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Abstract—Data-intensive applications impact many domains,
and their steadily increasing size and complexity demands high-
performance, highly usable environments. We integrate a set of
ideas developed in various data science and data engineering
frameworks. They employ a set of operators on specific data
abstractions that include vectors, matrices, tensors, graphs, and
tables. Our key concepts are inspired from systems like MPI, HPF
(High-Performance Fortran), NumPy, Pandas, Spark, Modin,
PyTorch, TensorFlow, RAPIDS(NVIDIA), and OneAPI (Intel).
Further, it is crucial to support different languages in everyday
use in the Big Data arena, including Python, R, C++, and Java.
We note the importance of Apache Arrow and Parquet for en-
abling language agnostic high performance and interoperability.
In this paper, we propose High-Performance Tensors, Matrices
and Tables (HPTMT), an operator-based architecture for data-
intensive applications, and identify the fundamental principles
needed for performance and usability success. We illustrate
these principles by a discussion of examples using our software
environments, Cylon and Twister2 that embody HPTMT.

Index Terms—Data intensive applications, Operators, Vectors,
Matrices, Tensors, Graphs, Tables, DataFrames, HPC

I. INTRODUCTION

Data-intensive applications have evolved rapidly over the
last two decades, and are now being widely used in industry
and scientific research. Large-scale data-intensive applications
became mainstream with the rise of the map-reduce program-
ming paradigm. However, the data engineering community has
come a long way in integrating the idea of map-reduce. There
is a broader understanding on the data engineering application
classes, and specialized frameworks that serve them. Modern
systems can crunch data and learn from them using sophis-
ticated algorithms that even make use of custom hardware
solutions. We have seen different programming models and
APIs being developed to make it easier to program data-
intensive applications.

Due to the diverse nature of data-intensive applications, it
is hard for one framework to support all classes of prob-
lems efficiently. For example, we may need to load data,
curate them, utilize machine learning algorithms, conduct

post-processing, and perform visualizations, all as parts of
single application pipeline. Such an integration is done either
as a custom-developed single program or by developing the
pieces separately and combining them into a data-intensive
application workflow. The complexities are vast, and having
interoperable systems enhances usability significantly.

The various application classes require tailored abstract
concepts. Vectors, matrices, tables, graphs, and tensors are
widely used examples in data-intensive computations. For
applications to benefit from these abstractions efficiently, oper-
ations around them must be implemented to provide solutions
for general-purpose and problem-specific domains. Among
these operations, matrix multiplication, vector addition, and
table joins are some standard operations. We can represent
these abstract objects in the main memory via data structures;
vectors, matrices, and tensors are shown as arrays, graphs are
represented either using matrices or as edge lists, and tables
are configured as a set of columns or rows. One example is
Apache Spark [1], which has a table abstraction originating
from relational algebra. Deep learning systems such as Py-
Torch [2] are based on tensor abstractions originating from
linear algebra.

When developing applications with modern frameworks, we
often resort to data abstractions and their operators that may
not fit the original problem because required data abstractions
are not supported. This is due to lack of cohesiveness amongst
systems and in-turn leaves a lot of performance on the table,
even though they are capable of doing a top-notch job at
their intended purpose. Ideally we would like different data
abstractions and operators to work together to solve problems.
In order to address this issue, we will analyze the fundamental
designs of these systems while focusing on the elementary
operators they provide and how they can work hand-in-hand.

We introduce the HPTMT(High Performance Tensors, Ma-
trices and Tables) architecture in this paper, which defines an
operator-centric interoperable design for data-intensive appli-
cations. The authors have developed two frameworks called



Cylon [3] and Twister2 [4] aimed at developing data-intensive
applications. We will take these as examples to showcase
the importance of designing operators and how the various
systems implementing them can work together according to
HPTMT architecture.

The rest of the paper is organized as follows. Section II
gives a high-level introduction and motivation for HPTMT.
Section III describes arrays and distributed operators around
them, while Section IV focuses on tables. The next two sec-
tions, V and VI, talk about programming models and execution
models around these data structures. Section VII presents the
operator-based architecture, and Section VIII discusses how
this architecture is realized in Twister2 and Cylon.

II. HPTMT ARCHITECTURE

One of the most successful approaches to parallel computing
is based on the use of runtime libraries of well-implemented
parallel operations. This was for example a key part of High-
Performance Fortran HPF [5] and related parallel environ-
ments (HPJava [6], HPC++ [7], Chapel [8], Fortress [9],
X10 [10], Habanero-Java [11]). Such systems had limited
success; maybe because the HPC community did not define
sufficient operators to cover the sophisticated computational
science simulations largely targeted by those languages with
typically sparse or dense matrix operators. However data-
intensive applications have used similar ideas with striking
success.

Perhaps, the most dramatic event was the introduction of
MapReduce [12] some 15 years ago, and its implementation in
Hadoop which enabled parallel databases as in Apache Hive.
MapReduce adds Group-By and key-value pairs to the Reduce
operation common in the simulation applications of the previ-
ous HPF family. The powerful yet simple MapReduce opera-
tion was expanded in Big Data systems especially through the
operators of Databases (union, join, etc.), Pandas (we identify
244 dataframe operators out of 4782 Pandas methods), and
Spark, Flink [13], Twister2 ( 70). Deep Learning environments
such as PyTorch, TensorFlow [14] (with Keras [15]) added
further (over 700) operators to build deep learning components
and execution.

