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Abstract: Electromagnetic (EM) scattering may be a significant source of degradation in signal
and power integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as
opto-electronic or optical interconnects operating at 100s of THz where two-dimensional (2D)
analytical models of dielectric slab waveguides are often used to approximate scattering loss. In
this work, a formulation is presented to relate the scattering (propagation) loss to the scattering
parameters (S-parameters) for the smooth waveguide; the results are correlated to results from the
finite-difference time-domain (FDTD) method in 2D space. We propose a normalization factor to
the previous 2D analytical formulation in [1] for the stochastic scattering loss based on physical
parameters of waveguides exhibiting random surface roughness under the exponential autocorre-
lation function (ACF), and validate the results by comparing against numerical experiments via
the 2D FDTD method, through simulation of tens of rough waveguides; additionally, results are
compared to other 2D analytical models [2-4], and previous 3D experimental results [5-7]. The
FDTD environment is described and validated by comparing results of the smooth waveguide
against analytical solutions for wave impedance, propagation constant, and S-parameters. Results
show that the FDTD model is in agreement with the analytical solution for the smooth waveguide
and is a reasonable approximation of the stochastic scattering loss for the rough waveguide.

Keywords: Dielectric slab waveguide; discrete filtering; exponential autocorrelation; FDTD; optical
interconnects; photonics; random roughness; stochastic scattering loss; scattering parameters;
S-parameters

1. Introduction

Nano-scale SOI optical interconnects, comprised of silicon/silicon-dioxide (Si/SiO;)
dielectric waveguides operating at 100s of THz, constitute an increasingly important
building block of modern integrated circuits, where the high-tech market demands
smaller form-factors and wavelengths. Considering the non-ideal manufacturing process,
random imperfections in the surfaces of nano-scale dielectric waveguides may cause
significant signal degradation and power attenuation, as EM waves propagate through
the interconnect structure, where the loss is primarily due to EM wave scattering with
surface roughness of the waveguide [4-8]. Therefore, the characterization of scattering
loss is a topic of significant interest to the scientific community [1-10].

The three-dimensional (3D) structure of SOI optical interconnects poses certain
challenges to its analytical and numerical modeling; thus, the stochastic scattering loss
observed in nano-scale THz SOI interconnects is often approximated using 2D planar
models of the dielectric slab waveguide exhibiting surface roughness. The 2D analogue
is useful for analytically [1,3,4] characterizing the effect of scattering loss on the power
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attenuation of light waves, and is used as a comparison for both experimental analysis
(of physical waveguides) [5-8] and numerical analysis [2,7-10].

In 1983, Kuznetsov and Haus [11] published their work on using the 3D volume
current method (VCM) to evaluate the radiation loss in dielectric waveguide structures.
Their work includes analysis of single-line, two-line coupled, and three-line coupled
waveguide structures, in the absence of random surface roughness. In 1990, Lacey
and Payne [4] released their seminal work analyzing 2D planar waveguides exhibiting
random surface roughness for a single-line waveguide structure. Their work applies
Green'’s functions to the structure, operating in the transverse-electric-to-z (TE*) mode,
as an approximation for scattering loss in 3D optical interconnects, and later in 1994
[3] it was updated to use normalized waveguide parameters. In 2005, Barwicz and
Haus [2] expanded on both of those developments by applying the 3D VCM to single-
line waveguides exhibiting random surface roughness. In each of these cases, despite
having relatively simple geometries, the solutions are formulated around complicated
integral equations, and the solutions only become more complicated as the geometry
becomes more complex, for example by adding roughness, multiple tightly-coupled
lines, arbitrary-shaped lines or grating, etc., thus limiting the application of integral-
based solutions. An effective workaround to the integral-equation complication is to
reformulate the problem around differential-equations, leading to the FDTD method.
A version of the FDTD method based on wavelets is used in [8], but the details of the
FDTD formulation are not included. The FDTD method is also used in [7] through the
software tool Lumerical, but again details of the FDTD methodology are absent.

The major contributions of the present work are as follows. (1) We provide the
FDTD methodology for analysis of 2D dielectric waveguides exhibiting random surface
roughness, operating in the TE* mode. (2) We propose a methodology for the extraction
of S-parameters, and we apply that methodology to the characterization of scattering
loss. (3) We improve the computational efficiency of this model by using filtering
techniques to attenuate numerical noise from simulation results, thereby allowing for the
use of a relatively coarse spatial and temporal discretization while retaining the integrity
of numerical results. (4) While the integral-based VCM has increasing complexity as
the geometry becomes more complex, the FDTD method is especially well-suited for
arbitrary waveguide geometries and arbitrary surface roughness profiles. To keep this
presentation simple and concise, we chose to apply the methodology to a single line;
however, it can easily be adapted to multiple tightly-coupled lines. (5) We provide
the Python [12] code titled Optical Interconnect Designer Tool (OIDT) [13] which features
multi-CPU-core support for parallelized FDTD, as an open-source software package [14]
hosted on GitHub through a public repository under the GNU GPL v3.0 license [15], to
encourage further exploration and (inter)national collaboration on optical interconnect
research.

While the FDTD method implemented via a serial programming paradigm would
be computationally expensive, its highly parallelizable nature may provide a potential
path to a computationally expedient solution; thus, herein we begin to explore this poten-
tial by developing a parallelized implementation of FDTD with a traditional Yee-based
algorithm [16,17] and convolution perfectly matched layer (CPML) [18] boundaries, to
characterize the scattering loss in dielectric slab waveguides exhibiting surface rough-
ness.

