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Abstract: Electromagnetic (EM) scattering may be a significant source of degradation in signal1

and power integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as2

opto-electronic or optical interconnects operating at 100s of THz where two-dimensional (2D)3

analytical models of dielectric slab waveguides are often used to approximate scattering loss. In4

this work, a formulation is presented to relate the scattering (propagation) loss to the scattering5

parameters (S-parameters) for the smooth waveguide; the results are correlated to results from the6

finite-difference time-domain (FDTD) method in 2D space. We propose a normalization factor to7

the previous 2D analytical formulation in [1] for the stochastic scattering loss based on physical8

parameters of waveguides exhibiting random surface roughness under the exponential autocorre-9

lation function (ACF), and validate the results by comparing against numerical experiments via10

the 2D FDTD method, through simulation of tens of rough waveguides; additionally, results are11

compared to other 2D analytical models [2–4], and previous 3D experimental results [5–7]. The12

FDTD environment is described and validated by comparing results of the smooth waveguide13

against analytical solutions for wave impedance, propagation constant, and S-parameters. Results14

show that the FDTD model is in agreement with the analytical solution for the smooth waveguide15

and is a reasonable approximation of the stochastic scattering loss for the rough waveguide.16

Keywords: Dielectric slab waveguide; discrete filtering; exponential autocorrelation; FDTD; optical17

interconnects; photonics; random roughness; stochastic scattering loss; scattering parameters;18

S-parameters19

1. Introduction20

Nano-scale SOI optical interconnects, comprised of silicon/silicon-dioxide (Si/SiO2)21

dielectric waveguides operating at 100s of THz, constitute an increasingly important22

building block of modern integrated circuits, where the high-tech market demands23

smaller form-factors and wavelengths. Considering the non-ideal manufacturing process,24

random imperfections in the surfaces of nano-scale dielectric waveguides may cause25

significant signal degradation and power attenuation, as EM waves propagate through26

the interconnect structure, where the loss is primarily due to EM wave scattering with27

surface roughness of the waveguide [4–8]. Therefore, the characterization of scattering28

loss is a topic of significant interest to the scientific community [1–10].29

The three-dimensional (3D) structure of SOI optical interconnects poses certain30

challenges to its analytical and numerical modeling; thus, the stochastic scattering loss31

observed in nano-scale THz SOI interconnects is often approximated using 2D planar32

models of the dielectric slab waveguide exhibiting surface roughness. The 2D analogue33

is useful for analytically [1,3,4] characterizing the effect of scattering loss on the power34
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attenuation of light waves, and is used as a comparison for both experimental analysis35

(of physical waveguides) [5–8] and numerical analysis [2,7–10].36

In 1983, Kuznetsov and Haus [11] published their work on using the 3D volume37

current method (VCM) to evaluate the radiation loss in dielectric waveguide structures.38

Their work includes analysis of single-line, two-line coupled, and three-line coupled39

waveguide structures, in the absence of random surface roughness. In 1990, Lacey40

and Payne [4] released their seminal work analyzing 2D planar waveguides exhibiting41

random surface roughness for a single-line waveguide structure. Their work applies42

Green’s functions to the structure, operating in the transverse-electric-to-z (TEz) mode,43

as an approximation for scattering loss in 3D optical interconnects, and later in 199444

[3] it was updated to use normalized waveguide parameters. In 2005, Barwicz and45

Haus [2] expanded on both of those developments by applying the 3D VCM to single-46

line waveguides exhibiting random surface roughness. In each of these cases, despite47

having relatively simple geometries, the solutions are formulated around complicated48

integral equations, and the solutions only become more complicated as the geometry49

becomes more complex, for example by adding roughness, multiple tightly-coupled50

lines, arbitrary-shaped lines or grating, etc., thus limiting the application of integral-51

based solutions. An effective workaround to the integral-equation complication is to52

reformulate the problem around differential-equations, leading to the FDTD method.53

A version of the FDTD method based on wavelets is used in [8], but the details of the54

FDTD formulation are not included. The FDTD method is also used in [7] through the55

software tool Lumerical, but again details of the FDTD methodology are absent.56

The major contributions of the present work are as follows. (1) We provide the57

FDTD methodology for analysis of 2D dielectric waveguides exhibiting random surface58

roughness, operating in the TEz mode. (2) We propose a methodology for the extraction59

of S-parameters, and we apply that methodology to the characterization of scattering60

loss. (3) We improve the computational efficiency of this model by using filtering61

techniques to attenuate numerical noise from simulation results, thereby allowing for the62

use of a relatively coarse spatial and temporal discretization while retaining the integrity63

of numerical results. (4) While the integral-based VCM has increasing complexity as64

the geometry becomes more complex, the FDTD method is especially well-suited for65

arbitrary waveguide geometries and arbitrary surface roughness profiles. To keep this66

presentation simple and concise, we chose to apply the methodology to a single line;67

however, it can easily be adapted to multiple tightly-coupled lines. (5) We provide68

the Python [12] code titled Optical Interconnect Designer Tool (OIDT) [13] which features69

multi-CPU-core support for parallelized FDTD, as an open-source software package [14]70

hosted on GitHub through a public repository under the GNU GPL v3.0 license [15], to71

encourage further exploration and (inter)national collaboration on optical interconnect72

research.73

While the FDTD method implemented via a serial programming paradigm would74

be computationally expensive, its highly parallelizable nature may provide a potential75

path to a computationally expedient solution; thus, herein we begin to explore this poten-76

tial by developing a parallelized implementation of FDTD with a traditional Yee-based77

algorithm [16,17] and convolution perfectly matched layer (CPML) [18] boundaries, to78

characterize the scattering loss in dielectric slab waveguides exhibiting surface rough-79

ness.80

The remainder of this paper is organized as follows. Section 2.1 outlines the physical81

waveguide structure analyzed throughout this paper. Section 2.2 establishes the details82

of the FDTD model being used, where section 2.2.1 provides additional details on the83

discretization and application of random roughness profiles to the FDTD environment.84

Section 2.2.2 details the filtering technique used to improve numerical measurements85

from FDTD simulations. Section 2.2.3 addresses the coordinate transformations used to86

move between the analytical solution and the FDTD model. In section 2.3, we provide87

the methodology for S-parameter extraction in 2D FDTD. In section 2.3.2, we formulate88
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the relations between the S-parameter matrix and the scattering loss α. In section 2.489

we propose an updated equation for computing the stochastic scattering loss α based90

on physically realistic waveguide parameters and define its components, including91

a discussion on the exponential ACF. In section 2.5, we validate the FDTD model by92

correlating against analytical expressions for the wave impedance, the propagation93

constant, and the ideal S-parameter matrix. In section 3, we discuss the numerical results94

of FDTD, and the potential sources of error between FDTD and the analytical model. In95

section 3.1, we compare our results against those of other investigators. In section 3.2,96

we examine the dependence of α on input power and formulate the mode normalization97

NF. We conclude with closing remarks in section 4.98

2. Methods99

2.1. The Waveguide Structure100

Optical interconnects are comprised of spatially 3D waveguide structures with a101

certain surface roughness profile which may not vary much relative to the smooth (flat)102

waveguide’s width. Often, 2D models of dielectric slab waveguides with the same height103

and similar material parameters are used to analyze the 3D waveguide. This allows the104

analysis to be decomposed into two modes: (1) transverse electric (TE) and (2) transverse105

magnetic (TM).106

Here, we analyze the structure in Fig. 1 for the TE mode. We start by defining the107

coordinate grid in the x̂-ẑ plane, and orient the device to operate with infinite extent in108

both the ŷ and the ẑ directions, where the waveguide length and power flow are along ẑ109

and the waveguide height is infinite along ŷ.110

CPML Region

n2

n2

n1

ℓ Port 2Port 1

Source

𝛿 = 2d
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ො𝑥
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Figure 1. The baseline dielectric slab waveguide structure.

