A Fast, Scalable, Universal Approach For
Distributed Data Reductions

Niranda Perera*®, Vibhatha Abeykoon*!$, Chathura Widanage*®, Supun Kamburugamuve'$
Thejaka Amila Kanewala?, Pulasthi Wickramasinghe*,

Ahmet UyarT, Hasara Maithree”, Damitha Lenadora ”, and Geoffrey Fox*T
*Luddy School of Informatics, Computing and Engineering, IN 47408, USA
{vlabeyko,dnperera,pswickra} @iu.edu
TDigital Science Center, Bloomington, IN 47408, USA
{cdwidana, skamburu, auyar, gcf} @iu.edu
HIndiana University Alumni, IN 47408, USA
thejaka.amila@gmail.com
”Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka
{hasaramaithree.15, damitha.15}@cse.mrt.ac.lk

Abstract—In the current era of Big Data, data engineering
has transformed into an essential field of study across many
branches of science. Advancements in Artificial Intelligence (AI)
have broadened the scope of data engineering and opened up
new applications in both enterprise and research communities.
Reductions/ aggregations are an integral functionality in these
applications. They are traditionally aimed at generating mean-
ingful information on large data-sets, and today, they are used
for engineering more effective features for complex AI models.
Reductions are usually carried out on top of data abstractions
such as tables/ arrays and are combined with other operations
such as grouping of values. There are frameworks that excel in
the said domains individually. But, we believe that there is an
essential requirement for a data analytics tool that can universally
integrate with existing frameworks, and thereby increase the
productivity and efficiency of the entire data analytics pipeline.
Cylon endeavors to fulfill this void. In this paper, we present
Cylon’s fast and scalable aggregation operations implemented on
top of a distributed in-memory table structure that universally
integrates with existing frameworks.

Index Terms—HPC, Data Engineering, Aggregations, Rela-
tional Algebra, Big Data, Reductions

I. INTRODUCTION

The massive amount of data generated by a wide variety
of applications are used as an input to Artificial Intelligence
(AI) and Machine Learning (ML) applications for further
processing. However, these AI/ML applications cannot use the
raw data as it is; hence the need for a preprocessing step to
convert raw data into a consumable form. Aggregations are an
essential class of operations used in the preprocessing stage
of a data processing application. Sum, maximum, minimum,
count, mean, median and standard deviation are some of the
most widely used aggregation operations. They are commonly
applied after categorising (grouping) data to extract the mean-
ingful input to the AI/ML applications.

The faster we can group and aggregate data, the sooner
we can get the final result from the data processing applica-
tions. The performance of the aggregation operations can be
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increased by executing an operation in parallel. Furthermore,
with the amount of data generated today, the aggregations and
grouping needs distributed execution to increase scalability.
While parallel and distributed execution gives us performance
and scalability, they inherently add complexity to the imple-
mentations of aggregation and grouping operations. Hiding
those complexities from AI/ML users and providing them an
easy-to-use, familiar abstraction is challenging, but it increases
AI/ML user productivity. In this paper, we present a fast,
scalable and easy-to-use “group by” and “a set of aggregation
operators” implementation.

Aggregators and group by operations are implemented as
part of the Cylon [1]: Online Analytical Processing (OLAP)
system. Cylon utilizes distributed-memory parallel execution
model. In Cylon, data are distributed among multiple compute
nodes which process data using Bulk Synchronous Parallel
(BSP) [2] model, employing a columnar data structure to rep-
resent data. Our implementation inherits these concepts from
Cylon and contributes to the performance and scalability of
the implementation. We present a framework for aggregation
implementation in Cylon and we currently implement four
essential distributed memory parallel aggregators using this
framework: min, max, count, and sum. The framework consists
of phases, each phase maximizing computation to improve
the performance. For group by, we present two approaches:
Hash-based and Pipeline-based. These are discussed in detail
in IV-B. In the same section we illustrate how we adopted
the existing group of aggregation techniques in traditional
RDBMS databases and existing Big Data frameworks for
our implementation. The core of Cylon is developed using
C/C++ to achieve maximum performance. Similar to other
Cylon operators, the aggregations and group by operations
implemented are also exposed with Python bindings so that
they can be integrated with AI/ML applications.

