
Pseudodeterminism: Promises and Lowerbounds

Peter Dixon∗

tooplark@gmail.com
Ben-Gurion University of the Negev

Be’er Sheva, Israel

A. Pavan
pavan@cs.iastate.edu
Iowa State University

Ames, USA

Jason Vander Woude
jasonvw@huskers.unl.edu

University of Nebraska-Lincoln
Lincoln, USA

N. V. Vinodchandran
vinod@cse.unl.edu

University of Nebraska-Lincoln
Lincoln, USA

ABSTRACT
A probabilistic algorithm! is pseudodeterministic if, on every input,
there exists a canonical value that is output with high probability. If
the algorithm outputs one of " canonical values with high probabil-
ity, then it is called a "-pseudodeterministic algorithm. In the study
of pseudodeterminism, the Acceptance Probability Estimation
Problem (APEP), which is to additively approximate the acceptance
probability of a Boolean circuit, is emerging as a central computa-
tional problem. This problem admits a 2-pseudodeterministic algo-
rithm. Recently, it was shown that a pseudodeterministic algorithm
for this problem would imply that any multi-valued function that
admits a "-pseudodeterministic algorithm for a constant " (includ-
ing approximation algorithms) also admits a pseudodeterministic
algorithm (Dixon, Pavan, Vinodchandran; ITCS 2021).

The contribution of the present work is two-fold. First, as our
main conceptual contribution, we establish that the existence of a
pseudodeterministic algorithm for APEP is fundamentally related
to the gap between probabilistic promise classes and the corre-
sponding standard complexity classes. In particular, we show the
following equivalence: APEP has a pseudodeterministic approxima-
tion algorithm if and only if every promise problem in PromiseBPP
has a solution in BPP. A conceptual interpretation of this equiva-
lence is that the algorithmic gap between 2-pseudodeterminism and
pseudodeterminism is equivalent to the gap between PromiseBPP
and BPP. Based on this connection, we show that designing pseu-
dodeterministic algorithms for APEP leads to the solution of some
open problems in complexity theory, including new Boolean cir-
cuit lower bounds. This equivalence also explains how multi-
pseudodeterminism is connected to problems in SearchBPP. In
particular, we show that if APEP has a pseudodeterministic algo-
rithm, then every problem that admits a " (#)-pseudodeterministic
algorithm (for any polynomial ") is in SearchBPP and admits a
pseudodeterministic algorithm. Motivated by this connection, we

∗Part of the work done while the author was at Iowa State University

STOC ’22, June 20–24, 2022, Rome, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9264-8/22/06.
https://doi.org/10.1145/3519935.3520043

also explore its connection to probabilistic search problems and es-
tablish thatAPEP is complete for certain notions of search problems
in the context of pseudodeterminism.

Our second contribution is establishing query complexity lower
bounds for multi-pseudodeterministic computations. We prove
that for every " ≥ 1, there exists a problem whose (" + 1)-
pseudodeterministic query complexity, in the uniform query model,
is $ (1) but has a "-pseudodeterministic query complexity of Ω(#),
even in the more general nonadaptive query model. A key contri-
bution of this part of the work is the utilization of Sperner’s lemma
in establishing query complexity lower bounds.

CCS CONCEPTS
• Theory of computation→ Pseudorandomness and deran-
domization; Complexity classes; Circuit complexity; Oracles
and decision trees.

KEYWORDS
probabilistic computations, pseudodeterminism, promise problems,
circuit lower bounds, completeness, hierarchy theorems, query
complexity

ACM Reference Format:
Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran.
2022. Pseudodeterminism: Promises and Lowerbounds. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC
’22), June 20–24, 2022, Rome, Italy. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3519935.3520043

1 INTRODUCTION
Probabilistic algorithms lack reproducibilty compared to their de-
terministic counterparts. Two di!erent runs of a probabilistic algo-
rithm can produce two di!erent outputs. For example, consider the
problem of generating an #-bit prime number. A straightforward
probabilistic algorithm for this problem randomly picks an #-bit
positive integer and outputs it if it is a prime number. However, two
di!erent simulations of this algorithm will most likely produce two
di!erent prime numbers. Can we design a probabilistic algorithm
that consistently outputs the same prime number on di!erent runs
of the algorithm? Although there is a polynomial-time determinis-
tic algorithm for testing primality [1], there are no deterministic
algorithms known for the prime generation problem. There are
many other computational problems for which the only e"cient
algorithms known are non-reproducible probabilistic algorithms.
This de#ciency led Gat and Goldwasser to introduce the notion

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1552

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1145/3519935.3520043

STOC ’22, June 20–24, 2022, Rome, Italy Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

of pseudodeterministic algorithms [14]. (originally termed Bellagio
algorithms in their paper). A probabilistic algorithm ! is pseudo-
deterministic if for every % , there exists a canonical value &! such
that Pr[!(%) = &!] is high. Unless otherwise stated, a pseudodeter-
ministic algorithm is assumed to run in polynomial time.

Pseudodeterministic algorithms are appealing in several con-
texts, such as distributed computing and cryptography, where it
is desirable that di!erent invocations of a probabilistic algorithm
by di!erent parties produce the same output. For example, in cryp-
tography, it is important to share a common key among multiple
parties. It is desirable to have a mechanism to share a common
key without communication and shared randomness. Reproducibil-
ity guaranteed by pseudodeterminism is a sought-after feature in
software engineering. In enterprise software products, the repro-
ducibility of computational results has long been considered the
gold standard. Applications that cannot reproduce their results on
multiple runs may not be trusted by users and may be viewed as an
error in the code. The need for reproducibility in software develop-
ment and the associated challenges involved has been highlighted
in the literature, for example [3].