The dielectric slab waveguide consists of two regions, the core and the cladding. The111

core has a refractive index of n1, and the cladding has a refractive index of n2, where112

n1 > n2. The core region has a finite nominal width, which is typically denoted as two113

half-widths. Here, the width is δ = 2d, where d is the half-width used in (14). The114

fields in the waveguide are assumed to be time harmonic (with eȷωt dependence, where ω115

(rad/s) is the angular frequency) in nature with the E-field taking the form in (1).116

E(x, z) = ŷ Φ(x)e−(α+ȷβ)z, (1)
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where β = neffk0 (rad/m), neff is the effective index found via the effective index117

method (EIM) [1], k0 is the free-space wave number, α is the attenuation constant result-118

ing from sidewall roughness, and Φ(x) is a piece-wise function with its components119

defined in (2)–(4). In (2) the term Ae is a scaling constant.120

Φ(x) =
{

Ae cos (κx) |x| ≤ d
Ae cos (κd)e−γ(|x|−d) |x| > d

, (2)

κ2 = n2
1k2

0 − β2 (3)

γ2 = β2 − n2
2k2

0 (4)

Random perturbations exist along the boundary between the core and cladding,121

resulting in the surface roughness profile. We use an exponential ACF to describe the surface122

roughness by its standard deviation σ and its correlation length Lc. The mean of the123

profile is 0, so the random perturbations are not included in the nominal width. We124

further assume the cladding extends infinitely outward from the core region. The FDTD125

environment used in this paper is described fully in [9,14,19], and in section 2.2.126

2.2. The FDTD Environment127

The nominal waveguide structure may expediently fit into 2D FDTD analysis. We128

start by converting the nominal structure into uniform discrete cells with side length ∆x.129

The temporal resolution is then set at the Courant stability limit [20] for 2D FDTD, where130

the background material is set to the cladding medium. We apply the CPML [18] to the131

exterior of the computational domain, thereby simulating infinite space with minimal132

reflections and computational cost.133

We define a length ℓ over which we generate and discretize a random profile; the134

remaining FDTD cells create an extra buffer space to allow for modal waves to settle, after135

leaving the source point and before reaching the recording (numerical measurement)136

point. Each source and recording location are designated by a separate port, e.g., a single137

optical line would be characterized by two ports, with one port at each end of the line.138

Once the roughness profile is ready, it is applied as the core and cladding boundary139

between ports. Referring to Fig. 1, we place a source condition along x̂ in a vertical line140

of cells across the entire opening of the waveguide, where the distance between the141

source and CPML is more than 10 cells. While we may approximate infinite space with142

the CPML, we still need to retain a buffer space in the cladding between the waveguide143

and the CPML boundary. To capture the intricacies of the interactions of the EM fields144

in both the core and cladding regions, we need to set the cladding size appropriately.145

Therefore, it is necessary to capture as much of the E-field as possible. Note, in (2) the146

E-field magnitude decays exponentially in the cladding region with a rate of 1/γ, and147

we can use that behavior to set the cladding buffer size. At a distance of 4/γ from the148

core/cladding boundary, the E-field magnitude at the edge of the simulation space is no149

more than 2% of the E-field magnitude at the core/cladding interface, and it only decays150

further from there; thus, the cladding region size is set accordingly, as in Fig. 1.151

Data are collected in the form of E-field values at ports 1 and 2 along the first152

line of cells adjacent to the rough region. These points are recorded at each time-step153

for the duration of the FDTD analysis. In post-processing, we take the recorded time-154

domain E-field values and convert them to the frequency domain with the fast Fourier155

transform (FFT) [21]. We then numerically integrate the E-field over the recorded line of156

cells, resulting in a frequency dependent voltage with which further analysis may be157

performed.158

We set up the FDTD grid based on the waveguide geometry, material parameters,159

and desired frequency range. The geometry is set up as shown in Fig. 1, where n1 = 3.5160

and n2 = 1.5. We additionally set the fundamental frequency as f0 = 194.8 THz161

(corresponding to source wavelength λs = 1.54 µm). Using the core refractive index,162
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we find the minimum phase velocity vmin (m/s). Using the fundamental frequency,163

we assign our desired maximum frequency as fmax = NH f0 (Hz), where NH is the164

number of desired harmonics above the fundamental. Using both the minimum phase165

velocity and the maximum frequency, we find the minimum wavelength simulated in the166

FDTD scheme with λmin = vmin/ fmax. Then, our spatial discretization is ∆x = λmin/30.167

At NH = 2, ∆x ≈ 7.3 nm/cell. We set the time-step ∆t at the Courant limit based168

on the cladding material which has the largest possible phase velocity in the FDTD169

environment, such that ∆t = ∆x√
2vclad

.170

The data in Fig. 7 are generated with ∆x = 7.33 nm. The total grid is 5554 cells x 247171

cells (ẑ × x̂) with 26,997 time-steps. We use 40 layers of CPML as the absorbing boundary172

condition because in our experience 30-40 CPML layers provides good correlation of173

wave impedance within 1%. Along x̂, the core region is centered and the nominal full174

width measures 36 cells, where the remaining 300 cells are evenly distributed on either175

side of the core as cladding. Along ẑ, ℓ = 4092 cells, and the remaining 1858 cells are176

evenly distributed to each port region.177

The computations are done by using a workstation with two Intel® Xeon® E5-178

2687W v3 CPUs (40 logical cores), operating at 3.10 GHz. Each simulation occupies less179

than 410 MB of RAM and is completed in roughly 300 seconds (or 5 minutes).180

2.2.1. Verifying the Validity of Discretized Roughness Profiles181

We start by assigning a target for σo, Lco , and µo, where µ designates the mean in this182

subsection. These parameters are then normalized by the spatial discretization step-size183

∆x value used in the FDTD simulation to yield {σ = σo/∆x, Lc = Lco /∆x, µ = 0}. The184

discrete values are passed into the Pyspeckle [22] Python library which uses the methods185

in [23] to generate random profiles; this generation process returns an array of a specified186

size with floating point values quantifying the surface perturbation. As was the case in187

[9], a linear offset is added to the aforementioned floating point array to ensure that all188

values are positive. The offset array is then cast to integer values via the floor function189

and the same linear offset is subtracted from the now integer array, where the final190

discrete array has parameters σ′, L′
c, and µ′. The error between input (σ) and output191

