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EMRE GÖNÜLTAŞ1 (Student Member, IEEE), SWETA SONI2 (Student Member, IEEE),
ALYSSA B. APSEL2 (Fellow, IEEE), and CHRISTOPH STUDER3 (Senior Member, IEEE)
1Ericsson, Austin, TX 78704 USA
2School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
3Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland

Corresponding author: Emre Gönültaş (e-mail: eg566@cornell.edu).
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ABSTRACT
Multi-antenna wireless communication improves spectral efficiency by reusing frequencies at different
locations in space using beamforming and spatial multiplexing. In the past, research has extensively focused
on dynamically reusing unused frequency bands to optimize spectrum usage, but methods that identify unused
resources in space appear to be unexplored. In this paper, we propose a sample-efficient whitespace detection
pipeline for multi-antenna radio-frequency (RF) transceivers that detects unused resources in both frequency
and space. Our spatio-spectral whitespace detection pipeline relies on multi-antenna nonuniform wavelet
sampling, which identifies unused frequencies in space at sub-Nyquist sampling rates. We demonstrate the
efficacy of our approach via system simulations and show that reliable spatio-spectral whitespace detection is
possible with 16⇥ lower sampling rates than methods relying on Nyquist sampling.

INDEX TERMS Coherence, compressive sensing (CS), least matching pursuit (LMP), multi-antenna
communication, nonuniform wavelet sampling (NUWS), spatio-spectral sensing, whitespace detection.

I. INTRODUCTION
The trend towards global digitalization requires ubiquitous
wireless connectivity and most wireless services rely on
mobile devices with limited battery capacity. Mainly driven
by the Internet of Things (IoT), the number of connected
devices is predicted to grow to 13.1B by 2023 [1]. Such
excessively large numbers of wireless devices combined with
the ever-growing need for higher data-rates will inevitably
cause congestion in the radio-frequency (RF) spectrum and
lead to significant challenges in making efficient use of the
spectrum. Because of the limitations in RF spectrum allocation
and limited battery capacity of IoT devices, it is critical to
deploy energy-efficient sensing methods that identify unused
RF channels with the goal of opportunistically reusing the
available resources among devices at both the infrastructure
base station (BS) and the user equipment (UE) sides.

Massive multi-user multiple-input multiple-output (MU-
MIMO) [2]–[4], exploits the concept of reusing the spectrum
in space by deploying hundreds of BS antenna elements while

simultaneously communicating with tens of UEs. Such large
antenna arrays enable extremely fine-grained beamforming
at the BS-side, which can be used to precisely focus useful
energy towards the UEs, resulting in energy-efficient com-
munication [5]. Although the impact of these technologies
is evident, only little attention has been given to identifying
unused resources in space.

A. SPATIO-SPATIAL WHITESPACE DETECTION
Identifying whitespaces in both the frequency and spatial
domains enable one to reallocate services from one frequency
to another while keeping spatial occupancy (e.g., angle-of-
arrival in line-of-sight scenarios or spatio-spectral signature in
rich scattering environments) in mind using a new paradigm
we call spatio-spectral defragmentation. The operating prin-
ciple of this idea is illustrated in Figure 1, which shows a
massive MU-MIMO BS serving three single-antenna UEs
under line-of-sight (LoS) channel conditions. The top-right
part of Figure 1 illustrates traditional whitespace detection,
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FIGURE 1. Principle of spatio-spectral whitespace detection and
defragmentation: (left) multi-antenna BS serving three UEs; (top right) all three
frequency bands appear occupied by ignoring the angular (spatial) domain;
(bottom right) spatio-spectral whitespace detection and spectrum
defragmentation releases bandwidth that can be used for communication.

which would indicate that all of the available frequencies
are occupied. However, by taking into account the spatial
dimension (we consider the incident angle in this LoS case),
we can relocate UE 2 to use the frequency that is also
used by UE 1 without causing interference—this is possible
because the two UEs can be separated in space by means
of beamforming. Since this spectrum relocation liberates
the middle frequency band, there is now a new unused
frequency band that could be used for transmission, even
by single antenna UEs. The advantages of spatio-spectral
defragmentation are manifold: (i) reduced interference among
UEs which results in improved signal-to-noise ratio (SNR); (ii)
separation of UEs in frequency and space, which mitigates the
need for time-division duplexing, hence, reducing latency; (iii)
enabling more UEs to use the spectrum which increases the
total number of devices that can share the available spectrum;
(iv) releasing adjacent frequencies for transmitters or services
that require larger contiguous bandwidth.