Since its introduction, the notion of pseudodeterminism has re-
ceived considerable attention from the theory community. One line
of research focused on designing pseudodeterministic algorithms
for various natural computational problems. Gat and Goldwasser
designed polynomial-time pseudodeterministic algorithms for alge-
braic problems such as #nding quadratic non-residues and #nding
non-roots of multivariate polynomials [14]. Goldwasser and Gross-
man exhibited a pseudodeterministic NC algorithm for computing
matchings in bipartite graphs [22]. Anari and Vazirani [2] improved
this result to general graphs. Grossman designed a pseudodeter-
ministic algorithm for computing primitive roots whose runtime
matches the best known Las Vegas algorithm [26]. Oliveira and San-
thanam [37] designed a sub-exponential time pseudodeterministic
algorithm for generating primes that works at in#nitely many in-
put lengths. Goldreich, Goldwasser and Ron [19], and Holden [29],
investigated the possibility of obtaining pseudodeterministic algo-
rithms for BPP search problems. Other lines of work extended the
notion of pseudodeterminism to several other scenarios including
interactive proofs, streaming and sublinear algorithms, learning al-
gorithms, in$uential bit algorithms, and multi-pseudodeterministic
algorithms [15, 18, 19, 23, 24, 27, 38]. The works of Goldreich, Gold-
wasser and Ron [19], and Goldwasser, Grossman, Mohanty, and
Woodru! [24] exhibited impossibility results on the existence of
pseudodeterministic algorithms in sub-linear and streaming com-
putation models.

In complexity theory, the notion of pseudodeterminism clari-
#es the relationship between search and decision problems in the
context of randomized computations. It is not known whether de-
randomizing BPP to P implies derandomization of probabilistic
search algorithms. However, BPP = P implies every search algo-
rithm that is pseudodeterministic can be derandomized [19].

1.1 Circuit Acceptance Probability Estimation
Problem (APEP)

APEP is the following computational problem1. Given a Boolean
circuit ' : {0, 1}" → {0, 1}, additively estimate the acceptance
probability of ' . This problem has a simple and e"cient proba-
bilistic algorithm. Indeed, the algorithm that randomly samples
$ (1

#2
log 1

$) strings from {0, 1}" and outputs the fraction of strings
on which circuit ' evaluates to 1 is an (-additive approximation
of the acceptance probability of ' with probability ≥ 1 −) . How-
ever, this standard algorithm is not pseudodeterministic: di!erent
runs of this algorithm will output di!erent correct approximations.
Does there exist a pseudodeterministic algorithm for APEP? This
computational question is emerging as a central question in the
study of pseudodeterminism [10, 35, 38]. In [10], it was shown
that APEP is a complete problem in the context of pseudodetermin-
ism [10]: if there is a pseudodeterministic algorithm for APEP, then
every problem in SearchBPP, including the prime generation prob-
lem mentioned earlier, admits pseudodeterministic algorithms, and
APEP admits a pseudodeterministic polynomial algorithm if and
only every e"cient approximation algorithm can be made pseu-
dodeterministic. Thus APEP captures the challenge of making a
large class of randomized algorithms pseudodeterministic. While
designing a pseudodeterministic algorithm for APEP is an open
problem, Oliveira and Santhanam have designed a subexponential-
time pseudodeterministic algorithm for APEP that is correct on
average at in#nitely many input lengths [38]. The signi#cance of
the above question in computational complexity theory is emerging
in very recent works. Lu, Oliviera, and Santhanam [35] explored
the relationship between pseudodeterministic algorithms for APEP
and the structure of probabilistic polynomial time classes. In partic-
ular, they showed that a pseudodeterministic algorithm for APEP
(even on average) will result in hierarchy theorems for bounded
probabilistic polynomial-time classes (BPTIME).

Our !rst set of results establishes that the question of designing
pseudodeterministic algorithms for APEP is intricately connected to
several well-studied notions and questions in complexity theory. In
particular, one of our main conceptual contributions is to establish
a crisp connection between the question of designing pseudodeter-
ministic algorithms for APEP and the complexity of probabilistic
promise problems. Based on this connection, we relate pseudode-
terminism to circuit lower bounds, derandomization, hierarchy
theorems, completeness, and probabilistic search problems.

1.2 Multi-Pseudodeterminism
It is easy to observe that the above-mentioned probabilistic algo-
rithm for APEP can be modi#ed to output two canonical valueswith
very high probability. This is done by rounding the value computed
to the nearest multiple of (. The resulting algorithm has an accuracy
guarantee of 2(. This rounding trick can be used for converting
any additive approximation algorithm to a 2-pseudodeterministic
algorithm, a probabilistic polynomial-time algorithm that outputs
two canonical values with high probability. To capture this, Gol-
dreich introduced the notion of multi-pseudodeterminism [18]. A
k-pseudodeterministic algorithm is a probabilistic-polynomial time

1In the literature, APEP is also referred to as CAPP.

1553

Pseudodeterminism: Promises and Lowerbounds STOC ’22, June 20–24, 2022, Rome, Italy

algorithm that, for every input % , outputs a value from a set *!
of size at most " with probability at least %+1

%+2 . The probability

bound %+1
%+2 is crucial in the de#nition. See [18] for justi#cation.