(σ′) parameters may be quite large, due to the discretization process. However, we may192

circumvent this issue by constraint-based generation of profiles, described below.193

We set a percentage tolerance for the normalized input parameters {σ, Lc, µ} and194

we check that the output parameters {σ′, L′
c, µ′} fit the input parameters within the195

prescribed tolerance. If a profile does not meet the criteria it is discarded and a new196

profile is generated. In our numerical experiments, the tolerance is specified by σ′ ∈197

[0.9σ, 1.1σ] and L′
c ∈ [0.9Lc, 1.1Lc], and µ′ ∈ [−0.01,+0.01].198

We find σ′ and µ′ via built-in Numpy functions std and mean, respectively. We199

may estimate the L′
c value that fits the autocorrelation data, as explained next. We start200

by finding the autocorrelation of the generated discretized surface profile using the201

Pyspeckle autocorrelate function which provides a normalized array with its maximum202

value occurring at ζ = 0. Note the autocorrelation of the generated profile tracks an203

exponential ACF up to the correlation length, as can be seen in Fig. 2. With that in mind,204

we apply a root finding technique to determine L′
c while using RXX(L′

c) = e−1 as the205

reference value. We then subtract e−1 from the discrete ACF and find the root closest to206

ζ = 0, which is the correlation length of the discrete ACF. We may then compare the L′
c207

with Lc to determine the validity of the generated discretized profile.208

For samples with parameter values ∆x = 11 nm and σ = 9 nm, and knowing that209

the probability distribution function (PDF) of the random process is normal in nature, we210

know that 99% of values in the final array will be contained in the range ±3σ ≈ ±2.46.211

Applying the floor function to this range results in the discrete set {−3,−2,−1, 0, 1, 2}212

which may cause significant differences between output values {σ′, L′
c, µ′} and input213

values {σ, Lc, µ}.214
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Figure 2. Example ACF with input parameters σ = 9 nm and Lc = 50 nm. The discrete trace is
generated with 5000 samples.

Fig. 2 compares a discretized exponential ACF comprised of 5000 samples against215

the continuous analytical (18). Even at this small sample size, the discretized profile still216

correlates well to the ideal ACF up to ζ = Lc, but after that point, there is noticeable217

noise. At ζ = 0 nm the discretized and continuous analytical ACFs do not line up218

perfectly. The misalignment at ζ = 0 nm may be remedied by normalizing the analytical219

ACF to match the discretized ACF, using σ′ instead of σ.220

2.2.2. FDTD Noise Reduction221

Numerical experiments involving waveguides with random surface roughness222

result in a certain amount of noise in α, as shown in Fig. 6. We may observe that in the223

initial calculation, labeled unfiltered, there is rapid oscillation around the trend; such224

oscillations are undesirable and cause scattering loss readings to vary between numerical225

experiments. This issue may be resolved by the use of a moving-average function over the226

frequency range of interest; this technique is often used to reduce noise levels in digital227

signals [24]. We use (5) to reduce the noise level at each frequency point, where N is the228

number of samples to either side the reference index k.229

αFiltered[k] =
1

2N + 1

N

∑
p=−N

αUnfiltered[k + p] (5)

The rolling average function is effective at reducing noise levels, but due to the230

smoothing effect it also introduces its own set of numerical distortions. However, the231

introduced error is small when N is small. As such, we use N = 5 to generate the filtered232

curve, where the rapid oscillations have been reduced but the trend remains mostly233

unchanged.234

2.2.3. Modal Transformations and Coordinate Mapping235

The geometry used for the characterization of scattering loss from random surface236

perturbations, shown in Fig. 1, is based on the geometry from Fig. 5 in [1]. The fields in237

[1] are described as TEz, since Ez = 0 and ∂
∂y

= ∂y = 0, and by using (56), (59), and (60) in238

[1] we know the non-zero field components are {Ey, Hx, Hz}, while Ez = Ex = Hy = 0.239

The TEz field configuration may also be obtained from (6-72) in [25] and setting ∂y = 0,240
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and it is mathematically identical as two other modes; specifically, setting ∂y = 0 in241

(6-64) in [25] yields the TMy, and in (6-74) in [25] yields TEx.242

In our geometry of Fig. 1, there exists a single nonzero E-field component along the243

invariant (infinite) direction (ŷ), and two nonzero H-field components along the finite244

directions (ẑ, x̂) which may be interpreted as either height or width [1]. Out of the three245

mathematically equivalent modes (TEz, TMy, TEx), we choose the TEz field configuration246

here, as it aligns best with the physical interpretation of the physical waveguide with247

propagation along ẑ (length), a transverse E-field along ŷ (width or height), and H-field248

components along x̂ and ẑ.249

Our FDTD simulations are based on the traditional Yee algorithm in a 2D lattice, as250

formulated in [17, ch. 3]. Our FDTD formulation is derived with the assumption that251

Hz = 0 and ∂z = 0, resulting in the TMz mode with field components {Ez, Hx, Hy}. This252

FDTD lattice may initially appear to be in conflict with our analytic formulation; however,253

note that the E-field has a single nonzero component along the infinite (invariant)254

direction, and the H-field has two nonzero components. Since we can assign the FDTD255

geometry in an arbitrary manner, we choose to orient Hx along the length and Hy along256

the width (or height), resulting in a field configuration with the same orientation as the257

analytical formulation but with a rotated coordinate grid. We can rotate the coordinate258

grid of the analytical field configuration such that it results in a configuration identical to259

the FDTD fields by the steps shown in Fig. 3.260

Ƹ𝑧

ො𝑥

ො𝑦 Ƹ𝑧

ො𝑥

ො𝑦 Ƹ𝑧 ො𝑥

ො𝑦

(a) (b) (c)

Ƹ𝑧
ො𝑥

90𝑜 90𝑜

Figure 3. Coordinate grid rotation steps. (a) Initial orientation of analytical formulation for 2D
TEz. (b) Intermediary rotated mapping. (c) Final mapped orientation of analytical formulation is
identical to the FDTD formulation for 2D TMz.

