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Abstract

Digital twins are emerging as powerful tools for supporting innovation as well as optimizing
the in-service performance of a broad range of complex physical machines, devices, and components.
A digital twin is generally designed to provide accurate in-silico representation of the form (i.e.,
appearance) and the functional response of a specified (unique) physical twin. This paper offers a
new perspective on how the emerging concept of digital twins could be applied to accelerate
materials innovation efforts. Specifically, it is argued that the material itself can be considered as a
highly complex multiscale physical system whose form (i.e., details of the material structure over a
hierarchy of material length) and function (i.e., response to external stimuli typically characterized
through suitably defined material properties) can be captured suitably in a digital twin. Accordingly,
the digital twin can represent the evolution of structure, process, and performance of the material
over time, with regard to both process history and in-service environment. This paper establishes the
foundational concepts and frameworks needed to formulate and continuously update both the form
and function of the digital twin of a selected material physical twin. The form of the proposed
material digital twin can be captured effectively using the broadly applicable framework of n-point
spatial correlations, while its function at the different length scales can be captured using
homogenization and localization process-structure-property (PSP) surrogate models calibrated to
collections of available experimental and physics-based simulation data.

1 Introduction

Recent forward-looking roadmaps (Gil and Selman, 2019; Jenks et al., 2012) have identified
the development of a fully digital framework that fuses human-subject matter expertise, process and
performance modeling, experimental in-situ diagnostics, and data science algorithms as one of the
most important areas to transform manufacturing and surveillance of components throughput their
life cycle. Indeed, the digitization of product lifecycle management (PLM) has led to the emergence
and deployment of digital threads (Niederer et al., 2021; Kapteyn et al., 2021; Zeb et al., 2021) in a
broad spectrum of manufacturing industries. These digital threads collect, curate, and archive all of
the data/information generated from all stages of the product life cycle: conceptualization, design,
prototype, manufacturing, operation, and retirement (Singh and Willcox, 2018; Margaria and
Schieweck, 2019). Digital threads open multiple new avenues for fostering innovation and improving
the in-service performance of a wide range of products. A necessary feature of the digital threads is
that they encompass both the in-silico activities (e.g., model-based or virtual engineering) and the
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physical activities (e.g., measurements made during the different stages of manufacturing, testing,
and operation of the product) conducted in the PLM. An important outcome from the deployment of
digital threads is that they have opened new opportunities for the creation and use of in-silico
analogues to the physical product. The recent advances in digital and sensor technologies (Ullo and
Sinha, 2020; Mei et al., 2019) enable the in-silico objects to co-exist along with their physical
counterparts. In addition to mimicking the physical products, the in-silico analogues offer
unprecedented potential for consistent change management, allowing the optimization of intentional
or unintentional product evolution over time. Therefore, within this context, a digital twin can be
defined as a high-fidelity in-silico representation closely mirroring the form (i.e., appearance) and the
functional response of a specified (unique) physical twin. Digital twins have thus far been used in the
manufacturing and performance evaluation of complex engineered physical systems (e.g., turbine
engines) (Zaccaria et al., 2018; Raj and Surianarayanan, 2020; Tao et al., 2018; Lim et al., 2021; Xie
et al., 2021) and/or their components, where the focus has been largely on capturing accurately the
macroscale geometry and the component-level performance metrics. Current digital twins do not
address adequately the capture and archival of the materials data, which typically deals with physical
phenomena occurring at the lower material length scales (typically ranging from the atomic to the
macroscale). This disconnect is not surprising given the siloed nature of current materials research
and product design/manufacturing communities. However, it is abundantly clear that a successful
extension of digital twins to include the materials data/information in a comprehensive manner can
allow for a holistic co-design of material, manufacturing process, and product in fully integrated
innovation cycles, possibly resulting in dramatic improvements in the overall part performance.
Materials, in their own right, represent highly complex multiscale and multi-physics systems.
Their production and in-service responses are controlled by a wide range of phenomena occurring at
length scales ranging from the atomic to the macroscale and an equally broad range of associated
time scales. Figure 1 depicts schematically the hierarchical nature of materials systems with
examples of a wide variety of physical phenomena that occur at the nano- and micro-scales. Clearly,
the materials phenomena occurring at the lower material length scales play important roles in
controlling the macro- and component-scale performances of the part. In the current research
paradigm, the considerations at the component/part scale and the material scale are studied in a
mostly de-coupled manner by different groups of researchers. The former are the domain of
mechanical designers and manufacturing specialists, while the latter are addressed by materials
science and engineering specialists. More specifically, the field of materials science and engineering
focuses on understanding how the different processing histories (e.g., thermo-mechanical processing)
influence the material structure (includes information on the many aspects of order and disorder seen
at different length scales cf. Figure 1) and their associated properties. However, understanding and
quantifying accurately the underlying process-structure-property (PSP) relationships (McDowell and
LeSar, 2016; Kalidindi, 2015) at the different material length and time scales is quite arduous. This is
mainly because the diverse physical phenomena occurring at these scales are necessarily related and
co-dependent with one another. Therefore, adopting a systems approach that manages the complex
trade-offs between potentially conflicting multifunctional requirements at the different length scales
spanning across the complete range of material and product scales would yield significant benefits.
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Figure 1. A schematic depiction of the multiscale and multi-physics nature of material systems and their
relationship with the component performance. A comprehensive understanding of material performance requires a
complete hierarchical representation of structural/chemical features, the relationship between those features and
material properties, and the mechanisms that drive their evolution either through processing or service history. All
arrows represent scale bridging, i.e., upscaling via homogenization and downscaling via localization.