The remainder of this paper is organized as follows. Section 2.1 outlines the physical
waveguide structure analyzed throughout this paper. Section 2.2 establishes the details
of the FDTD model being used, where section 2.2.1 provides additional details on the
discretization and application of random roughness profiles to the FDTD environment.
Section 2.2.2 details the filtering technique used to improve numerical measurements
from FDTD simulations. Section 2.2.3 addresses the coordinate transformations used to
move between the analytical solution and the FDTD model. In section 2.3, we provide
the methodology for S-parameter extraction in 2D FDTD. In section 2.3.2, we formulate
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the relations between the S-parameter matrix and the scattering loss a. In section 2.4
we propose an updated equation for computing the stochastic scattering loss a based
on physically realistic waveguide parameters and define its components, including
a discussion on the exponential ACF. In section 2.5, we validate the FDTD model by
correlating against analytical expressions for the wave impedance, the propagation
constant, and the ideal S-parameter matrix. In section 3, we discuss the numerical results
of FDTD, and the potential sources of error between FDTD and the analytical model. In
section 3.1, we compare our results against those of other investigators. In section 3.2,
we examine the dependence of « on input power and formulate the mode normalization
Nr. We conclude with closing remarks in section 4.

2. Methods
2.1. The Waveguide Structure

Optical interconnects are comprised of spatially 3D waveguide structures with a
certain surface roughness profile which may not vary much relative to the smooth (flat)
waveguide’s width. Often, 2D models of dielectric slab waveguides with the same height
and similar material parameters are used to analyze the 3D waveguide. This allows the
analysis to be decomposed into two modes: (1) transverse electric (TE) and (2) transverse
magnetic (TM).

Here, we analyze the structure in Fig. 1 for the TE mode. We start by defining the
coordinate grid in the £-Z plane, and orient the device to operate with infinite extent in
both the § and the £ directions, where the waveguide length and power flow are along 2
and the waveguide height is infinite along 7.

Source E+d Y

: —d n,!

L Port 1 ¢ " Port 2

- |
CPML Region

Figure 1. The baseline dielectric slab waveguide structure.

The dielectric slab waveguide consists of two regions, the core and the cladding. The
core has a refractive index of ny, and the cladding has a refractive index of np, where
n1 > ny. The core region has a finite nominal width, which is typically denoted as two
half-widths. Here, the width is § = 2d, where d is the half-width used in (14). The
fields in the waveguide are assumed to be time harmonic (with e/“* dependence, where w
(rad/s) is the angular frequency) in nature with the E-field taking the form in (1).

E(x,z) = yTCID(x)e_("‘ﬂﬁ)Z, 1)
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where § = negko (rad/m), neg is the effective index found via the effective index
method (EIM) [1], ko is the free-space wave number, « is the attenuation constant result-
ing from sidewall roughness, and ®(x) is a piece-wise function with its components
defined in (2)—(4). In (2) the term A, is a scaling constant.

[ Accos (xx) x| <d
ox) = { Ae cos (xd)e= (X4 x| >4 7 @
K2 = n%k% — /32 3)
7 = B — n3kg O

Random perturbations exist along the boundary between the core and cladding,
resulting in the surface roughness profile. We use an exponential ACF to describe the surface
roughness by its standard deviation ¢ and its correlation length L.. The mean of the
profile is 0, so the random perturbations are not included in the nominal width. We
further assume the cladding extends infinitely outward from the core region. The FDTD
environment used in this paper is described fully in [9,14,19], and in section 2.2.

2.2. The FDTD Environment

The nominal waveguide structure may expediently fit into 2D FDTD analysis. We
start by converting the nominal structure into uniform discrete cells with side length Ax.
The temporal resolution is then set at the Courant stability limit [20] for 2D FDTD, where
the background material is set to the cladding medium. We apply the CPML [18] to the
exterior of the computational domain, thereby simulating infinite space with minimal
reflections and computational cost.

We define a length ¢ over which we generate and discretize a random profile; the
remaining FDTD cells create an extra buffer space to allow for modal waves to settle, after
leaving the source point and before reaching the recording (numerical measurement)
point. Each source and recording location are designated by a separate port, e.g., a single
optical line would be characterized by two ports, with one port at each end of the line.

Once the roughness profile is ready; it is applied as the core and cladding boundary
between ports. Referring to Fig. 1, we place a source condition along £ in a vertical line
of cells across the entire opening of the waveguide, where the distance between the
source and CPML is more than 10 cells. While we may approximate infinite space with
the CPML, we still need to retain a buffer space in the cladding between the waveguide
and the CPML boundary. To capture the intricacies of the interactions of the EM fields
in both the core and cladding regions, we need to set the cladding size appropriately.
Therefore, it is necessary to capture as much of the E-field as possible. Note, in (2) the
E-field magnitude decays exponentially in the cladding region with a rate of 1/, and
we can use that behavior to set the cladding buffer size. At a distance of 4/ from the
core/cladding boundary, the E-field magnitude at the edge of the simulation space is no
more than 2% of the E-field magnitude at the core/cladding interface, and it only decays
further from there; thus, the cladding region size is set accordingly, as in Fig. 1.

Data are collected in the form of E-field values at ports 1 and 2 along the first
line of cells adjacent to the rough region. These points are recorded at each time-step
for the duration of the FDTD analysis. In post-processing, we take the recorded time-
domain E-field values and convert them to the frequency domain with the fast Fourier
transform (FFT) [21]. We then numerically integrate the E-field over the recorded line of
cells, resulting in a frequency dependent voltage with which further analysis may be
performed.