In Fig. 3, starting with the analytical expression in (a), we rotate the coordinate261

grid twice. The first rotation is 90o around x̂ from ẑ toward ŷ; this produces the grid262

in (b). The second rotation is 90o around ẑ from ŷ to x̂; this produces the grid in (c).263

The mapping is complete after these rotations, and we can then use the FDTD 2D264

TMz field components {Ez, Hx, Hy} to represent the analytical 2D TEz field components265

{Ey, Hz, Hx}, respectively, with no modifications to the established FDTD formulation266

nor the analytical formulation.267

2.3. S-Parameters Extraction Methodology in FDTD268

S-parameters are often used to characterize a variety of electronic systems [9,19,26].269

The methodology of finding S-parameters may be applied to 2D FDTD simulations quite270

expediently [9,19].271

We use the traditional definition of S-parameters [26], where the total voltage wave272

measured at each port in a system can be decomposed into incident and reflected waves,273

i.e. Ṽ = Ṽ+ + Ṽ−, and those components can be used to evaluate S-parameters as in (6),274

where m, n, k are port numbers, Ṽ+ is the incident wave, Ṽ− is the reflected wave, and275

Ṽ is the total wave.276

Smn =
Ṽ−

m

Ṽ+
n

∣∣∣∣
Ṽ+

k =0 ∀k ̸=n
(6)
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In our FDTD simulations, we use a two-port system, so {m, n, k} ∈ {1, 2}. This277

methodology may be further extended to systems with more than two ports.278

2.3.1. Computing S-parameters, using FDTD279

We are able to record total, incident, and reflected fields in FDTD simulations, but280

these may not all be recorded simultaneously. Therefore, we utilize a four-step simulation281

setup for collecting S-parameters.282

Other simulations for calculation of loss may be considered a subset of the four-283

step simulation process [19]. Each of the simulation steps are visualized in Fig. 4, and284

explained below. The baseline setup and geometry is in Fig. 1.285

Sim 1

Sim 2

Sim 3

Sim 4

Port 1 Port 2

ℓ
CPML Region

n1
n2

Figure 4. Four-step simulation setup for S-parameters extraction methodology.

Sim 1: The first simulation starts by placing the source condition at port 1, so286

Ṽ+
2 = 0 for this simulation. We simplify the geometry of the dielectric slab by excluding287

the random sidewall perturbations at this time. Additionally, we extend the right-side288

CPML boundary to 10 cells to the right of port 1. This simulation results in Ṽ+
1 .289

Sim 2: The second simulation starts with the same source condition as simulation290

1. We then apply a valid discrete roughness profile to top and bottom boundaries291

between core and cladding. In our simulations, we chose the top and bottom profiles292

to be identical, but other choices are possible too. The CPML boundaries are evenly293

distributed around the computational domain. This simulation results in Ṽ1 and Ṽ−
2 .294

Sim 3: The third simulation is similar to the first simulation. We place the source295

condition at port 2, where Ṽ+
1 = 0 in this simulation, and extend the left-side CPML296

boundary to 10 cells to the left of port 2. Simulation 3 results in Ṽ+
2 .297

Sim 4: The fourth simulation finalizes the port field data collection. Similar to298

the third simulation, we place the source condition at port 2, and similar to the second299

simulation we set the CPML boundaries at the baseline limits and apply the roughness300

profile in the same manner. This simulation results in Ṽ−
1 and Ṽ2.301

The fields recorded in the numerical experiments are limited to the four aforemen-302

tioned steps, but there are still two field components missing which would fully describe303

the scattering matrix; those are Ṽ−
1 when Ṽ+

2 = 0, and Ṽ−
2 when Ṽ+

1 = 0. Here, we may304

use the decomposition relation to find the implicit reflected fields. Specifically, using Ṽ+
1305
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from Simulation 1 and Ṽ1 from Simulation 2, we may obtain Ṽ−
1 = Ṽ1 − Ṽ+

1 . Similarly,306

we may recover Ṽ−
2 from simulations 3 and 4.307

With each of these values calculated from the numerical experiments, the S-parameters308

matrix may now be computed. In ideal waveguide with no sidewall perturbations, we309

would expect the S-parameters matrix (of the waveguide system) to be both symmetric310

(reciprocal) and unitary (lossless) [26]. For a waveguide with sidewall perturbations, we311

expect the S-parameters matrix (of the waveguide system) to be symmetric (reciprocal)312

but non-unitary (lossy) [26]. Higher port numbers may be simulated by following the313

same process of incident field simulation followed by total field simulation, for each port314

subsequently.315

2.3.2. Direct Method of Computing Scattering Loss, using FDTD316

Using the second simulation, we may find the total voltage wave values at both317

ports 1 and 2, but this time we label them Ṽ(0) and Ṽ(ℓ), respectively. We assume the318

voltages to have the same form as the electric field but with the Φ(x) element replaced319

with V0, i.e. Ṽ(z) = V0e−(α+jβ)z. In this form, it may be observed that as z increases, we320

also expect the voltage to attenuate in amplitude and accumulate in phase.321

Since we have measured the voltage at two port locations, we may determine the322

attenuation. To do this, we divide Ṽ(ℓ) by Ṽ(0), resulting in (7).323

Ṽ(ℓ)

Ṽ(0)
=

V0e−(α+ȷβ)ℓ

V0
= e−(α+ȷβ)ℓ (7)

Using (7) we may isolate α by using the complex logarithm where z ∈ C, log(z) is324

the complex-domain natural logarithm of z, ln(|z|) is the natural logarithm with base e,325

and arg() is the true angle of z; i.e., the angle of z which includes all full turns and may326

have a magnitude greater than ±π [27].327

log(z) = ln(|z|) + ȷ arg(z), (8)

Applying (8) to (7) results in (9).328

− αℓ− ȷβℓ = ln
(∣∣∣∣ Ṽ(ℓ)

Ṽ(0)

∣∣∣∣)+ ȷ arg
(

Ṽ(ℓ)

Ṽ(0)

)
(9)

Equation (9) may be separated into real and imaginary components, resulting in329

the final expression in (10), for calculating power loss directly from FDTD experiments.330

α = −1
ℓ

ln
(∣∣∣∣ Ṽ(ℓ)

Ṽ(0)

∣∣∣∣) (Np/m) (10)

While (10) is possibly the most direct method for calculating power loss from FDTD331

simulation, there is an alternative definition which could accomplish that task through332

the use of S-parameters. We start by taking the argument of the natural logarithm in (10)333

and squaring it, but instead of 0 and ℓ being the reference points, the voltages are now in334

reference to ports 1 and 2, leading to335

A =

∣∣∣∣ Ṽ(ℓ)

Ṽ(0)

∣∣∣∣2 =

∣∣∣∣ Ṽ2

Ṽ1

∣∣∣∣2 =

∣∣∣∣∣ Ṽ+
2 + Ṽ−

2
Ṽ+

1 + Ṽ−
1

∣∣∣∣∣
2

. (11)

In (11), we may replace the magnitude-squared operation with the equivalent336

complex operation, resulting in337

A =

(
Ṽ+

2 + Ṽ−
2
)(

Ṽ+
2 + Ṽ−

2
)∗(

Ṽ+
1 + Ṽ−

1
)(

Ṽ+
1 + Ṽ−

1
)∗ , (12)

where ∗ denotes the complex conjugate operator.338
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Simplifying (12), we may combine the incident and reflected voltage waves into339

compact S-parameters from. We may then reinsert A into a natural logarithm and recover340

the expression for α as a function of S-parameters in (13) [19].341

α = −1
ℓ

ln
(∣∣∣∣ (1 + S11)(S12)

S11 + S12S21

∣∣∣∣) (Np/m). (13)

The form of α in (13) may also be utilized on systems with larger number of ports.342

In this case, port 1 is used as the reference port for loss, but in general the reference port343

may be any port in a multi-port system. In a large multi-port system, the loss equation344

using S-parameters may be computed for each reference port.345

2.4. Analytical Loss Function346

In the ensuing formulation, we assume simple media; i.e., linear, isotropic, and347

non-dispersive. Following the recent work in [1], we propose 14 as the generic scattering348

loss function.349

α =
1

NF
Φ2(d)MWSW (Np/m). (14)

