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Abstract—Wireless sensor nodes powered solely by energy-
harvesting show promise in enabling truly pervasive, long-
duration sensing by avoiding the fragility, cost, and maintenance 
limitations of batteries. Unfortunately, since the amount of energy 
harvested is often significantly l e ss t h an t h e a c tive consumption 
of the device, these devices operate intermittently with limited 
control of when they are on and how long they are off. Such 
uncontrollable intermittency first poses a challenge for traditional 
time synchronization error metrics, since nodes cannot reliably 
communicate time values at known intervals, resulting in the 
illusion that nodes are out-of-sync. Second, long duration off-
times can exceed the inherent timing limit of persistent clocks that 
intermittent nodes rely on to measure off-times. Bursty groups 
of long off-times can cause traditional time synchronization 
mechanisms to re-converge slowly, incurring significant periods 
of high error in which nodes are effectively out-of-sync. In this 
paper, we define t  h e m  e aning o  f  a  s  h ared s  e nse o  f  t  i me for 
intermittently-powered nodes, and propose two intermittency-
aware synchronization error metrics. We then propose an 
intermittency-resilient time synchronization mechanism, called 
Levee, that exhibits more rapid re-convergence after losing time 
and a 2.12x reduction in maximum time synchronization error 
for a 48-hour period.

Index Terms—Batteryless, Intermittent, Energy Harvesting, 
Time Synchronization, Wireless Sensor Networks (WSNs)

I. INTRODUCTION

The number of pervasive devices continues to rapidly grow
during the Internet of Things (IoT) era with predictions that
by only 2025, there will be more than 25 billion deployed
IoT devices [1]. If batteries are powering the vast number of
IoT devices, the requisite periodic maintenance of batteries
represents a significant h urdle i n  u n leashing t he f u ll potential
of ubiquitous sensing and computing [2]. A promising solution
is to use small capacitors to store energy harvested from
ambient sources, such as RF, thermal, or kinetic. However, the
energy harvested is generally much smaller than the amount of
energy a device may consume. This makes batteryless nodes
intermittent in nature—nodes turn on when the voltage on their
energy storage capacitor is above an on threshold and they die
when the voltage is below an off threshold, as shown in Fig. 1
(Top). While this lifecycling allows nodes to function at all,
it makes timekeeping particularly challenging since the active
clocks within the node are powered off when no energy is
available during the off-times, as shown in Fig. 1 (Middle).

Having an accurate sense of time is important to many
applications, including security, data timestamping, and data
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Fig. 1: Lifecycling behavior of batteryless, intermittent sensor nodes.
MCU, oscillators, radios, and sensors are only on during green shaded
regions. Off-times are estimated by persistent clocks that have an
inherent maximum duration.

staleness [3]. Maintaining a common sense of time across
nodes is critical for scheduling communication and com-
putation, coordinating sampling, and power management in
wireless sensor networks [4, 5]. For example, a medium access
control protocol (MAC) may make use of accurate timing
on multiple nodes to avoid collisions [6], while intermittent
communication benefits from accurate time information to
manage power to coordinate on-times [7].

In order to provide any continuous sense of time, intermit-
tent nodes may measure off-times using persistent clocks such
as [7, 8, 9]. As shown in Fig. 1 (Bottom), these clocks measure
the voltage decay of capacitive elements during the off-time
and, using known decay models, estimate the off-time dura-
tion. However, even the best of such clocks is subject to higher
error than oscillatory clocks and has a maximum off-time
that can be measured before timing information is lost. These
challenges in local timekeeping make it even harder to perform
time synchronization between nodes. Despite these challenges,
we observe that residual timing information still exists in the
network. These disparate time shards can be smoothed and
stitched together to form a useful shared sense of time.1

1The term time synchronization in wireless sensor networks is well es-
tablished. Given the difference in target accuracy, in relative scarcity of high
accuracy timing information in networks of intermittent nodes, and in different
metrics required, we refer to the analogous problem of time synchronization
as developing a shared sense of time.
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In this paper, we first show that the conventional metrics
of time synchronization fail to accurately represent the shared
sense of time in a network of intermittent nodes. Therefore,
we propose a novel set of intermittency-aware metrics that
capture the amount of meaningful timing information held
across intermittent nodes. Armed with new metrics, we de-
velop an intermittency-resilient synchronization mechanism
for maintaining a shared sense of time. The main contributions
of this paper are as follows:

• We formally define a shared sense of time by presenting
a couple of intermittency-aware metrics for time synchro-
nization error in a network of intermittent nodes.

