with a metastatic phenotype (7). Here, we summarize major ion channels responsible for
the disruption of homeostasis and aberrant activation of downstream signaling pathways in cancer
including voltage-gated cation channels (Cay, Nay, Kv), mechanosensitive cation channels, transient
receptor potential (TRP) channels, and chloride channels (CLCs). Several review papers focusing
extensively on ion channels implicated in cancer can be found in literature (26-29). It is worthwhile to
note that disruption in expression of these ion channels leads to deregulation in a host of different
signaling pathways in cancer (27-30). Prominent ones include the mitogen-activated protein kinase
(MAPK) pathways, ERK and JNK signaling pathways, Wnt/B-catenin pathway, PI3K/Akt pathway,
Notch signaling, and the Rac and Rho pathways.

Calcium Channels

Voltage-gated calcium channels (VGCCs) and transient receptor potential (TRP) ion channels are
primary channels facilitating Ca** ion diffusion. VGCCs are present in human breast cancer cells but
not in normal human mammary epithelial cells (HMECs) (31). Berzingi et al. studied the effect of
calcium ions on cell proliferation. Upon 5 days of culture, it was found that MCF7 breast cancer cells
showed almost no growth in a culture medium without Ca®* ions compared with cells growing to nearly
100% confluence in a medium containing 2 mM Ca?" ions. Furthermore, blocking external Ca>* ions
from entering the cell through voltage-gated calcium channels using Verapamil indicated that cell
growth was substantially inhibited in MDA-MB-231, breast cancer cells (32). The intracellular calcium
concentration is also integral for cancer cell metastasis since it regulates the cell cytoskeletal dynamics,
protease activity, cell volume, and pH — all of which play a role in migration and invasion of cancer
cells (33-36). Calcium is also involved in driving ECM degradation and cell invasion by promoting
epithelial-mesenchymal transition (EMT) pathways and the activity of matrix metalloproteinases (37,
38). Furthermore, multiple TRP channels are regulated differently in various cancers. Expression levels
of TRPC3 in some breast and ovarian tumors (39) and TRPC6 in breast, liver, stomach cancers and in
glioma are elevated (40). In non-small-cell lung carcinoma cells, Ca** entry mediated by TRPC1 and
its associated signaling was found to activate the PI3K/Akt and MAPK downstream pathways and
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simulate proliferation (41). Some TRP channels including TRPC1 (42), TRPC3 (43), TRPC6 (44-46),
TRPM2 (47-49), and TRPMS (50, 51) also simulate apoptosis by increasing Ca" activity. Consequent
increase in TRPC6-mediated Ca”" entry has also been found to alter the Notch pathway, leading to
tumorigenesis in human glioblastoma multiforme (GBM) and GBM-derived cell lines (52). TRPV4 is
also a critical regulator of the Rho signaling pathway involved in cancer cell adhesion and migration
(53).

Sodium Channels

Cancer cells can effectively use Na* flux to indirectly promote a metastatic phenotype. For instance,
changes in Na* flux can create localized areas of depolarization that can drive the movement of Ca**
and H" jons. Activity of Na™/Ca?" exchangers located in the plasma membrane of cells has also been
linked to favor ECM degradation and cell invasion, as has been demonstrated in MDA-MB-231 breast
cancer cells that overexpress a voltage gated sodium channel (VGSC) (54). The expression of Nay1.7
also promotes cellular invasion at the transcriptional level by epidermal growth factor (EGF) and EGF
receptor (EGFR) signaling via the ERK1/2 pathway (55). In colon cancer cells, Nav1.5 activity and the
subsequent depolarization have been found to play a role in the induction of invasion-related genes
through the MEK, ERK1/2 pathway (56, 57). Furthermore, a sodium-channel SCN5A has been
identified as a key regulator of a genetic network that controls colon cancer invasion (57). The activity
of some sodium channels has also been shown to further simulate the expression of more sodium
channels in prostate and breast cancer cell lines. This allows the cells to substantially increase ion flux
by creating a positive feedback loop of channel activity-induced channel expression (58). Finally,
changes in the intracellular Na™ concentration can also alter cellular pH (10). A decrease in the pH
surrounding a tumor is known to influence cell adhesion via the formation of integrin-mediated focal
adhesion contacts (59-61).

