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Abstract 

Digital twins are emerging as powerful tools for supporting innovation as well as optimizing 

the in-service performance of a broad range of complex physical machines, devices, and components. 

A digital twin is generally designed to provide accurate in-silico representation of the form (i.e., 

appearance) and the functional response of a specified (unique) physical twin. This paper offers a 

new perspective on how the emerging concept of digital twins could be applied to accelerate 

materials innovation efforts. Specifically, it is argued that the material itself can be considered as a 

highly complex multiscale physical system whose form (i.e., details of the material structure over a 

hierarchy of material length) and function (i.e., response to external stimuli typically characterized 

through suitably defined material properties) can be captured suitably in a digital twin. Accordingly, 

the digital twin can represent the evolution of structure, process, and performance of the material 

over time, with regard to both process history and in-service environment. This paper establishes the 

foundational concepts and frameworks needed to formulate and continuously update both the form 

and function of the digital twin of a selected material physical twin. The form of the proposed 

material digital twin can be captured effectively using the broadly applicable framework of n-point 

spatial correlations, while its function at the different length scales can be captured using 

homogenization and localization process-structure-property (PSP) surrogate models calibrated to 

collections of available experimental and physics-based simulation data. 

1 Introduction 

Recent forward-looking roadmaps (Gil and Selman, 2019; Jenks et al., 2012) have identified 

the development of a fully digital framework that fuses human-subject matter expertise, process and 

performance modeling, experimental in-situ diagnostics, and data science algorithms as one of the 

most important areas to transform manufacturing and surveillance of components throughput their 

life cycle. Indeed, the digitization of product lifecycle management (PLM) has led to the emergence 

and deployment of digital threads (Niederer et al., 2021; Kapteyn et al., 2021; Zeb et al., 2021) in a 

broad spectrum of manufacturing industries. These digital threads collect, curate, and archive all of 

the data/information generated from all stages of the product life cycle: conceptualization, design, 

prototype, manufacturing, operation, and retirement (Singh and Willcox, 2018; Margaria and 

Schieweck, 2019). Digital threads open multiple new avenues for fostering innovation and improving 

the in-service performance of a wide range of products. A necessary feature of the digital threads is 

that they encompass both the in-silico activities (e.g., model-based or virtual engineering) and the 
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physical activities (e.g., measurements made during the different stages of manufacturing, testing, 

and operation of the product) conducted in the PLM. An important outcome from the deployment of 

digital threads is that they have opened new opportunities for the creation and use of in-silico 

analogues to the physical product. The recent advances in digital and sensor technologies (Ullo and 

Sinha, 2020; Mei et al., 2019) enable the in-silico objects to co-exist along with their physical 

counterparts. In addition to mimicking the physical products, the in-silico analogues offer 

unprecedented potential for consistent change management, allowing the optimization of intentional 

or unintentional product evolution over time. Therefore, within this context, a digital twin can be 

defined as a high-fidelity in-silico representation closely mirroring the form (i.e., appearance) and the 

functional response of a specified (unique) physical twin. Digital twins have thus far been used in the 

manufacturing and performance evaluation of complex engineered physical systems (e.g., turbine 

engines) (Zaccaria et al., 2018; Raj and Surianarayanan, 2020; Tao et al., 2018; Lim et al., 2021; Xie 

et al., 2021) and/or their components, where the focus has been largely on capturing accurately the 

macroscale geometry and the component-level performance metrics. Current digital twins do not 

address adequately the capture and archival of the materials data, which typically deals with physical 

phenomena occurring at the lower material length scales (typically ranging from the atomic to the 

macroscale). This disconnect is not surprising given the siloed nature of current materials research 

and product design/manufacturing communities. However, it is abundantly clear that a successful 

extension of digital twins to include the materials data/information in a comprehensive manner can 

allow for a holistic co-design of material, manufacturing process, and product in fully integrated 

innovation cycles, possibly resulting in dramatic improvements in the overall part performance. 

Materials, in their own right, represent highly complex multiscale and multi-physics systems. 

Their production and in-service responses are controlled by a wide range of phenomena occurring at 

length scales ranging from the atomic to the macroscale and an equally broad range of associated 

time scales. Figure 1 depicts schematically the hierarchical nature of materials systems with 

examples of a wide variety of physical phenomena that occur at the nano- and micro-scales. Clearly, 

the materials phenomena occurring at the lower material length scales play important roles in 

controlling the macro- and component-scale performances of the part. In the current research 

paradigm, the considerations at the component/part scale and the material scale are studied in a 

mostly de-coupled manner by different groups of researchers. The former are the domain of 

mechanical designers and manufacturing specialists, while the latter are addressed by materials 

science and engineering specialists. More specifically, the field of materials science and engineering 

focuses on understanding how the different processing histories (e.g., thermo-mechanical processing) 

influence the material structure (includes information on the many aspects of order and disorder seen 

at different length scales cf. Figure 1) and their associated properties. However, understanding and 

quantifying accurately the underlying process-structure-property (PSP) relationships (McDowell and 

LeSar, 2016; Kalidindi, 2015) at the different material length and time scales is quite arduous. This is 

mainly because the diverse physical phenomena occurring at these scales are necessarily related and 

co-dependent with one another. Therefore, adopting a systems approach that manages the complex 

trade-offs between potentially conflicting multifunctional requirements at the different length scales 

spanning across the complete range of material and product scales would yield significant benefits.  
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Figure 1. A schematic depiction of the multiscale and multi-physics nature of material systems and their 

relationship with the component performance. A comprehensive understanding of material performance requires a 

complete hierarchical representation of structural/chemical features, the relationship between those features and 

material properties, and the mechanisms that drive their evolution either through processing or service history.  All 

arrows represent scale bridging, i.e., upscaling via homogenization and downscaling via localization.  
However, this task faces many hurdles. The most significant of these hurdles comes from the 

fact that the relevant data, even for a selected single material system, is necessarily generated by 

distributed teams of researchers with the requisite expertise. For example, on the experimental front, 

materials data comes from a wide range of imaging modalities (e.g., optical microscopy, scanning 

and transmission electron microscopy, various diffraction and spectroscopic techniques, X-ray 

tomography, atomic force microscopy) (Polonsky and Pandey, 2021; Belianinov et al., 2018) and 

property evaluations (e.g., mechanical testing in different modes and at different spatial resolutions, 

thermal conductivity, diffusivities) (Khosravani et al., 2020: Khosravani et al., 2021). On the 

modelling front, the data comes from an equally disparate set of sources that aim to faithfully 

simulate specific selected sub-phenomena at different material length scales (e.g., density functional 

theory computations, molecular dynamics, discrete dislocation dynamics, kinetic Monte-Carlo 

simulations, cellular automata, phase-field simulations, finite element models) (Horstemeyer, 2009; 