• We evaluate our synchronization error metrics with re-
spect to availability and resiliency properties.

• We propose an intermittency-resilient time synchroniza-
tion mechanism, Levee. Using our metrics in a two-
node network, evaluations show that Levee re-converges
rapidly after losing time information and yields a 2.12x
reduction in maximum pairwise error for a 48-hour
period, when compared with the direct application of
flooding-based time synchronization protocol (FTSP) [4,
10].

II. BACKGROUND

Even in traditional, continuously-powered wireless sensor
networks, telling time is challenging.2 Each node has its
own local oscillator-based clock. Due to imperfections in
the oscillator and environmental effects, each of these clocks
reports time differently.

A commonly used clock time error model for oscillator-
based clocks [11] relates node i’s clock time, Ci(t), to a
reference time, R(t), using three parameters: offset (αi), skew
(βi), and drift (γi), as follows [12]:

Ci(t) = αi + βiR(t) +
1

2
γiR(t)

2, (1)

where t is the ground truth time. Depending on the context,
R(t) may be the ground truth time t, a global clock (e.g., an
atomic clock [13, 14]), or the local clock of one node (e.g.,
Croot(t) in [15, 4]). These three parameters have physical
meanings. Clock offset is the difference in time between
the two clocks at t = 0. Clock skew is the difference in
frequency between the two clocks. Skew is mainly caused by
inaccuracies or differences in the oscillator (e.g., a crystal).
Clock drift captures variations in the skew mainly caused
by temperature, humidity, supply voltage, age of quartz, etc.
In time synchronization studies for wireless sensor networks,
clock drift is generally assumed to be relatively slow and not
directly modeled.

2We consider battery-powered nodes as continuously-powered because
some of the processor components are always rapidly bootable even if they
are in low-power states. Indeed, these nodes either keep an internal or external
RTC running. Of course, other components such as the radio could be turned
off to save energy.

A. Time Synchronization Mechanisms

The mechanisms used to converge the clocks of nodes
towards a reference clock are called time synchronization. To
solve the problem of time synchronization, various methods
have been proposed for how a node can generate a local
estimate, Ei(t), of the reference time R(t) from its own local
clock reading, Ci(t), and past timing information.

These methods generally exchange various forms of timing
information coupled with information from a local clock error
model such as Equation (1). The time synchronization methods
can be broadly classified as flooding based, distributed, and
cluster based. In a flooding based approach, a reference node
is selected that floods the network with time synchronization
messages such as timestamp of the reference node. The
receiver nodes adjust their time estimate based on the received
timestamp relative to the local time [4, 16, 17, 18]. While
these mechanisms have high accuracy, they tend to have poor
robustness, poor scalability, and large synchronization over-
heads [19]. To reduce or eliminate these problems, distributed
time synchronization mechanisms have been proposed. In
these approaches, there is no single reference or root node;
every node in the network only exchanges time information
with its neighbors and tries to converge its time to an agreed-
upon network time, such as the average or maximum time [20,
21, 22, 23]. Since these distributed mechanisms are relatively
slow to converge [24], cluster based methods were proposed.
These approaches create clusters of nodes and select cluster
heads to localize synchronization operations that prevent the
accumulation of errors and improve convergence speed [25,
26, 19, 27].

To our knowledge, Hourglass clocks [10] is the only
prior work that studies time synchronization for batteryless
intermittent nodes. It focuses on improving persistent clock
measurements while assuming that all nodes can be on at the
same time. Currently, no time synchronization mechanisms or
metrics consider the limited control that batteryless, intermit-
tent nodes can exert over their on-times.