The powerful array libraries of Numpy [16] are built on a
large (at least 1085) set of array operations used in the original
scientific simulation applications. Oversimplifying HPF as
built around matrix or array operators, we suggest today that
the natural approach is HPTMT or High-Performance Tables,
Matrices, and Tensors. Operator based methods are not just
used to support parallelism but have several other useful
capabilities

o Allow interpreted languages to be efficient as overhead

is amortized over the execution of a (typically large)
operation

e Support mixed language environments where invoking

language (e.g. Python) is distinct from the language that
implements the operator (e.g. C++)

¢ Support proxy models where user programs in an envi-

ronment that runs not just in a different language but

also on a different computing system from the executing
operators. This includes the important case where the
execution system includes GPUs and other accelerators.

e Support excellent performance even in non-parallel en-
vironments. This is the case for Numpy and Pandas
operators.

HPTMT 1is supported by many libraries including those
like ScaLAPACK [17] (320 functions with a factor 4 more
counting different precisions) and its follow-ons such as In-
tel’s MKL (oneAPI and Data Parallel C++) [18] originally
motivated by HPF simulation goals but equally important for
Big Data. The NVIDIA RAPIDS [19] project is building a
GPU library covering much of HPTMT requirements as is
our Cylon project for CPUs. Modin [20] is using Dask [21]
and Ray [22] for parallel Pandas operators.

Recently Apache Arrow [23] and Parquet [24] have been
developed providing important tools supporting HPTMT. They
provide efficient language agnostic column storage for Tables
and Tensors that allows vectorization for efficiency and perfor-
mance. Note that distributed parallel computing performance is
typically achieved by decomposing the rows of a table across
multiple processors. Then within a processor, columns can be
vectorized. This of course requires large amount of data so
that each processor has a big-enough workset to processes
efficiently. It is a well-established principle that the problem
needs to be large enough for the success of parallel comput-
ing [25], which the latest Big Data trends also follow. Note that
in scientific computing, the most effective parallel algorithms
use block (i.e. row and column) decompositions to minimize
communication/compute ratios. Such block decompositions
can be used in Big Data [26] (i.e. table data structures), but
could be less natural due to the heterogeneous data within it.

For Big Data problems, individual operators are sufficiently
computationally intensive that one can consider the basic job
components as parallel operator invocations. Any given prob-
lem typically involves the composition of multiple operators
into an analytics pipeline or more complex topology. Each
node of the workflow may run in parallel. This can be effi-
ciently and elegantly implemented using workflow (Parsl [27],
Swift [28], Pegasus [29], Argo [30], Kubeflow [31], Kuber-
netes [32]) or dataflow (Spark, Flink, Twister2) preserving the
parallelism of HPTMT.

III. ARRAYS

Arrays are a fundamental data structure of scientific comput-
ing, machine learning, and deep learning applications because
they represent vectors, matrices, and tensors. An array consists
of elements from the same data type, and an index can address
each value. An array is stored in contiguous memory of a
computer. The size of an element and the index can efficiently
compute the memory location of an array element. A single
value array of a type is equivalent to a scalar of that type. As
such, arrays can represent all primitive types. Variable width
data types such as Strings would require a composite arrays
that represent data and offsets/ strides.



TABLE I
ARRAY-BASED DISTRIBUTED OPERATIONS AS SPECIFIED BY MPI
Operation Description
Broadcast Broadcast an array from one process to many other
processes.
Gather/AllGather | Collects arrays from different processes and creates

a larger array in a single process or many processes.
Redistributes the parts of an array to different pro-
cesses.

Element-wise reduction of arrays. Popular operations
include SUM, MIN, MAX, PROD.

Scatter/AllIToAll

Reduce/AllReduce

A. Vectors and Matrices

We can represent a vector directly using an array. A matrix
is a 2-dimensional grid, and each value can be addressed
using a row index and a column index. We need to use
2-dimensional arrays or 1-dimensional arrays to represent a
matrix. We can store a matrix in row-major format or column-
major format. In row-major format, the values of a row are in
the contiguous memory of the array. In contrast, the column
values are found in the array’s contiguous memory with the
column-major format.. These formats are designed to match
the access patterns of matrices when doing calculations.

1) Sparse Matrices: Sparse matrices are defined as matrices
where the majority of elements are zero. To store these as
regular dense matrices wastes both memory and CPU cycles
during computations. As an alternative, there are efficient lay-
outs such as Compressed Sparse Column (CSC), Compressed
Sparse Row (CSR), and Doubly Compressed Sparse Column
(DCSC) for sparse matrices. All these formats use arrays to
store the matrix in memory.

B. Tensor

A tensor can be interpreted of as a more generic view
on a collection scalars or vectors or both to represent a
mathematical model or data structure. A matrix is also a
tensor by definition, and it is the most generic abstraction for
mathematical computations. Similar to matrices, tensors can
be stored according to the access patterns using arrays.

