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ABSTRACT

As post hoc explanation methods are increasingly being leveraged
to explain complex models in high-stakes settings, it becomes criti-
cal to ensure that the quality of the resulting explanations is con-
sistently high across all subgroups of a population. For instance, it
should not be the case that explanations associated with instances
belonging to, e.g., women, are less accurate than those associated
with other genders. In this work, we initiate the study of identi-
fying group-based disparities in explanation quality. To this end,
we first outline several key properties that contribute to explana-
tion quality—namely, fidelity (accuracy), stability, consistency, and
sparsity—and discuss why and how disparities in these properties
can be particularly problematic. We then propose an evaluation
framework which can quantitatively measure disparities in the
quality of explanations. Using this framework, we carry out an
empirical analysis with three datasets, six post hoc explanation
methods, and different model classes to understand if and when
group-based disparities in explanation quality arise. Our results
indicate that such disparities are more likely to occur when the
models being explained are complex and non-linear. We also ob-
serve that certain post hoc explanation methods (e.g., Integrated
Gradients, SHAP) are more likely to exhibit disparities. Our work
sheds light on previously unexplored ways in which explanation
methods may introduce unfairness in real world decision making.
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1 INTRODUCTION

As machine learning (ML) models are increasingly being deployed
to make consequential decisions in domains such as healthcare,
finance, and policy, there is a growing need to ensure interpretable
to ML practitioners and other domain experts (e.g., doctors, policy
makers). Only if these practitioners have a clear picture of the
behavior of these models can they assess when and how much
to rely on them, and detect systematic errors and potential biases
in them [28]. However, the increasing complexity as well as the
proprietary nature of predictive models make it challenging to
understand these complex black boxes, thus motivating the need for
tools that can explain them in a faithful and human interpretable
manner. To this end, several techniques have been proposed to
explain complex models in a post hoc fashion.

Owing to their generality, post hoc explanation methods are
increasingly being used to explain a number of complex models in
high stakes domains such as medicine, finance, law, and science [30,
36, 76]. Therefore, it becomes critical to ensure that the explanations
generated by these methods are of high quality. Prior research has
studied several notions of explanation quality, including fidelity,
stability, consistency, and sparsity [49, 56, 65, 80]. In this work, we
focus on disparities in the quality of explanations corresponding to
different population subgroups.

To illustrate, consider a healthcare setting in which a predictive
model is being used to aid doctors in diagnosing diseases (Figure 1).
Suppose the model incorrectly relies on spurious features (e.g.,
hospital name, zip code) to make predictions. Let us assume that
post hoc explanations generated by a state-of-the-art method are
being provided to doctors to explain each model prediction. Further,
explanations corresponding to men are accurate, and rightly capture
that the underlying model is relying on spurious features. Therefore,
doctors who examine these explanations are likely to mistrust the
model in the case of male patients and make better decisions by
employing their own discretion. On the other hand, explanations
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Figure 1: Illustrative example highlighting how disparities in explanation quality might lead to sub-optimal decisions, in turn
resulting in worse real world outcomes for specific subgroups.

for women are comparatively less accurate, and are incorrectly
suggesting that the underlying model is relying on relevant features
(e.g., fever, heart rate). So, doctors may trust model predictions in
the case of female patients due to the misleading explanations,
and may therefore make incorrect decisions leading to unfairness
(women are more likely to be incorrectly diagnosed than men) in
the overall decision making process.

The above scenario, while stylized, demonstrates how disparities
in the quality of explanations may induce unfairness in real world
decision making, and negatively impact the outcomes of vulnerable
populations. Therefore, it is important to assess the extent to which
such group-based disparities occur in the quality of the explanations
output by state-of-the-art methods. However, there is little to no
research that focuses on this critical problem.

In this work, we initiate the study of group-based disparities in
explanation quality. More specifically, we make the following key
contributions:

e We formulate the problem of detecting group-based dispari-
ties in explanation quality.

e We propose a novel evaluation framework which can quan-
titatively measure disparities in the quality of explanations
output by state-of-the-art methods. We show an example
of how to use this framework and some initial directions
for inquiry using existing common metrics—specifically, fi-
delity disparity, stability disparity, consistency disparity, and
sparsity disparity.

e We leverage the aforementioned framework to carry out
a rigorous empirical analysis with six state-of-the-art post
hoc explanation methods, three real world datasets, and
two different model classes (linear models and deep neural
networks) to study if and when group-based disparities in
explanation quality arise.

Results from our empirical analysis indicate that disparities in ex-
planation quality are more likely to occur when the models being
explained are complex and highly non-linear. Furthermore, we also
observed that post hoc explanation methods such as Integrated
Gradients and SHAP are more likely to generate explanations that

are prone to the aforementioned disparities. Our analysis also re-
vealed that group-based disparities are most prominent in case of
two notions of explanation quality—namely, fidelity and sparsity.
Our findings not only shed light on the previously unexplored prob-
lem of group-based disparities in explanation quality, but also pave
the way for rethinking the design and development of explanation
methods in a way that such disparities can be minimized.