We set up the FDTD grid based on the waveguide geometry, material parameters,
and desired frequency range. The geometry is set up as shown in Fig. 1, where n; = 3.5
and np = 1.5. We additionally set the fundamental frequency as fy = 194.8 THz
(corresponding to source wavelength A; = 1.54 ym). Using the core refractive index,
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we find the minimum phase velocity vpmin (m/s). Using the fundamental frequency,
we assign our desired maximum frequency as fmax = Npfo (Hz), where Ny is the
number of desired harmonics above the fundamental. Using both the minimum phase
velocity and the maximum frequency, we find the minimum wavelength simulated in the
FDTD scheme with Apin = Umin/ fmax. Then, our spatial discretization is Ax = Apjn /30.
At Ng = 2, Ax = 7.3 nm/cell. We set the time-step At at the Courant limit based
on the cladding material which has the largest possible phase velocity in the FDTD
environment, such that At = —2%

V20014
The data in Fig. 7 are generated with Ax = 7.33 nm. The total grid is 5554 cells x 247

cells (£ x £) with 26,997 time-steps. We use 40 layers of CPML as the absorbing boundary
condition because in our experience 30-40 CPML layers provides good correlation of
wave impedance within 1%. Along £, the core region is centered and the nominal full
width measures 36 cells, where the remaining 300 cells are evenly distributed on either
side of the core as cladding. Along 2, ¢ = 4092 cells, and the remaining 1858 cells are
evenly distributed to each port region.

The computations are done by using a workstation with two Intel® Xeon® E5-
2687W v3 CPUs (40 logical cores), operating at 3.10 GHz. Each simulation occupies less
than 410 MB of RAM and is completed in roughly 300 seconds (or 5 minutes).

2.2.1. Verifying the Validity of Discretized Roughness Profiles

We start by assigning a target for 0, L.,, and y,, where u designates the mean in this
subsection. These parameters are then normalized by the spatial discretization step-size
Ax value used in the FDTD simulation to yield {c = 0,/Ax, L. = L,/ Ax,u = 0}. The
discrete values are passed into the Pyspeckle [22] Python library which uses the methods
in [23] to generate random profiles; this generation process returns an array of a specified
size with floating point values quantifying the surface perturbation. As was the case in
[9], a linear offset is added to the aforementioned floating point array to ensure that all
values are positive. The offset array is then cast to integer values via the floor function
and the same linear offset is subtracted from the now integer array, where the final
discrete array has parameters ¢/, L], and y’. The error between input (¢) and output
(¢') parameters may be quite large, due to the discretization process. However, we may
circumvent this issue by constraint-based generation of profiles, described below.

We set a percentage tolerance for the normalized input parameters {c, L., u} and
we check that the output parameters {¢’, L., 4’} fit the input parameters within the
prescribed tolerance. If a profile does not meet the criteria it is discarded and a new
profile is generated. In our numerical experiments, the tolerance is specified by ¢’ €
[0.90,1.1¢] and L, € [0.9L;,1.1L,], and u’ € [—0.01, +0.01].

We find ¢’ and ' via built-in Numpy functions std and mean, respectively. We
may estimate the L] value that fits the autocorrelation data, as explained next. We start
by finding the autocorrelation of the generated discretized surface profile using the
Pyspeckle autocorrelate function which provides a normalized array with its maximum
value occurring at { = 0. Note the autocorrelation of the generated profile tracks an
exponential ACF up to the correlation length, as can be seen in Fig. 2. With that in mind,
we apply a root finding technique to determine L. while using Rxx(L.) = ¢! as the
reference value. We then subtract e~! from the discrete ACF and find the root closest to
¢ = 0, which is the correlation length of the discrete ACF. We may then compare the L/,
with L. to determine the validity of the generated discretized profile.

For samples with parameter values Ax = 11 nm and ¢ = 9 nm, and knowing that
the probability distribution function (PDF) of the random process is normal in nature, we
know that 99% of values in the final array will be contained in the range £30 ~ £2.46.
Applying the floor function to this range results in the discrete set {—3, -2, —1,0,1,2}
which may cause significant differences between output values {¢’, L], 4’} and input
values {c, L, u}.
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Figure 2. Example ACF with input parameters ¢ = 9 nm and L, = 50 nm. The discrete trace is
generated with 5000 samples.

Fig. 2 compares a discretized exponential ACF comprised of 5000 samples against
the continuous analytical (18). Even at this small sample size, the discretized profile still
correlates well to the ideal ACF up to { = L, but after that point, there is noticeable
noise. At { = 0 nm the discretized and continuous analytical ACFs do not line up
perfectly. The misalignment at { = 0 nm may be remedied by normalizing the analytical
ACF to match the discretized ACF, using ¢’ instead of ¢.

2.2.2. FDTD Noise Reduction

Numerical experiments involving waveguides with random surface roughness
result in a certain amount of noise in &, as shown in Fig. 6. We may observe that in the
initial calculation, labeled unfiltered, there is rapid oscillation around the trend; such
oscillations are undesirable and cause scattering loss readings to vary between numerical
experiments. This issue may be resolved by the use of a moving-average function over the
frequency range of interest; this technique is often used to reduce noise levels in digital
signals [24]. We use (5) to reduce the noise level at each frequency point, where N is the
number of samples to either side the reference index k.

1 N
XFiltered [k] = 2N +1 Z XUnfiltered [k + P} (5)
p=—N

The rolling average function is effective at reducing noise levels, but due to the
smoothing effect it also introduces its own set of numerical distortions. However, the
introduced error is small when N is small. As such, we use N = 5 to generate the filtered
curve, where the rapid oscillations have been reduced but the trend remains mostly
unchanged.