Equation (14) is similar to the loss function used in previous works [1,3,4], but we350

have made a modification by dividing α in those works by the normalization factor NF.351

Either part of the piece-wise function (2) may be evaluated at x = d and result in352

(15).353

Φ2(d) = A2
e cos2 (κd), (15)

Note that Ae, derived in equation (73) in [1], is dependent on the input power. This354

dependency is not desirable; thus, it is eliminated by introducing the factor, NF, in (14),355

normalizing the amplitude of α, as explained in section 3.2.356

The term MW is defined with (16).357

MW =
(

n2
1 − n2

2

)2 k3
0

4πn1
. (16)

The term SW is defined with (17) and represents the contribution by the surface358

roughness described by a random distribution.359

SW =
∫ π

0
R̃XX(β − n2k0 cos (θ))dθ, (17)

where R̃XX is the power spectral density of the surface roughness profile.360

Surface roughness may be approximated as a stationary random process [1], there-361

fore the power spectral density may be recovered through the ACF of the roughness362

profile, which may be assumed to have an exponential shape [4,6]. The exponential ACF363

is given by (18) [1]364

RXX(ζ) = σ2e−
∣∣∣ ζ

Lc

∣∣∣, (18)

where σ and Lc are the standard deviation and correlation length of the profile,365

respectively, and ζ is the spatial shift variable.366

There are two observations that could be made about (18) by setting ζ to specific367

values. First, RXX(ζ = 0) results in the variance of the profile. Second, RXX(ζ = Lc) =368

σ2e−1; this second result is used later for approximating the value of Lc from surface369

profile data generated by the Pyspeckle software [22]. Some photo-lithographic processes370

for Si/SiO2 may lead to profiles with σ = 9 nm and Lc = 50 nm [6].371

We define the spatial Fourier transform (SFT) as372
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R̃XX(k) =
∫ ∞

−∞
RXX(ζ)e−ȷkζ dζ, (19)

where the input function is translated from ζ-space (m) to k-space (rad/m), k is the373

wave number, and the imaginary number ȷ =
√
−1.374

Applying the SFT (19) to (18), yields375

R̃XX(k) =
2Lcσ2

1 + L2
c k2 . (20)

We may insert (20) into (17) and numerically evaluate the integral to obtain the376

contribution of the surface roughness profile to the loss α.377

2.5. FDTD Model Validation378

We validate the FDTD model being used in these numerical experiments in three379

ways, described below. Unless stated otherwise, the data in this section is generated380

for a smooth waveguide with δ = 300 nm, n1 = 3.5, n2 = 1.5, and f0 = 194.8 THz.381

Validation must be done prior to performing numerical experiments, so we utilize the382

smooth waveguide and the below methods for model validation. Using known and383

expected attributes of the smooth waveguide, we can compare the results obtained384

from numerical experiments to provide confidence in the validity of our model before385

performing numerical experiments with waveguides that exhibit surface roughness.386

2.5.1. Wave Impedance387

One such method is through comparison with a known analytical solution to the388

smooth dielectric slab waveguide. We use the wave impedance of an outward traveling389

wave. This solution is well established and has been derived in several places [1] [25].390

We find the wave impedance by dividing TEz mode E-field by the corresponding H-field391

component along the length of the slab waveguide. Here, those fields are Ey and Hz,392

respectively. In the smooth slab case, the real portion of the wave impedance should be393

very small. For the analytical solution, the division between the E-field and H-field gives394

Zw = ȷ
x
|x|

ωµ

γ
(Ω), (21)

where µ is the magnetic permeability. Division of x by its magnitude is used to set395

the appropriates sign for either above or below the slab.396

The FDTD portion of this comparison may be conducted through the second sim-397

ulation from 2.3.1 with the surface roughness omitted. Since the wave impedance is398

calculated for an outward traveling wave, we use the E-field and H-field data in the399

cladding region. We take all the steps necessary to compare frequency-domain voltages400

as described in section 2.2, but we exclude the final integration such that we are left with401

field data for every point along the line at ports 1 and 2. Using the port 2 data allows for402

the wave to propagate over a long enough distance to be well-set into the lowest order403

mode. We take the measurements from two cells below the lowest core cell which leaves404

a single cell buffer between the core region and the cell used for this calculation. Finally,405

the imaginary component is compared to the analytical solution.406

The wave impedance calculated from the FDTD model is shown in Fig. 5a. We can407

see that the impedance found from numerical experiment matches with the expected408

analytical value throughout this range of frequency samples. At f0 the difference between409

the FDTD and analytical values is approximately 1.5 Ω, which translates to an error of410

less than 2% near the frequency of interest.411

2.5.2. Propagation Constant412

In the next validation method, we compare the propagation constant β obtained413

from FDTD against that obtained from the EIM in the frequency range of interest, at414
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Figure 5. (a) Zeroth order TEz mode wave impedance for the smooth dielectric slab waveguide. (b)
Propagation constant β vs. frequency. (c) S-parameters for the smooth waveguide. (d) Propagation
loss α (dB/cm) vs. frequency, for a smooth waveguide with S-parameters method vs. direct
method for calculating propagation loss.
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the same samples as the FDTD model output. We find β from FDTD by evaluating the415

imaginary component of (9).416

Since we are examining the phase angle of the voltage measurements, the division417

of Ṽ(ℓ) by Ṽ(0) may be converted to a subtraction, resulting in (22).418

β = −1
ℓ

(
arg

(
Ṽ(ℓ)

)
− arg

(
Ṽ(0)

))
(22)

In FDTD, we compute the angle of the complex voltages over the entire frequency419

range on the smooth dielectric slab waveguide and unwrap the final angle array into420

full angle form (rather than principal angle form).421

In Fig. 5b, the traces are nearly overlapped. The fundamental frequency is high-422

lighted by the vertical dashed line, where the error between the EIM and the FDTD423

model is less than 1%. This data further validates the FDTD model, and confirms the424

formulation leading to (22).425

2.5.3. Scattering Matrix426

In the last validation method, we utilize the properties of the S-parameters matrix427

described in section 2.3.1. As stated, the matrix should be symmetric and unitary for428

the smooth waveguide. We extract the S-parameters from the FDTD model using the429

method presented in 2.3, and show these in Fig. 5c.430

Two observations are noteworthy in the frequency range of interest: (1) the cross-431

terms (S12, S21) have a magnitude of near 0 dB, indicating that there is almost complete432

transmission of power from one end of the waveguide to the other, and the self-terms433

(S11, S22) are correspondingly very small compared to the cross-terms, with a peak434

value of less than −150 dB; therefore, the matrix is nearly unitary as expected for a435

smooth lossless waveguide. (2) the S-parameter matrix is symmetrical, given the near436

perfect overlap of S11 with S22, and S12 with S21. These observations are noteworthy437

because they are the expected results for an ideal network, such as a smooth dielectric438

slab waveguide. Since the FDTD results align well with the expected behavior of a 2-port439

network, these results further validate the FDTD model.440

We compare the S-parameters method of section 2.3.1 and the direct method of section441