2 RELATED WORK

This work builds on extensive work in explainable machine learning.
Crucially, the usage of explanations is often motivated by higher-
stakes settings, where the interpretation of the explanation has
influence on how a human chooses to interact with the model.
Common use-cases for explanations across a variety of stakeholders
include model debugging and improvement, monitoring, building
confidence, transparency, and auditing [16, 34, 72]. Most notably,
explanations can be used for informing and justifying downstream
actions for decision-making. For instance, based on the contents of
the explanation, an individual might decide to follow the model’s
recommendation (or not); or, in a different application setting, an
individual might decide to contest the result of a model’s decision
(or not). The related literature described in this section ultimately
works towards these broader goals of usefulness for explanations,
and it is these broader goals that our concerns about performance
disparity ultimately address.

Inherently Interpretable Models and Post hoc Explanations
Many approaches learn inherently interpretable models such as
rule lists [75, 78], decision trees and decision lists [46], and oth-
ers [17, 18, 42, 50]. However, complex models such as deep neural
networks often achieve higher accuracy than simpler models [59].
Thus, there has been significant interest in constructing post hoc
explanations to understand their behavior. To this end, several tech-
niques have been proposed in recent literature to construct post
hoc explanations of complex decision models. For instance, LIME,
SHAP, Anchors, BayesLIME, and BayesSHAP [51, 59, 60, 65] are
considered perturbation-based local explanation methods because
they leverage perturbations of individual instances to construct
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interpretable local approximations (e.g., linear models). On the
other hand, methods such as Gradient * Input, SmoothGrad, In-
tegrated Gradients, and GradCAM [63, 64, 68, 71] are referred to
as gradient-based local explanation methods since they leverage
gradients computed with respect to input features of individual
instances to explain individual model predictions. An alternate class
of methods referred to as global explanation methods attempt to
summarize the behavior of black-box models as a whole rather
than in relation to individual data points [12, 44]. A more detailed
treatment of this topic is provided in other comprehensive survey
articles [9, 23, 33, 48, 53]. In contrast to the aforementioned works,
which propose novel methods to explain models and their predic-
tions, our work focuses on understanding group-based disparities
in the quality of explanations generated by state-of-the-art post
hoc local explanation methods.

Evaluating Explanations Prior research has proposed several
metrics to determine if an explanation is reliable. An extensive
survey of metrics for evaluating explanation methods can be found
in Zhou et al. [80], who propose two high-level goals of explanation
methods: interpretability (the clarity, simplicity, and broadness of
the explanations), and fidelity (the completeness and soundness of
explanations) [19, 32]. Liu et al. [49] provide a synthetic benchmark
for explanation evaluation which includes implementations of sev-
eral metrics, as well as a discussion of how to choose metrics for eval-
uation. Furthermore, several prior works proposed different metrics
for evaluating various aspects of explanation quality, such as fi-
delity, stability, consistency, and sparsity [6, 31, 35, 44, 49, 56, 65, 80].
Recent research further leveraged the aforementioned properties
and metrics to theoretically and empirically analyze the behavior
of popular post hoc explanation methods [2, 3, 6, 20, 26, 31, 47, 67].
In addition to quantitative metrics, human-grounded evaluation
approaches emphasize how human users perceive and utilize ex-
planations [28]. For example, Lakkaraju and Bastani [43] carry out
a user study to understand if misleading explanations can fool do-
main experts into deploying racially biased models, while Kaur
et al. [38] find that explanations are often over-trusted and mis-
used. Similarly, Poursabzi-Sangdeh et al. [58] find that supposedly-
interpretable models can lead to a decreased ability to detect and
correct model mistakes, possibly due to information overload. Jesus
et al. [37] introduce a method to compare explanation methods
based on how subject matter experts perform on specific tasks with
the help of explanations. Lage et al. [41] use insights from rigorous
human-subject experiments to inform regularizers used in explana-
tion algorithms. Though our work does not involve human subject
study, we see this line of human-centered investigation as a critical
complement to our quantitative evaluation framework.