Potassium Channels

K" ions predominantly move from the intracellular to extracellular space through their channels to
maintain the steady state resting potential of a cell. K* indirectly affects the Vmem by driving the entry
of Ca?" into the cell. At the same time, the proliferation of some tumor cells is dependent on voltage-
gated potassium channels (62-67) that alter cell volume by affecting K™ flow. A variety of tumor cells
express Ky10.1 (68, 69) or Ky11.1 (HERG) (70) or both channels. The K" channel EAG has been found
to be expressed in 100% of cervical cancer biopsies analyzed and overexpression of EAG in human
cells has been shown to increase cell proliferation in culture (71, 72). Furthermore, overexpressing K*
channels in breast cancer cells has been found to drive cell migration mediated by cadherin-11 and
MAPK signaling (73). Calcium-dependent K" channel Kca3.1 also promoted proliferation by directly
interacting with ERK1/2 and JNK signaling pathways (74). Finally, Ca** flow through TRPMS8
regulates activity of Ca*"-sensitive K* channels such as Kc,1.1, which plays a role in migration (75,
76). In breast cancer cells, overexpression of TRPMS increased the metastatic potential via activation
of the AKT glycogen synthase kinase-3 3 (GSK-3B) pathway (77).

Chloride Channels

Chloride is the main anion that accompanies the transport of cations such as calcium, sodium, and
potassium. Chloride channels play an important role in cancer cell migration due to their role in
maintaining cell volume (78). CI" channels have been revealed to have a role in glioblastomas from
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studies in glioma cell lines (79, 80). Studies of human prostate cancer cell lines have also shown
chloride channels to play a role as key regulators of proliferation through cell size regulation (81).
Chloride ion channel-4 CI/H' exchanger has been found to enhance migration, invasion, and
metastasis of glioma and colon cancer cells by regulating the cell volume (65). For instance, genetic
knockdown of CIC-3 has been found to substantially reduce migration in glioma cells (82).

Piezo Channels

Piezo channels are non-selective Ca®"-permeable channels whose gating can be simulated by several
mechanical stimuli affecting the plasma membrane, including compression, stretching, poking, shear
stress, membrane tension, and suction (83-85). A recent study has also demonstrated that Piezo
channels show significant sensitivity to voltage cues and thus can also be viewed as important members
of the voltage-gated ion channel family (86). Two major piezo channels — Piezo1 and Piezo2 have been
identified which are mainly expressed in different tissues. Piezo channels are overexpressed in several
cancers, such as breast, gastric, and bladder, whereas in other cancers, their downregulation has been
described. Several studies conducted in vitro and in vivo have demonstrated that the activation of Piezo
channels can drive a Ca®" influx, thus modulating key Ca**-dependent signaling pathways associated
with cancer cell migration, proliferation, and angiogenesis (87). Overexpression of Piezol has also
been found to promote prostate cancer development through the activation of the Akt/mTOR pathway
(88). Furthermore, the mechanistic effects of Piezo2 are associated with a Ca**-dependent upregulation
of Wntll expression which enhances the angiogenic potential of endothelial cells in cancer via -
catenin-dependent signaling (89).

3.2 Cancer Initiation and Promotion

Resting potential established by ion channel and pump proteins is important for determination of
differentiation state and proliferation. One way that carcinogenesis occurs is due to the disruption of
electrical gradients, or the mechanisms by which they are perceived by cells (24). Viem 1s an important
non-genetic biophysical aspect of the microenvironment that regulates the balance between normally
patterned growth and carcinogenesis (7). Cancerous and proliferative tissues are generally more
positively charged or depolarized than non-proliferative cells (90, 91). Vimem values from -10 to -30 mV
correspond to more undifferentiated, proliferative, and stem-like cells (92). For instance, the resting
membrane potential in normal human mammary epithelial cells (HMEC) is -60 mV. This value goes
up to -13 mV in breast cancer cells isolated from patients (93). Berzingi ef al. experimentally compared
Vmem in HMEC and two different invasive ductal human carcinoma cell lines, MCF7 (estrogen-
receptor-positive) and MDA-MB-231 (estrogen-receptor-negative). The results indicated that MCF7
and MDA-MB-231 cells are 30.4 mV and 27.3 mV more depolarized in comparison to HMEC cells,
respectively. It was also seen that HMEC grew at a much slower rate compared to MCF7 and MDA -
MB-231(32).