Given that APEP admits a straightforward 2-pseudodeterministic
algorithm, the di"culty in designing a pseudodeterministic algo-
rithm for APEP is intriguing. In addition, the results we establish
in the #rst part of the paper show that designing a pseudodeter-
ministic algorithm for APEP will lead to the resolution of some
long-standing open questions in complexity theory. Thus, it is im-
portant to understand the gap between multi-pseudodeterminism
and pseudodeterminism. Is 2-pseudodeterminism more powerful
than pseudodeterminism? More generally, are there multivalued
functions that admit (" + 1)-pseudodeterministic algorithms but
do not admit "-pseudodeterministic algorithms?

Our second set of results establishes an exponential separation be-
tween ("+1)-pseudodeterminism and "-pseudodeterminism in certain
query complexity models. In particular, as one of our main results,
we establish that for every constant " ≥ 1, there exists a function
whose (" + 1)-pseudodeterministic uniform query complexity is
constant, but its "-pseudodeterministic non-adaptive query com-
plexity is Ω(#). We utilize Sperner’s lemma to establish these lower
bounds.

Remark. Pseudodeterminism can be seen as a #ner notion of
derandomization. The study of pseudodeterminism is only rele-
vant in the scenario where we are unable to construct pseudo-
random generators. Indeed, if pseudorandom generators that fool
linear-size Boolean circuits exist, various classes of probabilistic
algorithms, including probabilistic search algorithms and multi-
pseudodeterministic algorithms can be made deterministic (and
hence trivially pseudodeterministic). Thus it is only meaningful to
study the notion of pseudodeterminism without assumptions about
the existence of pseudorandom generators.

1.3 Organization
The rest of the paper is organized as follows. In the next section,
we give an overview of the results we establish in this paper. In
Section 3, we introduce the necessary notation and de#nitions. In
Section 4, we show our main conceptual contribution that equates
the existence of pseudodeterministic algorithms for APEP to prob-
abilistic promise problems. In Section 5, we show consequences of
the equivalence theorems established in Section 4. In Section 6, we
show equivalence between probabilistic search problems and the
existence of pseudodeterministic algorithms for APEP. The equiv-
alence and implication results that we establish in this paper are
depicted in Figure 1. In Section 7 we establish lower bounds in the
query complexity model. Finally, in Section 8 we discuss some open
problems that are raised by this work.

2 OUR RESULTS

2.1 Pseudodeterminism and Promise Problems
Our main conceptual contribution is a new connection between
the relatively new notion of pseudodeterminism and the well estab-
lished notion of promise problems. The notion of promise problems
was introduced in the work of Even, Selman, and Yacobi in the
1980’s [12]. A promise problem Π is a pair of disjoint sets (Π&,Π")

of instances. An algorithm solving Π is only required to distinguish
instances in Π& from instances in Π" . While much of complexity
theory is based on language recognition problems (where every
problem instance is either inΠ& or inΠ"), the study of promise prob-
lems turned out be an indispensable tool that led to new insights in
many areas in theoretical computer science. Promise problems arise
naturally in several settings such as hardness of approximations,
public-key cryptography, derandomization, and completeness. For
example, typically, hardness of approximation results are obtained
by reducing NP to an appropriate promise problem (often called
a gap problem). We refer the reader to the comprehensive survey
article by Goldreich [16] for a treatment on the necessity and wide-
ranging applicability of promise problems.

Many signi#cant open questions regarding probabilistic com-
plexity classes can be answered when we consider their promise
versions. Does derandomization of BPP imply a derandomization
of MA?; does derandomization of BPP imply Boolean circuit lower
bounds?; does derandomization of the one-sided-error class RP im-
ply derandomization of BPP?; do probabilistic complexity classes
have complete problems? As of now, we do not know the answers
to any of these questions. However, all these questions have an
a"rmative answer if we consider the promise-version of the cor-
responding complexity classes. For example, it is known that de-
randomizing PromiseBPP (refer to Section 3 for de#nitions of the
promise classes) implies a derandomization of MA [21], and also
implies Boolean circuit lower bounds [30]. It is known that de-
randomizing PromiseRP derandomizes BPP. Similarly, there exist
promise problems that are complete for classes such as PromiseBPP,
PromiseRP, and SZK [39].

The role of promise problems in circumventing certain de#-
ciencies of language recognition problems is intriguing. A way to
formalize the gap between promise problems and languages is by
considering solutions to promise problems. A language + ⊆ {0, 1}"
is a solution to a promise problem Π = (Π&,Π") if Π& ⊆ + and
+ ∩ Π" = ∅. For a complexity class C, we say that PromiseC = C if
every promise problem in PromiseC has a solution in C. Intuitively,
when PromiseC equals C, then there is no gap between the class C
and its promise counterpart.

A contribution of this paper is the discovery that the gap between
PromiseBPP and BPP can be exactly characterized by the existence
of pseudodeterministic algorithms for APEP.

Theorem 2.1. APEP has a pseudodeterministic approximation
algorithm if and only if PromiseBPP = BPP.

APEP has an e"cient 2-pseudodeterministic algorithm, so the
algorithmic gap between 2-pseudodeterminism and pseudodeter-
minism in the context of APEP (and more generally in the context
of approximation algorithms) precisely captures the gap between
PromiseBPP and BPP.

We also show that a similar equivalence between pseudodeter-
minism and promise problems happens in other settings includ-
ing zero-error probabilistic classes and randomized space bounded
classes. In particular, we show that the notion of safe pseudodeter-
minism can be used to characterize the gap between PromiseBPP
and the zero-error complexity class ZPP. These equivalence results
have implications in the derandomization ofMAwhich is discussed
in the next subsection.