C. Operations

Distributed operations around arrays are defined in the MPI
(Message Passing Interface) [33] standard as collective oper-
ations. The table I describes some of these operations, which
are derived from common communication patterns involved
when dealing with vectors and matrices in the form of arrays.
They are optimized to work on thousands of computers using
data transfer algorithms [34] that can minimize the latency and
utilize the available network bandwidth to the fullest.

IV. TABLES

A table is an ordered arrangement of data into a 2-
dimensional rectangular grid with rows and columns. A single
column of a table has data of the same type, while different
columns can have different data types (heterogeneous data).

A. Tables in Memory

We can store table data in main memory using a simple
technique such as a list of records or compact formats that
keep the values in contiguous memory. Compact memory lay-
outs can store tables similar to row-major and column-major
representations in matrices. Having a list of records can lead
to inefficient use of memory and degrade the performance of
applications due to cache misses, TLB (Translation Lookaside
Buffer) being misused, and serialization/deserialization costs.

In a column-major representation, the table columns are
stored in contiguous memory. Table representations are com-
plex compared to matrices because they can have variable-
length data. In such cases, length information needs to be
stored along with the columns. Thus, sparsity can be embedded
or integrated into separate arrays. Also, information about null
values needs to be stored in a table. One benefit of a column-
major representation is that the values of the column are of
the same data type. In a row-major definition, the table rows
can be stored in contiguous memory. This means that different
types of values are stored in contiguous memory with different
bit widths. So we need to keep track of lengths and NULL
values.

B. Operations

We can use row-based partitioning, column-based partition-
ing, or a hybrid version to divide table data into multiple
processes. Most of the time, data processing systems work
on tables distributed with row-based partitioning. Relational
algebra defines five base operations around tables described in
Table II. Table III lists some commonly used auxiliary opera-
tions around tables. Popular table abstractions like Pandas [35]
extend these to hundreds of operators.

Figure 1 shows two tables in two processes and a distributed
union operation that removes duplicates. This operation needs
to redistribute the records of the tables so that the identical
records go to the same table. Such redistribution is common
in table-based distributed operations and is commonly referred
to as shuffle operation.

1) Shuffle: Figure 2 displays a shuffle operation applied to
four tables in four processes. The shuffle is done on attribute
K. Shuffle is similar to the array AllToAll operation, which
is equivalent to every process scattering values to other pro-
cesses. Shuffle is similar in that it scatters records of a table to
every other process. What makes these two operations different
are the data structure, its representation in memory, and how
we select which values are scattered to which processes. In
AllToAll, scatter occurs by a range of indexes. In tables, the
shuffle takes place based on a set of column values.

Large-scale data operations require careful use of memory
and optimizations to scale to a large number of cores [36].
Because of the nature of these data structures like tables and
arrays, we can use one structure to represent another. For
example, we can have a table to represent a matrix. Also,
we can have a set of arrays to represent a table. Therefore, we
can sometimes use a programming API (data structures and
operators) developed for a specific set of problems, to solve
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Fig. 2. Shuffle of 4 tables in 4 processes

problems in unrelated/ unintended domains. In practice, this
leads to unnecessary inefficiencies in execution. For instance,
say we have a table abstraction with GroupBy and aggregate
operations implemented. Now we want to get AllReduce-sum
semantics of a column in this table. We can do so by assigning
a common key to each value in columns and doing a GroupBy
on the key, followed by an aggregate operation. However,
this is not an efficient method because it uses an additional
column and a shuffle operation, which is more costly than the
communication required for an AllReduce operation.

Arrays and tables have their own distributed operations. As
seen in previous sections, the distributed operations on tables
originate from relational algebra, and those on arrays derived
to support linear algebra.

V. PROGRAMMING MODELS AND OPERATORS

Data-intensive applications use both implicit and explicit
parallel programming models. In an explicit model, the user

TABLE II
FUNDAMENTAL TABLE OPERATIONS

Operator Description

Select Filters out some records based on the & value of one or
more columns.

Project Creates a different view of the table by dropping some
of the columns.

Union Applicable on two tables having similar schemas to keep
all the records from both tables and remove duplicates.

Cartesian Applicable on two tables having similar schemas to keep

Product only the records that are present in both tables.

Difference Retains all the records of the first table, while removing
the matching records present in the second table.

TABLE I
AUXILIARY TABLE OPERATIONS

Operator Description

Intersect Applicable on two tables having similar schemas to keep
only the records that are present in both tables.

Join Combines two tables based on the values of columns.
Includes variations Left, Right, Full, Outer, and Inner
joins.

OrderBy Sorts the records of the table based on a specified column.

Aggregate Performs a calculation on a set of values (records) and
outputs a single value (Record). Aggregations include
summation and multiplication.

GroupBy Groups the data using the given columns; GroupBy is
usually followed by aggregate operations.

is aware of the parallel nature of the program, writes the ap-
plication according to a local view, and synchronizes the data
distributed in multiple computers using distributed operations.
MPI-based programming is the most popular explicit model.
Most data-intensive applications use an implicit parallel model
with a distributed data abstraction. These models have simi-
larities to partitioned global address space models [8], [37].