Lobikin ef al. used a Xenopus tadpole model to confirm the role of ion flow in oncogenesis in vivo by
investigating the consequences of depolarizing select cell groups (67). Embryos were exposed to
glycine-gated chloride channel (GlyCl) activator ivermectin to control the membrane potential of a
widely distributed, sparse population of cells expressing the GlyCl channel. The membrane potential
of these specific cells could be set to any desired level by manipulating external chloride levels
following ivermectin treatment. Tadpoles whose cells were depolarized were seen to exhibit excess
melanocytes with a much more arborized appearance and colonize areas normally devoid of
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melanocytes, such as around the eyes and mouth. It was also shown that depolarization induces the up
regulation of cancer relevant genes such as Sox10 and SLUG (94). Furthermore, susceptibility to
oncogene-induced tumorigenesis was shown to be significantly reduced by forced prior expression of
hyperpolarizing ion channels indicating that bioelectric signaling of the cellular microenvironment can
both, induce and suppress, cancer-like cell behavior.

Vmem has been suggested as a cancer biomarker due to its role as an early indicator of tumorigenesis
and is associated with tumors of diverse molecular origin (95-98). Induced tumor like structures (ITLS)
can be formed in Xenopus and zebrafish embryos by mis-expressing mammalian oncogenes (Glil,
Xrel3 and KRASGI12D) and mutant tumor suppressors (p53Trp248). ITLS’s are formed as a result of
genetic interference with signaling pathways altered in several types of cancer including basal cell
carcinoma, lung cancer, leukemia, melanoma, and rhabdomyosarcoma (99-102). Fluorescence
reporters of Vmem in the injected animals have been found to reveal unique depolarization of tumors
and increased sodium content compared to healthy tissues (7, 103). Moreover, depolarized foci have a
higher success rate in predicting tumor formation as compared to cancer specific antigen level in the
serum. For instance, Chernet and Levin found that depolarized foci, while present in only 19-30% of
oncogene-injected embryos, predict tumor formation with 50-56% success rate as compared to prostate
specific antigen level in the serum, which when used as a biomarker for prostate cancer, has a 29%
predictive value (104, 105).

Recently, Carvalho developed a computational model of cancer initiation, including the propagation
of a cell depolarization wave in the tissue under consideration (106). This model looks at an electrically
connected single layer tissue in two and three dimensions and simulates ion exchange between cells as
well as between cells and the extracellular environment. It was seen that a polarized tissue with cells
in quiescent state tends to change state if a large enough perturbation changes its homeostatic
conditions, such as a carcinogenic event. The induced depolarized state is able to then propagate to
neighboring cells in a wave like manner. The developed model shows the importance of community
effects associated with cell electrical communication leading to both, short- and long-range influences
and ultimately, cancer.

3.3 The Tumor Microenvironment

The microenvironment functions to guide the cell through space and to direct tissue growth through
time. It also plays a significant role in the physiological outcome of a given Viyem input. The tumor
microenvironment (TME) is a complex entity and consists of multiple cell types embedded in the
extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts
(CAFs) which communicate with cancer cells and with other CAFs during tumor progression (107).
One way this communication is mediated is by a plethora of bioactive molecules, including proteins,
lipids, coding and non-coding RNAs, and metabolites, which are secreted into extracellular vesicles
(EVs) (108, 109).

The mechanical microenvironment impacts bioelectric regulation and cell proliferation (9). An early
indication of this were studies in the late 1900s which found that cells within a low cell density (fewer
cell-cell contacts) exhibited reduced proliferation (110) and that cells in a confluent monolayer are
more hyperpolarized than individual cells (111, 112). Similarly, chemical components of the cellular
microenvironment have the ability to impact cell phenotype. Factors such as hypoxia (113) and pH
(114) have been demonstrated to drive cancer progression. Moreover, hypoxic tumors exhibit more
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aggressive phenotypes. Tumor cells under hypoxia can produce a secretion partly in the form of EVs
that modulates the microenvironment to facilitate tumor angiogenesis and metastasis (115). Viem thus
functions at the interface of chemical and mechanical signals by creating an electrical gradient across
cells, which in turn gates voltage-sensitive channels. This creates a tightly connected communication
pathway between a cell and its microenvironment (9, 116-119).