B. COMPRESSIVE SPECTRUM SENSING
Extracting frequency and spatial occupancy information
can be implemented in the following ways: (i) Frequency
scanning [6], [7], which relies on Nyquist sampling, or (ii)
compressive sensing (CS), which samples analog signals
below the Nyquist rate [8], [9]. While frequency scanning
enables high sensitivity in distinguishing weak RF channels
from noise, it is slow and sample inefficient [10]. In contrast,
CS has the potential to reduce signal acquisition times and
improve sample efficiency with the assumption of spectral
sparsity, i.e., the concept that only a few RF channels are
occupied at a given time instant. CS has been proposed in
the past for the detection of strong transmitters in the RF
spectrum [11]–[16] and for direction-of-arrival detection [17].
For such CS-based applications, circuit-level implementations
have been described in the literature [18]–[22]. However,
CS is sensitive to noise [23], which limits conventional CS-
based wideband spectrum sensing algorithms to detecting
only strong signals, i.e., occupied RF channels [13], [18], [24].
Furthermore, identifying used RF channels via CS typically
requires complex signal recovery algorithms [25]–[28], which
often annihilates the advantages of sampling efficiency [18].

With the exceptions of [29], [30], to the best of our knowl-
edge, no work describes whitespace detection methods using
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FIGURE 2. Overview of the proposed spatio-spectral whitespace detection
framework. NUWS acquires compressed measurements at each receive
antenna in a uniform linear array (ULA). A spatio-spectral whitespace detection
algorithm then identifies whitespaces in both space and frequency.

CS measurements. Reference [29] proposed zero detection
group thresholding (ZD-GroTH), which is a general algorithm
to detect unused components in sparse signals. Reference [30]
recently proposed least matching pursuit (LMP) which im-
proves upon ZF-GroTH and enables one to identify unused

channels in the RF spectrum using nonuniform wavelet
sampling (NUWS), which avoids many of the drawbacks
of traditional CS-based approaches [24]. However, the CS-
based whitespace detection framework in [30] was designed
for single-antenna systems only, which prevents its use for
spatio-spectral whitespace detection and defragmentation.

C. CONTRIBUTIONS
In this paper, we develop a novel framework that detects spatio-
spectral whitespace using multi-antenna NUWS [24]. Our
framework extends the recently-introduced LMP algorithm
for single-antenna systems in [30] to multi-antenna NUWS
measurements in order to identify an unused spatio-spectral
resource block. We provide new theory on proper system
modeling for multi-antenna NUWS receivers and propose
design criteria for multi-antenna NUWS sensing matrices. We
show that properly-designed NUWS-based sensing matrices
yield low overall block mutual coherence, which results
in better whitespace detection performance than simply
applying the methods from [30] to multi-antenna systems.
In order to demonstrate the efficacy of our framework, we
simulate a spatio-spectral whitespace detection task with a
realistic NUWS-based multi-antenna RF system model, and
we compare our approach to Nyquist sampling and the method
from [30].

D. NOTATION
Uppercase boldface letters denote matrices; lowercase bold-
face letters denote column vectors. For a matrix A, we denote
its transpose by AT , its Hermitian transpose by AH , and
complex-conjugate by A⇤. We write [A]i to refer to the
ith block (or submatrix), which is a collection of adjacent
columns in A. The entry in the kth row and qth column of
matrix A is denoted by Ak,q. The spectral norm of A is
kAk2 = �max, where �max is the largest singular value. The
matrix FN is the N ⇥N unitary discrete Fourier transform
(DFT) matrix. The matrix IN is the N⇥N identity matrix. The
`2-norm of a vector a is kak2. The Kronecker-product is ⌦
and vec(A) vectorizes the matrix A. The real and imaginary
parts of a vector a are denoted by <(a) and =(a), respectively.
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II. SYSTEM MODEL
We now develop a model for the system in Figure 2. We
consider a single-antenna UE with index u transmitting data
to a B-antenna receiver. The receiver captures the transmitted
RF signal at a uniform linear array (ULA) using NUWS. A
spatio-spectral whitespace detection algorithm then identifies
unused resources in both space and frequency.

A. SINGLE-INPUT MULTIPLE-OUTPUT BASEBAND
MODEL
Let vu(t) be the complex-valued time-domain baseband
message signal with a bandwith of Z Hz. Assume that the
uth UE is transmitting this signal by modulating it with a
carrier frequency fu centered around fc as fu = fc + fq,
where fc is the center frequency of the band of interest
and fq 2 {�ZC/2,�ZC/2 + Z, . . . , ZC/2 � Z} is the
subchannel frequency that can be chosen among C uniformly-
spaced subchannels in that frequency band which has a total
bandwidth of ZC Hz. The modulated transmit RF signal at
carrier frequency fu of the uth user is given by [31]

vu(t) = <{vu(t)ej2⇡fut}. (1)

We consider a block-fading multi-path scenario and a multi-
antenna receiver with a B-antenna ULA. The (noise-free)
received RF signal at BS antenna b can be modeled as

rb,u(t) =
LX

`=1

au,`vu(t� ⌧b,u,`). (2)

Here, L is the total number of propagation paths (including
a possible line-of-sight path and reflections), au,` is the (real-
valued) attenuation between UE u and the receiver associated
with path `, where we assume that the attenuation is equal for
all B receive antennas, and ⌧b,u,` is the time-of-flight of the
`th path between the UE u and BS antenna b. With (1), the
received RF signal at antenna b can be written as

rb,u(t) =
LX

`=1

au,`<
�
vu(t� ⌧b,u,`)e

j2⇡fu(t�⌧b,u,`)
 