For this research, our main objectives are: 1.) provide
efficient compute and communication kernels for aggregation
and group by operations; 2.) offer efficient language bindings;



and 3.) integrate seamlessly with existing data engineering and
data science systems. In Section II, we discuss the role of
aggregations in data engineering and high performance com-
puting paradigms. Section III showcases how we designed the
Cylon system to facilitate high performance data engineering.
Section IV details in depth how our aggregation operations are
embedded within the Cylon system. We demonstrate a set of
experiments conducted on Cylon compared to state-of-the-art
data engineering systems in Section V. Finally in Sections VII
and VIII, we highlight the conclusions drawn from our work
and extensions to our research respectively.

II. REDUCTIONS IN DATA ENGINEERING

Data engineering focuses on practical applications of data
collection, analysis, and prediction. It involves data extraction,
transformation and loading (ETL) workloads. The transforma-
tion phase employs relational and linear algebra operators in
which data reducing functions play a vital role. This is evident
from the presence of a large number of aggregation queries in
the decision support benchmarks such as TPC [3]. They also
play a vital role in recent Al and ML applications.

Approaches for reductions depend on how data is laid out on
the physical memory. When looking at general applications on
data engineering, data layouts can be broadly categorize into
1. tables, and 2. arrays (or tensors). In both categories, data
can be laid out on row-major or column-major fashion.

Reduction operations are also an integral part of the group-
ing/ categorizing operations. Applying a reduction operation
on grouped data, extracts a summarized the insight on the
grouped data. Grouping and reduction may reduce the size of
the dataset, but the grouping operation may require substantial
computational overheads, such as, moving data, randomly
access memory, etc.

A. Reductions in Tables

A Table abstraction (also referred as data-frames) carry
heterogeneously typed data defined by a schema.The frame-
work architecture would choose to use row or column-major
structure but reductions/ aggregations are usually carried out
on a column. Hence, reductions on table with a columnar data
structure would be very efficient because it seeks contiguous
memory locations and allows trivial SIMD parallelization.

Tables are the backbone of Big Data systems. Apache
Hadoop with map-reduce [4] [5] marked the first generation of
Big Data analytics. Subsequently Apache Spark [6], Apache
Flink and Apache Storm were introduced, featuring better
scalability and performance. These systems are designed on a
JVM-based back-end. They are mostly geared for commodity
cloud environments and enterprise clusters. The task-based
data-flow execution in these systems promotes usability usabil-
ity, but whether they achieve the native hardware performance
is questionable.

B. Reductions in Arrays/ Tensors

Compared to tables, arrays and tensors entail homoge-
neously typed multi-dimensional data. Reductions/ aggrega-
tions are carried out on a particular indices of these data.

Advantages of seeking contiguous memory also holds for array
data. Arrays/ tensors may have limitations in representing
relational data.

These are the main data structure used for High performance
computing applications in domain sciences (i.e. Physics,
Chemistry, Biology, etc.). Highly optimized linear algebraic
computations are available on arrays through BLAS routines.
OpenMP, MPI and PGAS are some of the systems designed to
provide distributed computing capability for these structures.
These systems are developed on top of C/C++/Fortran to
achieve native hardware performance, and they are most often
deployed on specialized hardware.

AI/ML has taken center stage in the data engineering
research community in recent years. While multidimensional
array data (termed “tensors”) are used for computations,
AI/ML models depend on well-defined preprocessed inputs
from large heterogeneously typed datasets. A good example of
this is Facebook’s DLRM (Deep Learning Recommendation
Model) application [7].
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Fig. 1. High performance data engineering everywhere

III. CYLON

In designing a futuristic framework for data engineering,
it is vital to pay attention to both performance and usability.
An ideal data engineering framework design should be able to
benefit from both Big Data and HPC worlds. With AI/ML also
becoming a key driver, it is impossible for a single system to
provide every feature under one roof. As an example, Apache
Spark developed MLIib alongside the data analytics engine.
Ultimately it lost popularity to Tensorflow and PyTorch, yet
Spark is still being used as a preprocessing engine for AI/ML
applications. Hence a better solution would be to create a
fast and scalable framework that can universally integrate with
other systems.

The goal of Cylon is to fulfill this requirement, and enable
“high performance data engineering everywhere!” [8]. We
will showcase that the architecture of Cylon not only enables



fast and scalable distributed data aggregations, but also pro-
vides universal integration bindings to other frameworks as
shown in the Figure 1.

