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Abstract—Recent channel state information (CSI)-based po-
sitioning pipelines rely on deep neural networks (DNNs) in
order to learn a mapping from estimated CSI to position. Since
real-world communication transceivers suffer from hardware
impairments, CSI-based positioning systems typically rely on
features that are designed by hand. In this paper, we propose
a CSI-based positioning pipeline that directly takes raw CSI
measurements and learns features using a structured DNN in
order to generate probability maps describing the likelihood
of the transmitter being at pre-defined grid points. To further
improve the positioning accuracy of moving user equipments, we
propose to fuse a time-series of learned CSI features or a time-
series of probability maps. To demonstrate the efficacy of our
methods, we perform experiments with real-world indoor line-of-
sight (LoS) and non-LoS channel measurements. We show that
CSI feature learning and time-series fusion can reduce the mean
distance error by up to 2.5⇥ compared to the state-of-the-art.

I. INTRODUCTION

The need for low-cost but accurate positioning systems
is driven by recent trends in virtual reality, asset tracking,
robotics, and industrial automation [2], [3]. Existing outdoor
positioning solutions mostly rely on global navigation satellite
systems (GNSS) that provide meter-level accuracy but require
line-of-sight (LoS) satellite connectivity. High-precision indoor
positioning solutions typically require specialized hardware that
uses visible or infra-red light to localize objects with either
active IR transmitting markers [4] or passive reflectors [1]. Such
systems require unobstructed views, are affected by sunlight
and reflective surfaces, and are costly.

A. CSI-Based Positioning with Neural Networks
Low-cost indoor positioning can be achieved with existing

communication infrastructure that utilizes orthogonal frequency
division multiplexing (OFDM) [5]. OFDM receivers must
acquire channel state information (CSI) to suppress inter-
symbol interference caused by multi-path propagation [5].
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Since the measured CSI strongly depends on the environment
between the transmitting user equipment (UE) and the receiver
(access point or base station), it can be used for positioning
purposes [6]–[17]. Such CSI-based positioning solutions either
use geometrical models [18] or learn a function that maps CSI
to position [11], [13], [14], [16], [19]. The latter approach often
relies upon deep neural networks (DNNs), which has shown to
enable accurate outdoor and indoor positioning accuracy [9],
[12], [14]–[17].

DNN-based positioning pipelines that rely on raw CSI
measurements enable sub-meter-level indoor positioning ac-
curacy [15], but are unable to compete with approaches
that use carefully-engineered CSI features [16], [17]. The
main reason is as follows: Real-world CSI measurements
are affected by small-scale fading, antenna orientation, and
hardware impairments [14], [16], such as synchronization
errors, residual timing and carrier frequency offsets, and phase
noise, which necessitates features that are resilient to such
effects. As a consequence, learning DNNs from raw CSI
measurements would require a prohibitive amount of training
data to learn from a sufficiently diverse training set that contains
all possible combinations of real-world system and hardware
nonidealities. Hence, existing systems almost exclusively rely
on CSI features that are designed by hand and tailored to
the communication standard and hardware equipment to be
resilient to such impairments.

State-of-the-art CSI feature extraction pipelines often trans-
form the frequency-domain CSI to the delay domain [11],
[13], [14], [16]. Computing an autocorrelation instead of using
the raw delay-domain information has been shown in [14] to
further improve resilience to hardware impairments. Although
such features combined with DNNs enable centimeter (cm)-
level indoor positioning accuracy [16], they do not exploit
the learning capabilities of DNNs. Furthermore, most CSI
feature extraction pipelines compute a position estimate based
on measurements acquired only during a single time instance,
with the exception of the recent papers [15], [20]. However,
both of these papers propose to fuse a time series of CSI
measurements without providing any insight on the efficacy of
fusing the outputs of the positioning DNN.



B. Contributions

In this paper, we propose a DNN-based positioning pipeline
that takes in a time-series of raw CSI measurements in order
to generate a probability map, which indicates the likelihood
of the transmitting user equipment (UE) to be at a certain
grid point. This probability map is then used to estimate the
UE’s position. In order to enable CSI feature learning, we
build upon the structure of hand-designed feature extraction
pipelines [14], [16] while learning its key parameters. We
furthermore improve the positioning accuracy by (i) CSI feature
fusion, which combines a time-series of raw-CSI measurements
using a recursive neural network (RNN), and (ii) probability
map fusion, which combines a time-series of the generated
probability maps using an RNN or probability conflation. We
systematically study the efficacy of our methods using real-
world CSI measurements for LoS and non-LoS scenarios, and
we show that our methods can improve positioning accuracy
by up to 2.5⇥ compared to the state-of-the-art.