The key components of the mechanical microenvironment (Figure 2) are solid and fluid pressure,
substratum stiffness (120-128) tissue geometry, and mechanical stress (129-131). These components
of the physical microenvironment are primarily dependent on mechanosensitive calcium channels
Cay3.3(132, 133). Cells have the ability to sense the surrounding substratum by applying force through
actomyosin motors in stress fibers linked to focal adhesions (134). Varying the substratum stiffness has
been demonstrated to influence cellular behaviors including differentiation (122), apoptosis (126),
proliferation (125), gene expression (135-137), migration (138), cell stiffness (139), and epithelial-
mesenchymal transition (EMT) (127). Along with microenvironments of varying rigidity, cells also
experience mechanical stress due to the dense packing of neighboring cells. Cell-cell contacts are
critical for propagation of bioelectric signals via the transport of ions through gap junctions (140-142).
The normal breast epithelium cell line MCF10A was demonstrated to respond differently to an EF in
vitro depending on the confluency of the cell culture (143). The study observed that clustered cells are
more sensitive to an EF due to increased cell-cell contacts.

Physical signals from the Vmem of the microenvironment also contribute to tumorigenesis (9).
Furthermore, pressure activates oncogenic factors such as p38, ERK, and c-Src which are involved in
the regulation of cell proliferation, differentiation, and apoptosis (132). Tumors in vivo are under higher
pressure and are also stiffer than the surrounding tissue which creates a microenvironment that
promotes cell proliferation (133). Increased pressure also enhances the invasiveness of tumor cells
(121). Additionally, a key communication pathway between cells and their ECM is Integrin signaling
pathway which regulates cytosolic Ca** levels (144). These cytosolic Ca** concentrations play an
important role in cancer-related processes such as EMT (38), metastasis (21), and apoptosis (126, 145).
For instance, inducing EMT in human breast cancer cells has been shown to upregulate cytosolic
calcium levels (38).

3.4 Cell Migration and Metastasis

The dissemination of primary tumor cells to secondary organs is called metastasis. This involves cancer
cells breaking away from the primary tumor, traveling through blood or lymphatic systems, and
forming secondary or metastatic tumors in other parts of the body. Metastasis is a multi-step process
(Figure 3) and involves the following events: local invasion to surrounding tissues, intravasation into
the vasculature or lymphatics (where they are called circulating tumor cells or CTCs), survival and
circulation in the vessels, and extravasation and colonization in a secondary organ (where they are
called disseminated tumor cells or DTCs) (146, 147). Bioelectricity mediates many of the normal cell
functions which are disrupted in metastasis. Factors such as ion channel expression, Vmem, and external
EFs have been determined to regulate invasion and metastasis. Furthermore, the migration of cancer
cells out of the primary tumors into local tissues through various physical barriers is driven by
components of the local tumor microenvironment and executed by complex signaling pathways in the
cell (10).
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Cues within the TME can promote local invasion (148). For instance, an ECM protein fibronectin can
attract breast cancer tumor cells to the vasculature via haptotaxis (directional migration in response to
substrate-bound cues) to promote dissemination. During tumor invasion, constant communication
occurs between tumor cells and surrounding stromal cells via extracellular vesicles (EVs) (115). Even
upon entering a secondary tissue, the transition of a DTC into an overt metastasis is highly dependent
on the local microenvironment of this organ (10). Hence, the formation of a supportive premetastatic
niche, composed of ECM and resident immune cells is essential to provide nutrients and survival
signals that drive DTC survival and outgrowth. Recent work suggests that tumor cells may be able to
prime the premetastatic site from a distance before colonization to create a more favorable niche, for
example, by secreting exosomes, a subpopulation of EVs (6). Furthermore, even within cancer cells,
there is variability in the amount of depolarization. A more depolarized Vmem is associated with a higher
metastatic potential and forced hyperpolarization of cells can reduce their migration and invasiveness
(24, 141, 149, 150).