2.2.3. Modal Transformations and Coordinate Mapping

The geometry used for the characterization of scattering loss from random surface
perturbations, shown in Fig. 1, is based on the geometry from Fig. 5 in [1]. The fields in
[1] are described as TEZ, since E; = 0 and a% = dy = 0, and by using (56), (59), and (60) in
[1] we know the non-zero field components are {E,, Hy, H, }, while E, = E, = H, = 0.
The TE? field configuration may also be obtained from (6-72) in [25] and setting d, = 0,



Version January 10, 2022 submitted to Electronics 7 of 19

and it is mathematically identical as two other modes; specifically, setting d, = 0 in
(6-64) in [25] yields the TMY, and in (6-74) in [25] yields TE*.

In our geometry of Fig. 1, there exists a single nonzero E-field component along the
invariant (infinite) direction (), and two nonzero H-field components along the finite
directions (£, £) which may be interpreted as either height or width [1]. Out of the three
mathematically equivalent modes (TE*, TMY, TEX), we choose the TE” field configuration
here, as it aligns best with the physical interpretation of the physical waveguide with
propagation along Z (length), a transverse E-field along § (width or height), and H-field
components along £ and 2.

Our FDTD simulations are based on the traditional Yee algorithm in a 2D lattice, as
formulated in [17, ch. 3]. Our FDTD formulation is derived with the assumption that
H; = 0 and 9, = 0, resulting in the TM” mode with field components {E;, Hy, H, }. This
FDTD lattice may initially appear to be in conflict with our analytic formulation; however,
note that the E-field has a single nonzero component along the infinite (invariant)
direction, and the H-field has two nonzero components. Since we can assign the FDTD
geometry in an arbitrary manner, we choose to orient Hy along the length and H, along
the width (or height), resulting in a field configuration with the same orientation as the
analytical formulation but with a rotated coordinate grid. We can rotate the coordinate
grid of the analytical field configuration such that it results in a configuration identical to
the FDTD fields by the steps shown in Fig. 3.

56'\ 55 90° 9 90(;,7 n 5
V|-~ x ! @Z
y z y 2 2 b

(a) (b) (c)

Figure 3. Coordinate grid rotation steps. (a) Initial orientation of analytical formulation for 2D
TE”. (b) Intermediary rotated mapping. (c) Final mapped orientation of analytical formulation is
identical to the FDTD formulation for 2D TM?*.

In Fig. 3, starting with the analytical expression in (a), we rotate the coordinate
grid twice. The first rotation is 90° around £ from Z toward §; this produces the grid
in (b). The second rotation is 90° around £ from # to £; this produces the grid in (c).
The mapping is complete after these rotations, and we can then use the FDTD 2D
TM? field components {E., Hy, Hy} to represent the analytical 2D TE” field components
{Ey, Hz, H,}, respectively, with no modifications to the established FDTD formulation
nor the analytical formulation.

2.3. S-Parameters Extraction Methodology in FDTD

S-parameters are often used to characterize a variety of electronic systems [9,19,26].
The methodology of finding S-parameters may be applied to 2D FDTD simulations quite
expediently [9,19].

We use the traditional definition of S-parameters [26], where the total voltage wave
measured at each port in a system can be decomposed into incident and reflected waves,
ie. V= VT +V~,and those components can be used to evaluate S-parameters as in (6),
where m, n, k are port numbers, V+ is the incident wave, V~ is the reflected wave, and
V is the total wave.

| (6)
n Vk+=0Vk7én

<t

Smn =

<t
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In our FDTD simulations, we use a two-port system, so {m,n,k} € {1,2}. This
methodology may be further extended to systems with more than two ports.

2.3.1. Computing S-parameters, using FDTD

We are able to record total, incident, and reflected fields in FDTD simulations, but
these may not all be recorded simultaneously. Therefore, we utilize a four-step simulation
setup for collecting S-parameters.

Other simulations for calculation of loss may be considered a subset of the four-
step simulation process [19]. Each of the simulation steps are visualized in Fig. 4, and
explained below. The baseline setup and geometry is in Fig. 1.

Figure 4. Four-step simulation setup for S-parameters extraction methodology.

Sim 1: The first simulation starts by placing the source condition at port 1, so
V," = 0 for this simulation. We simplify the geometry of the dielectric slab by excluding
the random sidewall perturbations at this time. Additionally, we extend the right-side
CPML boundary to 10 cells to the right of port 1. This simulation results in V.

Sim 2: The second simulation starts with the same source condition as simulation
1. We then apply a valid discrete roughness profile to top and bottom boundaries
between core and cladding. In our simulations, we chose the top and bottom profiles
to be identical, but other choices are possible too. The CPML boundaries are evenly
distributed around the computational domain. This simulation results in V; and V, .

Sim 3: The third simulation is similar to the first simulation. We place the source
condition at port 2, where ‘71+ = 0 in this simulation, and extend the left-side CPML
boundary to 10 cells to the left of port 2. Simulation 3 results in V.

Sim 4: The fourth simulation finalizes the port field data collection. Similar to
the third simulation, we place the source condition at port 2, and similar to the second
simulation we set the CPML boundaries at the baseline limits and apply the roughness
profile in the same manner. This simulation results in V; and V5.

The fields recorded in the numerical experiments are limited to the four aforemen-
tioned steps, but there are still two field components missing which would fully describe
the scattering matrix; those are V;” when V," = 0, and V,” when V;" = 0. Here, we may
use the decomposition relation to find the implicit reflected fields. Specifically, using V;"
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206 from Simulation 1 and V; from Simulation 2, we may obtain V;” = V; — V;". Similarly,
07 we may recover V, from simulations 3 and 4.