1554

STOC ’22, June 20–24, 2022, Rome, Italy Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

WeakSearchBPP has PD

PrSearchBPP has PD

PolyPD has PD

PromiseBPP = BPPAPEP has PD
APEP has safe PD

PromiseBPP = ZPP

MA = NP

ZPP has complete problems and hierarchy theorems

NP ! SIZE(#%) MA ! SIZE(#%)

MA has complete problems and Hierarchy theorems

BPP has complete problems and Hierarchy theorems [35]

SearchBPP has PD

Figure 1: Equivalences and Implications established.

2.2 Consequences of the Equivalences
The equivalences we establish give rise to new results that connect
pseudodeterminism to circuit lower bounds, probabilistic hierarchy
theorems, SearchBPP, and multi-pseudodeterminism.

Circuit Lower Bounds. Establishing lower bounds against #xed
polynomial-size circuits has a long history in complexity theory. In
this line of work, the focus is on establishing upper bounds on the
complexity of languages that cannot be solved by any Boolean cir-
cuit of a #xed polynomial size. For a constant " , let SIZE(#%) denote
the set of languages that can be solved using Boolean circuits of
size$ (#%). One of the central open questions in this area is to show
that NP ! SIZE(#%) for any " . That is, to show that for any " there
is a language inNP that cannot be solved by Boolean circuits of size
$ (#%). Over the years, researchers have made steady progress on
this question. Kannan [32] showed that ΣP2 ! SIZE(#%) for any " .
Later, using techniques from learning theory, the ΣP2 upper bound

was improved to ZPPNP [6, 33] and later to *P2 [7]. Vinodchan-

dran showed that the class PP ! SIZE(#%) [41]. Santhanam [40]
showed that further progress can be made if we relax the complex-
ity classes to also include promise classes. In particular, he showed
that PromiseMA does not have #xed polynomial-size circuits. It is
not known whether this result can be improved to the traditional
classMA. Showing thatMA ! SIZE(#%) for any " is a signi#cant
open question in complexity theory. We show that this problem can
in fact be solved by designing a pseudodeterministic algorithm for

APEP. In particular, as a corollary to our main equivalence theorem,
we show that if APEP has a pseudodeterministic algorithm then
MA ! SIZE(#%).

Theorem 2.2. If APEP admits a pseudodeterministic approxima-

tion algorithm, then for any " ,MA ! SIZE(#%).

In fact, we show that under the assumption, we get a slightly
better result that MA = ∃ · BPP (please refer to Section 3 for a
de#nition of ∃ · BPP) and thus ∃ · BPP ! SIZE(#%). The above
result strengthens the connection between pseudodeterministic
algorithms and circuit lower bounds established in [9], where it
was shown that designing a BPPNP'' pseudodeterministic algorithm
for problems in #NP would yield super-linear circuit lower bounds
for languages in ZPPNP'' .

Derandomization. A signi#cant open problem in complexity the-
ory is whetherMA can be derandomized toNP. It is known that any
pseudorandom generator that derandomizes PromiseBPP can also
derandomizeMA toNP [20] and such pseudorandom generators are
known to exist if E has problems with 2("-circuit complexity [31].
We show that designing a certain type of pseudodeterministic al-
gorithm for APEP will lead to a derandomization ofMA to NP. A
pseudodeterministic algorithm for APEP is called safe if the algo-
rithm is allowed to output⊥, never outputs a wrong approximation,
and outputs a canonical value with a probability at least 2/3. Safe
pseudodeterministic algorithms are considered explicitly in the
works of Goldreich, Goldwasser and Ron [19] and implicitly in [13].

1555

Pseudodeterminism: Promises and Lowerbounds STOC ’22, June 20–24, 2022, Rome, Italy

Theorem 2.3. If APEP has a safe pseudodeterministic approxima-

tion algorithm, thenMA = NP and NP ! SIZE(#%).

The above theorem is a consequence of the equivalence that
we show: APEP has a safe pseudodeterministic approximation al-
gorithm if and only if PromiseBPP = ZPP. Combining this with
Theorem 2.2, we obtain that if APEP has safe pseudodeterministic
algorithm, then NP ! SIZE(#%).

This theorem presents an alternate hypothesis that can deran-
domizeMA toNP. We observe that the hypothesis that “APEP has a
safe pseudodeterministic algorithm” is potentially weaker than the
hypothesis “E does not have 2("-size circuits”. If E does not have 2("-
size circuits, then APEP has deterministic algorithms (and hence
trivially have safe pseudodeterministic algorithms). Moreover, in
the relativized world where EXP equals ZPP, EXP has polynomial-
size circuits and APEP has safe-pseudodeterministic algorithms.

2.3 Completeness for Poly-Pseudodeterminism
In [10], it is shown that, in the context of pseudodeterminism,APEP
is complete for functions that admit "-pseudodeterministic algo-
rithms for any constant " . That is, multi-valued functions that
admit "-pseudodeterministic algorithms for any constant " have
pseudodeterministic algorithms if and only if APEP admits a pseu-
dodeterministic algorithm. It was not clear how the techniques
used in [10] can be extended to show similar results for functions
that admit "-pseudodeterministic for a non-constant " . Here we im-
prove this result to functions that admit " (#)-pseudodeterministic
algorithms for any polynomial " (#).

Theorem 2.4. APEP admits a pseudodeterministic approximation
algorithm if and only if every multi-valued function , that admits a
" (#)-pseudodeterministic algorithm for a polynomial " (#) has pseu-
dodeterministic algorithms.

We show this by showing that under the assumption APEP ad-
mits a pseudodeterministic approximation algorithm, every multi-
valued function , that admits a" (#)-pseudodeterministic algorithm
for a polynomial " (#) is in SearchBPP. Earlier, in [10], it was shown
that this assumption implies every problem in SearchBPP has pseu-
dodeterministic algorithms.