Matouš et al., 2017; Panchal et al., 2013). Although each individual dataset often provides a partial 

insight, only a systems approach can provide the comprehensive holistic view needed to objectively 

drive materials innovation in an accelerated manner; this is indeed the goal of many national and 
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international materials research initiatives (e.g., ICME (Allison et al., 2006), MGI (de Pablo et al., 

2019; National Science and Technology Council, 2011)). 

Figure 2. Modeling and experimental tools typically used to obtain relevant materials data at different length and 

time scales. Example of modeling tools used include Density Functional Theory (DFT), Molecular Dynamics 

(MD), Accelerated MD (AMD), Dislocation Dynamics (DD), kinetic Monte Carlo (kMC), Crystal Plasticity Finite 

Element Modeling (CPFEM), FEM, and extended FEM (xFEM). Examples of experimental tools used include 

Atomic Force Microscopy (AFM), High Resolution Transmission Microscopy (HRTEM), in situ TEM, 

tomography, Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), and mechanical 

testing. 

 Figure 2 illustrates the large variety of data sources involved in formulating a systems 

approach to understanding and optimizing materials for desired combinations of macroscale 

(effective) properties. As already noted, the datasets collected from any one data source (refers to 

either a single experimental protocol or a single physics-based simulation tool) often provides 

incomplete and uncertain insights into the physics controlling the materials phenomena of interest. At 

a high level, it should be recognized that physics-based simulations are designed to provide 

predictions of the material response to imposed (thermo-mechanical) environments for user-specified 

physics. On the other hand, experiments are generally designed to provide observations of material 

response to specific imposed environments, for as yet unknown (or uncertain) materials physics. 

Clearly, all individual datasets (from any individual data source) should be treated as being 

incomplete and/or uncertain. However, if the insights from the datasets collected from the different 

data sources can be effectively fused in a consistent framework, it is likely to produce much more 

comprehensive and valuable insights. Currently, there does not yet exist an overarching mathematical 

framework for such data fusion. The development and utilization of such a framework is likely to 

open new avenues for major time and effort savings in materials-product co-design and innovation 

efforts by optimally guiding the effort investment (i.e., objectively identifying the next best steps 

based on a rigorous statistical analyses of all previously aggregated data).  

 As already noted, the perspectives presented above build on multiple national and 

international initiatives. Specifically, ICME (Allison et al., 2006), and MGI (de Pablo et al., 2019) 
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have articulated the need for increased use of computational tools and data sciences (including 

artificial intelligence/machine learning toolsets (AI/ML)) to accelerate the rate of materials 

discovery, development, and deployment in advanced technologies. Indeed, much progress has been 

made in organizing and disseminating materials data (TMS, 2017), and physics-based simulation 

toolsets (TMS, 2015). There has also been a strong injection of data sciences and AI/ML into 

materials research, especially in aspects related to data ingestion (e.g., experimental laboratory 

automation) (Kalidindi et al., 2019), curation (e.g., ontologies) (Morgado et al. 2020; Voigt and 

Kalidindi, 2021), feature engineering (Xiang et al., 2021; Kalidindi, 2020), and automated generation 

of surrogate models (Generale and Kalidindi, 2021; Marshal and Kalidindi, 2021). These recent 

advances in materials research have set the stage for the extension and application of the emerging 

concept of digital twins described earlier to include the multiscale details of the material. This paper 

establishes a roadmap for the pursuit of this goal, i.e., the extension of digital twins to include 

materials data over a hierarchy of length scales. Specifically, we identify the key foundational 

elements that currently exist and outline the gaps that need to be overcome for success in this 

endeavor. 

2 Main Elements of Digital Twins for Materials Systems 

 
Figure 3. The main components of the proposed roadmap for building digital twins for material systems. 

2.1 Physical Twin of a Material System 

Digital twins of macroscale engineered components and machines typically aim to represent a 

uniquely identified single physical twin. For example, a digital twin might target a specific turbine 

engine in service on an airplane. However, in building digital twins for a material system, it becomes 

intractable to consider each individual material sample as the physical twin. This is not only because 

of the large number of distinct material samples that can be produced for a nominally specified 

chemical composition and processing history, but also due to the fact that non-destructive 

characterization techniques are not yet mature for evaluating both the three-dimensional structure of 

the material as well as its properties of interest. Furthermore, even with the use of destructive 

techniques for materials characterization, one can only hope to establish distributions that adequately 

quantify the material structure and properties in a stochastic framework (i.e., accounting for the 
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significant uncertainty associated with these quantities for any given material sample). Given these 

considerations, it is readily apparent that the digital twins for materials systems can only be 

established in a stochastic framework at the present time. In other words, we propose here that digital 

twins of materials systems should aim to produce multiple instantiations (as many as needed) 

sampled from the distributions of the possible material structure and their associated properties (with 

both structure and properties defined over a hierarchy of material length scales). Therefore, in our 

proposed framework, we will associate the digital twins of the material system to the nominal 

chemical composition and processing/service history that created the material samples. In doing so, 

we will implicitly define the material by the controllable details (each of which is identified with 

aleatoric uncertainty) of the generative process used to create the material samples (i.e., instantiations 

of the physical twin). This, we believe, will result in a much more pragmatic approach to building 

digital twins for material systems that will have high value for the design and in-service prognosis of 

engineered components and devices.  