2.3.2 for calculating loss, as shown in Fig. 5d. Here, we observe an oscillatory behavior442

similar to that in the cross-terms of Fig. 5c. The oscillations hover around α = 0 dB/cm443

and decay with increasing frequency, while the expected per-unit-length attenuation for444

an ideal smooth waveguide is α = 0 dB/cm. Note that the loss from the S-parameters445

and from the direct method match very well, where the mean-squared error is on the446

order of 10−8.447

3. Results and discussion448

Unless stated otherwise, the data in this section are generated for waveguides with449

δ = 200 nm, n1 = 3.5, n2 = 1.5, and f0 = 194.8 THz.450

In Fig. 6 we show an example loss curve simulated in FDTD, to illustrate the need451

for filtering the FDTD output. As we can be seen in the figure, there is a nontrivial level452

of noise on the full range of α.453

Applying the filter described in section 2.2.2 results in the Filtered trace which454

considerably reduces the noise in the FDTD data. This is best exemplified by the α values455

for frequencies above 225 THz, where the noise is reduced by an order of magnitude.456

The α values from FDTD are subjected to this filtering technique prior to calculation of457

the percentage error between the FDTD and the analytical solution (14).458

Fig. 7 uses the data from tables I and II in [9], respectively, to illustrate the distri-459

bution of percent error between FDTD and analytical calculations. Fig. 7a and Fig.460

7b were generated with the standard deviation σ = 9 nm. The correlation length Lc461

varies uniformly in the range 200 nm to 1000 nm. The figures show the distribution of462

percentage errors for all correlation lengths with the same standard deviation, where463

a total of 924 roughness profiles were simulated using the FDTD model. We use these464
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Figure 7. Percent error in propagation loss α (dB/cm) between analytical (14) vs. FDTD solutions:
(a) 924 roughness profiles at σ = 9 nm, (b) same as (a) with data filtering, (c) 947 roughness profiles
at σ = 15 nm, and (d) same as (c) with data filtering.
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data to illustrate the effect of filtering on simulation results. In Fig. 7a the mean error465

is −5.12%, whereas in Fig. 7b the error is reduced to −4.12%. Likewise, the standard466

deviation reduces from 21.96% to 19.87%.467

A similar setup is used for Fig. 7c and Fig. 7d, where σ = 15 nm and Lc is uniform468

in the range 200 nm to 1000 nm, with a total of 90 roughness profiles simulated with469

the FDTD model. In Fig. 7c the mean error is 1.89%, whereas in Fig. 7d the error is470

increased, to 2.24%. Like in the σ = 9 plots, the standard deviation reduces, this time471

from 19.76% to 18.56%. From the numerical experiments conducted in FDTD on the472

relatively short-length slab waveguide, we have created the histogram of occurrences,473

which may be easily translated to a probability mass distribution.474

Some potential sources of error in Fig. 7 are listed below. (1) The parameters475

{σ′, L′
c, µ′}, rather than {σ, Lc, µ}, are used in the analytical solution when calculating476

the percentage errors. (2) We use a relatively coarse spatial and temporal resolution in the477

FDTD model. While utilizing a finer resolution grid may decrease the percentage error478

range, it would increase computation time. (3) We use (14) as the analytical model, which479

is based on the formulation originally proposed in [4] that used various approximations480

and simplifications, such as a first-order Taylor series expansion to evaluate the E-field.481

From each setup in Fig. 7 the maximum difference between filtered and unfiltered482

data is standard deviation from Fig. 7a to Fig. 7b which reduces by 2.09%, and each other483

relevant value changes by around 1%, with the mean percentage error in the σ = 15 nm484

case actually increasing by 0.35%. This shows that the filtering step does not significantly485

impact the percentage error of the FDTD results from the analytical solution.486

We define the improvement metric Fimp as487

Fimp(xFiltered, xUnfiltered) =

(
1 − |xFiltered|

|xUnfiltered|

)
× 100%, (23)

where xFiltered = αFiltered − αAnalytical, xUnfiltered = αUnfiltered − αAnalytical, αFiltered488

and αUnfiltered are defined in section 2.2.2, and αAnalytical is defined by (14).489

We use (23) to compare the effect of filtering on the FDTD data. Using this metric,490

we consider any value greater than 0% to be an improvement, and 100% would indicate491

the filter has maximally improved the unfiltered signal. We consider ±5% to be negligible492

change, i.e. filtering had little effect on unfiltered signal. For σ = 9 nm, filtering improves493

the error in 487 instances out of 924, and that filtering has negligible effect for 62 instances.494

For σ = 15 nm (23) results in improvement for 462 instances out of 947, and negligible495

effect for 107 instances.496

It is worth noting that the above technique involves filtering α after E- and H-fields497

have been computed in FDTD. The data shows that filtering in this manner does not498

add significant value. Thus, we plan to investigate filtering techniques within FDTD499

during the computation of E- and H-fields, as was demonstrated in [28] for suppressing500

spurious noise waves due to sub-gridding.501

3.1. Comparing Our Results to Previous Publications502

We compare this work to previous theoretical and experimental works. Equation503

(14) is based on the formulation provided in [1], which in turn is based on both [4] and504

[3]. The primary difference between [1] and this work is that here we introduce the505

normalization factor NF. In [1] the components for α are based on the more physically506

realistic form of E-field (2) where Ae may be any real-valued scalar. The absence of the507

normalization factor (i.e., setting NF = 1) leaves a dependency on input power; however,508

the input power may be modified to fit the expected scattering loss value for any point,509

by setting (24) equal to (25) and solving for α, which will always result in (29). In [4] the510

original formulation for finding scattering loss was proposed, where the mathematical511

normalization of (24) is used.512

The follow-up work of [3] proposed a formulation for scattering loss calculations513

by using normalized waveguide parameters, but as was noted in [2], there appears to514
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be an extra factor of 2 in the formulation used therein. We can see this numerically515

by comparing [3] with this work, also in Table 1, where the loss value is double what516

is calculated by (14). We further see that an input power of PTE = 4.3 mW in the517

formulation found in [1] is most similar to the normalized values found here, but other518

choices of input power (e.g., PTE = 1 mW or PTE = 1.45 mW) could yield different values519

for loss as they may not eliminate dependence of α on input power.520

The VCM was used in [2] to verify the scattering loss calculations. Their work521

was done on several 3D waveguides, and these provide a similar analogue to the 2D522

structure simulated in this work.523

Table 1. α values in (dB/cm)

Source d = 210 nm d = 250 nm
(a: hardware experimental) Lc = 20 nm Lc = 50 nm
(b: numerical/analytical) σ2 = 1 nm2 σ2 = 81 nm2

a [6] Lee N/A ≈34
a [7] Jaberansary N/A ≈33
a [5] Horikawa ≈0.5 N/A
b [2] Barwicz N/A 48.6
b [3] PL 94 1.87 193.7
b [1], PTE = 1 mW 0.22 22.1
b [1], PTE = 1.45 mW 0.32 32.1
b [1], PTE = 4.3 mW 0.94 95.2
This work (14) 0.94 96.8