B. Time Synchronization Metrics

The performance of a time synchronization mechanism is
often evaluated based on several metrics, including accuracy,
energy, number of packets, and time to converge. Of particular
note, accuracy is usually measured using the synchronization
error metric. Synchronization error is defined as the pairwise
difference between time estimates of the nodes in the network:

Sync Error = Ei(t)− Ej(t), ∀i, j ∈ N. (2)

This error metric is measured at regular intervals of time Tm
(i.e., the metric’s measurement period). To take the measure-
ment, a reference broadcaster can be used to initiate a query
to all the nodes in the network and in response nodes report
back their time estimates [4, 10].

[Time Synchronization Mechanism vs. Metric] An impor-
tant difference between a synchronization mechanism (e.g.,
FTSP - Flooding based Time Synchronization Protocol [4])
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and the metric (e.g., synchronization error) used to evaluate
it in simulations or experiments is as follows: the mechanism
is intended to be deployed and executed by sensor nodes in
actual applications, while the metric is intended to evaluate the
performance of the mechanism in a controlled lab environment
or simulation, usually prior to actual deployment.

III. A CASE FOR INTERMITTENT-AWARE TIME
SYNCHRONIZATION

Despite time synchronization being well-studied in battery-
powered wireless sensor networks, intermittent operation
poses unique challenges to time synchronization. The chal-
lenges impact both the metrics used to evaluate timing syn-
chronization accuracy and the mechanisms themselves.

A. Challenges in Local Timekeeping on Intermittent Nodes

Battery-powered nodes can keep track of the local time with
a high level of accuracy using an oscillator-based clock/timer
and can share time information with other nodes (and testbed
infrastructure) using frequent, predictable communication. The
synchronization errors in such networks are in µs to ms range
[4, 27, 28]. In contrast, intermittently-powered nodes exhibit
frequent power failures and non-deterministic off-times due to
the stochastic nature of harvested energy that may result in
errors of seconds or more [7, 29, 30, 31].

When intermittent nodes do not have enough energy for
operation, all the active components on-board, such as MCUs,
oscillating clocks/timers, sensors, radios, etc., are completely
unpowered (e.g., during the white regions in Fig. 1). This
causes traditional time information to be lost between on-
times, fundamentally hindering time synchronization for inter-
mittent nodes. In order to maintain a local continuous sense
of time (i.e., a continuous Ci(t)) across multiple on-times),
intermittent nodes can use active, oscillator-based clocks dur-
ing on-times and persistent, remanence-decay clocks [7, 9]
to estimate off-times3. As shown in Fig. 1, persistent clocks
estimate off-times by measuring the remaining voltage on a
capacitor (or capacitors) immediately after an off-time. Since
the capacitor starts an off-time at a known voltage and decays
at a known rate, the remaining voltage can be converted to an
elapsed time. The elapsed time is summed with the final value
of the previous on-time’s active clock saved to non-volatile
memory to become the initial value of the active clock for
the current on-time. As shown in the left part of Fig. 2, the
result is a local clock, Ci(t), which can maintain time across
off-times, but can only be read during on-times.

Even state-of-the-art persistent clocks suffer from relatively
higher errors and variations compared to oscillator-based
clocks/timers. In addition to the clock properties described in
Section II, persistent clocks can add frequent large changes
in offset, as shown in Fig. 3. These large changes in offset
are due to a lack of energy and the limited time measurement

3Systems may also use a crystal oscillator based clock running on a
decaying capacitance [32] to achieve higher accuracy comparable to persistent
clocks, but this approach has a very short measurement duration because it
can only measure time until the oscillator settles (≈ 1 second).

Ri(th-w), … Ri(th-1), Ri(th)

Ei(t) Application
Ci(th-w), … Ci(th-1), Ci(th)Local 

Time

Persistent Clock

Oscillator-based 
Clock

MCU

Ci(t)

Fig. 2: Intermittent time synchronization. At time t, node i deter-
mines its local time, Ci(t), using both oscillator-based and persistent
clocks. At the time of each communication handshake, th, the local
time, Ci(th) and received reference time, Ri(th), are recorded. The
node can then calculate its estimated shared time, Ei(t), by using
the current local time and past time information.

duration of persistent clocks—i.e., cases where the persistent
clock capacitance completely runs out of energy. This situation
is referred as clock dead period in Fig. 3. Clock dead period
induces a large negative change in the offset (i.e., αi) of a
node’s clock reading. While the skew (i.e., the slope of the
clock reading relative to the ground truth time – βi) remains
relatively similar before and after the clock dead period, it
appears as a rapid temporary drift in the clock model described
in Section II.