2.2 Mathematical Framework for Digital Twins of Material Systems 

The mathematical framework underpinning the digital twins for material systems should 

address two main needs: (i) the statistical quantification of the material structure over a hierarchy of 

material length scales1 and its suitable representation in practically useful low-dimensional forms, 

and (ii) the reliable prediction of the material properties of interest given information about the 

material structure and the processing/service history. These tasks indeed correspond to defining the 

form and the function of the digital twins for material systems. As already noted, both these tasks 

need to be addressed in a stochastic framework that rigorously tracks the uncertainty associated with 

all of the available data and propagates it into the predictions of the material properties.       

2.2.1 Material Structure Representation and Quantification 

The term material structure is used here to describe the spatial arrangement of structural and 

chemical heterogeneities, which constitute a material at a specified instant of time and govern its 

properties at that instant of time. For a given chemical composition, thermodynamics predicts an 

equilibrium crystallographic phase (or a multiphase mixture), and at finite temperature, an 

equilibrium vacancy concentration.  Yet materials are rarely in their thermodynamic ground state.  

Essentially, an overwhelming subset of the material structural features represent metastable or 

unstable defects created throughout the process history. Conventionally, material structure defects 

have been classified based on their dimensionality as planar grain boundaries, linear dislocations, and 

point-wise atomic impurities; these are but the simplest examples of a myriad of complex 

microstructural features (see Figure 1).  The material structure is not usually static but evolves when 

stimulated by exposure to energy (thermal, mechanical, chemical, etc.). Through state-of-the-art 

processing, the most perfect undoped, isotopically pure silicon single crystals have been produced to 

purity levels of >99.9999%.  On the other hand, the most sophisticated structural alloys benefit from 

their complex, multiscale arrangement of the lower length scale structural features, reminiscent of the 

hierarchical nature of biological systems.  Hence, the challenge for a digital twin of a material system 

is to represent the necessary complexity of the inherently high-dimensional material structure 

features with sufficient fidelity to capture the relevant subset that controls the material response of 

interest. Complicating matters, no single experimental technique is capable of comprehensively 

digitizing the material’s complete internal structure.   

 

1In PSP linkages, one associates a material structure to an instant of time. The structure is then assumed to be responsible 

completely for the properties exhibited by the sample. In any imposed process, the structure is assumed to evolve with time. 

When the structure evolves, its associated properties are also expected to evolve. 
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A digital twin of a material system should be able to instantiate a representative volume of the 

material with sufficient statistical sampling of all the relevant lower length-scale structural features 

and their spatial arrangements.  Given the roughly eight orders of magnitude in length scales (from 

~Å to ~cms) involved, it should become clear that such instantiations cannot be deterministic or 

unique. Therefore, what is required here is the ability to produce multiple instantiations that reflect as 

accurately as possible the inherent stochasticity of the material structure for a given nominal 

composition and process history. Laplace conjectured that by knowing every atom, its position and 

momentum, we could anticipate the behavior of the material (marquis de Laplace, 1814). While this 

statement reflects accurately the expected causal relationship between the material structure and its 

associated properties, it reflects a practically impossible pursuit. Therefore, we take the viewpoint 

that the digital twin of a material system is intended to be a minimally sufficient reduced-order 

representation of Laplace’s “demon”. A tractable digital twin of a material system should therefore 

utilize a versatile (broadly applicable to all material classes and length scales) low-dimensional 

representation of the material structure that would allow efficient learning of the functional response 

of the material system. Based on the earlier discussion, it is also clear that the low-dimensional 

representation of the material structure can only reflect suitably defined statistical measures at 

different material length scales; henceforth, such salient statistical measures of the material structure 

will be referred as features. Because of our interest in instantiating the material structure in our 

digital twins, it is important that the selected feature set should produce realistic, sufficiently 

accurate, instantiations of the material structure that can be subsequently correlated with its 

functional response. This is not a trivial requirement. For example, most of the conventionally used 

statistical measures of the material structure, such as the overall alloy composition, phase volume 

fractions, and the averaged grain sizes are woefully inadequate for producing the required 

instantiations of the multiscale material structure for our digital twins. More advanced approaches 

involving a richer set of microstructure statistics (e.g., orientation and mis-orientation distributions, 

grain aspect ratio distributions) have led to concepts such as statistically equivalent representative 

volume elements (Ghosh and Groeber, 2020; McDowell et. al., 2011). Some of these concepts have 

also been implemented in open-source codes such as DREAM.3D (Ghosh and Groeber, 2020; 

Groeber and Jackson, 2014). 

Figure 4. The MKS workflow for feature engineering of material structure. In this example, we start with 

microstructures belonging to three distinct classes (corresponding to vertical, horizontal, or random ellipses), with 
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one example of each class shown on the left. Their corresponding 2-point features are shown in the middle and 

reflect a large number of statistics (including volume fractions, size and shape distributions) for each 

microstructure. The low-dimensional representations of the microstructure statistics are shown on the right, in the 

subspace of the first two PC scores. The clusters in the PC plots successfully classify the microstructures in the 

three classes. The intra-class variance between microstructures within each class can also be quantified from the PC 

representations.  

A comprehensive and systematic framework available today that is capable of providing the 

requisite feature engineering capabilities for the material structure is the framework of n-point spatial 

correlations (Adams et al., 2021; Torquato, 2002; Fullwood et al., 2010; Niezgoda et al., 2013; 

Niezgoda et al., 2011; Torquato and Stell, 1982). In recent work, Kalidindi and co-workers (e.g., 

Kalidindi, 2015) have developed and demonstrated an efficient and broadly applicable computational 

framework and toolsets for addressing this task. Broadly referred as Materials Knowledge Systems 

(MKS), this framework takes advantage of the computational efficiency of voxelated representations 

and Fast Fourier Transform (FFT) algorithms to implement the theoretical framework of n-point 

spatial correlations. The feasibility and benefits of this approach have been demonstrated on a wide 

variety of material classes and material structures at different length scales (from the atomic 

(Gomberg et al., 2017;  Kaundinya, 2021) to dislocation length scales (Robertson and Kalidindi, 

2021a) to microscale (Generale and Kalidindi, 2021)).  