Limitations and Vulnerabilities of Post hoc Explanations The
aforementioned notions of explanation quality and the correspond-
ing evaluation metrics were also leveraged to analyze the behav-
ior of post hoc explanation methods and their vulnerabilities—
e.g., Ghorbani et al. [31] and Slack et al. [66] demonstrated that
methods such as LIME and SHAP may result in explanations that
are not only inconsistent and unstable, but also prone to adver-
sarial attacks. Furthermore, Lakkaraju and Bastani [43] and Slack
et al. [66] showed that explanations which do not accurately repre-
sent the importance of sensitive attributes (e.g., race, gender) could
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potentially mislead end users into believing that the underlying
models are fair when they are not [4, 43, 66]. This, in turn, could
lead to the deployment of unfair models in critical real world appli-
cations. There is also some discussion about whether models which
are not inherently interpretable ought to be used in high-stakes
decisions at all. Rudin [61] argues that post hoc explanations tend
to be unfaithful to the model to the extent that their usefulness is se-
verely compromised. While this line of work demonstrate different
ways in which explanations could potentially induce inaccuracies
and biases in real world applications, they do not focus on analyzing
group-based disparities in explanation quality, which is our focus.

The Intersection of Fairness and Explainability While fairness
and explainability are often described as qualities which “respon-
sible” models ought to have simultaneously [62, 73], there is sur-
prisingly little work exploring the intersection of the two. Begley
et al. [13] extend SHAP as a tool to explain observed (un)fairness.
Several recent works [1, 55, 69, 70] propose methods to make spe-
cific algorithms simultaneously fair and explainable. As fairness is
often explicitly referred to as a justification or motivation for the
use of explanation methods [14, 21, 72], it is critical to also evaluate
explanations from the perspective of fairness. Here, we make a
distinction between whether an explanation accurately portrays
the fairness of the underlying model, and whether the explanation
method performs equally well on all groups. Several works address
the former question—e.g., Aivodji et al. [4] introduce the notion
of “fairwashing,” in which a rule-based explanation method can be
adversarially constructed such that an unfair model decision can
be rationalized. Meanwhile, Slack et al. [66] illustrate how a model
can be adversarially constructed such that LIME and SHAP hide
the explicitly unfair behavior of the model. Alikhademi et al. [5]
finds that existing explainability tools are ill-suited for evaluating
fairness performance. Finally, Dodge et al. [25] conduct a human
study investigating how explanations can be used to interpret the
fairness performance of a model. While the aforementioned works
address the question of whether an explanation accurately portrays
the fairness of the underlying model, we investigate whether the
explanation method performs equally well on all the groups. In con-
current work, Balagopalan et al. [10] are motivated by a similar
question. Notably, they focus solely on fidelity, and empirically
validate our findings of disparity in existing explanation methods.

3 OUR FRAMEWORK

3.1 Preliminaries and Notation

Let us consider a dataset D = {(x(1), y(l)), s x, y(”))} where
x() € R9 is a vector of feature values and represents an instance
in the data, and y(i) € Y is the corresponding class label. Since our
goal is to unearth group-based disparities in the quality of post hoc
explanations, we consider the case where the dataset O comprises
of some feature s which corresponds to a discrete sensitive attribute
(e.g., gender, race, age).

Let f : RY — Y be a predictive model which can make pre-
dictions on instances in D. Let & : (x, f) — w € R¥ be a local
explanation method which takes as input an instance x and the
predictive model f, and outputs a vector of feature importances
w. Note that the j-th element of this vector (i.e., wj) represents
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how important the j-th feature is to the prediction f(x). Finally, let
M : (x, f,E) — R denote a metric which measures some facet of
the quality (e.g., fidelity or stability etc.) of a given local explanation

&E(x, f).

3.2 Metrics for Evaluating Explanations

In their survey, Zhou et al. [80] highlight two characteristics of
a high-quality explanation: first, how well the explanation ap-
proximates the model, and second, human-understandability of
the explanation. We focus on three metrics—fidelity, stability, and
consistency—that measure the accuracy of the explanation’s approx-
imation, as well as a fourth—sparsity—that measures how easily
the explanation is understood by a user.

3.2.1 Fidelity. Perhaps the most natural question when consider-
ing explanation quality is the extent to which it accurately repre-
sents the underlying decision-making process. In other words, are
the “important features” designated in the explanation truly impor-
tant features for the model? Explanations that accurately designate
the important features to the underlying model are said to have
high fidelity.

In our framework, we select two measures of fidelity: ground
truth fidelity, which is applicable to models that represent their
features as linear weights comparable with explanations, and pre-
diction gap fidelity, which is applicable to a wider range of models
like neural networks.

The ground truth fidelity metric applies solely to machine learn-
ing models which inherently encode some notion of feature im-
portance as a vector of d weights, such as in the coefficients of
a logistic regression model. While therefore limited in practical
applicability across most models, this metric is a useful baseline
for determining whether an explanation method is correct when
there exists a ground truth definition of features and their impor-
tant. Specifically, suppose we have ground truth weights w, such
as the weights of a logisitic regression model. The ground truth
fidelity metric is defined as the percent of the top k features from
explanation w which are also in the top k features from w.