To concretely understand how frequent and severe these
impacts are, Fig. 4a shows a 48-hour period of measured off-
times and time estimates of an RF-harvesting node equipped
with a lightweight state-of-the-art persistent clock (denoted
as PCLK in the figure) deployed in our research lab, which
has many computational devices of various scales in use and
students moving about within the lab. We observe that the
persistent clock generally tracks the externally-measured off-
times well. However, during the most active times in the lab
(region R3), off-times often exceeded the max duration that
the persistent clock can measure. During these times, the node
experiences frequent negative offsets in its local clock reading.

All these issues result in prior time synchronization metrics
and mechanisms being incompatible with intermittent nodes.
Next, we describe the challenges specific to the design of time
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Fig. 3: Example clock time errors in an intermittently-powered node.
Clock dead periods from unexpectedly-long off-times result in a large
negative change in the offset of a node’s clock.
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Fig. 4: Measured persistent clock errors of an RF-harvesting node
deployed in our lab. During certain regions, observed off-times vary
and can unexpectedly and repeatedly go higher than what a persistent
clock can measure (e.g., R3).

synchronization metrics and mechanisms.

B. Challenges in Time Synchronization Error Metrics

Intermittent nodes pose challenge to conventional time
synchronization error metrics in two ways: (i) the inability to
get a representative error measurement at a specific sampling
time, i.e., every Tm – the metric measurement period, and
(ii) the inability to calculate pairwise time errors at a specific
sampling time.

To illustrate the first challenge, consider the node behavior
shown in Fig. 1. Clearly, in an experimental evaluation, a
time estimate can only be produced and reported during the
node’s on-times shown in green. Since off-times are often
much longer than on-times, it is likely that most nodes are not
on at the end of a metric measurement period. This results in
most nodes being incapable of participating in a conventional
time synchronization error metric despite having a reasonably
accurate time estimate.

The second challenge arises from the limited control that
intermittent nodes can exert over their on-times. In order to
calculate pairwise error between nodes during evaluation, both
nodes must be on at the same time to report their current
estimate of time (i.e., Ei(t)) at a particular sampling point.
Any pair of nodes that cannot report their time are consid-
ered out-of-sync thus will not contribute to synchronization
error. For intermittent nodes, this means that most, if not
all, pairs could be considered out-of-sync. However, many
of these nodes may still be maintaining a relatively accurate
local estimate of time. The conventional metric for evaluating

time synchronization cannot capture this important nuance in
intermittent timekeeping.

Therefore, we need a new metric that can provide a mean-
ingful understanding of the shared sense of time in a network
of intermittent nodes.

C. Challenges in Time Synchronization Mechanisms

If intermittent nodes are energy rich with relatively short
off-times and can communicate frequently with neighbor
nodes, time synchronization mechanisms that were designed
for battery-powered devices may provide a reasonable time
synchronization between them [10]. However, it is common
that one or multiple intermittent nodes could be energy-poor
and thus have long off-times with higher clock error rates
and rare communication (e.g., time region R3 in Fig. 4b). In
this case, traditional time synchronization mechanisms could
exhibit a very high error for a long duration of time.

Fig. 5 illustrates the particular challenge faced by traditional
time synchronization mechanisms. We consider a two-node
network where the nodes synchronize time using the proto-
typical Flooding Time Synchronization Protocol (FTSP) [4].4

Node 1 is the root node of the synchronization spanning tree,
with its local clock as the target reference time, R(t), for the
entire network. Node 2 is its only child node. As depicted in
the center part of Fig. 2, in FTSP, node 2 keeps a window (W )
of paired values—local time C2(t) and received reference time
R2(t)—and uses linear regression to estimate the reference
time based on these values.
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Fig. 5: Example Flooding Time Synchronization Protocol (FTSP)
with two intermittent nodes each experiencing clock dead periods.
Frequent clock dead periods cause a rapid drift in clock reading that
FTSP is unable to quickly track/recover.