A. Data Model

Cylon is a framework that mainly focuses on handling On-
line Analytical Processing (OLAP) workloads. Unlike Online
Transaction Processing (OLTP) systems, OLAP workloads can
benefit greatly from data models that have been optimized for
homogeneous sequential reads. Hence Cylon has built its core
on a columnar data format based on Apache Arrow [9] while
providing a Table API abstraction atop a collection of data
columns.

Embracing Apache Arrow’s columnar format comes with
many other advantages, such as inter-portability with existing
popular frameworks (Spark, Numpy, Pandas, Parquet, etc.) and
optimized memory operations at multiple storage levels rang-
ing from disk (compression) to CPU cache (SIMD operations,
efficient cache utilization due to contiguous data layout).

B. Operators

Cylon’s table operators can be categorized broadly into two
categories based on how they rely on the hardware:

1) Local Operators
2) Distributed Operators

The performance of the local operations are mainly bound
by the memory (Disk, RAM and Cache) and CPU, while
distributed operations are additionally bound by the network.
We currently provide the following relational and aggregation
operators.

TABLE I
CYLON RELATIONAL AND AGGREGATION OPERATORS
Operator Description
select (o) Filters out some records based on the

value of one or more columns

Creates a different view of the table by
dropping some of the columns
Applicable on two tables having similar
schemas to retain all the records from
both tables and remove duplicates
Applicable on two tables having similar
schemas to retain only the records that
are present in both tables

Retains all the records of the first table,
while removing the matching records
present in the second table

project ()

union (U)

intersect (N)

difference (—)

join (p<) Combines two tables based on the values
of columns. Cylon supports Left, Right,
Full, Outer and Inner
join modes.

Sort Sorts the records of the table based on a
specified column

Group by Creates multiple tables (groups) based
on a specified criteria

Aggregate Performs a calculation on a set of

values (records) and outputs a single value (record)

Fig. 2. Cylon Distributed Aggregations With C++

int main() {
auto mpi_config = cylon::net::MPIConfig::Make();
auto ctx = cylon::CylonContext::InitDistributed (mpi_config);
cylon::Status status;

std::shared_ptr<Table> input;
status = cylon::FromCSV(ctx, "/tmp/input.csv", input);
CHECK_STATUS (status, "Reading_csvl_failed!")

// Sum operation
std::shared_ptr<cylon::compute::Result> sum;

status = cylon::compute::Sum(input, 1, output);
CHECK_STATUS (status, "Sum_failed!")

// Group-by sum operation
std::shared_ptr<Table> groupby;

status = cylon::GroupBy (input, 0, {1},

{GroupByAggregationOp: : SUM},
groupby) ;

CHECK_STATUS (status, "Sum_failed!")

ctx->Finalize();
return 0;

Fig. 3. Cylon Distributed Aggregations With Python

from pycylon import Table, CylonContext
from pycylon.net import MPIConfig
from pycylon.io import read_csv

mpi_config = MPIConfig()

ctx = CylonContext (config=mpi_config, distributed=True)

tb = read_csv(ctx, "/tmp/input.csv")

# Sum operation
tb_sum = tb.sum(1)

# Group-by sum operation

tb_gby_sum = tb.groupby (0, 1, [AggregationOp.SUM])

ctx.finalize ()

C. Distributed Memory Execution

Cylon applications can be run either in local mode or
distributed mode, where local mode will be contained to a
single node, and distributed mode can be scaled across a
cluster of nodes. When running distributed mode, a Cylon
table defined in one node can be considered a partition of a
dataset that has been distributed across multiple nodes. Thus
when applying most of the operators mentioned in Table I,
Cylon will be internally performing an all-to-all communica-
tion to rearrange the data partitions based on the operator’s
requirements. The current implementation of Cylon uses MPI
at the communication layer, and is capable of using TCP,
remote direct memory access (RDMA) or any other software-
driven or hardware-accelerated transport layer protocol based
on the availability of the resources.

IV. CYLON AGGREGATIONS ARCHITECTURE

Cylon aggregation operations are currently provided by
the compute API. It is broadly divided into two sections:
Aggregate operations and group by followed by aggregate
operations. The following subsections will discuss the ar-
chitecture and design considerations behind these operations.
Figures 2 and 3 shows an example code snippet of C++ and
Python respectively.