Definition 3.1. Letw € R? be a vector denoting the importance of
features in a model f, where w; > w; implies that the ith feature is
more important in f than the i’th feature. Let top(k, -) be a function
that returns the indices of the k largest elements of a given input
vector. Then, given local explanation w = &(x, f) the ground
truth fidelity for a given value of k is defined as follows:

[top(k, w) N top(k, w)|
Mground truth (% £é)= P k P .

The above definition requires that some agreed-upon measure of
feature importance w is available. For models that do not have such a
quantity, such as deep neural networks, we measure prediction gap
fidelity. The intuition behind this fidelity metric is that the model’s
prediction should not change substantially if minor alterations are
made to features that are not important. If the prediction does
change substantially, then this indicates that the explanation failed
to capture features that were in fact important to the prediction,
and is thus low fidelity. This follows a similar intuition to saliency
in Dabkowski and Gal [24], and insertion/deletion in Petsiuk et al.
[56]. This metric is applicable for probabilistic classifiers f(x) =
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g(h(x)), where h : RY > [0,1] generates predicted probabilities
and g : [0,1] — {0, 1} maps the probability to a classification. The
k most important features of the model for x are identified from
w = E(x, f). Then, a small amount of Gaussian noise with variance
o is added to all features of x outside the top k to produce x, and the
difference between h(x) and h(X) is taken. The “prediction gap” for
the single x is the expected value of this difference; practically, the
procedure of adding noise and recording the gap in prediction—is
repeated a total of m times, and the “prediction gap” is computed
as the average of all m gaps.

Definition 3.2. Let f be a model such that f(x) = g(h(x)), where
h: X — [0,1] generates predicted probabilities and g : [0,1] —
{0, 1} maps the probability to a classification. Let top(k,-) be a
function that returns the indices of the k largest elements of a
given input vector. Then, given local explanation w = &(x, f) and
variance parameter o, define x such that

Xi=x;+1[i ¢ top(k,w)] -z; where z; ~N(0,0).

Then prediction gap fidelity is defined as follows:
Mpred. gap (% f, E) = E[|h(x) — h(X)[] .

We approximate prediction gap fidelity empirically. We generate x
m times, producing {X; | 1 < j < m}. Then predication gap fidelity
is approximated as follows:

m

Flored gap (% £:€) = - " [1h(9) = h(&)]

Jj=1

3.2.2  Stability. The idea that similar points should receive simi-
lar explanations—and the observation that popular explanations
often do not satisfy this property—has been discussed extensively
(common terms for this principle, in addition to stability, include
robustness and insensitivity) [7, 15, 77]. Alvarez-Melis and Jaakkola
[7] note that instability has been observed even when the under-
lying model is stable—calling into question the veracity of those
explanations. In other words, given a set of differing explanations
for similar points, it is not credible that those explanations are all
correct.

To measure an explanation’s stability at a point x, we add some
noise to x to generate similar points, calculate explanations for
those similar points, then take the average L1 distance between x’s
explanation and those of the similar points. This is similar to the
definition of prediction gap fidelity, except now we add noise to
all features and measure the difference in explanations rather than
model predictions. This definition exactly mirrors the definition of
stability in Yeh et al. [77] and others [6, 15].

Definition 3.3. Given a model f, local explanation w = E(x, f),
and variance parameter o, define x such that

Xi =xj+z; where z;~N(0,0).

Then instability is defined as follows:
Minstabiity (%, . &) =E [IIE(x. f) = E& O] -

We approximate instability empirically. We generate x m times,
producing {X; | 1 < j < m}. Then instability is approximated as
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follows:
. 1 & 5
Minstability (%, f5 &) = p” Z e f) - & P, -
j=1

3.2.3 Consistency. Consistency captures the intuition that if an
explanation for a single point is calculated multiple times, each
of the calculated explanations should be similar. Inconsistent ex-
planations for the same input x suggest that these explanations
may be unreliable. This metric is motivated by concerns raised
by empirical observations of the performance of many stochastic
post-hoc explanation methods—requesting many explanations for
the same point often resulted in drastically different explanations
[6, 45, 45, 65, 79]. If the same point may result in a variety of very
different explanations, it is unlikely that any individual explanation
is correct, indicating a low approximation quality.

To measure consistency for a point x, we calculate several expla-
nations for that same point; then, we take the average L1 distance
between the first explanation and each of the new explanations.

Definition 3.4. Let an explanation method & be stochastic, such
that &; indicates an explanation generated with a random seed ;.
The empirical inconsistency is defined as follows:

Minconsistency(x’f’g) = % Z ||80(X, )= Sj(xs f)”l .