However, this task faces many hurdles. The most significant of these hurdles comes from the
fact that the relevant data, even for a selected single material system, is necessarily generated by
distributed teams of researchers with the requisite expertise. For example, on the experimental front,
materials data comes from a wide range of imaging modalities (e.g., optical microscopy, scanning
and transmission electron microscopy, various diffraction and spectroscopic techniques, X-ray
tomography, atomic force microscopy) (Polonsky and Pandey, 2021; Belianinov et al., 2018) and
property evaluations (e.g., mechanical testing in different modes and at different spatial resolutions,
thermal conductivity, diffusivities) (Khosravani et al., 2020: Khosravani et al., 2021). On the
modelling front, the data comes from an equally disparate set of sources that aim to faithfully
simulate specific selected sub-phenomena at different material length scales (e.g., density functional
theory computations, molecular dynamics, discrete dislocation dynamics, kinetic Monte-Carlo
simulations, cellular automata, phase-field simulations, finite element models) (Horstemeyer, 2009;
Matous et al., 2017; Panchal et al., 2013). Although each individual dataset often provides a partial
insight, only a systems approach can provide the comprehensive holistic view needed to objectively
drive materials innovation in an accelerated manner; this is indeed the goal of many national and
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international materials research initiatives (e.g., ICME (Allison et al., 2006), MGI (de Pablo et al.,
2019; National Science and Technology Council, 2011)).
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Figure 2. Modeling and experimental tools typically used to obtain relevant materials data at different length and
time scales. Example of modeling tools used include Density Functional Theory (DFT), Molecular Dynamics
(MD), Accelerated MD (AMD), Dislocation Dynamics (DD), kinetic Monte Carlo (kMC), Crystal Plasticity Finite
Element Modeling (CPFEM), FEM, and extended FEM (xFEM). Examples of experimental tools used include
Atomic Force Microscopy (AFM), High Resolution Transmission Microscopy (HRTEM), in situ TEM,
tomography, Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), and mechanical
testing.

Figure 2 illustrates the large variety of data sources involved in formulating a systems
approach to understanding and optimizing materials for desired combinations of macroscale
(effective) properties. As already noted, the datasets collected from any one data source (refers to
either a single experimental protocol or a single physics-based simulation tool) often provides
incomplete and uncertain insights into the physics controlling the materials phenomena of interest. At
a high level, it should be recognized that physics-based simulations are designed to provide
predictions of the material response to imposed (thermo-mechanical) environments for user-specified
physics. On the other hand, experiments are generally designed to provide observations of material
response to specific imposed environments, for as yet unknown (or uncertain) materials physics.
Clearly, all individual datasets (from any individual data source) should be treated as being
incomplete and/or uncertain. However, if the insights from the datasets collected from the different
data sources can be effectively fused in a consistent framework, it is likely to produce much more
comprehensive and valuable insights. Currently, there does not yet exist an overarching mathematical
framework for such data fusion. The development and utilization of such a framework is likely to
open new avenues for major time and effort savings in materials-product co-design and innovation
efforts by optimally guiding the effort investment (i.e., objectively identifying the next best steps
based on a rigorous statistical analyses of all previously aggregated data).

As already noted, the perspectives presented above build on multiple national and
international initiatives. Specifically, ICME (Allison et al., 2006), and MGI (de Pablo et al., 2019)
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have articulated the need for increased use of computational tools and data sciences (including
artificial intelligence/machine learning toolsets (AI/ML)) to accelerate the rate of materials
discovery, development, and deployment in advanced technologies. Indeed, much progress has been
made in organizing and disseminating materials data (TMS, 2017), and physics-based simulation
toolsets (TMS, 2015). There has also been a strong injection of data sciences and AI/ML into
materials research, especially in aspects related to data ingestion (e.g., experimental laboratory
automation) (Kalidindi et al., 2019), curation (e.g., ontologies) (Morgado et al. 2020; Voigt and
Kalidindi, 2021), feature engineering (Xiang et al., 2021; Kalidindi, 2020), and automated generation
of surrogate models (Generale and Kalidindi, 2021; Marshal and Kalidindi, 2021). These recent
advances in materials research have set the stage for the extension and application of the emerging
concept of digital twins described earlier to include the multiscale details of the material. This paper
establishes a roadmap for the pursuit of this goal, i.e., the extension of digital twins to include
materials data over a hierarchy of length scales. Specifically, we identify the key foundational
elements that currently exist and outline the gaps that need to be overcome for success in this
endeavor.

2 Main Elements of Digital Twins for Materials Systems

DIGITAL TWIN

MATHEMATICAL
FRAMEWORK CYBERINFRASTRUCTURE

PREDICT & PROGNOSE

Figure 3. The main components of the proposed roadmap for building digital twins for material systems.
2.1 Physical Twin of a Material System

Digital twins of macroscale engineered components and machines typically aim to represent a
uniquely identified single physical twin. For example, a digital twin might target a specific turbine
engine in service on an airplane. However, in building digital twins for a material system, it becomes
intractable to consider each individual material sample as the physical twin. This is not only because
of the large number of distinct material samples that can be produced for a nominally specified
chemical composition and processing history, but also due to the fact that non-destructive
characterization techniques are not yet mature for evaluating both the three-dimensional structure of
the material as well as its properties of interest. Furthermore, even with the use of destructive
techniques for materials characterization, one can only hope to establish distributions that adequately
quantify the material structure and properties in a stochastic framework (i.e., accounting for the
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significant uncertainty associated with these quantities for any given material sample). Given these
considerations, it is readily apparent that the digital twins for materials systems can only be
established in a stochastic framework at the present time. In other words, we propose here that digital
twins of materials systems should aim to produce multiple instantiations (as many as needed)
sampled from the distributions of the possible material structure and their associated properties (with
both structure and properties defined over a hierarchy of material length scales). Therefore, in our
proposed framework, we will associate the digital twins of the material system to the nominal
chemical composition and processing/service history that created the material samples. In doing so,
we will implicitly define the material by the controllable details (each of which is identified with
aleatoric uncertainty) of the generative process used to create the material samples (i.e., instantiations
of the physical twin). This, we believe, will result in a much more pragmatic approach to building
digital twins for material systems that will have high value for the design and in-service prognosis of
engineered components and devices.