2.4 Equivalence of Probabilistic Search
Problems

A search problem is a relation - ⊂ Σ
∗ × Σ

∗. Given % , a string . is a
witness for % , if 〈%,.〉 ∈ -. In standard de#nition, a relation - is in
SearchBPP if - ∈ BPP and there is a probabilistic polynomial-time
machine / that on an input % , outputs a . such that 〈%,.〉 ∈ -
with high probability (if such. exists). However, earlier works have
considered generalized versions of SearchBPP as they appear to be
more useful in certain contexts. In particular, these works have stud-
ied variants that are obtained by weakening the requirement that
that - ∈ BPP (which we call WeakSearchBPP) [35] or considering
promise versions (which we call PrSearchBPP) [17].

A signi#cant open question in pseudodeterminism is whether
SearchBPP has pseudodeterministic algorithms [14, 19]. One of
our contributions is to clarify the relations among various no-
tions of SearchBPP in regard to pseudodeterminism and show that

APEP has pseudodeterministic algorithms if and only if the above-
mentioned variants of SearchBPP have pseudodeterministic algo-
rithms.

Theorem 2.5. The following statements are equivalent.

(1) APEP admits a pseudodeterministic approximation algorithm.
(2) PrSearchBPP admits pseudodeterministic algorithms.
(3) WeakSearchBPP admits pseudodeterministic algorithms.

2.5 Query Complexity Lower Bounds for
Multi-Pseudodeterminism

The above set of results indicate that there is a signi#cant gap be-
tween 2-pseudodeterministic algorithms and pseudodeterministic
algorithms: on the one hand, there is a simple 2-pseudodeterministic
algorithm for APEP. However, designing a pseudodeterministic al-
gorithm for APEP will lead to many signi#cant results in com-
plexity theory. Thus, it is important to investigate the gap be-
tween multi-pseudodeterminism and pseudodeterminism. In gen-
eral, we ask the following: Are there multivalued functions that
admit (" + 1)-pseudodeterministic algorithms but do not admit
"-pseudodeterministic algorithms in some computational setting?
We investigate this question in the query complexity model.

Goldreich, Goldwasser and Ron [19] studied the capabilities and
limitations of pseudodeterministic algorithms in the query com-
plexity model. Here, the underlying algorithm has oracle access to
the bits of the input string % . The complexity of the algorithm is
measured in terms of the number of queries made to the input. They
showed that there exists a search problem - that can be solved using
a constant number of queries by a probabilistic algorithm, but every
pseudodeterministic algorithm has query complexity Ω(#). It turns
out that there is a 2-pseudodeterministic algorithm that can solve
- by making a constant number of queries. Recent work of Gold-
wasser, Impagliazzo, Pitassi and Santhanam [25] exhibited search
problems that have constant query complexity for probabilistic
algorithms but require Ω(

√
#) queries for any pseudodeterministic

algorithm.
Our next result is a #ne separation on multi-pseudodeterminism

in the uniform query model and non-adaptive query model. Details
of the models are given in Section 3. Here we brie$y introduce
them for discussing the results and the proof outline. In the uniform
query model, the algorithm accesses the input by making uniformly
random queries. Non-adaptive query model is a generalization
of the uniform query model where the algorithm can choose the
queries in advance, although non-adaptively.

Theorem 2.6. For every " > 0, there exists a function , whose
(" + 1)-pseudodeterministic query complexity, in the uniform query
model, is $ (1), but its "-pseudodeterminstic query complexity, in the
(more general) non-adaptive query models, is Ω(#).

For establishing the lower bounds, we employ a technique that
uses Sperner’s lemma. While the original version of Sperner’s lemma
is concerned with the subdivision of an #-dimensional simplex into
smaller simplices, we use a cubical Sperner’s lemma [42]. We give a
proof sketch in the uniform query model. We note that Sperner’s
lemma has been shown to be useful in establishing lower bounds.
For example, see [8] in the context of communication complexity
lower bounds.

1556

STOC ’22, June 20–24, 2022, Rome, Italy Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

Proof Sketch. For a binary string % , let ℎ(%) be its hamming
weight—the number of 1’s in % divided by the length of % . Consider
the problem of approximating the hamming weight of a string % . It
is well known that there is a probabilistic algorithm that outputs an
approximation of ℎ(%) by making constant queries to % . Randomly
query $ (1/12) indices of % and output the fraction of indices that
are 1. The output will be 1-additive approximation of ℎ(%) with
probability at least 2/3. Indeed, this algorithm works in the uniform
query model. We consider the "-dimensional version of this prob-
lem, which we call the "-Dimensional HammingWeight prob-
lem. Let % be a string of length # where # is divisible by " . View % as
%1%2 · · · %% where each %) is an #/"-bit substring of % . Consider the
multivalued function ,(de#ned as follows: 〈21,22, · · · ,2% 〉 ∈ ,((%)
if for every 1 ≤ 3 ≤ " , 2) ∈ [ℎ(%)) − 1,ℎ(%)) + 1]. We will estab-
lish that ,(has Ω(#) "-pseudodeterministic query complexity and
has constant (" + 1)-pseudodeterministic query complexity (in the
uniform query model).

Consider the "-dimensional cube with side length #/" , parti-
tioned into (#/")% unit cubes. A vertex & of the partition is a lattice
point 〈21, · · · ,2% 〉 where 0 ≤ 2) ≤ #/" . The cubical Sperner’s
lemma states that for every proper coloring (see De#nition 7.3 for
de#nition of proper coloring) of the vertices of the partition with
" + 1 colors, there is a unit cube whose vertices have all " + 1 colors.