J=1

3.2.4 Sparsity. Finally, we are also interested in how easily an
explanation can be understood and interpreted by users. Extensive
previous work drawing from cognitive psychology has discussed
the question of whether a given explanation is actually understood
by a human user [39, 54, 74]. One common theme is complexity
leading to higher cognitive load. Interpretability is measured in
Bhatt et al. [15] as the entropy of the explanation, where equal
attribution to all features is considered to be the least-interpretable.
In Lakkaraju et al. [44], interpretability is measured by counting
discrete concepts.

We measure sparsity by counting the number of features with
an attributed importance greater than a threshold ¢.

Definition 3.5. Let t be the threshold for which a feature impor-
tance is considered significant. Given local explanation w = &(x, f)
and threshold parameter ¢, complexity is defined as follows:

d
Mcomplexity(x’f’a) = Z Afw; > 1] .

3.3 Measuring Disparity

For any given metric, we can empirically estimate disparity as fol-
lows. For each dataset, we partition the data into groups according
to the sensitive attribute. In the datasets used for our experiments,
we split the data into group 0 (majority group) and group 1 (mi-
nority group), though our framework is generic enough to handle
multi-valued sensitive attributes. For each of these groups, we com-
pute the mean values of the metric by averaging the metric values
across instances in the respective groups. If there is a significant
difference (as measured by a hypothesis test) between the mean
metric values for each group, then there is a disparity in the quality
of the explanations for that metric.
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3.4 Consequences of Disparity

Though our broad proposal is to measure disparities in explanation
quality in general, in this section we discuss some possible conse-
quences of disparity in the specific metrics defined in the previous
sections. We emphasize that disparity in additional metrics—or even
different implementations of the same metrics—may have implica-
tions beyond what is discussed here; furthermore, this discussion
is meant primarily as a preliminary exploration, and more tailored
study (for example, with human subjects) for each case described
here is warranted.

3.4.1 Fidelity Disparity. A significant disparity in explanation fi-
delity, or the closeness of an explanation to the model’s actual be-
havior, can have concrete ramifications. For example, as in Figure 1,
a domain expert such as doctor could make systematically worse
decisions for a group of people because of a disparity in explanation
quality.

3.4.2  Stability Disparity. Like disparity in fidelity, disparity in sta-
bility can be consequential. Suppose the machine learning model
that a doctor uses an explanation method that is not equally stable
across groups. This disparity might lead to them rely, rightly or
wrongly, more often on the model being explained for one group
or the other. Measuring disparity in stability at development time,
meanwhile, is important not just to prevent the above scenario, but
to potentially identify problems with the model itself. Dooley et al.
[27] observed that models can be unstable across groups; disparity
in explanation stability may be a warning sign.

3.4.3 Consistency Disparity. Disparity in consistency is also prob-
lematic when considering the user’s interpretation of the explana-
tions. A user may themselves be testing the explanation method
by requesting an explanation multiple times, choosing to use the
explanation for a given point only if they observe that the multiple
explanations they received for that point are similar. If consistency
disparity exists, therefore, the user may end up using explanations
to aid decisionmaking much more often for one group than another.
Returning to the example of the clinical setting, this may ultimately
result in meaningfully disparate diagnoses.

3.4.4  Sparsity Disparity. Unlike the three metrics discussed pre-
viously, disparity in sparsity across demographic groups is not
inherently problematic. In fact, it may reflect the model’s true be-
havior, e.g., if the model has a more complex decision boundary for
one group than another, or if the model does rely more features for
one group than another. Checking for disparity in sparsity, there-
fore, can be informative about the underlying model. One possible
adverse consequence of disparity in sparsity is that there may be
higher cognitive load when examining explanations for one group
than another. However, if it is the case that the model truly is relying
on more information to make predictions for one group, artificially
ensuring equal sparsity may result in a substantial tradeoff with
fidelity.

4 EMPIRICAL ANALYSIS

In this section, we demonstrate how to employ our explanation
evaluation framework and interpret its outputs. First we gener-
ate a range of post-hoc explanations for various data and model
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combinations. We apply our evaluation framework to these explana-
tions, computing the metrics of interest and analyzing them across
data subgroups. Finally we examine the disparities that emerge,
highlighting trends that may be of interest to practitioners.

4.1 Experimental Setup

4.1.1 Data. Our evaluation framework is of particular importance
in settings where explanation disparities emerge across protected
attribute classes like sex and race. Accordingly, we choose the
following benchmark datasets: German Credit [29], Student Per-
formance [22, 29], and COMPAS [8]. Though we acknowledge the
limitations of COMPAS as a benchmark dataset [11] (and indeed,
“fairness benchmarks” in general), we choose to evaluate and re-
port explanation performance on it because we do not claim to
successfully “achieve” any notion of fairness with respect to classi-
fication or explanation. We evaluate explanation disparities across
one protected attribute in each dataset, namely sex in both German
Credit and Student Performance and race in COMPAS. Datasets are
divided into training and testing sets via an 80/20 random stratified
split with respect to the target label.