To study the effect of EFs on cell galvanotaxis, Zhu et al. employed unique probe systems to
characterize cancer cell electrical properties and their migratory ability under an EF (151). It was found
that tumors established from 4T1, a triple-negative murine breast cancer cell line, produced
heterogeneous intratumor potentials causing a flow of endogenous EFs inside and outside of the
tumors, which may in turn affect cell migration behavior and ultimately contribute to cancer metastasis.
Moreover, tumor electric potentials were found to increase with increase in tumor size, which is an
important factor since the primary tumor size has been reported to be linked to the metastatic potential
(152, 153). Finally, it was also found that metastatic sublines (m4T1) from lung, heart, axillary lymph
node and spleen showed different galvanotaxis thresholds. For instance, parental 4T1 and lung
metastatic cell lines were found to respond to EFs as low as 50 mV/mm, while other metastatic sublines
showed an anodal migration in a field of 100 mV/mm or higher. Additionally, the migration speeds
also varied among different metastatic sublines. Cancer cell monolayers were found to have a higher
migration persistence (defined as the ratio of displacement to trajectory length) under EFs than that of
isolated cells, suggesting that cancer cells migrated more linearly in a certain direction when
responding to EFs collectively.

Interestingly, bioelectric factors override most chemical gradients and other cues in a multi-cue
environment during cell migration (8). Lobikin et al. investigated a cell population termed as
“instructor” cells which when depolarized, is able to direct the activity of an entirely different set of
cells (7). The “instructor” cells induce metastatic phenotype in normal melanocytes by serotonergic
signaling, a mechanism which mediates long-range bioelectric signaling. Furthermore, instructor cells
also disrupt blood vessel patterning upon depolarization. The melanocytes were then found to acquire
three properties commonly associated with metastasis — hyper-proliferation, a highly dendritic
morphology, and invasion into tissues such as blood vessels, gut, and neural tube. This data illustrated
the power of depolarized Vmem as an epigenetic initiator of widespread metastatic behavior in the
absence of a centralized tumor.

4. Applications

4.1 Current Devices, Materials and Technologies
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Molecular-resolution tools have recently been developed for real-time detection and manipulation of
bioelectric properties in vivo (154, 155). An important component of such investigations is the ability
to track spatio-temporal distribution of Vmem gradients in vivo, over significant periods of time.

Detection of Bioelectric properties

Microelectrodes are a common tool used to measure the electrophysiological characteristics of cells
and are extremely powerful for single cell measurements. For instance, Zhu et al. used glass
microelectrodes to measure intratumor potentials in subcutaneous tumors established from a triple-
negative murine cancer cell line (4T1) (151). However, measurements corresponding to multicellular
areas and volumes are constrained by the smaller size of these electrodes. Furthermore, the sample
under study needs to be kept perfectly still (155). Fluorescent bioelectricity reporters are a more recent
development which has facilitates measurement of electrophysiological properties when it is not
feasible to use microelectrodes. These dyes can be used to achieve subcellular resolution, measure
many cells simultaneously in vivo, and to track bioelectric gradients over long period of time despite
cell movements and divisions (155). Chernet and Levin utilized voltage-sensitive fluorescent dyes to
non-invasively detect areas of depolarization in oncogene-induced tumor structures in Xenopus larvae
(24). A few other tools for the characterization of bioelectrical events are highly sensitive ion-selective
extracellular electrode probes (156, 157) that reveal ion flux at the cell membrane, reporter proteins
(158-161) and techniques that report individual ion species content such as protons (162) and sodium
(163). Bioelectronic sensors or biosensors can also be used to sense electric fields, ionic concentrations,
and biological markers (164-169). Based on the type of sensor, both intracellular and extracellular
recordings of a single cell or a group of cells can be measured. A common transistor biosensor platform
used for extracellular recordings is the organic electrochemical transistor (OECT) which is inherently
sensitive to ionic species and external electric fields (14). The OECT is typically made of a poly(3,4-
ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) mixture and has been implemented for
recording of electrochemical gradients in non-excitable cells such as Caco-2 as well as excitable cells
(170). Meanwhile, silicon nanowires are suitable for crossing the cell membrane and are commonly
used for intracellular readings. These nanowires are synthesized with spatially controlled electrical
properties. A nanoscale field effect transistor (NFET) is then created on an individual nanowire by
varying the doping levels. NFETs allow localized and tuneable 3D sensing and recording of single
cells and even 3D cellular networks. By having a three-dimensional probe presentation, NFETSs
overcome a major limitation of most traditional nanoelectronic devices which have a more planar
design. Tian et al. used three-dimensional NFETs as localized bioprobes for intracellular readings in
cardiomyocytes (171). While these methods are excellent tools for measuring cell electrical properties,
tools that can manipulate these properties are essential to study the effects of altering cell states.