C. Notation

Lowercase and uppercase boldface letters denote column
vectors and matrices, respectively. For a matrix A, we denote
the transpose by A

T , Hermitian transpose by A
H , entry in

the ith row and jth column by Ai,j , ith column by ai, and
real and imaginary parts by <(A) and =(A), respectively. The
column-wise vectorization of A is denoted by vec(A). For a
vector a, the kth entry is ak and the `

2-norm is kak2. The
operator | · |�2 is the element-wise absolute value squared.

II. SYSTEM MODEL

We start by outlining the operation principle of the proposed
CSI-based positioning pipeline. We then describe state-of-the-
art CSI-based feature extraction and DNN pipelines.

A. System Model

We consider a single-input multiple-output (SIMO) OFDM
communication system building on the IEEE 802.11ac stan-
dard [21] with U single-antenna mobile UEs, an access point
(AP) with MR antennas, and OFDM transmission with W

occupied subcarriers. We assume that the uth UE at time
instant t is at position x

(ut) 2 RD, where D is either two or
three. The UE transmits a pre-defined pilot sequence, which is
used by the AP to estimate the CSI on the occupied OFDM
subcarriers. Since the system is assumed to operate in time-
division duplexing mode, the other UEs are inactive. The
estimated MR-dimensional SIMO channel vector associated
with UE u at time t and subcarrier w = 1, . . . ,W is denoted by
h
(ut)
w 2 CMR . We call the collection H

(ut) = [h(ut)
1 , . . . ,h

(ut)
W

]
of these channel vectors for all subcarriers the estimated CSI of
UE u at time t. In what follows, we assume that the estimated
CSI is affected by real-world system and hardware impairments,
such as noise, synchronization errors, mismatches in carrier
frequency and sampling rates, and phase noise.
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Fig. 1. Overview of three different CSI-based positioning pipelines: (a)
Estimated CSI is directly fed into a DNN to produce a probability map; (b)
estimated CSI is first transformed into CSI features using a pre-designed
feature extraction function f(·); (c) proposed architecture that uses a learned
feature extraction function f�(·), which is implemented as a structured DNN.

B. CSI-Based Positioning Using DNNs

Multiple architectures are possible to perform CSI-based
positioning with DNNs. Fig. 1 illustrates three different
alternatives, which we detail next.

The first architecture is shown in Fig. 1a. The estimated
CSI H

(ut) of UE u at time t is fed directly to a DNN that
computes a probability map p̂

(ut) 2 RK according to p̂
(ut) =

g✓(H(ut)). Here, K is the number of grid points and g✓ is the
function that maps estimated CSI to a probability map [16].
Each grid point gk 2 RD, k = 1, . . . ,K, corresponds to a fixed
location in the area of interest, and each entry p̂

(ut)
k

2 [0, 1],
k = 1, . . . ,K, of the estimated probability map p̂

(ut) indicates
the likelihood of the UE u being at the associated grid point
at time t. By computing x̂

(ut) =
P

K

k=1 gkp̂
(ut)
k

, one then
generates an estimate of the UE’s position.1 We emphasize that
directly feeding CSI estimates into the DNN does, in general,
not perform well (see our results in Section V-B), mainly
because it would require a prohibitive amount of training data
to capture a representative set of CSI measurements for all
possible system and hardware impairment realizations.

The second architecture is shown in Fig. 1b and overcomes
the main drawbacks of the first architecture. The difference
to Fig. 1a is that the CSI estimate H

(ut) 2 CMR⇥W is first
transformed into a CSI feature vector f (ut) 2 RS containing S

features and is computed according to f
(ut) = f(H(ut)), where

the function f represents the feature extraction stage. The
feature extraction function f is typically designed by hand
(hence dubbed “feature design” in Fig. 1b) and tailored to the
specifics of the communication system and designed to cope
with small-scale fading, antenna orientation, and hardware
impairments. Feature extraction also serves the purpose of
preparing the data for subsequent DNN processing [14]. While

1Alternative approaches that directly generate a position estimate within the
DNN have been shown in [16] to result in inferior accuracy.



such architectures are widely used in state-of-the-art CSI-based
positioning pipelines [8], [13], [14], [16], [17], [22]–[25], such
hard-coded CSI feature extraction stages are unable to exploit
the learning capabilities of DNNs.