Looking at the experimental side, in [5] a physical 3D dielectric optical interconnect524

was tested for scattering loss. Their results show that the 2D planar model [3] is generally525

an overestimate of what can be expected from physical hardware, and the 3D simulations526

in [2] are generally an underestimate. Also in [5], unit variance is used, making it unique527

compared to other experimental data and included in the Table 1. Other experiments528

conducted on physical hardware include those of [6] and [7], where a scattering loss529

magnitude of ≈ 35 dB/cm is reported. These experiments were conducted on 3D SOI530

optical interconnects consisting of Si core and SiO2 cladding extending 1 µm in each531

direction around the core, making them amenable to comparison with the 2D planar532

approximation. The loss value in [6,7] is approximately 36% of the loss value in (14), and533

approximately 72% of the loss value in [2].534

3.2. Mode Normalization535

Although allowing α to have dependency on waveguide’s structural attributes536

such as the surface roughness profile, material parameters, or even input wavelength537

is desirable, dependence on input power is not. In previous works [3,4], the E-field is538

mathematically normalized, such that539 ∫ ∞

−∞
Φ2(x) dx = 1. (24)

While the above normalization removes the dependence of α on the input power, it540

also forces Φ(x) to satisfy a certain mathematical requirement; however, if we evaluate541

(24) by inserting the physical field expression (2) for the TE modes, we arrive at (25) [1].542 ∫ ∞

−∞
Φ2(x) dx = A2

e

(
d +

1
γ

)
. (25)

Note that if (24) is assumed to be true, then the field amplitude Ae would be forced543

to have the particular value A2
e = 1/(d + 1

γ ); however, this assumption may not hold544

true in the physical waveguide. To remedy the inconsistency, we start with [4]545
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α =
Prad/2L

Pg
=

n2
2η0

∫ π
0

⟨|Ex(r,θ)|2⟩
2L r dθ

n1
2η0

∫ +∞
−∞ Φ2(x) dx

, (26)

where the core and cladding refractive indices are tied to the guided power Pg and546

the radiated power Prad, ⟨ f ⟩ designates the ensemble average of f [1], and η0 ≈ 377 Ω547

[4].548

We use (15) from [4] to simplify the numerator in (26) and note that 2η0 cancels at549

this point, resulting in (27).550

α =
n2

n1

Φ2(d)
(
n2

2 − n2
1
)2 k3

0
4πn2

∫ π
0 R̃XX(β − n2k0 cos θ) dθ∫ +∞

−∞ Φ2(x) dx
. (27)

We use the definition of MW and SW here to further simplify (27); this results in (28),551

where n2 in the numerator cancels and the n1 in the denominator is pulled into MW .552

α =
Φ2(d)MWSW∫ +∞
−∞ Φ2(x) dx

(28)

We may further simplify (28) for the zeroth-order mode by inserting the result from553

(25) and the physical field amplitude expression of Φ2(d) in (15), followed by canceling554

the resulting A2
e term in the numerator and denominator.555

α =
cos2(κd)MWSW

d + 1/γ
(29)

Therefore, to remove dependence on input power uniformly for any initial in-556

put field amplitude, we propose to define NF in (14) as (30), where NF has the same557

dependence on input power as Φ2(d).558

NF = A2
e

(
d +

1
γ

)
, (30)

Note that here, (29) is the simplest form for even TE modes, using the physical559

considerations based on actual field values in the waveguide. In [4], (24) is assumed560

to be true prior to calculating α, forcing the denominator of (28) to be 1.0 and limiting561

Φ2(d) to be single valued. The crucial difference in the proposed formulation here562

(based on inclusion of NF in α) lies in the assumption that the E-field amplitude can be563

functionally any value. We believe that the proposed normalization based on NF offers a564

more physically consistent expression of α, and works more intuitively for correlation565

of numerical (or physical) experiments in FDTD (or in the lab) where the initial field566

amplitudes may be specified with regard to considerations independent of scattering567

loss.568

4. Conclusion569

Based on physical waveguide parameters, an explicit normalization factor (30) for570

the scattering loss α (14) was proposed. The equation was then used to compare the571

results across several previous publications, including both numerical and physical572

experiments, showing that the analytical equation is generally an overestimation of573

actual propagation loss in a physical waveguide. We used the proposed analytical574

equation to confirm the presence of an extra factor of 2 in [3].575

The proposed analytical formulation of scattering loss was verified, using an ex-576

pedient FDTD scheme which included extraction of the attenuation coefficient and577

S-parameters. We validated the FDTD scheme by comparing numerical results against578

previously published analytical functions for the dielectric slab waveguide.579
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With the FDTD model verified, we demonstrated S-parameters extraction and580

attenuation coefficient calculation by applying the proposed methodology to a smooth581

dielectric slab waveguide. We then applied the methodology to compute the attenuation582

coefficient for a dielectric slab waveguide exhibiting random sidewall perturbations583

according to the exponential autocorrelation function. We proposed to use a filtering584

technique to reduce the signal-to-noise ratio of the final FDTD data in the frequency585

domain.586

Along the way, we demonstrated the ability of the FDTD scheme to produce rea-587

sonably accurate results through tens of simulations for sidewall roughness profiles of588

varying correlation length at standard deviations of σ = 9 nm and σ = 15 nm. The FDTD589

results showed that the mean error for simulation is quite small, with an overall average590

error of only −4.12% and 2.24% for the attempted standard deviations, respectively.591

The Python FDTD code (OIDT) [13] used to generate much of the data in this paper592

was released as open-source software (under the GNU GPL v3.0 license [15]) published593

on GitHub [14], featuring multi-core support (for CPU) to compute the 2D TEz fields594

of optical interconnects. Work is currently underway to develop efficient 2D transverse595

magnetic (TM), and full 3D, FDTD models for further characterization of stochastic596

scattering loss due to sidewall roughness in nano-scale optical interconnects, consisting597

of single-line and multiple tightly-coupled lines, operating at 100s of THz.598

Author Contributions: All authors have read and agreed to the published version of the manuscript.599

Funding: This work was funded, in part, by the NSF; Award # 1816542 [13]600

Institutional Review Board Statement: Not applicable601

Informed Consent Statement: Not applicable602

Acknowledgments: any acknowledgments603

Conflicts of Interest: The authors declare no conflict of interest.604

References
1. Zadehgol, A. Complex s-Plane Modeling and 2D Characterization of the Stochastic Scattering Loss in Symmetric Dielectric

Slab Waveguides Exhibiting Ergodic Surface-Roughness With an Exponential Autocorrelation Function. IEEE Access 2021,
9, 92326–92344. doi:10.1109/ACCESS.2021.3092635.

2. Barwicz, T.; Haus, H.A. Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic
Waveguides. Journal of Lightwave Technology 2005, 23, 2719–2732.