2.2 Mathematical Framework for Digital Twins of Material Systems

The mathematical framework underpinning the digital twins for material systems should
address two main needs: (i) the statistical quantification of the material structure over a hierarchy of
material length scales' and its suitable representation in practically useful low-dimensional forms,
and (ii) the reliable prediction of the material properties of interest given information about the
material structure and the processing/service history. These tasks indeed correspond to defining the
form and the function of the digital twins for material systems. As already noted, both these tasks
need to be addressed in a stochastic framework that rigorously tracks the uncertainty associated with
all of the available data and propagates it into the predictions of the material properties.

2.2.1 Material Structure Representation and Quantification

The term material structure is used here to describe the spatial arrangement of structural and
chemical heterogeneities, which constitute a material at a specified instant of time and govern its
properties at that instant of time. For a given chemical composition, thermodynamics predicts an
equilibrium crystallographic phase (or a multiphase mixture), and at finite temperature, an
equilibrium vacancy concentration. Yet materials are rarely in their thermodynamic ground state.
Essentially, an overwhelming subset of the material structural features represent metastable or
unstable defects created throughout the process history. Conventionally, material structure defects
have been classified based on their dimensionality as planar grain boundaries, linear dislocations, and
point-wise atomic impurities; these are but the simplest examples of a myriad of complex
microstructural features (see Figure 1). The material structure is not usually static but evolves when
stimulated by exposure to energy (thermal, mechanical, chemical, etc.). Through state-of-the-art
processing, the most perfect undoped, isotopically pure silicon single crystals have been produced to
purity levels of >99.9999%. On the other hand, the most sophisticated structural alloys benefit from
their complex, multiscale arrangement of the lower length scale structural features, reminiscent of the
hierarchical nature of biological systems. Hence, the challenge for a digital twin of a material system
is to represent the necessary complexity of the inherently high-dimensional material structure
features with sufficient fidelity to capture the relevant subset that controls the material response of
interest. Complicating matters, no single experimental technique is capable of comprehensively
digitizing the material’s complete internal structure.

6

In PSP linkages, one associates a material structure to an instant of time. The structure is then assumed to be responsible
completely for the properties exhibited by the sample. In any imposed process, the structure is assumed to evolve with time.
When the structure evolves, its associated properties are also expected to evolve.
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A digital twin of a material system should be able to instantiate a representative volume of the
material with sufficient statistical sampling of all the relevant lower length-scale structural features
and their spatial arrangements. Given the roughly eight orders of magnitude in length scales (from
~A to ~cms) involved, it should become clear that such instantiations cannot be deterministic or
unique. Therefore, what is required here is the ability to produce multiple instantiations that reflect as
accurately as possible the inherent stochasticity of the material structure for a given nominal
composition and process history. Laplace conjectured that by knowing every atom, its position and
momentum, we could anticipate the behavior of the material (marquis de Laplace, 1814). While this
statement reflects accurately the expected causal relationship between the material structure and its
associated properties, it reflects a practically impossible pursuit. Therefore, we take the viewpoint
that the digital twin of a material system is intended to be a minimally sufficient reduced-order
representation of Laplace’s “demon”. A tractable digital twin of a material system should therefore
utilize a versatile (broadly applicable to all material classes and length scales) low-dimensional
representation of the material structure that would allow efficient learning of the functional response
of the material system. Based on the earlier discussion, it is also clear that the low-dimensional
representation of the material structure can only reflect suitably defined statistical measures at
different material length scales; henceforth, such salient statistical measures of the material structure
will be referred as features. Because of our interest in instantiating the material structure in our
digital twins, it is important that the selected feature set should produce realistic, sufficiently
accurate, instantiations of the material structure that can be subsequently correlated with its
functional response. This is not a trivial requirement. For example, most of the conventionally used
statistical measures of the material structure, such as the overall alloy composition, phase volume
fractions, and the averaged grain sizes are woefully inadequate for producing the required
instantiations of the multiscale material structure for our digital twins. More advanced approaches
involving a richer set of microstructure statistics (e.g., orientation and mis-orientation distributions,
grain aspect ratio distributions) have led to concepts such as statistically equivalent representative
volume elements (Ghosh and Groeber, 2020; McDowell et. al., 2011). Some of these concepts have
also been implemented in open-source codes such as DREAM.3D (Ghosh and Groeber, 2020;
Groeber and Jackson, 2014).
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Figure 4. The MKS workflow for feature engineering of material structure. In this example, we start with
microstructures belonging to three distinct classes (corresponding to vertical, horizontal, or random ellipses), with
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one example of each class shown on the left. Their corresponding 2-point features are shown in the middle and
reflect a large number of statistics (including volume fractions, size and shape distributions) for each
microstructure. The low-dimensional representations of the microstructure statistics are shown on the right, in the
subspace of the first two PC scores. The clusters in the PC plots successfully classify the microstructures in the
three classes. The intra-class variance between microstructures within each class can also be quantified from the PC
representations.