4We choose FTSP for illustrative purposes since it forms the base in the
only prior work that evaluates time synchronization for intermittent nodes [10].
This work assumes that nodes can all be on every Tm time. Other mechanisms
target improvements in error accumulation, scalability, and efficiency in
communication, but are still susceptible to rapid drift in clock reading.
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In this example, both nodes have low energy-harvesting
rates and incur a clock dead period as a result. Soon after their
clock dead periods, the nodes manage to communicate with
each other. Despite this communication, it takes 13 on-times
and nine communications for node 2 to fully re-synchronize
with node 1. Indeed, when node 2 first communicates after
the clock dead period, there is a significant error in node 2’s
time estimate (i.e., E2(t)) as it attempts to converge to
node 1’s clock. This happens because the new, negative offset
propagates through the window of regression pairs. In general,
if long clock dead periods occur frequently (e.g., R3 in Fig. 4),
this may cause an intermittent node to lose a shared sense of
time for a prolonged period.

Therefore, we need a new time synchronization mechanism
for intermittent nodes that considers the measured on-/off-
times and the local energy harvesting conditions.

IV. INTERMITTENCY-RESILIENT TIME SYNCHRONIZATION

Challenges described in Section III lead us to first develop
synchronization error metrics that can be meaningfully evalu-
ated even in the presence of frequent and long off-times. We
then propose a time synchronization mechanism specifically
for intermittently-powered nodes.

A. Intermittency-Resilient Synchronization Error Metrics

Based on the discussion of the conventional synchronization
error metric and its limitations in batteryless, intermittently-
powered nodes, we have concluded that an ideal synchroniza-
tion metric shall have the following two desired properties.
Recall that Tm is the metric measurement period; in other
words, a metric measurement is produced every Tm time.

[Availability] – A good metric shall be able to quantify the
shared sense of time between a network of sensor nodes at
each pre-determined measurement time as much as possible.
Metric availability is defined as the percentage of measure-
ment time instances when a metric reading can be produced.
[Resiliency] – A good metric shall remain available regardless
of the energy harvesting rates of sensor nodes. In other words,
the metric shall remain available even when sensor nodes have
relatively few lifecycles in a measurement period. We define
resiliency of a metric as one minus the absolute value of
the correlation coefficient between metric availability and
the average number of lifecycles per measurement period for
nodes in the network. A larger (i.e., closer to 1) resiliency
value means that metric availability is less affected by the rate
of energy harvesting, and hence is more resilient.

With these properties in mind, we propose two new metrics
(Mhandshake and Mlifecycle) that can be used as per the applica-
tion requirements to evaluate intermittently-powered wireless
sensor networks. We also formally define the conventional
metric as Mconventional, which serves as the baseline for com-
parison.

1) Mconventional: The first metric is the conventional pairwise
metric, which is defined for conventional battery-powered
sensor networks as follows:

Mconventional(t) =undefined, |PB(t)| = 0,
1

|PB(t)|
∑

(i,j,t)∈PB(t)

|Ei(t)− Ej(t)|, |PB(t)| > 0,
(3)

where t ∈ {Tm, 2Tm, · · · } is the metric measurement time,
PB(t) is the set of all pairs of nodes that are both on at time t,
and Ei(t) is node i’s estimation of time t. Note that in a
conventional battery-powered sensor network, this metric is
generally well-defined since most nodes are expected to be on
at each measurement time. In comparison, in an intermittent
batteryless sensor network, there is no guarantee that nodes are
on at time t; therefore, the availability of this metric depends
on factors such as lifecycle ratios, which we will evaluate later
in Section V-B.

We use a toy example in Fig. 6 to explain how the met-
rics are measured and Mconventional’s corresponding availability
problem. As shown in the figure, at time Tm, Mconventional is
undefined since only one node (node 2) is alive, thus there is
no shared sense of time, while at time 2Tm, one pair of nodes
(nodes 2 & 3) contribute to and define Mconventional, as marked
with gold stars in the figure.