308 With each of these values calculated from the numerical experiments, the S-parameters
300 Mmatrix may now be computed. In ideal waveguide with no sidewall perturbations, we
a0 would expect the S-parameters matrix (of the waveguide system) to be both symmetric
s (reciprocal) and unitary (lossless) [26]. For a waveguide with sidewall perturbations, we
;12 expect the S-parameters matrix (of the waveguide system) to be symmetric (reciprocal)
a3 but non-unitary (lossy) [26]. Higher port numbers may be simulated by following the
a4 same process of incident field simulation followed by total field simulation, for each port
a5 subsequently.

s1s 2.3.2. Direct Method of Computing Scattering Loss, using FDTD

317 Using the second simulation, we may find the fotal voltage wave values at both
s1s ports 1 and 2, but this time we label them V(0) and V (¢), respectively. We assume the
a0 voltages to have the same form as the electric field but with the ®(x) element replaced
s20 with Vp,ie. V(z) = Voe’("‘*jﬁ)z . In this form, it may be observed that as z increases, we
sz also expect the voltage to attenuate in amplitude and accumulate in phase.

322 Since we have measured the voltage at two port locations, we may determine the
s2s  attenuation. To do this, we divide V(¢) by V(0), resulting in (7).

V() Voe @HIP)!
V) Vo

324 Using (7) we may isolate a by using the complex logarithm where z € C, log(z) is
s the complex-domain natural logarithm of z, In(|z|) is the natural logarithm with base e,
;26 and arg() is the true angle of z; i.e., the angle of z which includes all full turns and may
32z have a magnitude greater than +7t [27].

— ¢~ (at1B)t @)

log(z) = In(|z[) +arg(z), ®)
328 Applying (8) to (7) results in (9).
v(e) V(o) )
—al —jpl =1 = = 9
o=t =n[]) s (7 v
320 Equation (9) may be separated into real and imaginary components, resulting in
330 the final expression in (10), for calculating power loss directly from FDTD experiments.
1 (|7
o= Eln< V(O)D (Np/m) (10)
331 While (10) is possibly the most direct method for calculating power loss from FDTD

;2 simulation, there is an alternative definition which could accomplish that task through
333 the use of S-parameters. We start by taking the argument of the natural logarithm in (10)
s34 and squaring it, but instead of 0 and ¢ being the reference points, the voltages are now in
a5 reference to ports 1 and 2, leading to

N - . .2
VO P w0y
V(0) Wi Vir+ V)
336 In (11), we may replace the magnitude-squared operation with the equivalent

sz complex operation, resulting in

A— (‘:/2+ + ‘:/2_) (‘:/2+ + ‘:/2_)* (12)
M+ V) (i + V)

338 where * denotes the complex conjugate operator.
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Simplifying (12), we may combine the incident and reflected voltage waves into
compact S-parameters from. We may then reinsert A into a natural logarithm and recover
the expression for « as a function of S-parameters in (13) [19].

1 (14 511)(S12)
N = —— ln - -7 =7
14 (’ S11+ S12521

The form of & in (13) may also be utilized on systems with larger number of ports.
In this case, port 1 is used as the reference port for loss, but in general the reference port
may be any port in a multi-port system. In a large multi-port system, the loss equation
using S-parameters may be computed for each reference port.

) (Np/m). (13)

2.4. Analytical Loss Function
In the ensuing formulation, we assume simple media; i.e., linear, isotropic, and

non-dispersive. Following the recent work in [1], we propose 14 as the generic scattering
loss function.

1
NFp
Equation (14) is similar to the loss function used in previous works [1,3,4], but we
have made a modification by dividing « in those works by the normalization factor Nf.

Either part of the piece-wise function (2) may be evaluated at x = d and result in
(15).

a = —®*(d)MySw (Np/m). (14)

@?(d) = A2 cos? (kd), (15)

Note that A,, derived in equation (73) in [1], is dependent on the input power. This
dependency is not desirable; thus, it is eliminated by introducing the factor, Nr, in (14),
normalizing the amplitude of &, as explained in section 3.2.

The term My is defined with (16).

(16)

The term Syy is defined with (17) and represents the contribution by the surface
roughness described by a random distribution.

Sy = /On Ryx (B — nako cos (8))d6, (17)

where Ry is the power spectral density of the surface roughness profile.

Surface roughness may be approximated as a stationary random process [1], there-
fore the power spectral density may be recovered through the ACF of the roughness
profile, which may be assumed to have an exponential shape [4,6]. The exponential ACF
is given by (18) [1]

¢

Lc
7

Rxx () = 0%

where ¢ and L, are the standard deviation and correlation length of the profile,
respectively, and ( is the spatial shift variable.

There are two observations that could be made about (18) by setting ¢ to specific
values. First, Rxx({ = 0) results in the variance of the profile. Second, Rxx({ = L.) =
o2e~1; this second result is used later for approximating the value of L, from surface
profile data generated by the Pyspeckle software [22]. Some photo-lithographic processes
for Si/SiO, may lead to profiles with ¢ = 9 nm and L. = 50 nm [6].

We define the spatial Fourier transform (SFT) as

(18)
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373

374

Rxx(k) = /_0; Rxx(Q)e ™dg, (19)

where the input function is translated from (-space (m) to k-space (rad/m), k is the
wave number, and the imaginary number j = /1.
Applying the SFT (19) to (18), yields

_ 2L.0?
14 L2

We may insert (20) into (17) and numerically evaluate the integral to obtain the
contribution of the surface roughness profile to the loss «.