At its core, MKS defines and utilizes a material structure function (Kalidindi, 2015) that maps 

a selected combination of spatial position  𝒙 ∈ Ω  (the physical volume of the material domain) and a 

local material state 𝒉 ∈ H (includes information such as phase identifiers, chemical compositions, 

lattice orientations, defect densities) to suitable measures (e.g., density) that reflect the intensity of 𝒉 

at 𝒙. Mathematically, one can express this function as 𝑚(𝒉, 𝒙). Implicit in this definition is the 

expectation that H needs to be identified suitably to capture the complete set of material states of 

interest at the different material structure length scales. Features of the material structure can then be 

defined as expectations of suitably scaled moments of 𝑚(𝒉, 𝒙). For example, the expected value of 

𝑚(𝒉, 𝒙) over Ω can provide a set of 1-point features that can be interpreted as the volume fractions of 

𝒉 in Ω (Kalidindi, 2015). Similarly, the expected value of 𝑚(𝒉, 𝒙)𝑚(𝒉′, 𝒙 + 𝒓) over Ω can produce a 

set of 2-point features that can be interpreted as the joint probability of realizing 𝒉 at 𝒙 and 𝒉′ at 𝒙 +
𝒓, where 𝒓 denotes a specified vector separating the two spatial points randomly selected from Ω. 

Although, one can define higher-order features (e.g., 3-point features), one often finds a sufficiently 

large number of features in the 2-point feature set, as it includes all permutations of (𝒉, 𝒉′) over a 

very large domain of 𝒓 (this domain includes all distinct set of all vectors of interest that can be 

placed in Ω). The adequacy of the set of 2-point features in capturing the salient features of the 

material structure (including the set of features identified in conventional practices in materials 

science and engineering) has been established for a broad range of material classes (Generale and 

Kalidindi, 2021; Latypov et al., 2019) as well as the different structure length scales (Kaundinya, 

2021; Robertson and Kalidindi, 2021a; Fullwood et al, 2010) encountered in them.  

 The MKS framework described in Figure 4 produces a very large number of features, even 

when using only the 2-point feature set. For extracting a low-dimensional feature set, one needs to 

employ a suitable dimensionality reduction technique. Of the various options for this task, principal 

component analysis (PCA) has been found to be particularly attractive. First, it allows for an 

unsupervised learning of the salient low-dimensional features based on maximization of captured 

variance. Therefore, it identifies a consistent set of features that can be used across multiple PSP 

surrogate models, allowing for full interoperability among collections of such models. In other 

words, since the salient features are identified without the knowledge of the specific targets (i.e., 

outputs) of the surrogate model, they can be used for different targets (for example, in the predictions 

of very different properties of a given material system). Second, the PCA basis can be inspected and 

interpreted to a limited extent, allowing for the low-dimensional features to be associated with some 
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(limited) physical meaning. Third, since PCA essentially involves a rotational transform of the 

original space, it preserves distances between datapoints in the original space. Finally, the orthogonal 

decomposition involved in the PCA allows for practically useful reconstructions of the full feature 

list, i.e., a reconstruction of the high-dimensional feature list from the low-dimensional feature list. 

Of course, these reconstructions are approximate because of PC truncation. However, since the PC 

representations are maximized to capture variance, it is possible to make sure that the approximation 

introduced by the truncation is within acceptable tolerance.  The PC scores obtained from the 

application of PCA on an ensemble of 2-point feature sets (one set corresponds to one material 

structure) serve as a highly effective low-dimensional feature set for the material structure in our 

digital twins. There exist a multitude of other options for dimensionality reduction of the feature 

space, such as isomap or kernel PCA. However, the nonlinear embeddings employed in these 

techniques can introduce distortions into the latent space that negate the benefits of PCA identified 

above (Hu et al., 2022). 

As stated earlier in Section 2.1, the physical twin is not defined as a single instantiation of a 

material structure, but rather as the outcome of a stochastic generative process that yields 

instantiations that we then observe. The MKS framework described above provides a mathematically 

compact representation using computationally efficient tools. However, many tools (e.g., phase-field 

simulations, micromechanical finite element models) only take specific instantiations of the material 

structure as inputs. Therefore, successful creation of digital twins for materials requires the ability to 

move between statistical representations of material structure and their three-dimensional physical 

instantiations at low computational cost. While the computation of 2-point spatial correlations from 

instantiations is relatively easy (Cecen et al., 2016), the inverse computation is not trivial. Very 

recently, it has been shown that the three-dimensional material structures can be instantiated from 

their 2-point feature sets with minimal computational cost (Robertson and Kalidindi, 2021b). As a 

result of the many advantages described above, the MKS framework along with its open-source code 

repository PyMKS (Brough et al. 2017) offers a powerful, currently available, toolset for addressing 

the challenges of building digital twins of materials systems.  

 It is also noted that there are a number of other options based on neural networks that allow 

one to combine feature engineering and property prediction into a single-step framework. These 

approaches offer attractive avenues when one is interested in a limited number of properties as 

targets. If one insists on de-coupling the form and function of the digital twins (as we have argued 

here), then it is imperative to pursue feature engineering of the material structure independently from 

establishing property predictors (discussed in the next section). In this context, it should be 

recognized that the autoencoder-decoder networks (Herr et al., 2019) offer an interesting option. 

These networks do address the unsupervised feature engineering of the material structure. Therefore, 

the features identified from such networks can then be input into other neural networks for property 

predictions. This idea represents an open research avenue that merits further exploration.  

2.2.2 Predictions of Material Properties 

Reliable prediction of the effective properties of a given material sample is a challenging task. 