With each lattice point 1& = 〈21, · · · ,2% 〉 we associate a string
1&! = .1.2 · · ·.% , where each .) is an #/" bit string. For each
.) , the #rst 2) bits are all ones and the rest of the bits are
all zeros. Let ! be a "-pseudodeterministic algorithm for the
"-Dimensional HammingWeight problem in the uniform query
model. We #rst prove a distance lemma that states that if 14 and 1& are
two adjacent vertices of the partition, then the output distribution
of ! with oracle access to 14 must be very close to the output distri-
bution of! with oracle access to 1& . Next, we color the lattice points
of the partition using (" + 1) colors based on the most likely output
of !. To de#ne the coloring, we #rst design a suitable partition of
the continuous unit cube [0, 1]% into (" + 1) regions. Now, for the
vertex 1& = 〈21, · · · ,2% 〉, consider the most likely output of ! with
oracle access to the input string 1&! . If this output falls in the region
3 of the unit cube, then the vertex 1& of the partition gets color 3 .

We establish that the coloring is proper so that the conditions
of Sperner’s lemma holds. By the cubical Sperner’s lemma, there
is a unit cube of the partition whose vertices have all " + 1 colors.
Let 1&1 · · · 1&%+1 be such vertices of such a unit cube (i.e. each 1&) has
a distinct color). Since every 1&) has a distinct color, it must be the

case that the most likely outputs of ! 1*!" , 1 ≤ 3 ≤ " + 1 must be all
distinct. Let us denote these most likely outputs with 51,52, · · · ,5% .
Since ! is a "-pseudodeterministic algorithm, ! 1*!" must output

5) with probability at least %+1
% (%+2) . However, since the vertices

1&1, · · · , 1&% belong to the same "-dimensional unit hyper cube, the
+1 distance between any two vertices is bounded by " . Thus, by the

distance lemma, the output distribution of! 1*1" must be close to the

output distributions of ! 1*2" , · · ·! 1*#" . This implies that ! 1*1" must

output 51 with probability at least
%+1

% (%+2) and each of 52, · · ·5% with

probability close to %+1
% (%+2) . Thus the probability that ! 1*1" outputs

a member of {51, · · ·5%+1} is close to
(%+1)2
% (%+2) . Since

(%+1)2
% (%+2) > 1, we

obtain a contradiction. The upper bound on the query complexity

of (" + 1)-pseudodeterministic algorithm follows due to a result
from Goldreich [18].

!

We can generalize the lower bound result to a nonadaptive query
model where the underlying algorithm is allowed to make nonadap-
tive queries to the input string % .

An earlier version of this paper with a subset of results (and a
subset of authors) appeared as a technical report [11].

3 PRELIMINARIES
We assume standard notation and de#nitions from complexity the-
ory [4]. In this paper, we are concerned with additive error approx-
imations. A probabilistic algorithm ! is an ((,))-additive approxi-
mation algorithm for a function , : {0, 1}∗ → R if the probability
that !(%) ∈ [, (%) − (, , (%) + (] is at least 1 −) .

3.1 Pseudodeterminism
De!nition 3.1. Acceptance Probability Estimation Problem:

APEP(#,$) : Given a Boolean circuit ' : {0, 1}" → {0, 1}, give an
((,))-additive approximation for Pr! ∈+$

[' (%) = 1].

De!nition 3.2 ([14, 18]). Let , be a multivalued function, i.e.
, (%) is a non-empty set. We say that , admits pseudodetermin-
istic algorithms if there is a probabilistic polynomial-time algo-
rithm ! such that for every % , there exists a &! ∈ , (%) such
that !(%) = &! with probability at least 2/3. The function , ad-
mits "-pseudodeterministic algorithms if there is a probabilistic
polynomial-time algorithm ! such that for every % , there exists a
set *! ⊆ , (%) of size at most " and the probability that!(%) ∈ * (%)
is at least %+1

%+2 .

Note that the above de#nition captures pseudodeterminism for
approximation algorithms, as approximation algorithms can be
viewed as multivalued functions. It is known that any function
that admits an ((,))-approximation algorithm admits a (2(,)) 2-
pseudodeterministic algorithm (see [10, 18] for a proof).

Proposition 3.3. For every 0 < (,) < 1, there is a 2-
pseudodeterministic algorithm for APEP(#,$) .

Goldreich, Goldwasser and Ron [19] studied the notion of safe
pseudodeterministic algorithms that can be adapted to multi-valued
functions and thus approximation algorithms.

De!nition 3.4. A multi-valued function , has safe pseudodeter-
ministic algorithm, if there is a probabilistic polynomial-time algo-
rithm ! such that for every % , there exist &! ∈ , (%) such that

- Pr[!(%) ∈ {&! ,⊥}] = 1, and
- Pr[!(%) = &!] ≥ 2/3.

We will need the following characterization of pseudodetermin-
ism proved by Gat and Goldwasser [14].

Theorem 3.5. A function admits a pseudodeterministic algorithm
if and only if it is computable in PFBPP.

It is well known that for every 0 < (,) < 1, there is a probabilis-
tic algorithm for APEP(#,$) that runs in time poly(#, 1/(, log 1/))
where # is the input length. Thus, by the above result, we obtain
the following proposition.

1557

Pseudodeterminism: Promises and Lowerbounds STOC ’22, June 20–24, 2022, Rome, Italy

Proposition 3.6. If APEP(1/100,1/8) has a pseudodeterministic
algorithm, then for every 0 < (,) < 1, APEP(#,$) has a pseudodeter-
ministic algorithm.