Manipulation of Bioelectric properties

Bioactuators are a class of devices that can be used to modify cell behavior by delivering directly
biophysical signals such as electrophoretic delivery of ions and small molecules targeting specific cell
locations (14). Additionally, a variety of nanomaterials have been developed for reading and writing
bioelectric cues in tissue. These include biocompatible piezoelectric materials and nanoparticles that
alter the resting potential of cells by contact, without the use of transgenes (172-175). Warren and
Payne determined that nanoparticles with amine-modified surfaces induced significant depolarization
in both, Chinese Hamster Ovary (CHO) cells and HeLa cells (175). Conductive polymers are another
class of materials that can stimulate cells or tissue cultured upon them (176-178) by applying an

9



410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

Bioelectric dysregulation in cancer initiation, promotion, and progression

electrical signal. Conductive polymers used in tissue engineering include conductive nanofibers,
conductive hydrogels, conductive composite films, and conductive composite scaffolds fabricated
using methods such as electrospinning, coating, or deposition by in situ polymerization (179). For
instance, Jayaram et al. used PEDOT:PSS conducting polymer microwires to depolarize cells and
achieve a more positive membrane potential in E. coli cells (172). Thourson and Payne also
demonstrated the use of PEDOT:PSS microwires to control action potentials of cardiomyocytes (180).
Conductive polymer microwires thus provide a minimally invasive platform to control electrical
properties of cells with high spatial precision. Detailed reviews on conductive polymers have been
previously published (179, 181).

As mentioned previously, treatment with ivermectin is another way to control the transmembrane
potential of a select group of cells by manipulating of endogenous chloride channels (Figure 4A).
Ivermectin targets GlyR-expressing cells and hence opens their chloride channels. Chloride ions can
then be made to enter or exit the GlyR-expressing cells by manipulating the external chloride levels,
thus controlling their transmembrane potential (7). For instance, a low level of chloride in the external
medium would cause chloride ions to exit the cell and into the medium, hence depolarizing the cell.
Lobikin et al. employed this method in frog models to regulate the membrane potential of a specific
group of cells expressing GlyCl channels to desired levels and study the consequences on metastasis
and tumorigenesis in vivo.

Another potential way to manipulate the bioelectric properties of cells is by controlling the
mechanosensitive Ca?-permeable Piezo channels which have emerged as major transducers of
mechanical stress into Ca®" dependent signals. These mechanosensitive Piezo channels expressed on
the plasma membrane are gated by various mechanical stimuli such as stiffness, compression, tension
forces, and shear stress. Channel activation then allows a Ca®" influx into the cytoplasm which then
mediates the cell polarity (Figure 4B). Piezol may also be pharmacologically activated by agonists
such as Jedil, Jedi2 and Yodal or inhibited by channel pore blockers, competitive antagonists, and
peptides such as Ruthenium Red, GsMTx-4, Dookul and AB peptides which distort the membrane
mechanical properties (87). Han et al. demonstrated that activation of Piezo1 via mechanical stimuli in
1 um using a heat-polished glass probe controlled by a piezo electric device or via agonist Yodal
mediated Ca?* influx in pancreatic cancer cells, resulting into a more depolarized state (88).