At a high level, the main options are to either measure experimentally the properties of interest or to 

leverage known physics (often delivered in physics-based simulation packages) to estimate their 

values. Both approaches face hurdles when one desires to produce a multiscale, digital twin for 

materials. On the experimental front, the effort and cost involved in measuring all of the properties of 

interest along with the related information (e.g., anisotropy, variances) over the multiple material 

length scales of interest are often prohibitive. On the modelling front, there is substantial uncertainty 

in the model forms and/or parameter values used in the physics-based models. It is therefore clear 

that neither approach by itself is optimal in getting us the requisite information. In this regard, the 
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recent emergence and successful application of materials data analytics tools has opened up new 

avenues for addressing these gaps.  

Recently (Kalidindi, 2015; Kalidindi, 2020), it has been argued that process-structure-property 

(PSP) linkages can be defined over different material-structure length scales to capture the core 

knowledge needed to study multiscale material responses. It is argued here that the same PSP 

linkages can be utilized to predict the functional response of the material digital twin. This is because 

the PSP linkages can be used to update both the changes in the multiscale material structure due to 

the imposed service conditions (using suitably defined process-structure evolution linkages) but also 

their associated properties (using structure-property linkages). The required PSP linkages need to be 

formulated using available data that might often be disparate, incomplete and/or uncertain. Most 

importantly, the framework for predicting the function of the material digital twin should allow easy 

(and possibly frequent) updates as new data becomes available. It is also likely that one needs to 

chain together multiple PSP models in order to make the predictions of the function of the material 

digital twin.   

A Bayesian framework has the potential to address scale-bridging with uncertain physics. The 

proposed Bayesian framework will be described next using the structure-property (SP) linkages as an 

example. However, they will be formulated such that they can also be easily applied to capturing 

process-structure linkages (PS). Typically, SP linkages are formulated to take structure variables as 

inputs and predict property values as output. The mapping implied in these linkages can be expressed 

as 𝑃 =  ℱ(𝝁), where 𝑃 is a property variable and 𝝁 denotes a vector of structure features (e.g., the 

PC scores of the 2-point feature set described in Section 2.2.1). Both P and 𝝁 should be treated as 

stochastic variables. This naïve definition makes the governing physics implicit in the formulation of 

ℱ. It would be much more desirable for SP linkages to explicitly treat the governing physics as 

additional input variables to the mapping, i.e., to refine the desired mapping as 𝑃 =  ℱ(𝝁, 𝝋),where 

𝝋 denotes the governing physics. In practice, 𝝋 would represent a vector of parameters defining the 

physical mechanisms controlling the response of the material physical twin (e.g., parameters used in 

constitutive modeling of the material response). This refinement is advantageous in two ways. 

Firstly, it allows one to treat 𝝋 as a stochastic vector variable, which often exhibits a significant 

amount of uncertainty for a selected material physical twin. Secondly, it allows for the uncertain 

physics to be passed between linkages. This is particularly useful for the multiscale phenomenon that 

occur in material systems, as the uncertain physics learned in one length scale can still be utilized at 

another length scale. An example of this scale-bridging is depicted schematically in Figure 5. The 

first linkage estimates the indentation yield strength (effective property) of a single grain given the 

grain’s orientation (structure variable) and critically resolved shear strengths (physics variables). The 

second linkage estimates the bulk yield strength (property) given the two-point statistics of the grain 

orientations (structure variables) and the same critically resolved shear strengths (physics variables). 

Since the physics variables in these two linkages are the same, the uncertain knowledge of the 

physics variables extracted in the grain-scale data (could come from experiments and/or simulations) 

can be upscaled and utilized in making predictions of the effective properties at the polycrystal scale. 
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Figure 5. Schematic illustration of the scale-bridging between the response of an individual grain and the response 

of a polycrystalline aggregate. At the grain scale, the structure-property linkage is formulated to take grain 

orientation (structure variable) and critical resolved shear strength(s) (CRSS; physics variables) as input and predict 

the overall property of interest (e.g., indentation yield strength of grains of different orientations).  This linkage is 

used with both experimental and modeling datasets to extract a posterior on the CRSS for a given material system 

(see Figure 6 for more details). At the polycrystal scale, the structure-property linkage is formulated to take the 2-

point spatial correlations of orientation (structure variables) and CRSS (physics variables) to make a prediction of 

the bulk (effective) yield strength of the polycrystal (c.f., Paulson et al., 2017).  

In establishing the material physics parameters, one has to exploit all of the available data, 

collected from disparate sources (e.g., experiments and physics-based simulations). Machine learning 

of 𝝋 for a selected material physical twin can be accomplished using a Bayesian update strategy 

expressed as: 

𝑝(𝝋|𝑬) ∝ 𝑝(𝑬|𝝋) 𝑝(𝝋)        (1) 

where 𝑬 denotes the set of available experimental observations, 𝑝(𝝋) is the prior (reflecting our best 

initial guess), 𝑝(𝑬|𝝋) is the likelihood of realizing the observations in 𝑬, and 𝑝(𝝋|𝑬) denotes the 

updated posterior on 𝝋. Although Eq. (1) looks very simple, its practical usage for learning the 

controlling physics in multiscale material phenomena has been hindered by several factors. First, 

only the physics-based simulation tools that faithfully mimic the experiments performed to obtain 𝑬 

can allow for the computation of the likelihood term in Eq. (1). This is because only these tools allow 

arbitrary specification of the governing physics 𝝋. However, a brute-force application of physics-

based tools for computing the likelihood is prohibitively expensive because of the extremely large 

number of simulations one needs to perform to accomplish this task since it entails performing 

simulations covering a large domain of likely governing physics for all of the experimental 

observations in 𝑬. Second, the proportionality in Eq. (1) implies that one needs to develop and 

implement a suitable strategy for establishing the proportionality factor. Recent work (Castillo et al., 

2021) has demonstrated that it is possible to train AI/ML models on simulation results produced by 

physics-based models, which can then be used to compute the likelihood term in Eq. (1). 