(3)

= <
(

LX

`=1

au,`e
�j2⇡fu⌧b,u,`vu(t� ⌧b,u,`)e

j2⇡fut

)
. (4)

At the BS, we perform down-conversion of the received signal
in (4) by mixing it with a complex sinusoid at the band’s
center frequency fc and low-pass filtering the result to obtain
the following complex-valued baseband signal:

rb,u(t) =
LX

`=1

au,`e
�j2⇡fu⌧b,u,`vu(t� ⌧b,u,`)e

j2⇡fqt. (5)

We assume that the ULA at the receiver has an antenna
spacing of �a and the distance between the transmitter (and
scatterers) and the receiver is much larger than the size of the
antenna array. With these assumptions, we can approximate
the time-of-flight using the plane-wave approximation as [32]

⌧b,u,` ⇡
du,`
c

+ (b� 1)
�a

c
cos(�u,`), (6)

where du,` is the distance between scatterer (or UE) ` and the
first BS antenna, c is the speed of electromagnetic waves, and
�u,` is the incident angle to the ULA of the `th transmission
path. We can now model the joint effect of the attenuation
and delay across each antenna element ↵b,u,` in (5) using the
following approximation

↵b,u,` = au,`e
�j2⇡fu⌧b,u,` (7)

⇡ ãu,`e
�j2⇡fu(b�1)�a

c cos(�u,`), (8)

where we have absorbed the du,`-dependent term into the
complex-valued attenuation ãu,`. We also assume that the
bandwidth Z of the message signal vu(t) is much smaller
than the inverse propagation delay across the BS antenna
array, which leads to the approximation [33]

vu(t� ⌧b,u,`) ⇡ vu

✓
t� du,`

c

◆
= vu,`(t), (9)

removing any antenna-index-dependence from the received
(and delayed) message signal vu,`(t). By combining (6)
and (9), we obtain in-phase and quadrature samples of (5)
at a sampling period Ts, which leads to the following model
for the complex-valued discrete-time receive baseband signal:

rb[n] =
LX

`=1

↵b,u,`vu,`(nTs)e
j2⇡fqnTs . (10)

B. BLOCK-SPARSE MULTI-USER BASEBAND MODEL
We now model the discrete-time receive signal for all B
antennas. We define the array-response (row) vector

kH

u,`
, [↵1,u,`, ↵2,u,`, . . . ,↵B,u,`], (11)

which contains all antenna-dependent terms from (10). We
also define the message signal (column) vector

vu,` , [vu,`(0), . . . , vu,` ((N � 1)Ts) e
j2⇡fqTs(N�1)]T ,

(12)

which contains N samples of the received (and delayed)
message signal. With both of these definitions, we can write
the N received samples at all B antennas in compact matrix
form as follows:

Xu =
LX

`=1

vu,`k
H

u,`
. (13)

We now assume the presence of U UEs at different locations
that transmit data simultaneously and in the same frequency
band but possibly occupying different subchannels. This
situation can be modeled as

X =
UX

u=1

Xu +N, (14)

where we also model thermal noise N 2 CN⇥B .
In practice, wireless transmitters typically only occupy a

few frequencies and spatial resources at a given time instant,
which results in sparsity in both the frequency and spatial
domains [31]. Since phase rotations in the sample domain
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correspond to frequency shifts in the DFT domain, we can
transform the samples for each BS antenna into the DFT
domain as X̂ = FNX, which contains the frequency response
of each antenna in its columns. By taking another DFT across
the antenna array, we transform the antenna domain into the
so-called beamspace domain [34]

S = X̂FT

B
= FNXFT

B
, (15)

which represents the incident angles for each frequency in its
rows. The matrix S 2 CN⇥B compactly captures the spatio-
spectral structure of the received signal: The columns indicate
(active) beams (i.e., angles) and the rows indicate (active)
frequencies. If only a few UEs are present and the number
of propagation paths L per UE is small (which is the case
in many outdoor sub-6-GHz and millimeter-wave channels),
then the matrix S will be sparse, i.e., only a few entries will
have large magnitudes. Here, taking the DFT over the time
domain reveals the sparse frequency structure; taking the DFT
over the antenna (e.g., a uniform linear array) reveals the
sparse structure in the beamspace (angular) domain [34].

In what follows, we assume that the vectorized signal s =
vec(S) in (15) contains K spectral blocks for each beam
with si 2 CNi each of dimension Ni, where i = 1, . . . ,K,P

K

i=1 Ni = N , and s = [sH1 , . . . , sH
BK

]H ; and, thanks to
sparsity, J of these blocks have large magnitudes, i.e., the
vector s is modeled as a J-block-sparse signal [35]. This
block sparsity is key in the whitespace detection pipeline we
develop in the remainder of the paper.