A comprehensive and systematic framework available today that is capable of providing the
requisite feature engineering capabilities for the material structure is the framework of n-point spatial
correlations (Adams et al., 2021; Torquato, 2002; Fullwood et al., 2010; Niezgoda et al., 2013;
Niezgoda et al., 2011; Torquato and Stell, 1982). In recent work, Kalidindi and co-workers (e.g.,
Kalidindi, 2015) have developed and demonstrated an efficient and broadly applicable computational
framework and toolsets for addressing this task. Broadly referred as Materials Knowledge Systems
(MKS), this framework takes advantage of the computational efficiency of voxelated representations
and Fast Fourier Transform (FFT) algorithms to implement the theoretical framework of n-point
spatial correlations. The feasibility and benefits of this approach have been demonstrated on a wide
variety of material classes and material structures at different length scales (from the atomic
(Gomberg et al., 2017; Kaundinya, 2021) to dislocation length scales (Robertson and Kalidindi,
2021a) to microscale (Generale and Kalidindi, 2021)).

At its core, MKS defines and utilizes a material structure function (Kalidindi, 2015) that maps
a selected combination of spatial position x € (1 (the physical volume of the material domain) and a
local material state h € H (includes information such as phase identifiers, chemical compositions,
lattice orientations, defect densities) to suitable measures (e.g., density) that reflect the intensity of h
at x. Mathematically, one can express this function as m(h, x). Implicit in this definition is the
expectation that H needs to be identified suitably to capture the complete set of material states of
interest at the different material structure length scales. Features of the material structure can then be
defined as expectations of suitably scaled moments of m(h, x). For example, the expected value of
m(h, x) over Q can provide a set of 1-point features that can be interpreted as the volume fractions of
h in Q (Kalidindi, 2015). Similarly, the expected value of m(h, x)m(h', x + r) over Q can produce a
set of 2-point features that can be interpreted as the joint probability of realizing h at x and h' at x +
T, where r denotes a specified vector separating the two spatial points randomly selected from ().
Although, one can define higher-order features (e.g., 3-point features), one often finds a sufficiently
large number of features in the 2-point feature set, as it includes all permutations of (h, h") over a
very large domain of 7 (this domain includes all distinct set of all vectors of interest that can be
placed in (). The adequacy of the set of 2-point features in capturing the salient features of the
material structure (including the set of features identified in conventional practices in materials
science and engineering) has been established for a broad range of material classes (Generale and
Kalidindi, 2021; Latypov et al., 2019) as well as the different structure length scales (Kaundinya,
2021; Robertson and Kalidindi, 2021a; Fullwood et al, 2010) encountered in them.

The MKS framework described in Figure 4 produces a very large number of features, even
when using only the 2-point feature set. For extracting a low-dimensional feature set, one needs to
employ a suitable dimensionality reduction technique. Of the various options for this task, principal
component analysis (PCA) has been found to be particularly attractive. First, it allows for an
unsupervised learning of the salient low-dimensional features based on maximization of captured
variance. Therefore, it identifies a consistent set of features that can be used across multiple PSP
surrogate models, allowing for full interoperability among collections of such models. In other
words, since the salient features are identified without the knowledge of the specific targets (i.e.,
outputs) of the surrogate model, they can be used for different targets (for example, in the predictions
of very different properties of a given material system). Second, the PCA basis can be inspected and
interpreted to a limited extent, allowing for the low-dimensional features to be associated with some
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(limited) physical meaning. Third, since PCA essentially involves a rotational transform of the
original space, it preserves distances between datapoints in the original space. Finally, the orthogonal
decomposition involved in the PCA allows for practically useful reconstructions of the full feature
list, i.e., a reconstruction of the high-dimensional feature list from the low-dimensional feature list.
Of course, these reconstructions are approximate because of PC truncation. However, since the PC
representations are maximized to capture variance, it is possible to make sure that the approximation
introduced by the truncation is within acceptable tolerance. The PC scores obtained from the
application of PCA on an ensemble of 2-point feature sets (one set corresponds to one material
structure) serve as a highly effective low-dimensional feature set for the material structure in our
digital twins. There exist a multitude of other options for dimensionality reduction of the feature
space, such as isomap or kernel PCA. However, the nonlinear embeddings employed in these
techniques can introduce distortions into the latent space that negate the benefits of PCA identified
above (Hu et al., 2022).

As stated earlier in Section 2.1, the physical twin is not defined as a single instantiation of a
material structure, but rather as the outcome of a stochastic generative process that yields
instantiations that we then observe. The MKS framework described above provides a mathematically
compact representation using computationally efficient tools. However, many tools (e.g., phase-field
simulations, micromechanical finite element models) only take specific instantiations of the material
structure as inputs. Therefore, successful creation of digital twins for materials requires the ability to
move between statistical representations of material structure and their three-dimensional physical
instantiations at low computational cost. While the computation of 2-point spatial correlations from
instantiations is relatively easy (Cecen et al., 2016), the inverse computation is not trivial. Very
recently, it has been shown that the three-dimensional material structures can be instantiated from
their 2-point feature sets with minimal computational cost (Robertson and Kalidindi, 2021b). As a
result of the many advantages described above, the MKS framework along with its open-source code
repository PyMKS (Brough et al. 2017) offers a powerful, currently available, toolset for addressing
the challenges of building digital twins of materials systems.

It is also noted that there are a number of other options based on neural networks that allow
one to combine feature engineering and property prediction into a single-step framework. These
approaches offer attractive avenues when one is interested in a limited number of properties as
targets. If one insists on de-coupling the form and function of the digital twins (as we have argued
here), then it is imperative to pursue feature engineering of the material structure independently from
establishing property predictors (discussed in the next section). In this context, it should be
recognized that the autoencoder-decoder networks (Herr et al., 2019) offer an interesting option.
These networks do address the unsupervised feature engineering of the material structure. Therefore,
the features identified from such networks can then be input into other neural networks for property
predictions. This idea represents an open research avenue that merits further exploration.