The third architecture is shown in Fig. 1c. The key difference
to the previous architectures is the fact that we directly learn
a suitable CSI feature extraction stage. Specifically, we learn
a function f� (hence dubbed “feature learning” in Fig. 1c)
with parameters � that maps CSI estimates to CSI features
according to f̄

(ut) = f�(H(ut)). By using a structured DNN
to implement the function f� , this architecture is able to fully
benefit from the power of DNNs, which results in improved
position accuracy (see our results in Section V-B).

C. Existing CSI Feature Extraction Pipelines
As explained above, CSI-based positioning pipelines often

rely on hand-crafted CSI features that are extracted from
estimated CSI (see Fig. 1b). The CSI features must not only
be resilient to small-scale fading, antenna orientation, and
hardware impairments, but they should also be different for
different transmit positions. We now summarize the key steps
of the CSI feature extraction pipeline from [16]. The main
insights will then be used for CSI feature learning in Section III.

1) Delay-Domain Transform: Since the propagation channel
is described in a compact manner in the time domain, it is
often beneficial to convert the frequency-domain CSI into the
delay domain according to [11], [13], [14], [16]

Ĥ
(ut) = H

(ut)F
H

W
. (1)

Here, FW is the W -dimensional unitary discrete Fourier
transform (DFT) matrix2 and Ĥ

(ut) 2 CMR⇥W is the delay-
domain matrix, which contains the C taps of the wireless
channel between UE u and one AP antenna in each row.

2) Autocorrelation: Computing the autocorrelation [14] or
“instantaneous” autocorrelation [16] has shown to improve
resilience of the CSI features to synchronization errors and
residual phase errors (caused, e.g., by carrier frequency offset
or phase noise). Following [16], let Ĥ(ut)

m,k
be the kth delay-

domain sample measured at the mth receive antenna of UE u

at time t. Then, we calculate the 2-dimensional convolution
over the delay and antenna domains as

R
(ut)[, ⌧ ] =

MRX

m=1

WX

k=1

Ĥ
(ut)
m,k

Ĥ
(ut)

⇤

m+�MR,k+⌧�W
, (2)

where  = 1, 2, . . . , 2MR and ⌧ = 1, 2, . . . , 2W , and the
resulting matrix is denoted by R

(ut).
3) Real-Valued Decomposition and CSI Feature Normaliza-

tion: Since some deep learning frameworks are unable to deal
with complex numbers, we first vectorize the autocorrelation
matrix in (2) via r

(ut) = vec(R(ut)), and then convert the
2MR2W -dimensional vector into the real domain as follows:

f̂
(ut) =

h
<{r(ut)}T ,={r(ut)}T

iT
. (3)

2Performing an inverse DFT over only the used subcarriers works well in
practice and requires lower complexity than first extrapolating the channel
coefficients to all subcarriers, e.g., using the method from [26].
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Fig. 2. DNN topology used to generate probability maps from raw estimated
CSI H(ut), designed CSI features f

(ut), or learned CSI features f̄
(ut).

In practice, the UE’s transmit power and the gain of the low-
noise amplifier at the AP are typically set independently. In
addition, the path loss can vary vastly for different propagation
scenarios. Thus, the received power is, in general, not a reliable
quantity for CSI-based indoor positioning applications. To
this end, we normalize the CSI features in (3) according to
f
(ut) = f̂

(ut)/kf̂ (ut)k2 prior to feeding them into the DNN [13],
[16], [24], [27]–[29]. This normalization step also improves
convergence of stochastic gradient descent.

D. DNN Structure and Training

For all of the positioning pipelines shown in Fig. 1, we use
the same DNN structure from [16], as illustrated in Fig. 2. For
the architecture depicted in Fig. 1a, the positioning DNN takes
in raw CSI measurements. For the architecture depicted in
Fig. 1b, the positioning DNN takes in hand-designed features.
For the architecture depicted in Fig. 1c, the positioning DNN
additionally includes trainable input layers that implement
the feature learning function f� which processes raw CSI
measurements; the rest of the positioning DNN is the same as
for the two other architectures. The positioning DNN g✓ , where
the vector ✓ contains all weights and biases, consists of six
hidden layers and the numbers in Fig. 2 indicate the number of
activations per layer. All layers use rectified linear unit (ReLU)
activation functions, except the last layer is using a softmax
activation to generate the estimated probability map p̂

(ut) for
the uth UE at time t. The first layer uses batch normalization
(BN) and dropout; the second layer only uses BN.