C. COMPRESSIVE SENSING (CS) BASICS
Our goal is to detect unused resources in frequency and
(beam)space represented while avoiding Nyquist sampling.
To this end, we exploit the block sparsity of s = vec(S) using
CS [8] and acquire linear measurements as follows:

y = ⇥s. (16)

Here, y 2 CBM contains the compressed measurements with
BM ⌧ BN , and ⇥ 2 CBM⇥BN is the effective sensing
matrix which combines the joint effect of the sensing matrix
and the sparsifying transform. Here, the ratio ⌘ , BM

BN
is

the subsampling rate. To reveal the block-sparse structure,
we can write an equivalent system model y =

P
K

i=1[⇥]isi,
where [⇥]i is the ith block of the effective sensing matrix
⇥ = [[⇥]1, . . . , [⇥]K ] with [⇥]i 2 CBM⇥Ni .

CS acquires measurements by computing inner products
in the time domain via y = Qx, where x = vec(X) is the
vectorized time domain signal in (14) and Q 2 CBM⇥BN

is the sensing matrix. The effective sensing matrix is ⇥ =
Q �1, where  �1 2 CBN⇥BN is the inverse sparsifying
transform with x =  �1s. For the multi-antenna RF signal
model in (15), we have that �1 = FH

B
⌦ FH

N
.

D. NONUNIFORM WAVELET SAMPLING (NUWS)
As shown in Figure 2, we use NUWS [24] to acquire CS
measurements at each antenna. NUWS efficiently samples

analog signals by taking inner products between the analog
signal and wavelets that can be generated efficiently in hard-
ware [36]. For antenna b, the NUWS measurement process
can be modeled as yb = Wbxb, where yb 2 CM contains
the M wavelet coefficients with M ⌧ N , Wb 2 CM⇥N is
the NUWS sensing matrix containing wavelets wm 2 CN ,
m = 1, . . . ,M , on each row, and xb 2 CN is the received
signal at the bth antenna (the bth column of X). Each wavelet
wm(�m, fm,�m) can be tuned in time (�), frequency (f ), and
pulse width (�). By carefully selecting these parameters for
all M wavelets, one can effectively subsample the signal xb

while preserving the information of interest [24], [30].
We can write the NUWS process for all B antennas as

follows. Let Y 2 CM⇥B be a matrix containing NUWS
measurements for the B antennas in its columns as Y =
[y1,y2, . . . ,yB ]. By vectorizing this matrix ỹ = vec(Y), the
NUWS measurement process can be written as follows:

ỹ = Q̃ x. (17)

Here, the block-diagonal multi-antenna NUWS sensing matrix
Q̃ 2 CBM⇥BN is defined as Q̃ , diag(W1,W2, . . . ,WB).
The effective multi-antenna NUWS sensing matrix in (16) is
⇥ = Q̃ �1, which combines the effect of NUWS Q̃ and the
inverse sparsifying transform �1 defined in section II-C.

III. SPATIO-SPECTRAL WHITESPACE DETECTION
We now show how to detect unused resources in both space
and frequency from multi-antenna NUWS measurements. We
then propose a method to design suitable wavelet dictionaries.

A. LEAST MATCHING PURSUIT (LMP)
In order to identify a spatio-spectral whitespace using multi-
antenna NUWS measurements, we use LMP introduced
in [30] for single-antenna receivers. LMP resembles block
orthogonal matching pursuit (BOMP) [35] and starts with an
initial residual r0 = ỹ. In each LMP iteration t = 1, . . . , P ,
one first correlates each block [⇥]i with the residual rt as

�t+1
i

= k[⇥]H
i
rtk2, i = 1, . . . ,K, (18)

followed by identifying the most-correlating block

ct+1 = arg max
i=1,...,K

�t+1
i

. (19)

LMP then augments the support set ⌦t+1 = ⌦t [ ct+1,
followed by computing an estimate of the non-zero blocks
via ŝ⌦t+1 = ⇥†

⌦t+1 ỹ, where⇥⌦t+1 is a concatenation of the
blocks indexed by ⌦t+1. LMP then computes a new residual
according to rt+1 = ỹ � ⇥⌦t+1 ŝ⌦t+1 . After P iterations,
LMP uses the collected coefficients in (18) to identify the
least-correlating block index f̂ according to

f̂ = arg min
i2{1,2,...,K}\⌦P+1

PX

t=1

�t+1
i

. (20)

To assess the complexity of LMP, we provide a complexity
analysis in Table 1 by counting the number of real-valued
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TABLE 1. Computational complexity of frequency scanning and LMP.

Algorithm Complexity

Frequency scanning BN(log2 B + log2 N) + 2BN
LMP 4BN(⌘BN)2 + 2BN + 2(BN/K)3 + 6⌘BN(BN/K)2

�2⌘(BN)2/K + 4BN/K(⌘BN)2 + 4⌘BN(BN/K)2

multiplications required for (i) traditional frequency scanning
using a fast Fourier transform (FFT) and (ii) LMP with P = 1
as a function of the subsampling ratio defined as ⌘ = BM

BN
.