Furthermore, they would also allow for the implementation of Markov-Chain Metropolis-Hastings 

(MCMH) approaches for sampling the posterior in Eq. (1) without explicitly computing the 

proportionality factor. It is important to note that the posterior estimate of 𝝋 is not restricted to come 

from any single source of data. As an example, let us consider the situation where the data becomes 

available from different test modes (these could be indentation tests and micro-pillar tests for grain-

scale mechanical measurements). In such situations, we need to establish different surrogate models 

for each test mode. Let 𝑃1 =  ℱ(𝝁, 𝝋) and 𝑃2 =  ℱ(𝝁, 𝝋) represent such surrogate models. Since the 

underlying microstructure and physics variables have the exact same meanings in both models, one 

can use both models with their respective experimental datasets for sampling a consistent posterior 
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for 𝝋. Once the posterior is established, one can establish the desired SP linkage in a stochastic 

framework by marginalizing as: 

𝑃(𝝁|𝑬) = ∫ ℱ(𝝁, 𝝋)𝑝(𝝋|𝑬)𝑑𝝋       (2) 

As noted above, the practical implementation of Eqs. (1) and (2) needs the establishment of 

suitable AI/ML surrogates. These usually take the form ℱ(𝝁, 𝝋), and can be accomplished using 

Gaussian Process Regression (GPR).  The central advantage of the proposed strategy here is that the 

formulation of the needed AI/ML models is generally a one-time effort. In other words, when these 

are properly designed to cover large input domains in the space of the controlling physical parameters 

and the space of relevant material structures, they only need to be performed once (examples can be 

seen in prior work (Castillo et al. 2021; Castillo and Kalidindi, 2020)). This feature allows for a 

relatively low-computational cost update of the surrogate model as new experimental data becomes 

available. It is also possible to suggest new experiments that maximize the potential for improving 

the accuracy of the predictions (i.e., reducing the prediction uncertainty). This is most efficiently 

accomplished using established concepts of information gain such as the posterior predictive variance 

(Castillo and Kalidindi, 2019; Castillo and Kalidindi, 2020; Castillo et al., 2020), expected 

improvement (Ghoreishi et al., 2019; Solomou et al., 2018; Takhtaganov and Müller, 2018; Talapatra 

et al., 2018), and expected information gain (Pandita et al., 2019).  

 
Figure 6. An example application of the Bayesian update strategy for the fusion of experimental and simulation 

datasets from indentation of a-Ti grains in a polycrystalline sample (Castillo et al. 2021). 

An example application of the proposed Bayesian approach methodology is depicted in Figure 

6, taken from the work of Castillo et al. (2021). In this example, the information from spherical 

indentation measurements on individual grains in a polycrystalline sample and the corresponding 

simulations using crystal plasticity finite element models are combined to establish distributions on 

the unknown values of the critical resolved shear strengths of four different families of potentially 

active slip systems in a selected Ti alloy. The approach described in this study resulted in at least one 

order of magnitude savings in both the overall cost and effort expended, when compared to the 

conventional approaches that employed small-scale testing to obtain the same information.  

2.3 Cyberinfrastructure for digital twins of materials 

Cyberinfrastructure supports the acquisition, storage, management, and fusion of data within a 

collaborative, but distributed, research environment. The creation of a robust cyberinfrastructure is 

critical to the realization of a digital twin, as digital twins exist at the confluence of multiple disparate 

data streams (e.g., simulation data, experimental data, real time sensor data). These data streams 



   Digital Twins for Materials 

 
13 

present challenges in managing both the variety and volume of data ingested, as well as any 

associated metadata needed to ensure high utility of the data for future use. Challenges in the variety 

of data come from the multimodal nature of materials data, meaning that the data in question stems 

from a variety of data sources (e.g., different imaging or analysis modalities). For example, materials 

data can take many forms: scalar parameters (e.g., diffraction line profile), time series (e.g., fatigue 

response), and spatially resolved (2-D and 3-D) image data (e.g., SEM image, tomography scan), and 

each modality is accompanied by its own unique forms of metadata that describe pre-process, in-

process, and post-process information. Challenges in the volume of data stem from advancements in 

acquisition resolution and high-throughput experimental capabilities (hyperspectral imaging, x-ray 

computed tomography, etc.). For example, it is now commonplace to collect a large ensemble of 

images with high spatial resolution at a high frame rate using a variety of microscopes (e.g., optical, 

scanning electron, transmission electron), producing gigabytes-to-terabytes of observations of a 

single material (Dingreville et al. 2016). Similarly, expanded computational resources and multiscale 

modeling capabilities can also generate large amounts of data related to a material’s response to 

variety of environments (de Oca Zapiain et al., 2021). The main challenge lies in collecting and 

curating this large collection of heterogeneous data into the high-value information needed for the 

creation of a digital twin.  

2.3.1 Data Sources 

Material structure measurements capture the state of the material before, during, and after 

evolution, and material property measurements quantify various characteristics of evolution (e.g., 

resistance to evolution, evolution rates). The constellation of methods used to measure material 

structure and properties is extensive, and here we only mention two general trends. First, the digital 

data stream is becoming more entrenched in the instruments used to measure material properties.  

Just a generation ago, material structures were documented on film and quantification was performed 

by manual measurements; lab instruments utilized strip-chart recorders that created an analog 

graphical representation of the data.  Now, not only have data streams become digitized, but 

increasingly, the data collection instruments are networked and remotely accessible. Yet significant 

concerns remain regarding the cyber vulnerability of both the data and the instrument, and 

institutional regulations regarding interconnectivity are highly disparate. Second, with the continuing 

advances in measurement sensors, data transfer, and data storage, the data streams are becoming 

increasingly dense, requiring thoughtful strategies for intelligent data reduction. Additionally, 

unconventional datasets, collected with alternative low-cost methods are proving to have utility.  

Previous trends in measurement science have focused on increases in precision and accuracy of data. 

Now, the focus is shifting to affordable high-density data streams that can provide similar or 

complementary information content to the existing suite of ultra-precise measurements.   