A. Local Data Model

In this model, the user programs a parallel process or task.
Here, users only deal with the local data, and when they
need to synchronize it with other processes, they invoke a
distributed operator.

// every process loads its own data

LocalData A = readFiles|()

// apply local operators

LocalData B = A.filter (Function filter)

// sort is a distributed operator, the data

// of B in the parallel processes will be sorted
LocalData C = sort (B)

// save C to disk

C.save ()

Fig. 3. Eager execution

B. Global Data Model

In the distributed data API, the user defines an abstract
object that acts as a global view for the data distributed across
the cluster. This object represents a dataset such as a table
or an array. The user applies operations to this global data
that produces more distributed data objects. This is an implicit



parallel programming model that has been present for a while
in various forms under the general umbrella of partitioned
global address space (PGAS) programming model and is used
by data-intensive frameworks extensively. Depending on the
amount of data processed, we can have an eager model or a
dataflow model using external storage for computations.

1) Eager Model: With an eager model, the operators
work on in-memory data and can be executed immediately.
Combining SPMD (Single Program Multiple Data)-style user
code and distributed data-based API for the data structures,
we can create powerful and efficient APIs for data-intensive
applications. We depict the code in Figure 4. We assume ‘A’
is representing a partitioned table in multiple computers. Now
‘B’ and ‘C’ are also partitioned tables.

// load the data as partitions on

// multiple processes

DistributedData A = readFiles/()

// user supplies a filter function
DistributedbData B = A.filter (Function filter)
// sort is a distributed operator

// that requires network communication
DistributedData C = B.sort ()

C.save ()

Fig. 4. In-memory API

This code will run as SPMD code, but the data structures
and operators can reduce the programmer’s burden by provid-
ing a global data structure. The above code uses the distributed
memory model with no threads.

2) DataFlow Model: Data-intensive applications constantly
work with datasets that do not fit into the available random
access memory of computing clusters. To work with large
datasets, we need to support streaming computations that
utilize external storage. The previous API with eager execution
is not suitable here, and we can illustrate this with an example
(see Figure 5). Here we need to save data multiple times to
the disk to execute the program.

// A is a large dataset, so we need to
// store it in the disk

DistributedData A = readFiles/()

// B is still large, so we need to store
// B in the disk

DistributedData B = A.filter (Function filter)
// to sort B, we need to use disk and

// then store C in disk

DistributedData C = B.sort ()

// save C to disk

C.save ()

Fig. 5. Eager execution

We can avoid such extensive use of external storage by exe-
cuting the above program as a single graph with data streaming
through it piece by piece. This is called the dataflow model. In
this model, computations are data-driven (event-driven). The
sources produce data, and this data activates the next connected
computation. The middle nodes can produce more data until

they reach a sink node without an output. The links represent
distributed operators that carry data between nodes that can
be within the same process or in different processes across
machines. There are usually constraints applied to nodes that
force them to be scheduled into computers in separate ways
depending on the framework and the application.

The functionality of links depends on the operators and the
data abstractions they represent. Each user-defined function
runs on its own program scope without access to any state
about other tasks. The only way to communicate between
dataflow nodes is by messaging, as they can run in various
places. This model is adopted by popular data processing
engines such as Spark and Flink [13].

VI. EXECUTION

Many parallel programs are instances of a single program
running multiple instances working on different data, or mul-
tiple programs doing the same. This is called single program
multiple data (SPMD) and multiple programs multiple data
(MPMD) style parallel programs. SPMD programs are popular
in batch programs where the same task instances (program) are
executed in parallel processes simultaneously. For example,
Hadoop map-reduce [38] programs are executed as SPMD
programs where the map tasks are executed first, and then
the reduce tasks are executed in parallel. MPMD programs
are used in streaming applications and pipeline parallel batch
programs. In an MPMD program, different tasks run on
separate parallel processes. Apache Storm [39] and Flink run
streaming programs in this style.

SPMD Parallel Program

o '__ " d

=] y  Operation
Worker 0

MPMD Parallel Program

X
a

Distributed
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¥ R

}®
() o)

Worker 1

Worker 0 Worker 1

Fig. 6. SPMD and MPMD Programs

A. Memory Models

We can further divide parallel programs according to how
parallel tasks share data. Here we have shared memory,
distributed memory, and hybrid memory execution models.
In a shared memory model, parallel instances of the program
share the same memory address space. This model only allows
parallel programs to run in a single computer that has many
CPU cores. In a distributed memory model, every instance
of the parallel program is executed on an isolated memory
such as its own process. They can only access the data with
processes using messaging. In hybrid memory model, some
instances of parallel processes are run in the shared memory
model. These groups of parallel instances need messaging to
share data with other such groups.



B. Loosely Synchronous and Asynchronous Execution

We can also execute parallel applications in a loosely
synchronous way or asynchronously. The loosely synchronous
execution as shown in Figure 7 assumes all the tasks are
executing concurrently, and the processes synchronize with
each other by exchanging messages at certain points. The
sections of code between communication synchronizations
execute independently from other parallel processes.