4.2 Extracellular Vesicles and Electricity

Extracellular vesicles (EVs) facilitate inter-cellular communication via delivery of proteins and nucleic
acids, including microRNA (miRNA) and mRNA (182). EVs-mediated communication is vital during
the establishment of planar cell polarity and the developmental patterning of tissues (183). EVs are
particularly enriched in the tumor microenvironment (184, 185) and as mentioned in the previous
sections of this paper, they play a special role in cancer development and progression. In a recent study,
Fukuta et al. demonstrated that external stimuli such as low levels of electric field treatment that
activate intracellular signaling would likely increase exosome secretion from the cells. It was seen that
an electric field of 0.34 mA/cm? increases the secretion of these EVs from cultured cells of murine
melanoma B16F1 and murine fibroblast 3T3 Swiss Albino without compromising their quality (182).
These results together indicate that the bioelectric dysregulation or depolarization of cells that occurs
during cancer may be responsible for the upregulation of EVs in the cancer tumor microenvironment.
At the same time, the increase in production of EVs plays a role in disrupting the bioelectric
homeostasis, forming a feedback loop. The change in cell state and EV production along with the
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interdependence of the two are major mechanisms responsible for the bioelectric dysregulation of
cancer.

5. Conclusions

Bioelectric signaling is a growing field of study that takes us a step closer to understanding cancer as
a disease, all the way from initiation to metastasis. A lot is known about cancer and its biology as per
the somatic mutation theory. On the other hand, the role of electric fields in cancer processes, while
strongly established over the last few decades, needs further investigation. Understanding the
bioelectric mechanisms underlying cancer is especially important since it will allow us to develop new
biomedical and bioengineering tools and techniques as per the tissue organization field theory. These
new engineering tools, along with the existing biological knowledge will enhance our understanding
of cancer and enable the development of novel treatments for patients.

Another exciting area of study is the interplay between the bioelectric dysregulation and enhancement
of extracellular vesicles (EVs) within the context of the cancer microenvironment. It has been well
established that EVs play a significant role in facilitating the signaling pathways involved in all
processes of carcinogenesis. This paper provides a detailed review of the current knowledge about
bioelectric dysregulation that underlies different processes of cancer. However, little is known about
the interdependence of these two mechanisms. Furthermore, EVs, especially exosomes, have been
proven to have a role in therapeutic strategies for cancer. Understanding this crosstalk will not only
enhance our knowledge of cancer, but also help develop efficient exosome-based cancer
immunotherapies and drug delivery vehicles.
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Supplementary Material - Figure captions

Figure 1: (A) Polarization of cells based on cell type. Excitable cell such as neurons have a
membrane potential of -90 mV. Non-excitable cells such as HMEC: Human Mammary Epithelial
Cell and MCF7: Estrogen-receptor-positive breast cancer cell line are at -60 mV and -13 mV
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Bioelectric dysregulation in cancer initiation, promotion, and progression

respectively. (B) Depolarized cell state (left) indicated by a more positive charge in the cytoplasm
relative to the extracellular space. Hyperpolarized cell state (right) indicated by a less positive charge
in the cytoplasm relative to the extracellular space

Figure 2: Key components of the tumor microenvironment (TME) which comprises of multiple cell
types including cancer cells, immune cells, endothelial cells, and cancer associated fibroblasts. This
includes mechanical components such as fluid pressure, substratum stiffness, mechanical stress, cell-
cell, and cell-matrix interactions. Also shown are some chemical components of the
microenvironment such as pH, temperature, and hypoxic core of the tumor. Cell-cell and cell-TME
communication is mediated by a variety of bioactive molecules during carcinogenesis.

Figure 3: Overview of the five-step metastatic cascade involving local invasion, intravasation into
surrounding vasculature, circulation, extravasation, and finally colonization in a secondary location.
Also shown is the formation of a pre-metastatic niche that supports the survival of disseminated
tumor cells (DTCs) into a successful metastasis. Exosomes, a subpopulation of EVs play a primary
role in carrying information from the primary site to the secondary site or site of metastasis,
especially to form the pre-metastatic niche.

Figure 4: Manipulating bioelectric properties of cells (A) Manipulation of endogenous chloride
channels as a means of manipulating Vmem of a select group of cells. Treatment with ivermectin
causes chloride channels in GlyR-expressing cells to open. External chloride levels are then
manipulated to regulate movement of chloride flux into or out of the cytoplasm (B) Piezol and
Piezo2 are mechanically activated cation channels. Application of a mechanical force causes the
central pore to open, allowing an influx of positive charge into the cell.
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