We assume that all of the DNNs are trained off-line from
a dataset containing CSI-location pairs. While self-supervised
methods, e.g., channel charting [22], could avoid the acquisition
of large data sets, we leave an investigation of such methods
for future work. During training, we initialize the weights
using Glorot [30] and use the binary cross entropy (BCE) as
the loss. To generate the training set, we compute a reference
probability map p

(ut) using the approach described in [16]
for each reference position x

(ut). Concretely, we identify the
nearest four grid points to the reference position and assign the
associated four probability values so that the expected position
corresponds to the reference position.

III. CSI FEATURE LEARNING

We now propose our approach to learn the CSI feature
extraction stage as shown in Fig. 1c instead of working with
hard-coded CSI features. We note that learning an unstructured
DNN directly from the raw CSI features would suffer from the
same limitations as the architecture in Fig. 1a. Thus, we use a
simple but effective alternative: We first build a structured DNN



that models the key steps of the feature extraction pipeline
detailed in Section II-C. We then learn the key parameters of
this structured DNN together with the DNN that generates the
probability maps. These steps are detailed next.

A. Delay-Domain Transform

We apply the transform in (1) with a trainable weight matrix
W1 2 CW⇥W instead of the inverse DFT (IDFT) matrix
F

H

W
. To this end, we initialize the trainable weight matrix

with F
H

W
. We then compute Ĥ

(ut) = H
(ut)W1 using the real-

valued decomposition. We note that after learning the weight
matrix W1, the transformed matrix Ĥ

(ut) contains CSI features
that are not necessarily in the delay domain anymore.

B. DFT-Based Autocorrelation

In order to calculate the instantaneous 2D autocorrelation
in (2), we use the Wiener–Khinchin theorem. Specifically, we
calculate the autocorrelation matrix with the aid of DFT and
IDFT matrices as follows:

R̂
(ut) = F

H

2MR
|F2MRH

(ut)
z

F2W |�2 FH

2W . (4)

Here, R̂(ut) 2 C2MR⇥2W is the autocorrelation of the zero-
padded delay-domain CSI matrix H

(ut)
z 2 C2MR⇥2W , F2MR

and F2W are the 2MR-dimensional and 2W -dimensional DFT
matrices respectively. Zero padding is achieved by appending
zeros to the columns and rows of Ĥ(ut) to get H(ut)

z , which
doubles the number of rows and columns.

Our main idea for this stage is to calculate (4), where we
replace the DFT matrix F2MR by a trainable weight matrix
W2 2 C2MR⇥2MR , which is initialized by F2MR , and F

H

2MR

by W
H

2 . Analogously, we replace the DFT matrix F2W by a
trainable weight matrix W3 2 C2W⇥2W , which is initialized
by F2W , and F

H

2W by W
H

3 . We then compute

R̂
(ut) = W

H

2 |W2H
(ut)
z

W3|�2 WH

3 . (5)

We note that after learning the two weight matrices W2

and W3, the matrix R̂
(ut) in (5) does not necessarily cor-

respond to the autocorrelation anymore. Once again, we carry
out the above steps using the real-valued decomposition.

C. CSI Feature Normalization

Finally, we vectorize the matrix R̂
(ut) from (5) via r̂

(ut) =
vec(R̂(ut)) and separate the real and imaginary parts as in (3),
resulting in the vector f̂

(ut). As a last step, we normalize
the result as f̄

(ut) = f̂
(ut)/kf̂ (ut)k2, which is the CSI feature

vector that is fed in the positioning DNN (cf. Fig. 1c).

IV. TIME-FUSION OF CSI-FEATURES
AND PROBABILITY MAPS

We now propose three methods that take into account the
facts that (i) CSI estimates are generated at fast rates and (ii)
multiple consecutive CSI features and/or probability maps can
be fused to improve positioning accuracy of moving UEs.