2.2.2 Predictions of Material Properties

Reliable prediction of the effective properties of a given material sample is a challenging task.
At a high level, the main options are to either measure experimentally the properties of interest or to
leverage known physics (often delivered in physics-based simulation packages) to estimate their
values. Both approaches face hurdles when one desires to produce a multiscale, digital twin for
materials. On the experimental front, the effort and cost involved in measuring all of the properties of
interest along with the related information (e.g., anisotropy, variances) over the multiple material
length scales of interest are often prohibitive. On the modelling front, there is substantial uncertainty
in the model forms and/or parameter values used in the physics-based models. It is therefore clear
that neither approach by itself is optimal in getting us the requisite information. In this regard, the
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recent emergence and successful application of materials data analytics tools has opened up new
avenues for addressing these gaps.

Recently (Kalidindi, 2015; Kalidindi, 2020), it has been argued that process-structure-property
(PSP) linkages can be defined over different material-structure length scales to capture the core
knowledge needed to study multiscale material responses. It is argued here that the same PSP
linkages can be utilized to predict the functional response of the material digital twin. This is because
the PSP linkages can be used to update both the changes in the multiscale material structure due to
the imposed service conditions (using suitably defined process-structure evolution linkages) but also
their associated properties (using structure-property linkages). The required PSP linkages need to be
formulated using available data that might often be disparate, incomplete and/or uncertain. Most
importantly, the framework for predicting the function of the material digital twin should allow easy
(and possibly frequent) updates as new data becomes available. It is also likely that one needs to
chain together multiple PSP models in order to make the predictions of the function of the material
digital twin.

A Bayesian framework has the potential to address scale-bridging with uncertain physics. The
proposed Bayesian framework will be described next using the structure-property (SP) linkages as an
example. However, they will be formulated such that they can also be easily applied to capturing
process-structure linkages (PS). Typically, SP linkages are formulated to take structure variables as
inputs and predict property values as output. The mapping implied in these linkages can be expressed
as P = F(u), where P is a property variable and u denotes a vector of structure features (e.g., the
PC scores of the 2-point feature set described in Section 2.2.1). Both P and p should be treated as
stochastic variables. This naive definition makes the governing physics implicit in the formulation of
F. It would be much more desirable for SP linkages to explicitly treat the governing physics as
additional input variables to the mapping, i.e., to refine the desired mapping as P = F(u, @),where
@ denotes the governing physics. In practice, ¢ would represent a vector of parameters defining the
physical mechanisms controlling the response of the material physical twin (e.g., parameters used in
constitutive modeling of the material response). This refinement is advantageous in two ways.
Firstly, it allows one to treat ¢ as a stochastic vector variable, which often exhibits a significant
amount of uncertainty for a selected material physical twin. Secondly, it allows for the uncertain
physics to be passed between linkages. This is particularly useful for the multiscale phenomenon that
occur in material systems, as the uncertain physics learned in one length scale can still be utilized at
another length scale. An example of this scale-bridging is depicted schematically in Figure 5. The
first linkage estimates the indentation yield strength (effective property) of a single grain given the
grain’s orientation (structure variable) and critically resolved shear strengths (physics variables). The
second linkage estimates the bulk yield strength (property) given the two-point statistics of the grain
orientations (structure variables) and the same critically resolved shear strengths (physics variables).
Since the physics variables in these two linkages are the same, the uncertain knowledge of the
physics variables extracted in the grain-scale data (could come from experiments and/or simulations)
can be upscaled and utilized in making predictions of the effective properties at the polycrystal scale.
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Figure 5. Schematic illustration of the scale-bridging between the response of an individual grain and the response
of a polycrystalline aggregate. At the grain scale, the structure-property linkage is formulated to take grain
orientation (structure variable) and critical resolved shear strength(s) (CRSS; physics variables) as input and predict
the overall property of interest (e.g., indentation yield strength of grains of different orientations). This linkage is
used with both experimental and modeling datasets to extract a posterior on the CRSS for a given material system
(see Figure 6 for more details). At the polycrystal scale, the structure-property linkage is formulated to take the 2-
point spatial correlations of orientation (structure variables) and CRSS (physics variables) to make a prediction of
the bulk (effective) yield strength of the polycrystal (c.f., Paulson et al., 2017).

In establishing the material physics parameters, one has to exploit all of the available data,
collected from disparate sources (e.g., experiments and physics-based simulations). Machine learning
of ¢ for a selected material physical twin can be accomplished using a Bayesian update strategy
expressed as:
p(@|E) < p(Elp) p(p) ey
where E denotes the set of available experimental observations, p(¢) is the prior (reflecting our best
initial guess), p(E|¢) is the likelihood of realizing the observations in E, and p(¢|E) denotes the
updated posterior on ¢. Although Eq. (1) looks very simple, its practical usage for learning the
controlling physics in multiscale material phenomena has been hindered by several factors. First,
only the physics-based simulation tools that faithfully mimic the experiments performed to obtain E
can allow for the computation of the likelihood term in Eq. (1). This is because only these tools allow
arbitrary specification of the governing physics ¢. However, a brute-force application of physics-
based tools for computing the likelihood is prohibitively expensive because of the extremely large
number of simulations one needs to perform to accomplish this task since it entails performing
simulations covering a large domain of likely governing physics for all of the experimental
observations in E. Second, the proportionality in Eq. (1) implies that one needs to develop and
implement a suitable strategy for establishing the proportionality factor. Recent work (Castillo et al.,
2021) has demonstrated that it is possible to train AI/ML models on simulation results produced by
physics-based models, which can then be used to compute the likelihood term in Eq. (1).
Furthermore, they would also allow for the implementation of Markov-Chain Metropolis-Hastings
(MCMH) approaches for sampling the posterior in Eq. (1) without explicitly computing the
proportionality factor. It is important to note that the posterior estimate of ¢ is not restricted to come
from any single source of data. As an example, let us consider the situation where the data becomes
available from different test modes (these could be indentation tests and micro-pillar tests for grain-
scale mechanical measurements). In such situations, we need to establish different surrogate models
for each test mode. Let P, = F(u, @) and P, = F(u, @) represent such surrogate models. Since the
underlying microstructure and physics variables have the exact same meanings in both models, one
can use both models with their respective experimental datasets for sampling a consistent posterior
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for ¢. Once the posterior is established, one can establish the desired SP linkage in a stochastic
framework by marginalizing as:
P(UIE) = [ F(n @)p(@|E)de 2)