Table 1
Columni

Table N
Columnt

Bulk
aggregatio

Element-wise
aggregation

sum, | Intermediate

e sum, | Intermediate
count | fesu

count | result N

Communication ‘ All reduce ‘

sum,
count

sum,
count

Fig. 4. Operation flow of mean aggregation

Conversion

/—%Ar—%r—@%
’:‘

A. Aggregate Operations

As explained in Section III, Cylon employs Apache Arrow
[9] columnar data structure underneath it. A table is partitioned
into multiple shards across distributed processes. A column
of a table may contain multiple chunks of data. We define
an aggregation operation as “a reduction of all values in
a (distributed) column”. Based on this setup, we identify
core components to implement an aggregation operation on
columnar data tables.

o Intermediate and final result definition
o Bulk Reduction

o Element-wise Reduction

o Communication of intermediate results
o Final result conversion

This approach has been widely adopted in the OLAP
columnar database domain (ex: ClickHouse Database [10]).
Additionally, a similar approach has inspired the Apache
Arrow Chunked Array aggregation operations in their Table
API. Figure 4 depicts the operation flow of a mean aggregation.

1) Intermediate and final result definition: We posit that
distributed aggregation operations can be more complex than
a trivial MPI_Allreduce operation. Operations would need
to track multiple intermediate values before arriving at the
global final result. It all depends on the “moment” of the
statistic/operation. For example, to compute the mean (first
moment statistic), the sum and count would have to be tracked
individually for every column chunk in each shard of the
table. For higher moments, such as standard deviation, sum
of squares, sum, and count would need to tracked. These
intermediate results/state would then need to be converted to
the final result. An additional consideration would be the data
types of intermediate results. Hence an aggregation operation
would have to define these attributes.

2) Bulk Reduction: The role of bulk reduction is to aggre-
gate partial array data into an intermediate result/state. Colum-
nar data being available on contiguous memory locations
allows fast and efficient bulk reductions. These operations
benefit from efficient CPU cache and registry usages and are
further optimized from SIMD (Single-Instruction-Multiple-
Data) instructions. Thus it is an obvious choice to enable bulk
aggregation capability, as it will be used to reduce partitioned
data into individual elements of intermediate results.

Bulk aggregations become sub-optimal if the data elements
are randomly distributed in the column. A good example
of such a situation is group by aggregations. These will be
discussed in more detail in Section I'V-B.

Cylon uses Apache Arrow [9] Compute API for bulk
aggregations on chunked arrays. Arrow Compute API supports
optimized aggregation kernels for

3) Element-wise Reduction: Element-wise aggregations
would need to be used when aggregating multiple intermediate
results/states. These also form the basic aggregation function.
In a scattered data environment/row-based data distribution,
element-wise data reduction could be more dominant, as we
see in Twister2 Keyed-Reduce operations [11].

4) Communication of intermediate results: Since the in-
termediate results are distributed across processes, it would
require additional communication operations to arrive at the
final result. These communication operations could be seman-
tically similar to reduce/all-reduce. This would aggregate inter-
mediate results element-wise. Cylon currently uses OpenMPI
[12] as the communication fabric and reduces each element
of the intermediate results individually. Another approach
would be to use a custom MPI_Op that corresponds to the
aforementioned element-wise aggregations.

5) Final result conversion: At the point of returning the
aggregated function, the final result would be calculated.

B. Group By Operations

Group by is a widely used operation in traditional Big
Data analysis. There are multiple approaches for group by
execution, but the main idea is to bring rows together based
on a particular key/index column (one or more) and apply an
aggregation operation on the rows with the same key. This
is semantically equivalent to the Map-Reduce [5] Big Data
execution paradigm. Pivoting is another derivation of group
by operation that has become very popular on tabular data.

Cylon currently supports two approaches for group by
execution: Hash-based and Pipeline-based. Figure 5 depicts
the typical execution flow of group-by operation.

1) Early Aggregation: Early aggregation is a common
technique used in traditional RDBMS databases that could
speed up group by aggregation operations [13]. In a distributed
processing environment, early aggregation helps in reducing
the communication overhead and memory required for inter-
mediate results. This early aggregation is semantically equal
to the element-wise aggregation step from Section IV-A, but
would be operating on multiple rows. Cylon takes advantage
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of this technique for its hash group by implementation, which
is explained in the following section.