Remark. In the rest of the paper, we use the phrase “APEP
has a pseudodeterministic algorithm” in place of “APEP(1/100,1/8)
admits a pseudodeterministic algorithm”, and denote the presumed
pseudodeterministic algorithm with !ape.

3.2 Promise Problems
De!nition 3.7 (PromiseBPP). A promise problem Π =

(Π&,Π") ∈ PromiseBPP if there exists a probabilistic polynomial-
time machine/ such that ∀%

% ∈ Π& ⇔ Pr[/ (%) = accepts] ≥ 2/3,

% ∈ Π" ⇔ Pr[/ (%) = accepts] < 1/3,

We can similarly de#ne promise classes such as PromiseMA.

De!nition 3.8. Let C be a complexity class. We say that a promise
(Π&,Π") has a solution in C if there exists a language + in C such
that Π& ⊆ + and + ∩ Π" = ∅.

De!nition 3.9. Let Π = (Π&,Π") be a promise problem. Π′ =
∃ · Π is a promise problem (Π′

&,Π
′
") de#ned as follows. There is a

polynomial 6 such that ∀%

% ∈ Π
′
& ⇔ ∃7 ∈ {0, 1}, (|! |) , 〈%,7〉 ∈ Π&

% ∈ Π
′
" ⇔ ∀7 ∈ {0, 1}, (|! |) , 〈%,7〉 ∈ Π"

The notion of ∃ · + can be de#ned similarly.

De!nition 3.10. We say that a promise problem Π = (Π&,Π") ∈
∃ · PromiseBPP if there is a promise problem Π

′ ∈ PromiseBPP
such that Π = ∃ · Π′. We say that a language + ∈ ∃ · BPP, if there
is a language +′ ∈ BPP such that + = ∃ · +.

De!nition 3.11. A probabilistic polynomial-time machine/ has
BPP-type behaviour if on every input % , Pr[/ (%) accepts] is either
≥ 2/3 or < 1/3.

3.3 Search Problems
In this work, all the relations considered are total, although the
results established will hold for relations that are not necessarily
total. We start with the most standard de#nition of a probabilistic
search problem.

De!nition 3.12 (SearchBPP [19]). A search problem - is in
SearchBPP if there is a pair of probabilistic polynomial time al-
gorithms ! and 8 so that,

- For every % , !(%) ∈ -(%) with probability ≥ 2/3.
- 8 witnesses - ∈ BPP; that is, if (%,.) ∈ -, then 8(%,.)
accepts with probability > 2/3, and if (%,.) ∉ - then 8(%,.)
rejects with probability > 2/3.

De!nition 3.13. For a total multi-valued function , , we say that
, is in SearchBPP if there is a relation - in SearchBPP so that ∀% ,
the witness set -(%) ⊆ , (%).

We use the following result from [10].

Theorem 3.14. If APEP admits a pseudodeterministic algorithm,
then every problem in SearchBPP has a pseudodeterministic algo-
rithm.

In Section 6, we study certain generalized de#nitions of
SearchBPP. We will give the needed de#nitions in that section.

3.4 Query Complexity
In this section, we de#ne pseudodeterministic query complexity
models. In these models, the algorithm cannot access input directly,
but only through queries. Such models are used in the realm of
sub-linear time computations.

Query Complexity Models. Let , be a multi-valued function. In
the query complexity model, the algorithm ! gets # as input and
has oracle access to % ∈ Σ

" . The algorithm at any stage during
the computation can make a query 3 ∈ {1, 2, · · · ,#} to the oracle
% ∈ Σ

" and receives %) as the answer. We denote the computation
of ! on % ∈ Σ

" as !! (#). We say that a probabilistic algorithm !
is a "-pseudodeterministic algorithm ("-PD in short) for , , if for
every % ∈ Σ

" , there exists a set *! ⊆ , (%) of size ≤ " , such that

!! (#) outputs an element of *! with probability at least %+1
%+2 . For

a 9 : N → N, we say that the query complexity of ! is 9 (#), if
!! (#) makes at most9 (#) queries for every % ∈ Σ

" , for all random
choices of !.

We consider the following three models for accessing the oracle
% : the uniform model, the non-adaptive model and the adaptive
model. In the uniform model, the queries made by the probabilistic
algorithm ! are generated uniformly at random from {1, . . . ,#}. In
the non-adaptive model, at the beginning of the computation, the
algorithm !! (#), picks a random string : and generates queries
31, 32, . . . , 3ℓ and obtain answers %)1 , . . . %)ℓ . After that, the algorithm
does not make any more queries. Note that the queries generated
can depend on the randomness of !. In the adaptive model, the
algorithm picks a random string : , and makes adaptive queries to %
(that is, the 3'ℎ query can depend on the the answer to the (3 − 1)'ℎ
query). We use 9/") 0 (!) to denote the query complexity of ! in
the uniform model, 9 | | (!) to denote the query complexity of ! in
the non-adaptive model, and 9 (!) to denote the query complexity
in the adaptive model.

4 PSEUDODETERMINISM AND PROMISE
PROBLEMS

4.1 Main Equivalence
Theorem 4.1. APEP has a pseudodeterministic algorithm if and

only if PromiseBPP has a solution in BPP.

Proof. (⇐) :We will #rst prove that if APEP has a pseudode-
terministic algorithm, then PromiseBPP has a solution in BPP. Let
Π be a promise problem in PromiseBPP and let/ be a probabilistic
polynomial-time machine that witnesses this. Given % , let '! be
the following Boolean circuit:

'! (:) = 1 if and only if/ (%) on random string : accepts.