As noted above, the practical implementation of Egs. (1) and (2) needs the establishment of
suitable AI/ML surrogates. These usually take the form F (u, ¢), and can be accomplished using
Gaussian Process Regression (GPR). The central advantage of the proposed strategy here is that the
formulation of the needed AI/ML models is generally a one-time effort. In other words, when these
are properly designed to cover large input domains in the space of the controlling physical parameters
and the space of relevant material structures, they only need to be performed once (examples can be
seen in prior work (Castillo et al. 2021; Castillo and Kalidindi, 2020)). This feature allows for a
relatively low-computational cost update of the surrogate model as new experimental data becomes
available. It is also possible to suggest new experiments that maximize the potential for improving
the accuracy of the predictions (i.e., reducing the prediction uncertainty). This is most efficiently
accomplished using established concepts of information gain such as the posterior predictive variance
(Castillo and Kalidindi, 2019; Castillo and Kalidindi, 2020; Castillo et al., 2020), expected
improvement (Ghoreishi et al., 2019; Solomou et al., 2018; Takhtaganov and Miiller, 2018; Talapatra
et al., 2018), and expected information gain (Pandita et al., 2019).
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Figure 6. An example application of the Bayesian update strategy for the fusion of experimental and simulation
datasets from indentation of a-Ti grains in a polycrystalline sample (Castillo et al. 2021).

An example application of the proposed Bayesian approach methodology is depicted in Figure
6, taken from the work of Castillo et al. (2021). In this example, the information from spherical
indentation measurements on individual grains in a polycrystalline sample and the corresponding
simulations using crystal plasticity finite element models are combined to establish distributions on
the unknown values of the critical resolved shear strengths of four different families of potentially
active slip systems in a selected Ti alloy. The approach described in this study resulted in at least one
order of magnitude savings in both the overall cost and effort expended, when compared to the
conventional approaches that employed small-scale testing to obtain the same information.

2.3 Cyberinfrastructure for digital twins of materials

Cyberinfrastructure supports the acquisition, storage, management, and fusion of data within a
collaborative, but distributed, research environment. The creation of a robust cyberinfrastructure is
critical to the realization of a digital twin, as digital twins exist at the confluence of multiple disparate
data streams (e.g., simulation data, experimental data, real time sensor data). These data streams
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present challenges in managing both the variety and volume of data ingested, as well as any
associated metadata needed to ensure high utility of the data for future use. Challenges in the variety
of data come from the multimodal nature of materials data, meaning that the data in question stems
from a variety of data sources (e.g., different imaging or analysis modalities). For example, materials
data can take many forms: scalar parameters (e.g., diffraction line profile), time series (e.g., fatigue
response), and spatially resolved (2-D and 3-D) image data (e.g., SEM image, tomography scan), and
each modality is accompanied by its own unique forms of metadata that describe pre-process, in-
process, and post-process information. Challenges in the volume of data stem from advancements in
acquisition resolution and high-throughput experimental capabilities (hyperspectral imaging, x-ray
computed tomography, etc.). For example, it is now commonplace to collect a large ensemble of
images with high spatial resolution at a high frame rate using a variety of microscopes (e.g., optical,
scanning electron, transmission electron), producing gigabytes-to-terabytes of observations of a
single material (Dingreville et al. 2016). Similarly, expanded computational resources and multiscale
modeling capabilities can also generate large amounts of data related to a material’s response to
variety of environments (de Oca Zapiain et al., 2021). The main challenge lies in collecting and
curating this large collection of heterogeneous data into the high-value information needed for the
creation of a digital twin.

2.3.1 Data Sources

Material structure measurements capture the state of the material before, during, and after
evolution, and material property measurements quantify various characteristics of evolution (e.g.,
resistance to evolution, evolution rates). The constellation of methods used to measure material
structure and properties is extensive, and here we only mention two general trends. First, the digital
data stream is becoming more entrenched in the instruments used to measure material properties.
Just a generation ago, material structures were documented on film and quantification was performed
by manual measurements; lab instruments utilized strip-chart recorders that created an analog
graphical representation of the data. Now, not only have data streams become digitized, but
increasingly, the data collection instruments are networked and remotely accessible. Yet significant
concerns remain regarding the cyber vulnerability of both the data and the instrument, and
institutional regulations regarding interconnectivity are highly disparate. Second, with the continuing
advances in measurement sensors, data transfer, and data storage, the data streams are becoming
increasingly dense, requiring thoughtful strategies for intelligent data reduction. Additionally,
unconventional datasets, collected with alternative low-cost methods are proving to have utility.
Previous trends in measurement science have focused on increases in precision and accuracy of data.
Now, the focus is shifting to affordable high-density data streams that can provide similar or
complementary information content to the existing suite of ultra-precise measurements.