The external stimuli (e.g., thermo-chemo-mechanical loading) driving material structure 

evolution need to be tracked through the use of suitable sensors.  Sensors generally transduce various 

forms of energy (Table 1) into electrical signals that can be transformed into digital data. The 

transduction can also involve intermediate forms of energy, e.g., magnetic or optical.  All forms of 

sensing have limits in resolution, range, accuracy, and precision.  The fidelity of the digitized 

resolution of the external stimulus captured by the sensor is limited by the accuracy of the correlation 

of the electrical signal to the intensity of the imposed stimulus, and the bit-depth of the stored 

information. The fidelity of an environmental measurement can also be limited by the temporal and 

spatial resolution of the sensor. Sensor arrays allow for spatial mapping of a field (e.g., temperature 

field on a sample surface) of interest, with the spatial resolution limited by the spacing between 

individual sensors in the array.  Alternately, one can acquire such information using a single sensor 

and rapidly scanning a region of interest; this strategy will lead to some degree of 

temporal disregistry between individual measurements.   
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Table 1.  Example of energy forms that drive changes in material state and the transducers employed 

to observe the corresponding exposure history.  

Stimuli  Application Examples  Sensor Examples  

Mechanical  Vibration, Shock, 

Sound/Phonon, Stress, 

Strain  

Strain gauges, piezoelectric, magnetostrictive, eddy 

current, accelerometer, capacitive.  

Electrical  Current, magnetic fields  Voltage sensors, current sensors, resistance sensors, 

power sensors hall-effect sensors, giant 

magnetoresistance sensors, fluxgate sensor  

Radiant Energy  Gamma, X-ray, UV, 

Infrared, Visible light, 

Microwave, Radio 

waves,   

Photoresistors (LDR), photodiodes, 

phototransistors, charged-coupled devices, gamma 

ray detectors, microwave sensors, CMOS detector  

Thermal  Convective, conductive, 

latent   

Thermocouples, RTDs, Thermistors, infrared, 

semiconductor sensors  

Chemical  Gases, liquids, solids, 

ions, isotopes, etc.  

Hygrometer, gas sensor, pH sensor,   

Nuclear  Neutron, Beta, Alpha, 

Proton  

Gas-filled proportional detectors, ionization 

chambers, Geiger-Mueller tubes, scintillators, 

solid-state detectors   

Gravitational  weight  See mechanical sensors  

 

2.3.2 Data Management (Ontology, Data software platforms) 

The high volume and high variety of materials data quickly outpaces rudimentary data 

organization techniques typically used by humans (project specific folder structures, ad hoc 

organization or note taking). We therefore require more sophisticated data management tools to 

manage the storage and organization of the materials data relevant to the digital twin. In their most 

basic forms data management tools act as simple data repositories, centralized locations where data 

is held and made accessible to others. However, simple data repositories do not necessarily provide a 

systematic scheme for the organization of the data or metadata therein. Digital twins require the 

establishment of standards and protocols to catalogue, vet, compare, and use data reliably and 

credibly in automated (and possibly autonomous) protocols (Kalidindi and De Graef, 2015; Sorkin et 

al., 2020). Consequently, data management solutions for digital twins should aim to at least meet 

FAIR data principles: Findability, Accessibility, Interoperability, and Reusability (Wilkinson et al., 

2016). FAIR data should have: (1) globally assigned, rich, searchable metadata with a unique 

persistent identifier and clear provenance; (2) standardized communication protocols for data storage 

and retrieval; (3) consistent, widely utilized, non-proprietary standards employed for data formatting. 

Data repositories generally only meet the most basic aspects of FAIR – namely accessibility. 

Materials databases progress further towards FAIR principles by providing greater searchability. 

Databases allow users to construct and carry out complex queries to search for information, and 

therefore improve searchability. However, their searchability is generally limited to tabular data. 

Furthermore, databases are also generally limited in their interoperability and reusability. In 

particular, they are not well suited for the materials data needed for digital twins as there is no natural 

way to describe the relational connections between disparate materials data (e.g., temporal variations 

along process paths, nested composition relationships, multimodal data describing single sample).  
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In order to truly realize FAIR data principles for materials data, we need to adopt emerging 

software tools in ontologies and linked data. Ontologies for data management are an open-world 

framework where we construct a standardized language to connect and describe objects. There 

currently exists many standardized languages used to describe ontologies such as OWL (McGuinness 

and Harmelen, 2004), RDF (Lassila and Swick, 1998), or JSONLD (Sporny et al., 2014).  These 

languages all describe data in subject-predicate-object triples where we link the subject and the object 

through some rule (the predicate). One way to capture this information is through the formation of 

knowledge graph consisting of nodes (subjects, objects) and edges (predicates). Knowledge graphs 

allow for easily understood visual depictions of metadata, and for the application of emergent graph-

based AI toolsets for the automated identification of new connections between aggregated elements 

of a complex heterogeneous dataset. 

Figure 7. A) The constitutive elements of a recently proposed materials ontology (Voigt et al. 2021). 

The four main elements are Material (blue), Process (yellow), Tool (purple), and Data (orange) are 

shown in different colors along with the allowed connections between them. B) An example of a 

knowledge graph constructed using the ontology. 

A recently proposed materials ontology (Voigt and Kalidindi, 2021) shown in Figure 7A can 

prove valuable in our effort to collect and curate the data needed for a materials digital twin. This 

ontology consists of four primary classes of entities (denoted by circles) that can serve as subjects or 

objects: Process, Material, Tool, and Data. A total of nine predicates (denoted by arrows) have been 

defined to link these objects. Process nodes hold information about process parameters, tool nodes 

describe the settings and characteristics of machines, and data nodes hold the payloads of interest 

(images, tabular data, etc). A material node describes the state of the material along a nominal 

process. Therefore, every time an action is taken on a material, we produce a new material node. This 

allows us to easily associate data with a point along a process path. As an example, a given steel 

(Material) produced after a specified thermo-mechanical processing route (Process) can be studied in 
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a microscope (Tool); the results of the study are captured in a file (Data). Figure 7B depicts an 

example knowledge graph for a steel. The process begins with a generic low carbon steel node (seen 

at the bottom of the knowledge graph). It then undergoes a standard annealing step to get a uniform 

starting material, and proceeds through a specialized intercritical annealing and quench steps to its 

final form (labelled as 750-00-000 in the knowledge graph). Along the processing route shown, we 

are able to connect the various data/metadata collected. For example, it is seen that both the starting 

material and the final material have associated SEM images. The final material also has a datasheet 

generated using a known software package (defined by a Tool node) which took a known load-

displacement curve (defined by a Data node) as input. Ontologies allow us to systematically capture 

interconnected materials data and allow for the context of a dataset to be robustly described and 

communicated, thus enhancing the reusability of the data.  