Rxx (k) (20)

2.5. FDTD Model Validation

We validate the FDTD model being used in these numerical experiments in three
ways, described below. Unless stated otherwise, the data in this section is generated
for a smooth waveguide with § = 300 nm, n; = 3.5, n, = 1.5, and fy = 194.8 THz.
Validation must be done prior to performing numerical experiments, so we utilize the
smooth waveguide and the below methods for model validation. Using known and
expected attributes of the smooth waveguide, we can compare the results obtained
from numerical experiments to provide confidence in the validity of our model before
performing numerical experiments with waveguides that exhibit surface roughness.

2.5.1. Wave Impedance

One such method is through comparison with a known analytical solution to the
smooth dielectric slab waveguide. We use the wave impedance of an outward traveling
wave. This solution is well established and has been derived in several places [1] [25].
We find the wave impedance by dividing TE* mode E-field by the corresponding H-field
component along the length of the slab waveguide. Here, those fields are E, and H,
respectively. In the smooth slab case, the real portion of the wave impedance should be
very small. For the analytical solution, the division between the E-field and H-field gives

X Wy

= JMT (Q), (21)

Zw

where y is the magnetic permeability. Division of x by its magnitude is used to set
the appropriates sign for either above or below the slab.

The FDTD portion of this comparison may be conducted through the second sim-
ulation from 2.3.1 with the surface roughness omitted. Since the wave impedance is
calculated for an outward traveling wave, we use the E-field and H-field data in the
cladding region. We take all the steps necessary to compare frequency-domain voltages
as described in section 2.2, but we exclude the final integration such that we are left with
field data for every point along the line at ports 1 and 2. Using the port 2 data allows for
the wave to propagate over a long enough distance to be well-set into the lowest order
mode. We take the measurements from two cells below the lowest core cell which leaves
a single cell buffer between the core region and the cell used for this calculation. Finally,
the imaginary component is compared to the analytical solution.

The wave impedance calculated from the FDTD model is shown in Fig. 5a. We can
see that the impedance found from numerical experiment matches with the expected
analytical value throughout this range of frequency samples. At f the difference between
the FDTD and analytical values is approximately 1.5 (), which translates to an error of
less than 2% near the frequency of interest.

2.5.2. Propagation Constant

In the next validation method, we compare the propagation constant § obtained
from FDTD against that obtained from the EIM in the frequency range of interest, at
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Figure 5. (a) Zeroth order TE* mode wave impedance for the smooth dielectric slab waveguide. (b)
Propagation constant 8 vs. frequency. (c) S-parameters for the smooth waveguide. (d) Propagation
loss « (dB/cm) vs. frequency, for a smooth waveguide with S-parameters method vs. direct

method for calculating propagation loss.
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the same samples as the FDTD model output. We find § from FDTD by evaluating the
imaginary component of (9).

Since we are examining the phase angle of the voltage measurements, the division
of V(¢) by V(0) may be converted to a subtraction, resulting in (22).

B = (arg V(1)) —arg (V(0)) @)

In FDTD, we compute the angle of the complex voltages over the entire frequency
range on the smooth dielectric slab waveguide and unwrap the final angle array into
full angle form (rather than principal angle form).

In Fig. 5b, the traces are nearly overlapped. The fundamental frequency is high-
lighted by the vertical dashed line, where the error between the EIM and the FDTD
model is less than 1%. This data further validates the FDTD model, and confirms the
formulation leading to (22).

2.5.3. Scattering Matrix

In the last validation method, we utilize the properties of the S-parameters matrix
described in section 2.3.1. As stated, the matrix should be symmetric and unitary for
the smooth waveguide. We extract the S-parameters from the FDTD model using the
method presented in 2.3, and show these in Fig. 5c.

Two observations are noteworthy in the frequency range of interest: (1) the cross-
terms (S12, S21) have a magnitude of near 0 dB, indicating that there is almost complete
transmission of power from one end of the waveguide to the other, and the self-terms
(511, S22) are correspondingly very small compared to the cross-terms, with a peak
value of less than —150 dB; therefore, the matrix is nearly unitary as expected for a
smooth lossless waveguide. (2) the S-parameter matrix is symmetrical, given the near
perfect overlap of S11 with 522, and S12 with S21. These observations are noteworthy
because they are the expected results for an ideal network, such as a smooth dielectric
slab waveguide. Since the FDTD results align well with the expected behavior of a 2-port
network, these results further validate the FDTD model.

We compare the S-parameters method of section 2.3.1 and the direct method of section
2.3.2 for calculating loss, as shown in Fig. 5d. Here, we observe an oscillatory behavior
similar to that in the cross-terms of Fig. 5c. The oscillations hover around & = 0 dB/cm
and decay with increasing frequency, while the expected per-unit-length attenuation for
an ideal smooth waveguide is « = 0 dB/cm. Note that the loss from the S-parameters
and from the direct method match very well, where the mean-squared error is on the
order of 1078.

3. Results and discussion

Unless stated otherwise, the data in this section are generated for waveguides with
0 =200nm, ny = 3.5, np =1.5,and fy = 194.8 THz.

In Fig. 6 we show an example loss curve simulated in FDTD, to illustrate the need
for filtering the FDTD output. As we can be seen in the figure, there is a nontrivial level
of noise on the full range of .

Applying the filter described in section 2.2.2 results in the Filtered trace which
considerably reduces the noise in the FDTD data. This is best exemplified by the a values
for frequencies above 225 THz, where the noise is reduced by an order of magnitude.
The « values from FDTD are subjected to this filtering technique prior to calculation of
the percentage error between the FDTD and the analytical solution (14).