Frequency scanning takes in a B ⇥N dimensional antenna-
domain matrix X and applies 2D-FFT which has a complexity
of BN(log2 B + log2 N) followed by calculating the energy
of each block si 2 CNi that requires 2BN real-valued
multiplications. Our approach requires 4BN(⌘BN)2+2BN
real-valued multiplications for calculating the correlation
in (18), 2(BN/K)3 + 6⌘BN(BN/K)2 � 2⌘(BN)2/K) +
4BN/K(⌘BN)2 real-valued multiplications for estimating
the non-zero blocks ŝ⌦t+1 , and 4⌘BN(BN/K)2 real-valued
multiplications for calculating the residual rt+1. We note
that frequency scanning is typically less complex than LMP.
Nonetheless, in many practical applications, sampling, storage,
and data transmission are typically the limiting factors as
whitespace detection can be calculated in the cloud (where
computational resources are abundant and spectral defrag-
mentation would be carried out). In applications that require
on-device whitespace detection from CS-measurement, more
efficient algorithms than LMP would need to be developed.

B. BLOCK COHERENCE ANALYSIS OF EFFECTIVE
SENSING MATRIX
As shown in [30] for the single-antenna case, the performance
of LMP critically depends on the effective sensing matrix.
Concretely, one of the determining performance factors is the
block coherence [35], which we define as follows.

Definition 1. The block coherence of the effective sensing

matrix⇥ is defined as follows:

µ⇥ , max
i 6=i0

��[⇥]H
i
[⇥]i0

��
2
. (21)

We note that the block coherence is a standard tool to
characterize the performance of compressive sensing al-
gorithms that recover strong components of block-sparse
signals [35]. Concretely, if the block coherence is sufficiently
small, then a block sparse signal x can be recovered by
from noiseless compressed measurements. The paper [30]
has shown recently that the block coherence is also relevant
to provide conditions when whitespace detection is possible—
not just to detect strong signal components. We next show
that the block coherence in (21) is also relevant for detecting
unused resources in both the frequency and spatial domains.
Concretely, we now show that it matters whether one uses
different NUWS matrices Wb, b = 1, . . . , B, at each of the B
antenna elements or whether one uses the same set of wavelets
at each antenna, i.e., W1 = Wb, b = 1, . . . , B. For simplicity,
we assume (A1) equally sized blocks Ni = N/K and (A2)

unitary blocks in the NUWS matrices [Wb]Hk [Wb]k = INi ,
b = 1, . . . , B, and k = 1, . . . ,K, where k is the block index.

We first analyze the block coherence of the case in which
different NUWS sensing matrices are used at each antenna.
We have the following result; the proof is given in Appendix A.

Proposition 1. Using (A1) and (A2), the block coherence µ⇥

of the effective sensing matrix⇥ satisfies

µ⇥  1

B

BX

b=1

µŴb
, (22)

where µŴb
is the block coherence of the frequency-domain

NUWS sensing matrix Ŵb = WbFH

N
at antenna b.

This result shows that using different NUWS matrices
per receive antenna has the potential to yield lower block
coherence than the average of the individual block coherences
of the frequency-domain NUWS matrices.

We now analyze the case in which the same NUWS sensing
matrix W1 is used at each antenna. We have the following
result; the proof is given in Appendix B.

Proposition 2. Using (A1) and (A2), the block coherence µ⇥

of the effective sensing matrix⇥ satisfies

µ⇥ = µŴ1
, (23)

where µŴ1
is the block coherence of the frequency-domain

NUWS matrix Ŵ1 = W1FH

N
at antenna 1.

This result shows that using the same NUWS matrix at
each receive antenna renders the block coherence of ⇥ to
be the same as that of the frequency-domain NUWS ma-
trix Ŵ1. Consequently, the use of different NUWS matrices
at each receive antenna has the potential to reduce the block
coherence and, hence, improve the performance of LMP for
spatio-spectral whitespace detection. We will confirm this
observation via system simulations in section IV on the next
page.

C. DESIGN OF EFFECTIVE SENSING MATRICES
We now describe the design of sensing matrices for spatio-
spectral whitespace detection that have small block coherence.
We start by generating an overcomplete NUWS base dictio-

nary W 2 CD⇥N consisting of D � M different wavelets.
As in the single-antenna case [30], [37], we focus on wavelet
sequences with elements taken from the set {+1, 0,�1},
which has the advantage of enabling simple analog circuitry
to generate the wavelet sequences. From this base dictionary,
we generate an overcomplete block-diagonal base dictionary
for the multi-antenna case as Q = IB ⌦WD. We then use
a greedy, wrapper-based algorithm to select a subset of BM
wavelet sequences with small block coherence from this base
dictionary. To this end, we start with an empty set of wavelet
sequences. For each sequence in the overcomplete dictionary,
we utilize the following self-orthogonalizing version of the
block coherence defined as [30]

µ̄⇥v , max
i 6=i0

��([⇥v]H
i
[⇥v]i)

�0.5[⇥v]H
i
[⇥v]i0

��
2
, (24)
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where⇥v is the (unnormalized) dictionary in the vth iteration
of this procedure. We then add the wavelet sequence that
exhibits the lowest block coherence to the dictionary. We
repeat this selection procedure until BM wavelet sequences
have been collected. We call the resulting effective sensing
matrix “U-NUWS,” short for unrestricted NUWS.