3. Payne, F.; Lacey, J. A Theoretical Analysis of Scattering Loss From Planar Optical Waveguides 1994. 26, 977–986.
4. Lacey, J.; Payne, F. Radiation Loss From Planar Waveguides With Random Wall Imperfections. IEE Proceedings, 1990, Vol. 137,

pp. 282–288.
5. Horikawa, T.; Shimura, D.; Mogami, T. Low-loss silicon wire waveguides for optical integrated circuits. MRS Communications

2015, 6, 9–15.
6. Lee, K.; Lim, D.; Luan, H.; Agarwal, A.; Foresi, J.; Kimerling, L. Effect of Size and Roughness On Light Transmission In a Si/SiO2

Waveguide Experiments and Model. Applied Physics Letters 2000, 77, 1617–1619.
7. Jaberansary, E.; Masaud, T.M.B.; Milosevic, M.M.; Nedeljkovic, M.; Mashanovich, G.Z.; Chong, H.M.H. Scattering Loss Estimation

Using 2-D Fourier Analysis and Modeling of Sidewall Roughness on Optical Waveguides. IEEE Photonics Journal 2013, 5.
8. Poulton, C.G.; Koos, C.; Fujii, M.; Pfrang, A.; Schimmel, T.; Leuthold, J.; Freude, W. Radiation Modes and Roughness Loss in

High Index-Contrast Waveguides. IEEE Journal of Selected Topics in Quantum Electronics 2006, 12, 1306–1321.
9. Guiana, B.; Zadehgol, A. FDTD Simulation of Stochastic Scattering Loss Due to Surface Roughness in Optical Interconnects. 2022

United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 2022 – accepted, pp. 1–2.
10. Guiana, B.; Zadehgol, A. Stochastic FDTD Modeling of Propagation Loss due to Random Surface Roughness in Sidewalls of

Optical Interconnects. United States Nat. Committee URSI Nat. Radio Sci.Meeting (USNC-URSI NRSM), 2021, pp. 266–267.
11. Kuznetsov, M.; Haus, H.A. Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method. IEEE Journal of

Quantum Electronics 1983, QE-19, 1505–1514.
12. Python programming language. https://www.python.org/. Accessed: Oct. 20, 2021.
13. Zadehgol, A. SHF: SMALL: A Novel Algorithm for Automated Synthesis of Passive, Causal, and Stable Models for Optical

Interconnects. National Science Foundation (NSF) Award #1816542. Proposal submitted on 11/15/2017. Grant period:
10/1/2018-9/30/2021.

14. Guiana, B. Optical Interconnect Designer Tool (OIDT). https://github.com/bmguiana/OIDT. Created on November 23, 2021.

https://doi.org/10.1109/ACCESS.2021.3092635
https://www.python.org/
https://github.com/bmguiana/OIDT


Version January 10, 2022 submitted to Electronics 19 of 19

15. GNU General Public License v3.0. https://www.gnu.org/licenses/gpl-3.0.en.html. Accessed: Oct. 20, 2021.
16. Yee, K.S. Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media. IEEE

Transactions on Antennas and Propagation 1966, Ap14, 302.
17. Allen, T.; Susan, C.H. Computational Electrodynamics The Finite-Difference Time-Domain Method., 3rd ed.; Artech House Inc.:

Norwood, MA, 2005.
18. Roden, J.A.; Gedney, S.D. CONVOLUTION PML (CPML) AN EFFICIENT FDTD IMPLEMENTATION OF THE CFS – PML FOR

ARBITRARY MEDIA. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 2000, 27.
19. Guiana, B.; Zadehgol, A. S-Parameter Extraction Methodology in FDTD for Nano-Scale Optical Interconnects. 15th International

Conference on Advanced Technologies, Systems and Services in Telecommunications, 2021 – accepted, pp. 1–4.
20. Zadehgol, A. Deterministic Reduced-Order Macromodels for Computing the Broadband Radiation-Field Pattern of Antenna

Arrays in FDTD. IEEE Transactions on Antennas and Propagation 2016, 64, 2418–2430. doi:10.1109/TAP.2016.2550052.
21. Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation 1965,

19, 297–301.
22. Pyspeckle. https://pyspeckle2.readthedocs.io/en/latest/#. Accessed: Oct. 15, 2021.
23. Deserno, M. How to generate exponentially correlated Gaussian random numbers 2002.
24. Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal Processing; California Technical Publishing: San Diego, CA, 1997;

chapter 15, pp. 277–284.
25. Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; Wiley: USA, 2012; pp. 270–275, 428.
26. Pozar, D.M. Microwave Electronics, 4th ed.; Wiley: USA, 2012; pp. 178–188.
27. Brown, J.W.; Churchill, R.V. Complex Variables and Applications, 8th ed.; McGraw-Hill: New York, NY, USA, 2009; pp. 93–99.
28. Zadehgol, A.; Cangellaris, A.C. Isotropic Spatial Filters for Suppression of Spurious Noise Waves in Sub-Gridded FDTD

Simulation. IEEE Transactions on Antennas and Propagation 2011, 59, 3272–3279. doi:10.1109/TAP.2011.2161551.

Short Biography of Authors

Brian Guiana (Student Member, IEEE) received the B.S. degree in electrical engineering from the
University of Idaho, Moscow, in 2020. They are currently pursuing the Ph.D. degree in electrical
engineering at the University of Idaho. They joined the Applied Computational Electromagnetics and
Signal/Power Integrity (ACEM-SPI) group in 2018. Their research interests include computational
electromagnetics, electromagnetic theory, and signal processing.

Ata Zadehgol (SM’16 - M’07) received the B.S. degree in electrical engineering from the University
of Washington, in 1996, the M.S. degree in electrical and computer engineering (ECE) from the
University of California at Davis, in 2006, and the Ph.D. degree in ECE from the University Illinois at
Urbana/Champaign, in 2011. With more than a decade of experience in advanced microelectronics
industry, he joined the University of Idaho in 2014, where he is currently an Associate Professor of ECE,
and the director of the Applied Computational Electromagnetics and Signal/Power Integrity (ACEM-
SPI) group. His research interests include computational electromagnetics and its various applications
in low-frequency to THz electronic systems. His work has been recognized through research grants
from the National Science Foundation, NASA, Micron Technology Inc., and Schweitzer Engineering
Laboratories, the IEEE TCPMT best poster-paper award, and University of Idaho’s Presidential
Mid-Career Award. Dr. Zadehgol is a professional engineer licensed in Idaho State.

https://www.gnu.org/licenses/gpl-3.0.en.html
https://doi.org/10.1109/TAP.2016.2550052
https://pyspeckle2.readthedocs.io/en/latest/#
https://doi.org/10.1109/TAP.2011.2161551

	Introduction
	Methods
	The Waveguide Structure
	The FDTD Environment
	Verifying the Validity of Discretized Roughness Profiles
	FDTD Noise Reduction
	Modal Transformations and Coordinate Mapping

	S-Parameters Extraction Methodology in FDTD
	Computing S-parameters, using FDTD
	Direct Method of Computing Scattering Loss, using FDTD

	Analytical Loss Function
	FDTD Model Validation
	Wave Impedance
	Propagation Constant
	Scattering Matrix


	Results and discussion
	Comparing Our Results to Previous Publications
	Mode Normalization

	Conclusion
	References