0 Tm 2Tm

Node 1

Node 2

Node 3

Node’s Participation in Mconventional

Node’s Participation in Mhandshake

Node’s Participation in Mlifecycle

Communication

Fig. 6: An example network of three intermittent nodes. Nodes’ par-
ticipation in three different metrics–Mconventional, Mhandshake, Mlifecycle–
are marked as gold stars, blue triangles, and green circles, respec-
tively. The metrics are measured every Tm time.

2) Mhandshake: The second pairwise metric takes advantage
of possible communications between nodes during the metric
measurement period. It is defined as follows:

Mhandshake(t) =undefined, |PH(t)| = 0,
1

|PH (t)|
∑

(i,j)∈PH (t)

|Ēi(t)− Ēj(t)|, |PH(t)| > 0,
(4)

where t ∈ {Tm, 2Tm, · · · } is the metric measurement time.
PH(t) is the set of all pairs of nodes that communicate
with each other (and hence are on at the same time) at
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some instances between t − Tm and t. For each pair of
communicating nodes i and j, we define

Ēi,j(t) =
1

Hi,j(t)

Hi,j(t)∑
h=1

|Ei(th)− Ej(th)| (5)

as the average pairwise difference between their time esti-
mates, where Hi,j(t) is the total number of communication
instances between t− Tm and t.

We use the same scenario in Fig. 6 as an example. Pairs of
nodes that contribute to Mhandshake are marked as blue triangles
in the figure. In this example, |PH(Tm)| = 3 since all three
pairs of nodes (nodes 1 & 2, nodes 1 & 3, and nodes 2 &
3) communicate between time 0 and Tm, while |PH(2Tm)| =
2 since only two pairs of nodes (nodes 1 & 2, and nodes
2 & 3) communicate between Tm and 2Tm. Compared with
Mconventional, Mhandshake is available at both Tm and 2Tm.

3) Mlifecycle: The third pairwise metric extends the second
metric by considering all nodes’ lifecycles during the previous
Tm duration. It is defined as follows:

Mlifecycle(t) =undefined, |PL(t)| = 0,
1

|PL(t)|
∑

(i,j,t)∈PL(t)

|Êi(t)− Êj(t)|, |PL(t)| > 0,
(6)

where t ∈ {Tm, 2Tm, · · · } is the metric measurement time,
and PL(t) is the set of all pairs of nodes that are on (but not
necessarily at the same time) between t−Tm and t. For each
node i, we define

Êi(t) =
1

Li(t)

Li(t)∑
`=1

|Ei(t`)− t`| (7)

as the average difference between its estimated time and
reference time, averaged over time estimates taken at the
beginning of each lifecycle (denoted as t`) between t − Tm
and t, where Li(t) is the total number of lifecycles that i has
experienced between t− Tm and t.

Let’s revisit the example in Fig. 6, where we mark nodes
contributing to Mlifecycle as green circles. We observe that all
three pairs of nodes contribute to Mlifecycle (i.e., |PL| = 3 for
both Tm and 2Tm) and participate more often at each on-time.
For instance, for t = 2Tm, PL(2Tm) = {(1, 2), (1, 3), (2, 3)},
L1(2Tm) = 3, L2(2Tm) = 2, and L3(2Tm) = 1.

B. Intermittency-Resilient Time Synchronization Mechanism

Given our observation that clock dead periods cause the
appearance of rapid drift in clock readings, we propose to
estimate off-times with clock dead periods separately from
those with non-depleted persistent clock readings. For the off-
times short enough to be measured by the persistent clock (i.e.,
where enough energy is harvested for the node to turn on be-
fore the persistent clock completely decayed), the conventional
time synchronization mechanism is used (e.g., FTSP). For the
off-times where the energy harvesting rate is low and the
persistent clock completely decays (i.e., Vcap < Vdead), we use
the predicted energy harvesting rate to estimate the duration
of the off-time. We refer such an intermittency-resilient time
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Fig. 7: Conceptual approach of Levee, an intermittency-resilient time
synchronization mechanism. Levee detects clock dead periods and
estimates their duration using prediction of energy harvesting rates.

synchronization mechanism as Levee since it mitigates time
overflowing the banks of persistent clocks. The core function
of Levee is shown in Fig. 7.