In asynchronous execution, as shown in Figure 8, the tasks
are decoupled in time. When a task sends a message, we can
assume it is stored in a queue. Once the receiving task is ready,
it picks up the message. This allows more flexible execution
of the tasks independent of the programming model, but often
needs a central server as a facilitator that notifies the receivers
about pending messages. Also, storing a message, notifying
the receiver about the message, and picking it up creates a
middle step that can reduce the performance. Asynchronous
execution has parallels to the preemptive scheduling we see
in operating systems where it tries to simultaneously progress
multiple programs to increase the responsiveness.

The asynchronous execution described here is an imple-
mentation detail because the synchronization comes from
the operator. For example, in a distributed join operation, a
single process requires data from all the other processes. So
whether we insert messages into a queue or not, the program
cannot continue until the operation is completed by receiving
messages from other processes.

P1 P2 P3 P4
O Compute
D Communicate

Fig. 7. Loosely Synchronous Execution

Time

P4
Time P1 P2

O Compute

Fig. 8. Asynchronous Execution

VII. HPTMT ARCHITECTURE PRINCIPALS

We define HPTMT as an architecture where any combina-
tion of loosely synchronous operators built around different

data abstractions working together to develop data-intensive
applications. A high-level view of the architecture is shown in
Figure 9, where dataflow operators and eager operators work
together in a single parallel program.

Table o ° DataFlow
Array i Operator
Graph Graphs
Table

iy | () o,
Graph

Worker 0 Worker 1

Fig. 9. Operator Architecture for Data-Intensive Applications

In general, we can categorize operators depending on
whether they are designed to run on MPMD or SPMD
executions. This is shown in Figure 10. Here SPMD-style
programs can use dataflow-style operators for programs that
demand external memory, or eager operators for applications
that run in memory. MPMD-style operators tend to be dataflow
operators because they are used in streaming and pipeline

parallel programs.
SPMD MPMD
Operators Operators
A4
Eager
Operators

Dataflow
Operators

Machine Learning

Deep Learning

In-memory Data @

Analytics
Streaming Data
Pipeline Parallel

Dataflow
Operators

External
Memory

Batch Big Data
Frameworks

Fig. 10. Operators with SPMD and MPMD programs

A. Dataflow and Eager Operators

In general, a dataflow operator needs to take input piece-by-
piece and produce output the same way. It can also take input
at once and produce output individually, or take input piece-
by-piece and produce output as a single object as well. This
means it needs to be a non-blocking operator. Furthermore,
the operators need to determine when to terminate by using a
termination algorithm because inputs are not coordinated. If it
is a streaming application, the operator may not terminate and
continue consuming and producing data. Dataflow operators
can use external storage to keep the intermediate data in order
to do operations that cannot fit into the memory.

Eager operators work on in-memory data by taking input
data at once and producing output all at once. This is the
approach taken by operators in MPI. They can be deterministic
in terms of execution because only one data input is given and
one output is produced.



B. SPMD and MPMD Operators

In an SPMD-style program, the same processes participate
in the operators as data producers and receivers. This can
simplify the operator interfaces. For example, the collective
operators in MPI standard are implemented in this fashion.

In an MPMD-style program, the operators can have data
producers and receivers in different processes. This is a more
general form of an operator, as it can represent SPMD-style
operators as well. Twister:Net [40] is one such MPMD-style
operator library. Whether it is SPMD or MPMD, we can have
eager style operators or dataflow operators. Streaming systems
are where we primarily see MPMD-style operators.

C. Operator Principles

Whether it is a dataflow operator or an eager operator,
HPTMT architecture identifies several design principles for
them to work together in different environments.

o Multiple data abstractions and operators - Discourage the
use of data structures and operators suitable for one class
of problems to be used in another class of problems.
i.e. Do not use table operators for a problem that needs
arrays.

« Efficient Loosely Synchronous Execution - In an asyn-
chronous framework, operators and the scheduler are
coupled. In such situations we may need to develop
operators specifically targeting the framework, which is
contrary to the HPTMT goals.

« Independence of the parallel execution environment - A
parallel environment manages the processes and various
resources required by operators, such as the network.
If the implementation of operators is coupled to the
execution environment, we can only use the operators
specifically designed for it. We see this design in MPI-
based operators where collectives are coupled to the MPI
implementation’s parallel process management. Frame-
works such as UCX [41] are in the process of developing
MPI-equivalent collective operators for arrays without
process management. In other words we should be able
to bootstrap operator implementation on various parallel
environments.

o Same operator on different hardware - The same operator
can be implemented on GPUs, CPUs or FPGA (Field
Programmable Gate Arrays). Also, they should be able
to use different networking technologies such as Ethernet
and InfiniBand.

In some situations, we can get around certain design
principles and make operators work together. For example,
we can use MPI primitive based operators on different data
abstractions as long as we are running within an MPI execution
environment. So it partially satisfies the HPTMT requirements.