While the above procedure does not guarantee the acqui-
sition of M wavelet samples per antenna, we also design
a variant that selects exactly M coefficients per antenna,
which can simplify NUWS acquisition hardware. The method
proceeds as for the U-NUWS dictionary above, but simply
limits the selection to M measurements per antenna. We call
the resulting effective sensing matrix “R-NUWS,” short for
restricted NUWS.

As a baseline, we also design a simple multi-antenna
sensing matrix that uses the same set of wavelet sequences at
all antennas. To this end, we run the above greedy procedure
on the overcomplete NUWS matrix W and use that matrix
at all antennas. We call the resulting effective sensing matrix
“1-NUWS,” short for one-antenna NUWS.

IV. RESULTS
We now demonstrate the efficacy of the proposed spatio-
spectral whitespace detection approach. We first detail the
simulation setup and then present the simulation results.

A. SIMULATION SETUP
We simulate the system depicted in Figure 2 containing
multiple single-antenna RF transmitters occupying different
frequency bands and communicating with an B = 8 antenna
receiver equipped with a ULA. We divide the RF spectrum
between 2.4GHz and 2.5GHz into C = 20 equally-spaced
subbands, each with Z = 5MHz bandwidth. We randomly
place the transmitters 1m and 280m apart of the receiver and
randomly set the incident angle of the transmitter in a sector
between 10� and 135�. We use the same model and parameters
for the receive-side low-noise amplifier (LNA), transmit-side
and receive-side mixers, and transmit and receive antennas
as in [30]. Concretely, the receiver antenna array is placed
at a height of 15m with a gain of 10 dBi per antenna. LNA
and mixers include nonlinearities of first, third, and fifth order
harmonics at 50⌦ impedance, �1 dB gain compression, and
a third-order intercept point of 10 dBm. We use Leeson’s
model [38] with 1MHz carrier frequency offset at �110 dBc
to model the phase noise. We use 8 dB and 20 dB respectively,
and we set the noise figure to 5 dB for both the mixer and LNA.
We include thermal noise at 290K both at the transmitter
before the mixer and the receiver before LNA.

For the sake of conciseness, we simulate line-of-sight RF
channels with one propagation path and use the path-loss
model from [39]. We perform 200 k Monte-Carlo trials, where
we randomize the location, angle, number of transmitting
UEs (between U = 1 and U = 5), spectrum occupancy,
and thermal noise. At the receiver side, we measure the RF
signal at each of the B = 8 antennas by performing NUWS
(and other baseline methods) over a duration of N = 200

samples. We perform spatio-spectral whitespace detection
using LMP with P = 4. We also compare our approach to
two baselines: (i) Randomly selecting a spatio-spectral block
as unused (called “Random”) and (ii) performing Nyquist
sampling (processing all N = 200 samples per antenna)
and analyzing the signal power in the beamspace domain
(called “Nyquist”). We note that the approach called “Nyquist”
uses frequency scanning which first takes a two-dimensional
DFT on the multi-antenna RF signal matrix X followed by
calculating the powers of each spatio-spectral block. These
powers are then used to declare the whitespace as the block
with minimum power. For all whitespace detection methods,
we declare an error whenever an algorithm decides that a
spatio-spectral resource block was unused but it was, in fact,
occupied by a transmitter.

B. SIMULATION RESULTS
Figures 3a, 3b, and 3c show simulation results for BM = 100,
BM = 200, and BM = 400 measurements corresponding
to subsampling rates of ⌘ = 1/16, ⌘ = 1/8, and ⌘ = 1/4,
respectively. We evaluate the empirical error rate versus the
average SNR for all active transmitters. We observe that
both LMP with U-NUWS and R-NUWS sensing matrices
consistently achieve lower error rates than LMP with the
same sensing matrix (1-NUWS) for all SNR values. This
finding demonstrates that LMP with U-NUWS and R-NUWS
can yield lower mutual coherence (and hence better perfor-
mance) than a näive application of LMP 1-NUWS, which
was designed for the single-antenna case [30], to the multi-
antenna case. While U-NUWS achieves the lowest error
rate among the three dictionaries, the difference between U-
NUWS and R-NUWS is relatively small, which implies that
R-NUWS is preferrable from an implementation perspective.
LMP U-NUWS achieves an error rate of 0.1% for SNR
values exceeding 10 dB with 16⇥ fewer samples than Nyquist
sampling. Similarly, at an error rate of 0.1%, LMP with U-
NUWS and R-NUWS with a subsampling rate of ⌘ = 1/8
approaches the Nyquist baseline by about 6 dB. Both U-
NUWS and R-NUWS enable LMP to achieve an error rate
lower than 0.01% with a subsampling rate of ⌘ = 1/4 for
SNR values exceeding 5 dB.