4.1.2  Models. We investigate whether explanation disparities can
vary based on the complexity of model being explained. We train
both linear and non-linear models, Logistic Regression (LR) and
a 3-layer neural network (NN) respectively. For the latter, we use
50, 100, and 200 nodes in each consecutive layer, ReLU activation,
binary cross entropy loss, Adam optimizer, and 100 training epochs.

4.1.3  Explanation Methods. We investigate whether different ex-
planation methods can produce different disparities. Most post-hoc
explanation methds can be categorized into two families of ap-
proaches. One approach generates explanations by constructing
locally interpretable model approximations whereas the other gen-
erates explanations by analyzing the behavior of the model’s gradi-
ent. We choose LIME [59], SHAP [51], and MAPLE [57] from the
former and SmoothGrad [68], Integrated Gradients (IntGrad) [71],
and Vanilla Gradients (VanGrad) [64] from the latter. We employ the
authors’ implementations for LIME [59] and MAPLE [57]. We use
Captum library [40] implementations of SHAP (sample size 1000),
IntGrad, and VanillaGrad. We use default hyperparameter settings
throughout unless otherwise specified. We implement SmoothGrad
in PyTorch with standard normal noise and sample size 1000.

4.1.4 Metric Hyperparameters. For both ground truth fidelity
and prediction gap fidelity we fix k = 5. Additionally, for predic-
tion gap fidelity we fix m = 1000 and ¢ = 0.1. For both instability
and inconsistency we fix m = 5. For sparsity we fix t = 0.01.

4.1.5 Setting and Implementation Details. For each dataset D, we
begin by splitting the data into training set D;,qin and testing set
Drest with respect to a random seed, as detailed in 4.1.1. Next we
train predictive model f on Dypqin and partition Dyes; with respect
to the value of the salient protected attribute into Dy and Dj,
where Dy and D; correspond to elements in Dy, with protected
attribute values of 0 and 1 respectively. For each explanation method
& and framework metric M, we generate My = {M(x, f,E) | x €
Do} and My = {M(x, f,E) | x € D1}. By comparing My and
M, we can determine whether there is a disparity in explanation

Jessica Dai, Sohini Upadhyay, Ulrich Aivodji, Stephen H. Bach, and Himabindu Lakkaraju

performance. To understand whether My and M; consistently differ,
we perform 5 trials, repeating this procedure with different random
seeds for the data split.

4.2 Results & Insights

We compute set averages My and M for each metric, model, expla-
nation method, and dataset combination. To identify when explana-
tion disparity is statistically significant, we perform Mann-Whitney
U tests [52] on each pair of M, and M; distributions and report
the resulting p-values in Table 1. Of the 162 experimental combina-
tions analyzed, 18.5% exhibited statistically significant explanation
disparity. In Table 2 we aggregate these instances across metrics,
counting the number of times significant explanation disparity
occurs in each of the 36 explanation, model, and dataset combina-
tions. Across these 36 combinations, explanation disparity occurs
in at least one metric 56% of the time. Next we analyze explanation
disparity across each of our framework metrics and summarize
additional aggregate trends.

4.2.1 Fidelity disparity. As detailed in subtables (a) and (b) of Table
1, significant prediction gap fidelity disparity occurred 30.6% of
the time. Significant ground truth fidelity disparity also occurred
11.1% of the time. Across both ground truth fidelity disparity
and prediction gap fidelity disparity, significant fidelity disparity
occurred most often with SHAP explanations. For prediction gap
fidelity disparity, which can be computed for both LR and NN
models, first notice that the prediction gap values are larger across
both groups 0 and 1 in the NN setting, indicating worse fidelity.
Next notice that the majority of significant disparities occur in
the more complex NN model setting (63.6%). In addition to being
more frequently significant, prediction gap fidelity explanation
disparity appears more severe in complex model settings. This
is illustrated in Figure 2 by the wider gaps between My and M;
means in complex NN model settings when compared to their
simpler LR counterparts. Moreover, even when disparities are not
statistically significant, we notice more severe disparity in complex
NN model settings when compared to their simpler LR counterparts.
In these NN settings with observably larger disparity, the lack of
statistical significance is possibly due to larger variances. These
larger variances themselves suggest that prediction gap fidelity
is a less robust metric on complex models. In general, the trends
of fidelity disparity being more frequently significant and more
severe in complex models align with our expectations of explanation
methods that employ local linear approximations.