The general architecture of distributed operators is shown
in Figure 11. At the bottom are the networking hardware
and various software libraries that abstract out them. Then
we have different execution units such as CPUs and GPUs.
These are also abstracted by various programming APIs. On

DataFlow, Eager

Operators SPMD, MPMD

Data Abstractions Vector, Matrix, Tensor, Table

CUDA, Vectorization, Threads
CPU, GPU, FPGA

UCX, Gloo, MPI, NCCL
Ethernet, InfiniBand

Execution

Network

Fig. 11. Distributed operator implementation layers

top of these we have our data structures in the memory defined
according to various formats. We define the distributed and
local operators on these data structures using the various
execution and networking hardware.

D. Workflows

A workflow is a sequence of tasks connected by data
dependencies. Given such a set of tasks, a workflow system
orchestrates the execution of the tasks in the available re-
sources preserving the data dependencies. Workflow systems
for scientific computing applications [42] have been around for
some time, with prominent scientific workflow systems such
as Kepler [43] and Pegasus [29] leading the way. In addition,
there are data-intensive application-specific workflow systems
such as Kubeflow and Apache Airflow.

Workflow systems provide mechanisms for specific applica-
tions using domain-specific languages (DSLs) as well as using
graphical user interfaces. Furthermore, we can use general-
purpose programming languages to specify workflows as seen
in Python-based systems such as Parsl [27] and Ray-Project [].

It is important to make the distinction between tasks of a
parallel program and tasks of a workflow. A workflow task
system is usually an application such as a machine learning
algorithm. This algorithm may need to run on multiple com-
puters, and it might run internally as a set of tasks. These inter-
nal tasks to the machine learning algorithm are fine-grained
and usually developed using the programming methods we
described earlier. It is not efficient to use workflows for finer-
grained tasks because of the central coordination.

1) Remote Execution: Remote execution is a form of
workflow adopted by current data systems. With this model,
a data-intensive program is created at a central server and
submitted to the cluster to execute. We believe having a clean
separation between programs and workflow is important for
the inseparability of frameworks. Mixing both can hinder
development and make it difficult for programmers to think
about applications.

E. Separation of Concerns

Separation of concerns is a design principle that states we
should separate a program into distinct sections that address
specific concerns. For example, from a parallel computing
perspective, running computations on a cluster is a separate
concern better addressed by a workflow engine designed
precisely for that task. Developing and running a parallel ap-
plication is another task that should be handled by frameworks



suited for those tasks. The remote execution methods adopted
by current programs combine these two aspects into a single
program.

Going by these concerns, we propose operator-based data-
intensive applications orchestrated by a workflow engine as the
overall architecture of data intensive applications as shown in
Figure 12.

Operator Based
Data Intensive
Application

Workflow Task

Workflow Engine
Fault Tolerence

Operator Based
Data Intensive
Application

Orchestration
of Operator-
based
Programs

Workflow Task

Fig. 12. Workflow for orchestrating operator-based data-intensive applications

We can combine distributed operator-based parallel pro-
grams with workflow engines to create rich data-intensive
applications. Aspects such as fault handling can be moved
to the workflow level to keep a balance between performance
and fault tolerance overheads.

F. Fault Tolerance

Handling faults is an important aspect of large-scale data-
intensive applications. Modern hardware is becoming increas-
ingly reliable, and the chances of hardware failure during a
computation are decreasing. But for applications that execute
over a longer duration, handling hardware and software failure
is still important. Streaming applications and long-running
batch applications are some examples.

Handling faults at the operator level is inefficient as it adds
additional synchronization to communication steps. Because of
this, we can always handle the faults outside of the operator
code. If an operator fails, we can go back to the previous
state before starting the operator. But operators need to detect
failures and notify the applications to handle them gracefully.

VIII. FRAMEWORKS

Let us look at Twister2 and Cylon, which are frameworks
with DataFlow and eager operator APIs for data-intensive ap-
plications. We take these as examples for the proposed HPTMT
architecture in combination with array based operators of MPI.

A. Twister2

Twister2 [4] is a data analytics framework for both batch
and stream processing. The goal of Twister2 is to provide users
with performance comparable to HPC systems while exposing
a user-friendly dataflow abstraction for application develop-
ment. TSet [44] is the distributed data abstraction of Twister2.
Twister2 provides a table abstraction and array abstraction with
DataFlow operators. This allows Twister2 to compute using
external memory efficiently for problems that do not fit into
the memory. Twister2 operators are implemented as MPMD
and can support both streaming and batch applications.

Local and distributed operations can transform or combine
TSets to produce new TSets with different schemas. The
simplest model of TSet is modeling a distributed primitive
array (series). At the same time, this can be extended to
represent a table by making every element of an array a
composite object, as shown in Figure 13. Although the worker
level parallelism of Twister2 is set to four at line 5, TSet
level parallelism can even be a different value since Twister2
internally models the dataflow as a task graph and evenly
distributes tasks over the cluster to balance the load.