We note that an error floor for the subsampling rates ⌘ =
1/16 and ⌘ = 1/8 is visible at high SNR. This observation
can be explained by studying the sufficient condition for the
success of LMP with P = 1 provided in [30, Prop. 1]:

P
j2U kxjk2
kxmink2

<
1

2

✓
�min

µ⇥
+ 1

◆
� knk2

µ⇥kxmink2
. (25)

Here, kxmink2 = minj2U kxjk2 is the `2-norm of the
block of xi that has the minimum `2-norm among the used
blocks indexed by U and �min = mini=1,...,B �⇥i is the
minimum singular value among all the blocks of [⇥]i with
i = 1, . . . ,K. We see from (25) that the block coherence
µ⇥ must be minimized and the SNR, which is characterized
by the term µ⇥kxmink2/knk2, must be maximized to ensure
this condition is met (which guarantees the success of LMP).
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(a) Subsampling rate ⌘ = 1/16
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(b) Subsampling rate ⌘ = 1/8
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(c) Subsampling rate ⌘ = 1/4

FIGURE 3. Average SNR versus error rate for a multi-antenna spatio-spectral white space detection task. We show the performance for different NUWS sensing
matrices and for a random as well as Nyquist-based baseline. We use LMP for (a) BM = 100 (subsampling rate ⌘ = 1/16), (b) BM = 200 (subsampling rate
⌘ = 1/8), and (c) BM = 400 (subsampling rate ⌘ = 1/4) NUWS measurements. At a target error rate of 0.01%, the SNR gap between LMP with U-NUWS and a
subsampling rate ⌘ = 1/4 approaches the Nyquist-based baseline by 2 dB.

However, we also see from (25) that even in absence of
noise (which is at infinite SNR), the block coherence limits
the performance of LMP. Hence, to further improve the
performance at high SNR, one must design sampling matrices
with lower block coherence, which is fundamentally limited
by the Welch lower bound [40] and can be reduced by
increasing the number of compressive measurements (which
would increase the subsampling rates and degrade sampling
efficiency).

V. CONCLUSIONS

We have proposed a novel spatio-spectral whitespace detection
pipeline for multi-antenna RF transceivers. Our method first
acquires NUWS measurements at multiple antennas and
then uses LMP to identify unused resources in both the
angular and frequency domains. We have shown that properly-
designed multi-antenna NUWS sensing matrices yield lower
mutual coherence, which manifests itself in lower error rates.
Simulation results have demonstrated that LMP-based spatio-
spectral whitespace detection can approach the performance
of Nyquist sampling by about 2 dB SNR at a target error rate
of only 0.01% with a subsampling rate of ⌘ = 1/4.

There are many avenues for future work. An in-depth
study of the impact of more hardware impairments (such
as carrier frequency offsets and symbol timing mismatches)
on our framework would be interesting. The development
of a hardware prototype that performs multi-antenna NUWS
for energy-efficient spatio-spectral whitespace detection is an
ongoing work. Investigating the efficacy of spectral realloca-
tion of UEs using our pipeline is an interesting open problem.
The development of algorithms for on-device spatio-spectral
whitespace detection from compressive measurements that
require lower complexity than LMP is a challenging research
topic.

.

APPENDIX A PROOF OF PROPOSITION 1
In what follows, we assume equally sized blocks Ni = N/K
and normalization [Ŵb]Hk [Ŵb]k = INi of the frequency-
domain (FD) beamspace NUWS matrices Ŵb = WbFH

N
,

b = 1, . . . , B. We start by explicitly stating the effective
sensing matrix:

⇥ =

2

6664

[FH

B
]1,1Ŵ1 . . . [FH

B
]1,BŴ1

[FH

B
]2,1Ŵ2 . . . [FH

B
]2,BŴ2

...
. . .

...
[FH

B
]B,1ŴB . . . [FH

B
]B,BŴB

3

7775
. (26)

The definition of the block coherence in (21) relies on the
following spectral norms:

k[⇥]H
i
[⇥]i0k2 =

�����

BX

b=1

[FB ]b,q[Ŵb]
H

k
[Ŵb]k0 [FH

B
]b,q0

�����
2

.