2) Indices of Groups: A common approach being used by
frameworks such as Python Pandas [14], Apache Spark [6],
etc., is treating group by as a separate operation which returns
the indices corresponding to each group. The aggregation
function will subsequently be applied for these groups. Similar
to Join operations, indices of groups can be generated by
either using hash-based or sort-based approach [15]. This
effectively allows multiple aggregation operations on the same
groups. Even though this seems like a very intuitive approach,
it could have a performance penalty, especially for columnar
data. Since values will be aggregated for each group, value
columns would be accessed randomly, which could lead to
poor cache performance.

Furthermore, the concept of indices of groups becomes
rather obscure in a distributed table setup. In this case, groups
could well be partitioned across table shards. Tables would
have to be shuffled to bring all the indices to the same process.

Sorting can be further extended to sorting the entire table.
This could benefit columnar data aggregations because the
grouped data will be on consecutive memory locations. Then
the aggregation kernels could call the bulk aggregation on
value column slices. This would be an efficient execution,
provided that there is a sizeable number of records in each
group, but as discussed by Muller et al [16], this leads to higher
maintenance costs which could hinder overall performance
(Refer Section IV-B5).

3) Group by with early aggregations: In traditional SQL,
group by queries are always accompanied by aggregation
operations. As mentioned in the previous section, this allows
early aggregations even while determining groups.

Cylon currently supports this approach with hash-based
grouping. While creating the hash table, the values will be

aggregated into intermediate values and later be written to the
locally grouped table. Since Cylon works on a distributed envi-
ronment, these local results would have to be shuffled amongst
the processes. Then the resultant table will be grouped again
to aggregate the intermediate results of the same groups.

4) Using Local Combiner: The worst-case scenario of the
above-mentioned approach can be asymptotically analyzed as
follows. Let us take a distributed table partitioned across P
processes, with a total N records in G unique groups (G < N).
Then for each process,

1) Local group by (Combiner) = O(N/P)

2) Shuffle communication = O(G) or O(N/P) without

combiner

3) Final local group by = O(G) or O(N/P) without

combiner

From this analysis, it is evident that the ratio N/P : G is very
important. If these values are relatively similar (i.e. there is
less duplication amongst keys), then steps 1 and 3 would take
comparable amounts of time, leading to increased total time
for operation. In such a scenario, dropping the combiner step
could improve the total execution time. Experimental results
to support this scenario are provided in Section V-C.

5) Pipeline Group by: Pipeline Group by is a special case
of group by operations that can be applied on sorted tables.
In the distributed setup, it is sufficient to have the table shards
sorted locally. The term Pipeline Group By seems to have orig-
inated from the Vertica [17] columnar database. As explained
in Section IV-B2, this could make use of bulk aggregation
operations provided that there is sufficient key duplication
(G <<< N/P). Nevertheless, this approach significantly
reduces the memory footprint of the group by operation, and
allows further optimizations using multi-threading.

Cylon also supports this approach. The experimental results
are provided in Section V-D.

V. EXPERIMENTS

We analyzed the strong scaling performance of Cylon for
the following scenarios and compared the performance against
popular Big Data analytics framework Apache Spark [6].
Furthermore we have analyzed the performance of Cylon’s
aggregation implementation on the following aspects.

1) Strong scaling performance comparison between Cylon

vs. Spark on aggregates and group by operations.

2) The effect of group size on the local combiner step

3) Hash group by vs. pipeline group by

4) Overhead comparison between Cylon’s Python and Java

bindings.

A. Setup

The tests were carried out in a cluster with 10 nodes. Each
node is equipped with Intel® Xeon® Platinum 8160 processors.
A node has a total RAM of 255GB and mounted SSDs were
used for data loading. Nodes are connected via Infiniband with
40Gbps bandwidth.

Software Setup: Cylon was built using g++ (GCC) 8.2.0
with OpenMPI 4.0.3 as the distributed runtime. Mpirun was



mapped by nodes and bound sockets. Infiniband was enabled
for MPIL. For each experiment, a maximum of 16 cores from
each node were used, reaching a maximum parallelism of 160.