While Levee’s prediction mechanism may be less accurate
than a non-dead persistent clock, it provides some estimate of
the time even for long-duration off-times. The resulting time
estimation for node i is:

ELevee
i (t) = EFTSP

i (t) +

Di(t)∑
d=1

Ôi(td), (8)

where td is the detection time of the d-th clock dead period,
Ôi(td) is its predicted off-time, and Di(t) is the total number
of clock dead periods since the last handshake.

Prediction of energy harvesting rates is a frequently studied
area for energy-harvesting sensor nodes and depends on the
specific harvesting type and deployment environment [33, 34,
35]. The more accurate the prediction mechanism used by
Levee, the more accurate its time measurement will be. Our
implementation of Levee predicts that the energy harvesting
rate during a clock dead period is similar to the most recent N
clock dead periods in the past. At the time of each handshake,
th, Levee estimates the actual clock dead periods of node i
since the previous handshake according to:

Oi(td) =
Ri(th)− EFTSP

i (th)

Di(th)
, (9)

where Ri(th) is the received reference time. The most recent
N such Oi(td) values at time t are averaged to produce Ôi(t).
We will show in Section V-B that even this straight-forward
prediction mechanism is able to yield significant improvements
over FTSP in a shared sense of time for our RF-harvesting
environment.

Finally, before a new pair of local time and received
reference time is added to Levee’s underlying FTSP regression
window, the total time from any clock dead periods since the
last received reference time must be added to the local time.
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To avoid impacting the skew estimation of the local persistent
clock, the clock dead time must be scaled by the current skew
parameter, βi.

V. EVALUATION

A. Evaluation Methodology

We built a custom event-based simulator to simulate the
behavior of a network of energy-harvesting intermittently-
powered nodes. The simulator takes traces of experimen-
tal lifecycle on-times and off-times as input. When nodes’
on-times sufficiently overlap, they communicate and ex-
change time information. The experimental lifecycle data
was captured using a continuously-powered “sniffer” node
that monitors prototype batteryless nodes consisting of a
main application processor with FRAM persistent memory
(MSP430FR5994 [36]), a radio (CC1352R [37]), and a Pow-
erCast RF harvester [38] based on those described in [39].
The testbed power was generated by a PowerCast RF trans-
mitter [40]. Various energy harvesting rates were observed
by varying the distance between transmitter and nodes. We
quantified a node’s harvesting rate using the average lifecycle
ratio = Ton

Ton+Toff
. Nodes use a 16-bit onboard timer to measure

on-time and a state-of-the-art persistent clock, HARC [7], to
measure off-times. This version of HARC can measure off-
time with high accuracy up to 139 seconds.

As a baseline mechanism, we use FTSP as described in [10].
We simulated a two-node network where node 1 acts as a
reference node and node 2 behaves as a child to node 1. Node 2
tries to synchronize its estimated time to node 1’s time. During
each on-time, node 1 keeps sending packets to node 2 until
an acknowledgement is received. For both FTSP and Levee,
node 2 saves pairs of local time and reference time—(C2(th),
R2(th))—from the last 10 communication points and, using
the linear regression, estimates the reference time E2(t). Levee
also tracks the past five estimated clock dead period durations
to estimate future clock dead periods. Synchronization errors
for both mechanisms are measured at the start of each on-time.

B. Evaluation Results

Synchronization Error Metrics: We first evaluated the three
metrics over the 48-hour experiment trace shown in Fig. 4a
with Tm = 100 seconds. The nodes were synchronized using
FTSP and the average lifecycle ratio of node 2 was 0.0035.
Fig. 8 shows the CDF of each metric. The asymptotic value
achieved by each metric represents its availability. Mconventional
has an availability of 0, since the nodes were never both on
at the same measurement time—it is poorly suited to evaluate
intermittent time synchronization. Mhandshake’s availability is
56.4% since it gets a valid reading from any measurement
period in which the pair of nodes communicates. As expected,
the availability of Mlifecycle is 98.3% since it produces an error
for any period where at least two nodes turn on.