The external stimuli (e.g., thermo-chemo-mechanical loading) driving material structure
evolution need to be tracked through the use of suitable sensors. Sensors generally transduce various
forms of energy (Table 1) into electrical signals that can be transformed into digital data. The
transduction can also involve intermediate forms of energy, e.g., magnetic or optical. All forms of
sensing have limits in resolution, range, accuracy, and precision. The fidelity of the digitized
resolution of the external stimulus captured by the sensor is limited by the accuracy of the correlation
of the electrical signal to the intensity of the imposed stimulus, and the bit-depth of the stored
information. The fidelity of an environmental measurement can also be limited by the temporal and
spatial resolution of the sensor. Sensor arrays allow for spatial mapping of a field (e.g., temperature
field on a sample surface) of interest, with the spatial resolution limited by the spacing between
individual sensors in the array. Alternately, one can acquire such information using a single sensor
and rapidly scanning a region of interest; this strategy will lead to some degree of
temporal disregistry between individual measurements.
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Table 1. Example of energy forms that drive changes in material state and the transducers employed

to observe the corresponding exposure history.

Mechanical Vibration, Shock, Strain gauges, piezoelectric, magnetostrictive, eddy
Sound/Phonon, Stress,  current, accelerometer, capacitive.
Strain

Electrical Current, magnetic fields Voltage sensors, current sensors, resistance sensors,

power sensors hall-effect sensors, giant
magnetoresistance sensors, fluxgate sensor

Radiant Energy Gamma, X-ray, UV, Photoresistors (LDR), photodiodes,
Infrared, Visible light,  phototransistors, charged-coupled devices, gamma
Microwave, Radio ray detectors, microwave sensors, CMOS detector
waves,

Thermal Convective, conductive, Thermocouples, RTDs, Thermistors, infrared,
latent semiconductor sensors

Chemical Gases, liquids, solids, Hygrometer, gas sensor, pH sensor,
ions, isotopes, etc.

Nuclear Neutron, Beta, Alpha, Gas-filled proportional detectors, ionization
Proton chambers, Geiger-Mueller tubes, scintillators,

solid-state detectors
Gravitational weight See mechanical sensors

2.3.2 Data Management (Ontology, Data software platforms)

The high volume and high variety of materials data quickly outpaces rudimentary data
organization techniques typically used by humans (project specific folder structures, ad hoc
organization or note taking). We therefore require more sophisticated data management tools to
manage the storage and organization of the materials data relevant to the digital twin. In their most
basic forms data management tools act as simple data repositories, centralized locations where data
is held and made accessible to others. However, simple data repositories do not necessarily provide a
systematic scheme for the organization of the data or metadata therein. Digital twins require the
establishment of standards and protocols to catalogue, vet, compare, and use data reliably and
credibly in automated (and possibly autonomous) protocols (Kalidindi and De Graef, 2015; Sorkin et
al., 2020). Consequently, data management solutions for digital twins should aim to at least meet
FAIR data principles: Findability, Accessibility, Interoperability, and Reusability (Wilkinson et al.,
2016). FAIR data should have: (1) globally assigned, rich, searchable metadata with a unique
persistent identifier and clear provenance; (2) standardized communication protocols for data storage
and retrieval; (3) consistent, widely utilized, non-proprietary standards employed for data formatting.
Data repositories generally only meet the most basic aspects of FAIR — namely accessibility.
Materials databases progress further towards FAIR principles by providing greater searchability.
Databases allow users to construct and carry out complex queries to search for information, and
therefore improve searchability. However, their searchability is generally limited to tabular data.
Furthermore, databases are also generally limited in their interoperability and reusability. In
particular, they are not well suited for the materials data needed for digital twins as there is no natural
way to describe the relational connections between disparate materials data (e.g., temporal variations
along process paths, nested composition relationships, multimodal data describing single sample).
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In order to truly realize FAIR data principles for materials data, we need to adopt emerging
software tools in ontologies and linked data. Onfologies for data management are an open-world
framework where we construct a standardized language to connect and describe objects. There
currently exists many standardized languages used to describe ontologies such as OWL (McGuinness
and Harmelen, 2004), RDF (Lassila and Swick, 1998), or JSONLD (Sporny et al., 2014). These
languages all describe data in subject-predicate-object triples where we link the subject and the object
through some rule (the predicate). One way to capture this information is through the formation of
knowledge graph consisting of nodes (subjects, objects) and edges (predicates). Knowledge graphs
allow for easily understood visual depictions of metadata, and for the application of emergent graph-
based Al toolsets for the automated identification of new connections between aggregated elements
of a complex heterogeneous dataset.
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Figure 7. A) The constitutive elements of a recently proposed materials ontology (Voigt et al. 2021).
The four main elements are Material (blue), Process (yellow), Tool (purple), and Data (orange) are
shown in different colors along with the allowed connections between them. B) An example of a
knowledge graph constructed using the ontology.

A recently proposed materials ontology (Voigt and Kalidindi, 2021) shown in Figure 7A can
prove valuable in our effort to collect and curate the data needed for a materials digital twin. This
ontology consists of four primary classes of entities (denoted by circles) that can serve as subjects or
objects: Process, Material, Tool, and Data. A total of nine predicates (denoted by arrows) have been
defined to link these objects. Process nodes hold information about process parameters, tool nodes
describe the settings and characteristics of machines, and data nodes hold the payloads of interest
(images, tabular data, etc). A material node describes the state of the material along a nominal
process. Therefore, every time an action is taken on a material, we produce a new material node. This
allows us to easily associate data with a point along a process path. As an example, a given steel
(Material) produced after a specified thermo-mechanical processing route (Process) can be studied in
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a microscope (Tool); the results of the study are captured in a file (Data). Figure 7B depicts an
example knowledge graph for a steel. The process begins with a generic low carbon steel node (seen
at the bottom of the knowledge graph). It then undergoes a standard annealing step to get a uniform
starting material, and proceeds through a specialized intercritical annealing and quench steps to its
final form (labelled as 750-00-000 in the knowledge graph). Along the processing route shown, we
are able to connect the various data/metadata collected. For example, it is seen that both the starting
material and the final material have associated SEM images. The final material also has a datasheet
generated using a known software package (defined by a Tool node) which took a known load-
displacement curve (defined by a Data node) as input. Ontologies allow us to systematically capture
interconnected materials data and allow for the context of a dataset to be robustly described and
communicated, thus enhancing the reusability of the data.