A. Fusion of CSI Features
In practical situations, CSI estimates are generated as a

time series and consecutive CSI features will exhibit some
degree of similarity due to the relatively slow motion of the
UEs with respect to the rate of CSI acquisition. Our idea
is illustrated in Fig. 3a and fuses � + 1 consecutive CSI
estimates {H(un)}t

n=t��
using a recurrent neural network

(RNN). For each time step, we first apply our trainable CSI
feature extraction layer to each CSI estimate, followed by a
CSI feature fusion layer that is implemented using �+1 gated-
recurrent-units (GRUs) [31] with linear activation functions.
The GRUs produce a single CSI feature vector f

(ut) that is
passed to the neural network g✓ to produce a probability map.

B. Probability Map Fusion
An alternative to fusing time series of CSI features is to fuse

⌧ + 1 consecutive probability maps {p̂un}t
n=t�⌧

. The basic
idea is illustrated in Fig. 3b and we propose two different
fusion methods. The first fusion approach uses a simple
four hidden-layer RNN with an initial layer consisting of
⌧ + 1 GRUs [31] with K linear activation functions, which
takes in the time series of probability maps and computes a
fused probability map p

ut . The hidden layers have K ReLU
activations, and the output layer has a softmax activation
with K outputs. The second fusion approach uses Gaussian
conflation [32], which has been used in [16] to fuse probability
maps from multiple APs and multiple transmit antennas to
improve positioning accuracy. Here, we first compute the
location estimates {x̂(un)}t

n=t�⌧
and associated covariance

matrices K
(un) =

P
K

k=1 p
(un)
k

(gk � x̂
(un))(gk � x̂

(un))T for
n = t� ⌧, . . . , t from the ⌧ +1 probability maps {p̂un}t

n=t�⌧
.

We then perform Gaussian conflation [16]

x̂
(ut)
d

=

P
t

n=t�⌧
K

(un)
�1

d,d
x̂
(un)
d

P
t

n=t�⌧
K

(un)�1

d,d

, (6)

where d = 1, . . . , D with D = 2. The intuition behind (6)
is that location estimates with large variance (which are less
reliable) are deweighted in the averaging process.

C. CSI Feature and Probability Map Fusion
In order to further improve the positioning accuracy, we can

combine CSI feature fusion with probability map fusion. The
idea is illustrated in Fig. 3c and takes in ⌧ +1 separate groups
of raw CSI estimates. Each group of � + 1 consecutive raw
CSI estimates are first passed through our learned CSI feature
extraction pipeline and feature fusion RNN. The features are
then passed through DNNs that produce ⌧+1 probability maps,
which are fused using an RNN or Gaussian conflation in order
to produce a fused probability map. Finally, this probability
map is used to compute the position estimate.

V. RESULTS

We now provide experimental results for the CSI feature
learning and time fusion methods proposed in Section III
and Section IV, respectively. We start by describing the
measurement setup and then show our results.
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Fig. 3. CSI feature fusion and probability map fusion: (a) CSI feature fusion in which an RNN combines a time-series of CSI estimates to produce a CSI
feature; (b) probability map fusion in which an RNN or Gaussian conflation combines a time-series of probability maps; (c) CSI feature fusion and probability
map fusion that combines both methods to compute a combined probability map.

A. Measurement Setup
For our experiments, we use two datasets from [16] con-

taining real-world CSI measurements recorded in a LoS lab
scenario (called LoS Lab v1 with 154k training samples and
3800 test samples) and a non-LoS home scenario (called NLoS
Home with 96k training samples and 2200 test samples). In
addition, we also acquired a new dataset (called LoS Lab
Data v2 with 202k training samples and 50k test samples),
which has been recorded in a lab space at Cornell University
using the same measurement setup described in [16]. The
dataset is generated with a robot that follows a random path
in a 3.2⇥4.2 m2 area under LoS conditions, where we first
record the training set and then a test set that have different
UE locations. This new dataset is more challenging than the
two other datasets from [16] as the test set contains many
locations that were not previously fingerprinted in the training
set. We obtain CSI measurements for W = 234 subcarriers
and at MR = 4 receive antennas, and we use a VICON [1]
precision positioning system to collect the ground-truth location
information. To construct the probability maps, we use a 22⇥22
uniformly-spaced grid which corresponds to K = 484 grid-
point probabilities. In what follows, we provide the mean
distance error (MDE) in meters evaluated on the test sets.