We further evaluated Mlifecycle and Mhandshake for resiliency.
Fig. 9 plots the availability of each metric relative to the
average lifecycle ratio of node 2. As the lifecycle ratio de-
creases, node 2 has longer off-times between on-times and thus
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Fig. 8: Comparison of metric availability. Max availability represents
the fraction of lifecycles where at least two nodes have an on-time
in the measurement period – i.e., a shared sense of time exists.

less frequent communication with node 1, rapidly degrading
Mhandshake’s availability. Decreasing the lifecycle ratio also
reduces the number of on-times per measurement period and,
eventually, the number of periods where both nodes turn on.
While this causes Mlifecycle’s availability to degrade, it only
happens at very low lifecycle ratios. These trends result in
Mlifecycle having a resiliency of 0.7 compared with Mhandshake’s
0.19. Recall that, as defined in Section IV-A, a larger (i.e.,
closer to 1) resiliency value means that metric availability
is less affected and hence more resilient to varying energy
harvesting rates.
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Fig. 9: Metric availability vs. lifecycle ratio. The resulting resiliency
of Mlifecycle and Mhandshake is 0.7 and 0.19, respectively.

Time Synchronization Mechanisms: With an available and
resilient metric—Mlifecycle—we can now meaningfully com-
pare the performance of Levee relative to FTSP. Fig. 10 shows
the results of 2000 seconds simulation from region R3 of
Fig. 4. Each blue diamond represents a single measurement
period’s synchronization error. Gaps without any error values
occur when fewer than two nodes have an on-time during a
measurement period—hence no shared sense of time exists.
With FTSP, the initial measurement periods after a node
experiences a clock dead period often incur large errors (up
to 223.4 seconds. Furthermore, the error does not quickly
converge back to a steady-state when the node experiences
no clock dead periods. Conversely, Levee’s maximum syn-
chronization error is 106 seconds and re-converges within one
measurement period. Levee can effectively dampen the large
errors caused by long clock dead periods by using energy-
harvesting predictions for clock dead periods.

For a more holistic comparison, we use the 48-hour trace
data from Fig. 4 for node 2 and report Mlifecycle results for the
three representative regions in Table I. As expected, in regions
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Fig. 10: Mlifecycle synchronization error of FTSP and Levee for 2000
seconds of region R3.

R1 (little off-time variation and no clock dead periods) and R2
(high off-time variation, but no clock dead periods) exhibit
low synchronization errors and both mechanisms (FTSP and
Levee) work identically. However, in region R3 where there
are high off-time variations that frequently cause clock dead
periods, the mean and max synchronization error in FTSP
is 55.3 and 223 seconds, respectively. In comparison, Levee
reduces this error by over 2x, and provides an effective shared
sense of time across all regions. Recall that our experimental
data (see Fig. 4a) contained multiple hour-long regions with
clock dead periods within a 48-hour time. During these
relatively common times, Levee provides a more consistent
and accurate sense of time compared to FTSP.

TABLE I: Comparison of synchronization error of FTSP and Levee
during three representative time regions from Fig. 4, using the
Mlifecycle metric at Tm = 100s.

Time Region from Fig. 4 Mechanism Mean (s) Max (s)

R1 FTSP 0.52 2.98
Levee 0.52 2.98

R2 FTSP 0.50 1.51
Levee 0.50 1.51

R3 FTSP 55.3 223
Levee 24.5 106

VI. CONCLUSION

In conclusion, this paper formally defined a shared sense
of time for batteryless, intermittent wireless sensor nodes.
The resulting definition of time synchronization error metrics
were evaluated in terms of availability and resiliency with
the lifecycle-based metric achieving both high availability and
resiliency. This metric allowed us to propose and evaluate
Levee, an intermittency-resilient time synchronization mech-
anism that uses energy-harvesting prediction to improve the
accuracy of time synchronization of intermittent nodes. The
metric and mechanism enable future exploration of energy-
accuracy trade-offs, communication interactions, and lifecycle
management implications for maintaining a shared sense of
time in multi-node batteryless, intermittent sensor networks.
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