2.3.3 Al Tools

There currently exist several software packages than can be used to support the mathematical
framework proposed in section 2.2. For structure quantification PyMKS (Brough et al.) offers
computationally efficient tools for the feature engineering of material internal structures. PyMKS
supports various data transformations needed to capture information on a wide range of material local
states encountered in different material classes at different material structure length scales. PyMKS
utilizes Dask, a distributed framework for developing python applications, to facilitate computations
involving large datasets on supercomputers and large clusters (Rocklin, 2015). Subsequent to feature
engineering, surrogate model building can be accomplished via a wide variety of popular python
packages; examples include Statsmodels (Seabold and Perktold, 2010) for basic statistical models,
SKLearn (Pedregosa et al., 2011) for machine learning tools, PyTorch (Paszke et al. 2019) and
TensorFlow (Abadi et al., 2016) for neural networks/deep learning tools.

Al tools support digital twins beyond the needs of the mathematical framework alone. Al based
segmentation strategies have gained traction, and Bayesian CNNs have recently been used to
characterize the segmentation uncertainty in materials images (LaBonte et al., 2019). Al tools have
also been effective in fusing multimodal materials data. Multi-input NNs have proven effective in
combining data from multiple sources and different data types. For example, numeric and categorical
data, assessed via multi-layer perceptron algorithms can be directly combined with image-based
convolutional NNs (Azim and Aggarwal, 2014). While data streams are typically experimental, it can
sometimes be beneficial to integrate high-fidelity simulation data from traditional high-performance
computing approaches (e.g., atomistic modeling, phase-field, finite element) to augment “missing”
experimental data or to represent functional dependencies/sensitivities that were not exposed in the
experimental datasets. For instance, well-established experimental methods such as diffraction
measurements are being implemented into computational models as a complement of the
interpretation of experimental results (Coleman et al., 2014; Kunka et al., 2021). Alternatively,
researchers have recently used generative machine learning algorithms such as generative adversarial
network (GAN) to generate large materials and process libraries (Banko et al., 2020).

3 Applications

The ability to use a digital twin to provide an accurate picture of the corresponding physical
twin at any given point in time is expected to significantly improve the guidance to subject-matter
experts towards rational (and optimized) material/process improvements. Additionally, predictions
of component performance can drive upstream changes in design or manufacturing process. To date,
the development of detection and prognosis-driven planning strategies has largely focused on tuning
individual process parameters such as temperature or materials composition for example, despite the
urge to devise efficient strategies for the selection of multiple interdependent variables to
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substantially accelerate and improve scientific discovery. Digital twins open up new opportunities to
enable such strategies and accelerate autonomous experimental design and exploration. Autonomous
experiments are emerging in materials research leading to the acceleration of materials design and
discovery (Nikolaev et al., 2016; Gongora et al., 2020; Hase et al., 2018; Pendleton et al., 2019;
Correa-Baena et al., 2018; Hése et al., 2019). The idea is to integrate automation with some form of
machine learning or artificial intelligence framework to accelerate experimentation or to guide and
discover the next set of experiments. Most of the work to date is dedicated to materials discovery,
i.e., autonomously predict and synthesize materials with targeted properties. For instance, Nikolaev
et al. (2016) presented a closed-loop iterative method that automatically analyzes experimental
results from carbon nanotubes grown from chemical vapor deposition to design or alter the next set
of growth experiments to best reach a designated design target growth. Expanding autonomous loops
to encompass more complex workflows will require the integration of the digital twin elements
described in Section 2 with the automation of expert decisions. One interesting direction is to use the
digital twins as a tool to autonomously test hypothesis during an experimental design. In this case,
the practitioner would simply state the Process, Material, Tool, and Data and have the automation
process decide whether the hypothesis is supported or refuted in order to decide on the potential next
set of experiments. In this context, each automated trial would be guided by the knowledge collected
and curated by the digital twin.

One particular application domain of interest for digital twins is the material/process
exploration in additive manufacturing, with origins in rapid prototyping. There are extensive model-
based simulations of the additive manufacturing process, ranging from powder packing through the
entire laser-matter interaction and solidification process that can be taken as input into the Bayesian
update strategy described in 2.2.2. The range of physical considerations in this process are daunting.
In addition to these process models, there are complementary and similarly extensive set of structure-
property models. Currently, a comprehensive digital representation of the entire spectrum of
governing equations is beyond the state-of-the-art. A digital twin composed of many surrogate
models utilizing the Bayesian update strategy could be formulated to optimize the parameters of
these models for use in material design as well as process optimization.

4 Conclusions

Digital twins of the components in devices have enabled the in-service monitoring, prognosis,
and design of complex systems. This work proposes both the conceptual framework and the
cyberinfrastructure required to extend the concept of digital twins to the material level. Digital twins
for materials provide a statistical in-silico materials representation of both structure and performance.
The proposed framework consists of a materials representation based on n-point spatial correlations
and PCA, a performance prediction framework centered around a two-step Bayesian framework, and
a cyberinfrastructure that leverages new material ontologies for the management of multimodal
materials data. Together, these foundational elements offer new opportunities for the extension of
current digital twins to include important details of the material over a multitude of material structure
length scales (from the macroscale to the atomistic).
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