4.2.2  Stability disparity. As reported in Table 1 (d), significant
stability disparity occurred 13.9% of the time and most frequently
with VanillaGrad explanations. The majority (80%) of instances
of significant explanation disparity occurred on the complex NN
model setting. In Figure 3, we notice that instability in general,
across both groups on the German Credit dataset. On the German
Credit dataset, like with fidelity disparity, in Figure 3, we notice
that even when disparities are not significant, wider gaps between
Mo and M means in complex NN model settings when compared
to their simpler LR counterparts, indicating more severe disparity.
Similarly, larger variances are again observed on more complex
models, suggesting stability is a less robust metric in these settings.
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LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple
German Credit LR | 0.424 | 0.008 1.0 0.008 1.0 0.905
Student Performance | LR | 1.0 0.421 1.0 0.421 1.0 1.0
COMPAS LR | 0.841 | 0.151 1.0 0.131 1.0 0.401

(a) Ground truth — 2/18 significant

LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple

German Credit LR | 0.032 | 0.056 0.032 0.056 0.032 0.421
NN | 0.421 0.421 0.690 0.421 0.310 0.548
LR 0.691 0.548 0.690 0.549 0.690 0.690

Student Performance
NN | 0.056 0.016 0.056 0.016 0.056 0.031
LR 0.222 0.008 0.151 0.310 0.151 0.548
COMPAS NN | 0.095 | 0.016 0.008 0.016 0.016 0.222

(b) Prediction Gap — 11/36 significant

LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple

German Credit LR | 0.100 | 0.008 1.0 0.008 0.690 0.690
NN | 0.421 | 0.222 0.016 0.008 0.016 0.675
Student Performance LR | 0.690 | 0.016 1.0 0.008 0.841 1.0
NN | 0.69 | 0.016 0.917 0.008 0.100 1.0
LR | 0.007 | 0.008 1.0 0.008 0.158 0.690

PA!
COMPAS NN | 0310 | 0.151 1.0 0.222 0.310 0.548

(c) Sparsity — 11/36 significant

LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple

German Credit LR | 0.222 | 0.222 0.548 1.0 0.016 1.0
NN | 0.690 | 0.100 0.056 0.310 0.100 0.841

Student Performance LR | 0.690 | 0.690 0.548 0.690 0.310 1.0
NN | 0.310 | 0.310 0.690 0.056 0.056 0.841
LR | 0.421 | 0.222 0.222 0.222 0.008 0.841
COMPAS NN | 0.310 | 0.008 0.100 0.008 0.008 0.690

(d) Stability — 5/36 significant

LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple

German Credit LR | 0.016 1.0 1.0 1.0 1.0 0.690
NN | 0.548 1.0 1.0 0.841 1.0 1.0
Student Performance LR | 0.421 1.0 1.0 1.0 1.0 1.0
Y NN | 0.690 | 0.548 0.841 0.222 0.690 1.0

LR | 0.310 | 0.672 1.0 1.0 1.0 0.841

COMPAS NN | 0.151 1.0 1.0 0.690 1.0 0.548

(e) Consistency — 1/36 significant

Table 1: P-values from Mann-Whitney U tests with null hypothesis that average metric values for group 0 (m) and group 1
(m1) are equal. Of the 162 explanation/metric/model/dataset combinations analyzed, 18.5% exhibited statistically significant
explanation disparity (bolded). Note that the Ground Truth (Fidelity) metric can only be computed for linear models (LR).

LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple
L 2 2 1 2 2
German Credit NIIiI 5 5 T T g
LR 0 0 0 1 0 0
Student Performance NN 0 3 0 3 0 1
COMPAS et ; s T

Table 2: Here we aggregate the instances of significant explanation disparity reported in Table 1 across metrics, counting
the number of times significant explanation disparity occurs in the explanation/model/dataset combinations. Across these 36
combinations, explanation disparity occurs in at least one metric 56% of the time.

4.2.3 Consistency disparity. As reported in Table 1 (e), significant disparity between group 0 and group 1 in this setting, it is not
consistency disparity occurred in one setting, LIME on the LR obvious because both groups 0 and 1 have very low inconsistency
model trained on the German Credit dataset. Yet as observed in in general. In fact the only settings where inconsistency is often

Figure 4, though there exists a statistically significant consistency larger across both groups is with MAPLE explanations.
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Figure 2: In each plot we compare the average prediction gap values for group 0 in blue (m() and group 1 in green (m;) for
each of the explanation methods (&) listed on the x-axis. In the top row is German Credit (left), Student Performance (middle),
COMPAS (right) with the LR predictive model. In the bottom row is German Credit (left), Student Performance (middle),
COMPAS (right) with the NN predictive model. Differences between group 0 and group 1 distributions indicate explanation

disparity.
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Figure 3: In each plot we compare the average stability values for group 0 in blue (mo) and group 1 in green (m;) for each of the
explanation methods (&) listed on the x-axis. In the top row is German Credit (left), Student Performance (middle), COMPAS
(right) with the LR predictive model. In the bottom row is German Credit (left), Student Performance (middle), COMPAS (right)
with the NN predictive model. Differences between the group 0 and group 1 distributions indicate explanation disparity.