2.3.3 AI Tools 

There currently exist several software packages than can be used to support the mathematical 

framework proposed in section 2.2. For structure quantification PyMKS (Brough et al.) offers 

computationally efficient tools for the feature engineering of material internal structures. PyMKS 

supports various data transformations needed to capture information on a wide range of material local 

states encountered in different material classes at different material structure length scales. PyMKS 

utilizes Dask, a distributed framework for developing python applications, to facilitate computations 

involving large datasets on supercomputers and large clusters (Rocklin, 2015). Subsequent to feature 

engineering, surrogate model building can be accomplished via a wide variety of popular python 

packages; examples include Statsmodels (Seabold and Perktold, 2010) for basic statistical models, 

SKLearn (Pedregosa et al., 2011) for machine learning tools, PyTorch (Paszke et al. 2019) and 

TensorFlow (Abadi et al., 2016) for neural networks/deep learning tools.  

AI tools support digital twins beyond the needs of the mathematical framework alone. AI based 

segmentation strategies have gained traction, and Bayesian CNNs have recently been used to 

characterize the segmentation uncertainty in materials images (LaBonte et al., 2019). AI tools have 

also been effective in fusing multimodal materials data. Multi-input NNs have proven effective in 

combining data from multiple sources and different data types. For example, numeric and categorical 

data, assessed via multi-layer perceptron algorithms can be directly combined with image-based 

convolutional NNs (Azim and Aggarwal, 2014). While data streams are typically experimental, it can 

sometimes be beneficial to integrate high-fidelity simulation data from traditional high-performance 

computing approaches (e.g., atomistic modeling, phase-field, finite element) to augment “missing” 

experimental data or to represent functional dependencies/sensitivities that were not exposed in the 

experimental datasets. For instance, well-established experimental methods such as diffraction 

measurements are being implemented into computational models as a complement of the 

interpretation of experimental results (Coleman et al., 2014; Kunka et al., 2021). Alternatively, 

researchers have recently used generative machine learning algorithms such as generative adversarial 

network (GAN) to generate large materials and process libraries (Banko et al., 2020). 

3 Applications 

The ability to use a digital twin to provide an accurate picture of the corresponding physical 

twin at any given point in time is expected to significantly improve the guidance to subject-matter 

experts towards rational (and optimized) material/process improvements.  Additionally, predictions 

of component performance can drive upstream changes in design or manufacturing process.  To date, 

the development of detection and prognosis-driven planning strategies has largely focused on tuning 

individual process parameters such as temperature or materials composition for example, despite the 

urge to devise efficient strategies for the selection of multiple interdependent variables to 
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substantially accelerate and improve scientific discovery.  Digital twins open up new opportunities to 

enable such strategies and accelerate autonomous experimental design and exploration. Autonomous 

experiments are emerging in materials research leading to the acceleration of materials design and 

discovery (Nikolaev et al., 2016; Gongora et al., 2020; Hase et al., 2018; Pendleton et al., 2019; 

Correa-Baena et al., 2018; Häse et al., 2019). The idea is to integrate automation with some form of 

machine learning or artificial intelligence framework to accelerate experimentation or to guide and 

discover the next set of experiments. Most of the work to date is dedicated to materials discovery, 

i.e., autonomously predict and synthesize materials with targeted properties. For instance, Nikolaev 

et al. (2016) presented a closed-loop iterative method that automatically analyzes experimental 

results from carbon nanotubes grown from chemical vapor deposition to design or alter the next set 

of growth experiments to best reach a designated design target growth. Expanding autonomous loops 

to encompass more complex workflows will require the integration of the digital twin elements 

described in Section 2 with the automation of expert decisions. One interesting direction is to use the 

digital twins as a tool to autonomously test hypothesis during an experimental design. In this case, 

the practitioner would simply state the Process, Material, Tool, and Data and have the automation 

process decide whether the hypothesis is supported or refuted in order to decide on the potential next 

set of experiments. In this context, each automated trial would be guided by the knowledge collected 

and curated by the digital twin. 

One particular application domain of interest for digital twins is the material/process 

exploration in additive manufacturing, with origins in rapid prototyping. There are extensive model-

based simulations of the additive manufacturing process, ranging from powder packing through the 

entire laser-matter interaction and solidification process that can be taken as input into the Bayesian 

update strategy described in 2.2.2. The range of physical considerations in this process are daunting. 

In addition to these process models, there are complementary and similarly extensive set of structure-

property models. Currently, a comprehensive digital representation of the entire spectrum of 

governing equations is beyond the state-of-the-art. A digital twin composed of many surrogate 

models utilizing the Bayesian update strategy could be formulated to optimize the parameters of 

these models for use in material design as well as process optimization. 

4 Conclusions 

 Digital twins of the components in devices have enabled the in-service monitoring, prognosis, 

and design of complex systems. This work proposes both the conceptual framework and the 

cyberinfrastructure required to extend the concept of digital twins to the material level. Digital twins 

for materials provide a statistical in-silico materials representation of both structure and performance. 

The proposed framework consists of a materials representation based on n-point spatial correlations 

and PCA, a performance prediction framework centered around a two-step Bayesian framework, and 

a cyberinfrastructure that leverages new material ontologies for the management of multimodal 

materials data. Together, these foundational elements offer new opportunities for the extension of 

current digital twins to include important details of the material over a multitude of material structure 

length scales (from the macroscale to the atomistic). 
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