Apache Spark 2.4.6 (hadoop2.7) pre-built binary was chosen
for this experiment alongside its PySpark release. Apache
Hadoop/HDFS 2.10.0 acted as the distributed file system for
Spark, with all data nodes mounted on SSDs. Both Hadoop
and Spark clusters shared the same 10-node cluster. To match
MPI setup, SPARK_WORKER_CORES was set to 16 and
spark.executor.cores was set to 1. Additionally we also tested
PySpark with spark.sql.execution.arrow.pyspark.enabled op-
tion, which would allow PyArrow underneath PySpark
dataframes.

This notation will be used in the following sections.

e N, Total number of rows in the distributed table

e P, Parallelism/number of partitions

e Np, Rows per partition

o G, Number of unique groups in the dataset (G < V)

Dataset Formats: For strong scaling test cases, CSV files
were generated with two columns (an int_64 as index and a
double as value). The same files were then uploaded to HDFS
for the Spark setup and output counts were checked against
each other to verify the accuracy. Times were recorded only
for the corresponding operation (no data loading time con-
sidered). All numbers are generated using a uniform random
distribution.

B. Scalability

To test the scalability of the aggregation operations, we
varied the parallelism from 1 to 160 while keeping total work
at 200 million rows per table. The results for both aggregation
and group by operations are shown in Figure 6. We have
chosen 1 billion records (N = 1 x 10°) and a G = 0.99 x 10°,
which produces 1.01 average rows per group. This case reflects
the worst-case scenario for group by operations (it has no
effect on aggregations).

1) Aggregation Scaling: We have tested the performance
of calculating the sum of a column. The results are shown in
Figure 6(a). As evident from the graphs, Cylon shows almost
perfect linear scaling as expected. In comparison, Spark scales
much slower. The speed-up of Cylon over Spark increases
from 4x to 27x as the number of processes increases.

2) Group By Scaling: For group by operations, we have
calculated the time spent on group by followed by sum. Group
by operation results are shown in Figure 6(b). Cylon seems
to demonstrate linear strong scaling. This is expected as the
execution becomes increasingly communication-dominant for
higher values of P. These results coincide with the Cylon
C++ performance in our prior publication [8]. In contrast,
Spark seems to plateau earlier than Cylon, leaving a maximum
speedup around 2x at 160 processes.

C. Local Combiner vs. Group Size Group By’s

To assess the effect of group size on the overall perfor-
mance, we have varied the average rows per group from
(0.99)"% ~ 1.01 to 10,000 while keeping N=200 million.

This will effectively change G from 198 x 105 to 20 x 103.
We have considered two cases: P = 64 and P = 128.

As the number of average rows per group increases, the total
time reduces. With the local combiner, this effect is much more
prominent. The speed-up with the combiner changes from 0.5x
to 3-4x. This corresponds to the analysis given in Section
IV-B4. When G = 20 x 103, Np = 1.25 x 105, therefore
having a local combiner significantly reduces the downstream
workloads.

D. Hash Group By vs. Pipeline Group By

Figure 8 depicts hash-based group by vs. pipeline group by
for a locally sorted distributed table with N = 200 million
records. Tests were carried out varying the average number
of rows per group (N/G) for 1, 100, and 10,000. From the
graphs, it is evident that pipeline group by performance is
adversely affected by the lack of work for bulk aggregations
in a group slice. As the number of rows per group increases,
pipeline group by becomes more effective than the hash group
by.

E. Switching between C++, Python & Java

All of the previous experiments were done on various
aspects of the aggregation performance. Since Cylon is engi-
neered to be an integrating approach for all data engineering
applications, it is worthwhile evaluating the overheads while
switching between language bindings. Table II shows the time
ratio for Inner-Join (Sort) for 200 million rows while changing
the number of workers. It is clear that the overheads between
Cylon and its Cython Python bindings and JNI Java bindings
are negligible.

TABLE II
CYLON, PYCYLON Vs. JCYLON
World size | PyCylon/Cylon | JCylon/Cylon
16 1.00 1.07
32 0.99 1.04
64 1.01 1.04
128 1.00 1.01

VI. RELATED WORK

Relational databases, Structured Query Language (SQL),
and disk-based analytics frameworks such as Apache Hadoop
[4] are at the heart of traditional Big Data aggregations.
Considered the first generation of Big Data analytics, Hadoop
revolutionized the industry by introducing the MapReduce
programming model [5]. Apache Spark [6] and Apache Flink
[18] subsequently overtook Hadoop by providing faster user-
friendly APIs. These also benefited from the boost in hardware
advancements that allowed them to perform Big Data process-
ing in-memory.