As shown in line 28, once the data transformation is
performed, TSets can be converted to a different data format
like NumPy such that it can feed to a different library to
perform further processing. If Twister2 processes are boot-
strapped using an MPI implementation, intermediate data can
be directly processed using MPI APIL

1 from mpidpy import MPI

2 import numpy as np

3 from twister2 import Twister2Environment

4

5 env = Twister2Environment (resources=[{"cpu": 4,
6 "ram": 4096, "instances": 4}])

7 elass PersonSource (SourceFunc) :

8 def next (self):

9 # generate person tuple

10 return ["id", "name", "address"]

11 class VaccinationSource (SourceFunc) :

12 def next (self):

13 # generate vaccination info. tuple

14 return ["person_id", "doses"]

15 def join_logic(student, result, ctx):

16 return student["id"] == result["person_id"]
17 and result["doses"] == 2

18

19 people = env.create_source (PersonSource (),

20 parallelism = 10)

21 vaccination = env.create_source (
VaccinationSource (),

22 parallelism = 10)

23 # finding people who have received two doses.

24 # this involves entire population, might

25 # spill to the disk

26 fully_vaccinated = people.join(vaccination,

27 join_type=INNER, on=join_logic)

28 people_ids_split = fully_vaccinated.select ("id")
. toNumpy ()

29

30 # switching to use mpi directly
31 this_worker_total = people_ids_split.size
32 global_total = MPI.COMM_WORLD.allreduce (total,

op=MP1I.SUM)

33 people_ids = numpy.zeros (global_total, dtype=np.
integer)

34 MPI.COMM_WORLD.allgather (people_ids_split,
people_ids)

35 env.finalize()

Fig. 13. Twister2 TSet on MPI

1) Multidimensional Scaling: Multidimensional scaling
(MDS) is a valuable tool in data scientists toolbox. Authors
have previously developed an MPI based MDS algorithm [45]—
[47] that can scale to large number of cores. The MDS algo-
rithm expects a distance matrix and we need to calculate this
matrix from an input dataset which can be large. This distance



matrix is partitioned row-wise and feed into the algorithm.
We developed an application that combines the MPI based
MDS algorithm and Twister2 based data processing to create
the partitioned distance matrix as shown in Figure 14. This
program runs executing table operators for data prepossessing
and matrix operators for MDS algorithm. Further, Figure 15
shows the strong scaling performance of MDS algorithm (only
the algorithm) on varying number of nodes with 32000 points.
Spark and Flink implementations of the MDS algorithm are
developed on their table abstractions and MPI version is
developed with the array abstractions and operators.

Input Large
Dataset
. 1. Read the data
Twister2 2. Curate the data
Dataflow o
o 3. Create partitions of
peratos

distance matrix

MDS Algorithm
MPI Operators

Fig. 14. Dataflow operators to prepossess data and MPI operators for Matrix
manipulations in MDS algorithm.
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Fig. 15. MDS execution time with 32000 points on varying number of nodes.
Each node runs 20 parallel tasks.

B. Cylon

Cylon [3], [48] provides a distributed memory DataFrame
API on Python for processing data using a tabular format.
Unlike existing state-of-the-art data engineering tools written
purely in Python, Cylon adopts high performance compute
kernels in C++, with an in-memory table representation. Cylon
uses the Apache Arrow memory specification for storing
table data in the memory. It can be deployed with MPI for
distributed memory computations processing large datasets in
HPC clusters.

Operators in Cylon are based on relational algebra and
closely resemble the operators in Pandas DataFrame to provide
a uniform experience for the user. They are implemented as
eager operators. The user can program with a global view of
data by applying operations to them. Also, they can convert the
data to local parallel processes and do in-memory operations as
well. Cylon programs are SPMD-style programs and operators

Join time. Each worker has 2 tables with 40 million Records

64 128
Workers

Fig. 16. Cylon join operator. Each worker is assigned two tables with 40
million records each. Each table has two 64bit integers columns.

are designed to work in that fashion. Figure 16 shows how
Cylon Join operator can scale to large number of cores with
increased load without sacrificing the performance. This test
was done on a cluster with 8 nodes each with two Intel(R)
Xeon(R) Platinum 8160 CPUs and 256GB of memory.

In Figure 17, transformed data can directly pipe to a
different framework like PyTorch [49] to train ML/DL models
or extract more valuable insights from the data. Line 18 of
Figure 17 transforms Cylon DataFrame into a NumPy array.
Similarly, Cylon can convert DataFrames to multiple other
data formats, including Pandas DataFrames, Arrow Tables,
and even copy/move to a different device such as GPUs.
Cylon tries to handle such transformations as efficiently as
possible by avoiding additional data copies or wasting CPU
cycles solely for data format transformation. Cylon owes this
capability to its high performance core written in C++ and the
columnar data representation it internally uses to hold data
in memory. All these capabilities integrate Cylon operators
seamlessly with existing frameworks and libraries without
compromising the performance or adding additional memory
pressure.