Fig. 7 uses the data from tables I and Il in [9], respectively, to illustrate the distri-
bution of percent error between FDTD and analytical calculations. Fig. 7a and Fig.
7b were generated with the standard deviation ¢ = 9 nm. The correlation length L,
varies uniformly in the range 200 nm to 1000 nm. The figures show the distribution of
percentage errors for all correlation lengths with the same standard deviation, where
a total of 924 roughness profiles were simulated using the FDTD model. We use these
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Figure 6. « vs. frequency, for a rough waveguide (¢ = 15 nm, L, = 200 nm) with noisy FDTD
data (red dashed line) compared to filtered FDTD data (blue solid line), where f; is the excitation
source frequency.
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Figure 7. Percent error in propagation loss « (dB/cm) between analytical (14) vs. FDTD solutions:
(a) 924 roughness profiles at ¢ = 9 nm, (b) same as (a) with data filtering, (c) 947 roughness profiles
at o = 15 nm, and (d) same as (c) with data filtering.
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data to illustrate the effect of filtering on simulation results. In Fig. 7a the mean error
is —5.12%, whereas in Fig. 7b the error is reduced to —4.12%. Likewise, the standard
deviation reduces from 21.96% to 19.87%.

A similar setup is used for Fig. 7c and Fig. 7d, where ¢ = 15 nm and L. is uniform
in the range 200 nm to 1000 nm, with a total of 90 roughness profiles simulated with
the FDTD model. In Fig. 7c the mean error is 1.89%, whereas in Fig. 7d the error is
increased, to 2.24%. Like in the o = 9 plots, the standard deviation reduces, this time
from 19.76% to 18.56%. From the numerical experiments conducted in FDTD on the
relatively short-length slab waveguide, we have created the histogram of occurrences,
which may be easily translated to a probability mass distribution.

Some potential sources of error in Fig. 7 are listed below. (1) The parameters
{¢’, L], u'}, rather than {c, L., i}, are used in the analytical solution when calculating
the percentage errors. (2) We use a relatively coarse spatial and temporal resolution in the
FDTD model. While utilizing a finer resolution grid may decrease the percentage error
range, it would increase computation time. (3) We use (14) as the analytical model, which
is based on the formulation originally proposed in [4] that used various approximations
and simplifications, such as a first-order Taylor series expansion to evaluate the E-field.

From each setup in Fig. 7 the maximum difference between filtered and unfiltered
data is standard deviation from Fig. 7a to Fig. 7b which reduces by 2.09%, and each other
relevant value changes by around 1%, with the mean percentage error in the o = 15 nm
case actually increasing by 0.35%. This shows that the filtering step does not significantly
impact the percentage error of the FDTD results from the analytical solution.

We define the improvement metric Fimp as

| XFiltered |
I8 imp(xFiltered/ xUnfﬂtered) - (1 - e ) % 100%, (23)
l XUnfiltered |

where Xfiltered = ®Filtered — X Analytical, XUnfiltered = XUnfiltered — %Analytical, ®Filtered
and Aynfiltered are defined in section 2.2.2, and & analytical is defined by (14).

We use (23) to compare the effect of filtering on the FDTD data. Using this metric,
we consider any value greater than 0% to be an improvement, and 100% would indicate
the filter has maximally improved the unfiltered signal. We consider +5% to be negligible
change, i.e. filtering had little effect on unfiltered signal. For ¢ = 9 nm, filtering improves
the error in 487 instances out of 924, and that filtering has negligible effect for 62 instances.
For o = 15 nm (23) results in improvement for 462 instances out of 947, and negligible
effect for 107 instances.

It is worth noting that the above technique involves filtering « after E- and H-fields
have been computed in FDTD. The data shows that filtering in this manner does not
add significant value. Thus, we plan to investigate filtering techniques within FDTD
during the computation of E- and H-fields, as was demonstrated in [28] for suppressing
spurious noise waves due to sub-gridding.

3.1. Comparing Our Results to Previous Publications

We compare this work to previous theoretical and experimental works. Equation
(14) is based on the formulation provided in [1], which in turn is based on both [4] and
[3]. The primary difference between [1] and this work is that here we introduce the
normalization factor Nr. In [1] the components for « are based on the more physically
realistic form of E-field (2) where A, may be any real-valued scalar. The absence of the
normalization factor (i.e., setting Nr = 1) leaves a dependency on input power; however,
the input power may be modified to fit the expected scattering loss value for any point,
by setting (24) equal to (25) and solving for «, which will always result in (29). In [4] the
original formulation for finding scattering loss was proposed, where the mathematical
normalization of (24) is used.

The follow-up work of [3] proposed a formulation for scattering loss calculations
by using normalized waveguide parameters, but as was noted in [2], there appears to
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be an extra factor of 2 in the formulation used therein. We can see this numerically
by comparing [3] with this work, also in Table 1, where the loss value is double what
is calculated by (14). We further see that an input power of Prp = 4.3 mW in the
formulation found in [1] is most similar to the normalized values found here, but other
choices of input power (e.g., Prg = 1 mW or Prg = 1.45 mW) could yield different values
for loss as they may not eliminate dependence of « on input power.

The VCM was used in [2] to verify the scattering loss calculations. Their work
was done on several 3D waveguides, and these provide a similar analogue to the 2D
structure simulated in this work.