(27)

Here, (i, i0) are the block indices in the effective sensing
matrix ⇥, (k, k0) are the block indices in the FD-NUWS
matrices Ŵb (corresponding to blocks of Ni adjacent fre-
quencies), and (q, q0) are the antenna indices. We have the
mappings i = k+(q�1)K and i0 = k0+(q0�1)K between
blocks of the effective sensing matrix ⇥ and blocks in the
FD-NUWS matrices Ŵq, q = 1, . . . , B, where K = N/Ni

is the number of blocks per Ŵq matrix and Ni is the block
size (corresponding to Ni adjacent frequencies). For example,
the submatrix [Ŵq]k 2 CM⇥Ni refers to the kth block in
the qth FD-NUWS matrix Ŵb and is equal to [⇥]i with the
mapping i = k + (q � 1)K. In order to obtain a bound on
the block coherence in (27), we have to analyze the following
three cases:

Case 1 (k = k0 and q 6= q0)
We start by using the assumption that the columns of the
individual blocks of the FD-NUWS matrices Ŵb are unitary,
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i.e., [Ŵb]Hk [Ŵb]k = INi . With this assumption, the right-
hand side (RHS) of (27) simplifies to

k[⇥]H
i
[⇥]i0k2 =

�����

BX

b=1

[FB ]b,qINi [F
H

B
]b,q0

�����
2

. (28)

Since
P

B

b=1[FB ]b,q[FH

B
]b,q0 = 0 for q 6= q0, a consequence of

the unitarity of the DFT matrix, we have k[⇥]H
i
[⇥]i0k2 = 0.

Case 2 (k 6= k0 and q = q0)
Since q = q0, we have that [FB ]b,q[FH

B
]b,q0 = 1/B; a

consequence of the unitarity of the DFT matrix. With this,
the spectral norm in (27) can be written as

k[⇥]H
i
[⇥]i0k2 =

1

B

�����

BX

b=1

[Ŵb]
H

k
[Ŵb]k0

�����
2

. (29)

While the RHS could be calculated exactly for a given dictio-
nary, we now bound this expression by the block coherence
µŴb

of each FD-NUWS submatrix Ŵb, b = 1, . . . , B, using
the triangle inequality:

1

B

BX

b=1

���[Ŵb]
H

k
[Ŵb]k0

���
2
 1

B

BX

b=1

µŴb
. (30)

Case 3 (k 6= k0 and q 6= q0)
For this case, we directly apply the triangle inequality to the
RHS of (27), which yields

k[⇥]H
i
[⇥]i0k2 

BX

b=1

���[FB ]b,q[Ŵb]
H

k
[Ŵb]k0 [FH

B
]b,q0

���
2

(a)
=

1

B

BX

b=1

���[Ŵb]
H

k
[Ŵb]k0

���
2

(b)
 1

B

BX

b=1

µŴb
. (31)

Here, (a) follows from the unitarity of the DFT matrix and
(b) uses the definition of the block coherence µŴb

of each
FD-NUWS submatrix Ŵb.

By combining (28), (29), and (31), we obtain the bound
in (22), which concludes the proof.

APPENDIX B PROOF OF PROPOSITION 2
We follow the steps of the proof of Appendix A but exploit
the fact that all B NUWS matrices Wb are the same, i.e.,
Ŵ1 = Ŵb for all b = 1, . . . , B. Case 1 (k = k0 and q 6= q0)
remains the same. Case 2 (k 6= k0 and q = q0) leads to

k[⇥]H
i
[⇥]i0k2 =

1

B

�����

BX

b=1

[Ŵ1]
H

k
[Ŵ1]k0

�����
2

(32)

=
���[Ŵ1]

H

k
[Ŵ1]k0

���
2
. (33)

Case 3 (k 6= k0 and q 6= q0) results in

k[⇥]H
i
[⇥]i0k2 =

�����[Ŵ1]
H

k
[Ŵ1]k0

BX

b=1

[FB ]b,q[F
H

B
]b,q0

�����
2

= 0,

(34)
because the DFT matrix is unitary. Since, (33) holds with
equality, we have that µ⇥ = µŴ1

, which concludes the proof.
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E. Gönültaş et al.: Sample-Efficient Spatio-Spectral Whitespace Detection via Least Matching Pursuit

[23] M. A. Davenport, J. N. Laska, J. R. Treichler, and R. G. Baraniuk, “The pros
and cons of compressive sensing for wideband signal acquisition: Noise
folding versus dynamic range,” IEEE Trans. Signal Process., vol. 60, no. 9,
pp. 4628–4642, Sep. 2012.

[24] M. Pelissier and C. Studer, “Non-uniform wavelet sampling for RF analog-
to-information conversion,” IEEE Trans. Circuits Syst. I, Reg. Papers, Aug.
2017.

[25] P. Maechler, D. E. Bellasi, A. Burg, N. Felber, H. Kaeslin, and C. Studer,
“Sparsity-based real-time audio restoration,” in Proc. Conference on Design

& Architectures for Signal & Image Processing (DASIP), Oct. 2012.
[26] P. Maechler, C. Studer, D. E. Bellasi, A. Maleki, A. Burg, N. Felber,

H. Kaeslin, and R. G. Baraniuk, “VLSI design of approximate message
passing for signal restoration and compressive sensing,” IEEE J. Emerg.

Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 579–590, Sept. 2012.
[27] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, “Design and analysis of

a hardware-efficient compressed sensing architecture for data compression
in wireless sensors,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 744–
756, Feb. 2012.
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