When Cylon processes are bootstrapped with an MPI im-
plementation, the application gets all the capabilities of the
underlying MPI implementation, including access to the BSP-
style collective communication API. As shown in line 39,
the programmer can use AllReduce operation of MPI to
synchronize the model across the distributed set of workers. In
addition to writing such custom code to handle synchroniza-
tion, if the integrated library has the native capability to use
MPI (PyTorch, Horovod [50], TensorFlow [51], Keras [52]
etc.), the programmer can use such capabilities since the
process (Cylon Worker) already belongs to an MPI world.
In addition, NVIDIA NCCL [53] provides a BSP mode of
execution for model synchronization at scale for GPU devices
for accelerated deep learning. Functionality in NCCL is similar
to MPIL. Distributed interfaces like that of PyTorch have been
specifically designed to provide a unified interface for ac-
celerated deep learning on various accelerators. Additionally,
Horovod also extends to GPU-based AllReduce for deep
learning models. Thus Cylon can be seamlessly integrated not
only for CPU-based MPI model synchronization, but GPU-



based model synchronization as well.

import numpy as np
2 from mpidpy import MPI
3 from pycylon import DataFrame,
CylonEnv
from pycylon.net import MPIConfig

read_csv,

env = CylonEnv (config=MPIConfig())

4
5
6 # preprocessing data using Cylon
7
8 # load people

9

people = read_csv("people.csv", slice=True, env=
env) # [id, severity]
10 # load vitals
11 vitals = read_csv("vitals.csv", slice=True, env=

env) # [id, type, value]

12 # consider only temperature

13 temp_of_people = vitals.where(vitals["type"] ==
"TEMP")

14 people = people.set_index (["id"])

15 temp_of_people = temp_of_people.set_index (["id"
1)

16 # join temperature to people

17 joined = temp_of_people.join (people,

18 numpy_arr = Jjoined.to_numpy ()

how="1left")

19 # Create random input and output data

20 x = numpy_arr.T[1l] # temperature

21 y = numpy_arr.T[3] # severity

22 # Randomly initialize weights

23 w = np.random.rand(4)

24

25 learning_rate = le-6

26 for t in range (2000) :

27 # Forward pass: compute predicted y

28 #y=a+bx+cx’2+dx"3

29 y_pred = w[0] + w[l] * x + W[2] * X **x 2 + w
[3] » x xx 3

30 # Compute and print loss

31 loss = np.square (y_pred — y).sum()

32 # Backprop to compute gradients of a, b, c,
d with respect to loss

33 grad_y_pred = 2.0 * (y_pred - y)

34 grads = mp.array([grad_y_pred.sum(), (
grad_y_pred % x).sum(),

35 (grad_y_pred * x *x 2).sum(), (

grad_y_pred x x %% 3).sum()])

36 # Update weights

37 w —= grads * learning_rate

38 # synchronizing the model parameters using
MPTI

39 w = np.array (MPI.COMM _WORLD.allreduce (w, op
= MPI.SUM))/MPI.COMM_WORLD.Get_size ()

40

41 env.finalize ()

Fig. 17. Cylon interoperability with Pytorch and MPI

C. Global Data & Asynchronous Operators

The data model in Apache Spark [1] is based on Re-
silient Distributed Datasets (RDDs). RDD is an abstraction
to represent a large dataset distributed over the cluster nodes.
The logical execution model is expressed through a chain of
transformations on RDDs by the user. A graph created by these
transformations is termed the lineage graph. It also plays an
important role in supporting fault tolerance.

Dask [21] is similar to Spark in its execution and data
model. The major difference is that Dask is implemented on
top of Python as opposed to Java in Spark. Modin [20] is

a framework designed for scaling Pandas DataFrame-based
applications. Modin allows Pandas DataFrame-based transfor-
mations to scale to many cores.

Apache Spark, Dask and Modin all provide a global view
of data. The user cannot access a parallel process and must
program functions that are applied to the partitions of the
global data. Also, they are executed with the asynchronous
execution model we showed earlier. This makes these systems
incompatible with the HPTMT architecture.

IX. CONCLUSIONS

This paper exploits the HPTMT principle that efficient
distributed operators designed around a collection of key
data abstractions enables an environment supporting high
performance data-intensive applications at scale. We noted
that many successful systems have used this principle but
it is typically applied to a subset of available operators and
data abstractions. We gave details of the HPTMT architec-
ture for developing distributed operators independent of any
framework that can work together using many orchestration
(workflow) systems. We introduced the Cylon project, which
provides eager operators on tables and the capability to use
MPI’s array (matrix)-based operators. This also provides an
efficient bridge between different languages (C++, Python,
Java) and links to the Java Twister2 project that provides
DataFlow operators supporting this architecture. We believe
that we have implemented enough operators across a range
of application domains to show that one can achieve efficient
parallel HPTMT across the thousands of operators found by
aggregating scientific computing, Spark and Flink Big Data,
NumPy, Pandas, Database, and Deep Learning. Our work
focused on traditional CPU hardware but NVIDIA, Intel, and
others are applying the HPTMT architecture to GPUs and
accelerators. In future work, we will continue to explore
more operators and their use across a variety of important
hardware platforms. We will test these ideas on applications
to verify end-to-end performance and that the operator-based
programming model is indeed expressive enough. We can
expect that we and others will discover the need for further
operators as application experience develops. Apache Arrow
and Parquet provide important tools for HPTMT and we are
exchanging ideas with them.
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