More recently, Python Pandas Dataframes [14] emerged as
the preferred data analytics abstraction amongst the data sci-
ence and engineering community. Even though Pandas are lim-
ited in performance and scalability, they provide an extremely
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convenient programming environment for data processing.
Programmer usability became so important that frameworks
such as Spark and Flink provided Python wrappers around
their data abstractions. But with Java and Python runtimes
not being inherently compatible with each other, this hindered
their performance. Dask Distributed [19] is a distributed
DataFrame abstraction on Python Pandas, and Modin [20] [21]
generalized the Pandas API. Later, CuDF [22] emerged as a
DataFrame abstraction that could be used for ETL pipelines
on top of GPU hardware.

Aggregations have been a widely studied area in the
database domain for decades. Smith et al [23] formally defined
the fundamentals of aggregation operations. Later Gray et al
[24] comprehensively analyzed aggregation functions and also
introduced a Data Cube operator extending the usual group
by aggregation behavior. Larson et al [13] studied impact on
grouping by early aggregation. More recently, greater focus
has been given to columnar datastores such as Vertica (com-
mercialized version of C-Store) [17], MonetDB, GreenPlum,
ClickHouse [10], etc., for their efficient access patterns in
OLAP query processing. Abadi et al [25] discussed the general
design and implementation of such databases.

VII. CONCLUSION

Big Data analytics and data engineering have experienced
an exponential growth in both research effort and applications.
This has expanded the boundaries of traditional stand-alone
data analytics solutions (databases, analytics frameworks, etc.)
beyond their capabilities. But no framework on its own can
fulfill all these requirements. Hence we believe that there is
an opportunity for a fast, flexible and integrating framework
that could bring all these environments together. Cylon strives
to serve this purpose.

Cylon’s C++ core allows efficient data analytics implemen-
tations, and in this paper we confirmed that data aggregations
can also benefit from the same architecture. It allows data
aggregations to take advantage of both Big Data and high
performance computing domains. Another qualitative require-
ment of data engineering is to write ETL pipelines in popular



languages like Java and Python without compromising on
performance. Offering Cython-based Python APIs for compute
kernels means less overhead across the runtimes and good
scaling [26].

From our experiments, we can confirm that Cylon’s archi-
tecture achieves superior performance and scalability than the
state-of-the-art Big Data systems, and universally integrates
with cross-platform frameworks. It also shows potential for
further improvements.

VIII. FUTURE WORK

Cylon is a project still in its early stages, and we believe
that there is a substantial potential for more performance
and usability improvements. The current compute kernels do
not take into account factors such as NUMA boundaries, in-
cache performance, etc. As the number of processes inside
a node increases, we can expect resource contention for
memory bandwidth and L1/L2 caches. Polychroniou et al
[27] show that these factors play a vital role in sorting and
hashing operations. Furthermore, we believe that the relational
algebraic operations such as joins, groupings, etc. can benefit
from efficient in-place sorting operations.

Currently, Cylon aggregates, group by operations, and their
corresponding communication APIs are rather disjointed, and
we believe that these APIs can be combined into a more
uniform distributed computing API. We are also evaluating the
possibility of using UCX [28] as another communication fab-
ric. While developing Twister2 [11], we have experienced that
UCX is an effective communication abstraction for distributed
systems. Additionally we believe compute kernels should be
able to make use of specialized computational subsystems such
as GPUs and CUDA compute routines, FPGAs, etc., and we
believe that Cylon’s architecture supports such integration.

We agree with Petersohn et al’s [21] suggestion that con-
forming to the Pandas dataframe API is an important feature
for data engineering tools. We are currently developing a
dataframe API based on Modin, and as such Cylon would
be another distributed back-end for Modin. To expand our
compute kernels, we are currently focusing on supporting
distributed computing on array data structures. In supporting
diverse data formats, we will be integrating HDFS, Parquet,
GPFS/Lustre data loading and data processing in a future
software release.
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