4.2.4  Sparsity disparity. As reported in Table 1 (c), sparsity dispar-
ity occurred 30.6% of the time and most frequently with IntGrad ex-
planations. Notice that, in contrast with previously observed trends,
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Figure 4: In each plot we compare the average consistency values for group 0 in blue (m() and group 1 in green (m;) for each
of the explanation methods (&) listed on the x-axis. In the top row is German Credit (left), Student Performance (middle),
COMPAS (right) with the LR predictive model. In the bottom row is German Credit (left), Student Performance (middle),
COMPAS (right) with the NN predictive model. Differences between the group 0 and group 1 distributions indicate explanation
disparity.
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Figure 5: In each plot we compare the average sparsity values for group 0 in blue (m() and group 1 in green (m;) for each of the
explanation methods (&) listed on the x-axis. In the top row is German Credit (left), Student Performance (middle), COMPAS
(right) all with the LR predictive model. In the bottom row is German Credit (left), Student Performance (middle), COMPAS
(right) all with the NN predictive model. Observe that differences between group 0 and and group 1 are present in both the LR
and NN rows. Differences between the group 0 and group 1 distributions indicate explanation disparity.

instances of significant sparsity disparity are split more evenly be- However, in Figure 5 we notice that the variance in average sparsity
tween the NN and LR model settings, 45.5% and 54.5% respectively. is typically larger in NN settings than in LR counterparts, similarly
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to those for fidelity disparity, perhaps contributing to the fewer
instances of statistically significant disparity.

4.2.5 Additional aggregate trends. To identify which explanation
methods exhibit the most explanation disparity across our experi-
ments, we read Table 1 columnwise, noting that each explanation
method is employed on 27 metric, model, and dataset combinations.
IntGrad exhibited significant explanation disparity on 33.3% of the
combinations, followed by SHAP (29.6%), VanillaGrad (22.2%), LIME
(11.1%), SmoothGrad (11.1%), and MAPLE (3.7%). In Table 2 we also
notice that IntGrad is the only explanation method with nonzero
entries in every row. This means that IntGrad exhibits significant ex-
planation disparity in at least one dimension in every model/dataset
setting tested and is the only explanation method that does so. As
detailed in Section 5, investigating the underlying mechanisms in
explanation methods that give rise to these disparities is a critical
direction for future research.

To determine whether explanations disparity occurs across mul-
tiple metrics at once, we refer to Table 2. Of the 20 explanation,
model, and metric settings in Table 2 with non-zero entries, indi-
cating significant explanation disparity is observed at least once,
in one half disparities occur in only one metric, and in the other
half disparities co-occur in two metrics. This behavior suggests that
practitioners should not rely on disparity in one metric to serve as
a proxy for disparity along all metrics.

5 DISCUSSION

In this work, we proposed an evaluation framework for unearthing
disparities in post hoc explanation quality. To the best of our knowl-
edge, this work is the first to study the problem of group-based
disparities across a variety of metrics for explanation quality. This
is especially important when the black-box model is making predic-
tions about humans, given the consequential use of explanations
in this context: explanations are often used in conjunction with
a model in order to shape decisions, and disparity in explanation
quality across demographic groups may be yet another way that
adverse downstream outcomes become baked into the technical sys-
tem. There are many cases where disparity in performance does not
occur. However, the prevalence of significant disparity throughout
datasets, metrics, and methods in our results suggest that measur-
ing disparity in explanation quality is still critical: more than half
of all dataset-model combinations exhibited disparity.

Our work has lasting implications for several stakeholders. For
researchers working on novel explanation methods, it may be useful
to apply our framework on a test suite of datasets and models to
identify whether the explanation method is susceptible to disparity
in general, and if so, with respect to what metrics. For practitioners
who are developing application-specific models and explanation
methods, our framework may be useful to identify whether the
resulting explanations exhibit quality disparities in the context of
the application.

If disparity is in fact identified, what actions should stakeholders
take? As discussed in Section 3, disparity in fidelity and consistency
always indicates that the explanation method is amplifying or gen-
erating problems. Disparity in stability and sparsity, on the other
hand, may either indicate an issue with the explanation method,
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or an issue with the underlying model to be explained. Further re-
search is necessary in order to provide more prescriptive next steps.
Our work points to several follow-up research directions: First, what
conditions give rise to observed disparity? Are there ways in which
we can characterize datasets, models, or explanation methods such
that we can more systematically identify the causes of measured
explanation disparity? Second, human-grounded evaluations of our
setting are necessary. Given significant explanation disparities, how
is human decision making affected? Finally, it would be interesting
to develop explanation methods which are less susceptible to such
disparities while still maintaining overall utility.
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