B. Experimental Results
We now show our experimental results for the proposed CSI

feature learning and time fusion methods.
1) Impact of CSI Feature Learning: Table I shows MDE

results for the following methods: (i) Fig. 1a, in which
the DNN g✓ takes in raw CSI measurements and generates
probability maps as described in Section III; (ii) Fig. 1b, in
which the DNN g✓ uses designed CSI features as described in
Section II-C; and (iii) Fig. 1c, in which the neural network g✓

takes in the output of the proposed CSI feature learning
approach as described in Section III. For the LoS Lab v1
and NLoS Home scenarios, the MDE for the designed CSI
feature pipeline matches those reported in [16]. As mentioned
earlier, the use of raw CSI estimates does not perform well. The
proposed CSI feature learning approach, however, consistently
outperforms the two other methods in terms of the MDE.

TABLE I
IMPACT OF CSI FEATURE LEARNING ON MDE.

Features Raw CSI Designed Learned
Figure 1a 1b 1c

LoS Lab v1 0.36 0.05 0.04
LoS Lab v2 0.50 0.30 0.25
NLoS Home 0.52 0.28 0.19

TABLE II
IMPACT OF CSI FEATURE TIME-FUSION ON MDE.

Features Non-fusion, learned Designed Learned
Figure 1c 3a and 1b 3a and 1c

LoS Lab v1 0.04 0.04 0.03
LoS Lab v2 0.25 0.24 0.24
NLoS Home 0.19 0.21 0.17

TABLE III
IMPACT OF PROBABILITY MAP FUSION ON MDE.

Non-fusion RNN Gaussian conflation
Features Learned Designed Learned Designed Learned
Figure 1 3b and 1b 3b and 1c 3b and 1b 3b and 1c

LoS Lab v1 0.04 0.03 0.03 0.03 0.03
LoS Lab v2 0.25 0.23 0.19 0.23 0.20
NLoS Home 0.19 0.22 0.16 0.23 0.17

TABLE IV
IMPACT OF CSI FEATURE AND PROBABILITY MAP FUSION ON MDE.

Non-fusion RNN Gaussian conflation
Features Learned Designed Learned Designed Learned
Figure 1c 3c and 1b 3c and 1c 3c and 1b 3c and 1c

LoS Lab v1 0.04 0.04 0.02 0.04 0.02
LoS Lab v2 0.25 0.22 0.21 0.21 0.21
NLoS Home 0.19 0.20 0.15 0.19 0.15

2) Impact of CSI Feature Time-Fusion: Table II shows MDE
results for CSI feature time fusion as detailed in Section IV-A.
Here, the RNN in Fig. 3a takes in � + 1 = 3 subsequent CSI
features to generate a combined CSI feature that is used to
generate probability maps (we have observed that � + 1 = 3
resulted in the lowest MDE). Compared to the non-fusion case,
we observe an additional MDE decrease for all datasets.

3) Impact of Probability Map Time-Fusion: Table III shows
MDE results for probability map time fusion as detailed in



Section IV-B. Here, an RNN or Gaussian conflation is used to
combine ⌧ + 1 = 3 subsequent probability maps to generate a
combined probability map (we have observed that ⌧ + 1 = 3
resulted in the lowest MDE). Compared to the non-fusion
case, we observe an additional MDE decrease for all datasets,
where the MDE is slightly lower for the RNN-based approach
(compared to Gaussian conflation) for the LoS Lab v2 and
NLoS Home datasets.

4) Impact of CSI Feature and Probability Map Time-Fusion:
Table IV shows MDE results for the combination of CSI feature
and probability map fusion as detailed in Section IV-C. Here,
we take groups of ⌧ + 1 = 3 probability maps, each of which
are generated by fusing groups of � + 1 = 3 CSI features,
and outputs a combined probability map as shown in Fig. 3c.
Compared to CSI feature learning alone (no time fusion) and
hand-crafted CSI features, we observe a 2⇥ and a 2.5⇥ MDE
reduction, respectively. Fusing both the CSI features and the
probability maps results in the lowest MDE.

VI. CONCLUSIONS

We have proposed a DNN-based positioning pipeline that
takes in raw CSI estimates and learns CSI features using
a structured positioning DNN. We have also proposed two
time-fusion methods, which combine a time series of CSI
features and probability maps in order to further improve
positioning accuracy. Our experiments with real-world indoor
CSI measurements show a reduction in mean distance error
of up to 2.5⇥ compared to state-of-the-art methods that build
on hand-crafted CSI features. Our next step is to apply our
methods to self-supervised channel charting [22] and semi-
supervised positioning methods [13], [24] in order to improve
their localization capabilities.
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