Table 1. « values in (dB/cm)

Source d=210nm | d=250nm

(a: hardware experimental) | Lo =20nm | L, =50nm

(b: numerical/analytical) 0?2 =1nm? | ¢? =81 nm?
a [6] Lee N/A ~34

a [7] Jaberansary N/A ~33

a [5] Horikawa ~0.5 N/A

b [2] Barwicz N/A 48.6

b [3] PL 94 1.87 193.7

b[1], Pjg = 1 mW 0.22 22.1

b [1], Prg = 1.45 mW 0.32 32.1

b [1], Prg = 4.3 mW 0.94 95.2

This work (14) 0.94 96.8

Looking at the experimental side, in [5] a physical 3D dielectric optical interconnect
was tested for scattering loss. Their results show that the 2D planar model [3] is generally
an overestimate of what can be expected from physical hardware, and the 3D simulations
in [2] are generally an underestimate. Also in [5], unit variance is used, making it unique
compared to other experimental data and included in the Table 1. Other experiments
conducted on physical hardware include those of [6] and [7], where a scattering loss
magnitude of ~ 35 dB/cm is reported. These experiments were conducted on 3D SOI
optical interconnects consisting of Si core and SiO, cladding extending 1 ym in each
direction around the core, making them amenable to comparison with the 2D planar
approximation. The loss value in [6,7] is approximately 36% of the loss value in (14), and
approximately 72% of the loss value in [2].

3.2. Mode Normalization

Although allowing « to have dependency on waveguide’s structural attributes
such as the surface roughness profile, material parameters, or even input wavelength
is desirable, dependence on input power is not. In previous works [3,4], the E-field is
mathematically normalized, such that

/00 2 (x) dx = 1. (24)

—00
While the above normalization removes the dependence of « on the input power, it

also forces @ (x) to satisfy a certain mathematical requirement; however, if we evaluate
(24) by inserting the physical field expression (2) for the TE modes, we arrive at (25) [1].

/Oo 2 (x) dx = A <d+ i) (25)

Note that if (24) is assumed to be true, then the field amplitude A, would be forced
to have the particular value A2 = 1/(d + %) ; however, this assumption may not hold
true in the physical waveguide. To remedy the inconsistency, we start with [4]
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546

551

E+(r,0)
Prad/2L _ 35 Jo UEO) , 4o

Py o IS @ (x) dx

(26)

where the core and cladding refractive indices are tied to the guided power P; and
the radiated power P,,4, (f) designates the ensemble average of f [1], and 179 =~ 377 Q)
[4].

We use (15) from [4] to simplify the numerator in (26) and note that 27 cancels at
this point, resulting in (27).

2 K 5
L D2 (d) (n5 — n3) " gme= Jo Rxx(B — nako cos 6) df o)
1y [T ®2(x) dx

We use the definition of My and Sy here to further simplify (27); this results in (28),
where 1, in the numerator cancels and the 711 in the denominator is pulled into M.
2
o= T DMuSw (28)
JoS @ (x) dx
We may further simplify (28) for the zeroth-order mode by inserting the result from
(25) and the physical field amplitude expression of ®?(d) in (15), followed by canceling
the resulting A2 term in the numerator and denominator.

_ cos?(kd) My Sy
N d+1/y
Therefore, to remove dependence on input power uniformly for any initial in-

put field amplitude, we propose to define Nr in (14) as (30), where Nr has the same
dependence on input power as ®?(d).

(29)

Np = A2 (d + }Y) (30)

Note that here, (29) is the simplest form for even TE modes, using the physical
considerations based on actual field values in the waveguide. In [4], (24) is assumed
to be true prior to calculating «, forcing the denominator of (28) to be 1.0 and limiting
®2(d) to be single valued. The crucial difference in the proposed formulation here
(based on inclusion of N in &) lies in the assumption that the E-field amplitude can be
functionally any value. We believe that the proposed normalization based on Nf offers a
more physically consistent expression of «, and works more intuitively for correlation
of numerical (or physical) experiments in FDTD (or in the lab) where the initial field
amplitudes may be specified with regard to considerations independent of scattering
loss.

4. Conclusion

Based on physical waveguide parameters, an explicit normalization factor (30) for
the scattering loss « (14) was proposed. The equation was then used to compare the
results across several previous publications, including both numerical and physical
experiments, showing that the analytical equation is generally an overestimation of
actual propagation loss in a physical waveguide. We used the proposed analytical
equation to confirm the presence of an extra factor of 2 in [3].

The proposed analytical formulation of scattering loss was verified, using an ex-
pedient FDTD scheme which included extraction of the attenuation coefficient and
S-parameters. We validated the FDTD scheme by comparing numerical results against
previously published analytical functions for the dielectric slab waveguide.
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580 With the FDTD model verified, we demonstrated S-parameters extraction and
se1  attenuation coefficient calculation by applying the proposed methodology to a smooth
se2  dielectric slab waveguide. We then applied the methodology to compute the attenuation
ses  coefficient for a dielectric slab waveguide exhibiting random sidewall perturbations
ssa  according to the exponential autocorrelation function. We proposed to use a filtering
ses  technique to reduce the signal-to-noise ratio of the final FDTD data in the frequency
see  domain.

587 Along the way, we demonstrated the ability of the FDTD scheme to produce rea-
sss  sonably accurate results through tens of simulations for sidewall roughness profiles of
se0  varying correlation length at standard deviations of o = 9 nm and ¢ = 15 nm. The FDTD
se0  results showed that the mean error for simulation is quite small, with an overall average
so1  error of only —4.12% and 2.24% for the attempted standard deviations, respectively.

592 The Python FDTD code (OIDT) [13] used to generate much of the data in this paper
s03 Wwas released as open-source software (under the GNU GPL v3.0 license [15]) published
soa on GitHub [14], featuring multi-core support (for CPU) to compute the 2D TE? fields
sos  Of optical interconnects. Work is currently underway to develop efficient 2D transverse
sos magnetic (TM), and full 3D, FDTD models for further characterization of stochastic
soz  scattering loss due to sidewall roughness in nano-scale optical interconnects, consisting
sos  Of single-line and multiple tightly-coupled lines, operating at 100s of THz.
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