Note that given % , we can construct '! in time poly(|% |). Con-
sider the following probabilistic algorithm:

1558

STOC ’22, June 20–24, 2022, Rome, Italy Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

Algorithm 8: On input % , construct '! and run !ape ('!). If
!ape ('!) ≥ 1/2, accept; else reject.

Claim 4.2. 8 has BPP-type behavior.

Proof of Claim. Let % be an input to 8. Recall that !ape is a
pseudodeterministic approximation algorithm that outputs a canon-
ical value & on input'! with probability at least 7/8. So either with
probability at least 7/8, & is ≥ 1/2, in which case 8 accepts % , or
with probability at least 7/8, & is < 1/2 and 8 rejects. Thus, for
every input % , 8 either accepts with probability ≥ 7/8 or rejects
with probability ≥ 7/8, and thus 8 has BPP-type behaviour. !

Let + be the language accepted by the above machine. Then by
the above claim + ∈ BPP.

Claim 4.3. + is a solution to the promise problem Π.

Proof of Claim. Let % be a string in Π& . Then Pr['! (:) = 1] ≥
2/3. Thus!ape ('!) outputs a canonical value & ≥ 2/3−1/100 > 1/2
with probability at least 7/8, so 8 accepts with probability at least
7/8, and thus % ∈ +.

Suppose % ∈ Π" . Then Pr['! (:) = 1] < 1/3. Thus !ape ('!)
outputs a canonical value & ≤ 1/3 + 1/100 < 1/2 with probability
at least 7/8, so 8 rejects with probability at least 7/8, and thus
% ∉ +. !

By the above two claims we obtain that if APEP has a pseudode-
terministic approximation algorithm, PromiseBPP has a solution
in BPP.

(⇒): Now suppose that PromiseBPP has a solution in BPP. By
Proposition 3.3, there is a 2-pseudodeterministic ((,)) approxima-
tion algorithm / for APEP where) = 1/4 and 1 = 1/200. We
slightly modify/ as follows: whenever/ outputs a value & , then
output a value & ′ that is the closest integer multiple of (to & . Note
that the modi#ed machine/ is a (2(,))-approximation algorithm
for APEP. The machine/ has the property that every output is of
the form "(, 0 ≤ " ≤ 1/(.

For a Boolean circuit' , let 61 denote the acceptance probability
of ' . Thus, for every ' , we have

Pr[/ (') ∈ (61 − 2(, 61 + 2()] ≥ 3/4 (1)

We associate a promise problem Π = (Π&,Π") with/ . This de#-
nition of promise problem is inspired by the work of Goldreich [17].

Π& = {〈', &〉 | / (') outputs & with probability at least 3/8}
Π" = {〈', &〉 | / (') outputs & with probability at most 1/4}
We make the following two critical observations.

Observation 4.4. If 〈', &〉 ∉ Π" , then & ∈ (61 − 2(, 61 + 2().

This observation follows from equation 1.

Observation 4.5. For every circuit ' , there exists & such that
〈', &〉 ∈ Π& and & = "1 for some " > 0.

Proof of Observation. Since / is 2-pseudodeterministic,
there is a set * of size at most 2 such that every element in *
lies between 61 − 21 and 61 + 21 and Pr[/ (') ∈ *] ≥ 3/4. Thus,
there must exist an element & from * such that / (') outputs &
with probability at least 3/8. Finally, note that the modi#cation of

/ described earlier ensures that / always outputs a multiple of
1 . !

Claim 4.6. Π ∈ PromiseBPP.

Proof of Claim. Consider the algorithm /Π : On input 〈', &〉
run/ ('). If it outputs & , then accept, else reject. This algorithm ac-
cepts all instances from Π& with probability at least 3/8 and accepts
all instances from Π" with probability at most 1/4. Since there is a
gap between 3/8 and 1/4, this gap can be ampli#ed with standard
ampli#cation techniques. This implies that Π is in PromiseBPP. !

Now we will complete the proof of the theorem by designing
a pseudodeterministic algorithm for APEP. By our assumption,
there is a language +Π ∈ BPP that is a solution to Π. Consider
the following deterministic algorithm for APEP with oracle access
to +Π . On input ' , check if 〈',"(〉 ∈ +Π for integer values of " ,
0 ≤ " ≤ 1/(. Let ℓ be the #rst value such that 〈', ℓ(〉 ∈ +Π , then
output ℓ(. By Observation 4.5, such an ℓ must exist. Moreover,
if 〈', ℓ(〉 ∈ +Π , then it must be the case that 〈', ℓ(〉 ∉ Π" . By
Observation 4.4, we have that ℓ(∈ (62 + 2(, 62 − 2(). Thus APEP
has a (2(,)), PFBPP approximation algorithm. This implies that
APEP has a (2(,)) pseudodeterministic algorithm by Theorem 3.5.

!

4.2 Safe Pseudodeterministic Algorithms
De!nition 4.7 ([13, 19]). A multi-valued function , has a safe

pseudodeterministic algorithm, if there is a probabilistic polynomial-
time algorithm ! such that for every % , there exist &! ∈ , (%) such
that

- Pr[!(%) ∈ {&! ,⊥}] = 1, and
- Pr[!(%) = &!] ≥ 2/3.

Theorem 4.8 ([19]). A multi-valued function , has a safe pseudo-
deterministic algorithm if and only if , is in PFZPP.

We can extend Theorem 4.1 to safe pseudodeterministic algo-
rithms (we omit the proof).

Theorem 4.9. APEP admits safe-pseudodeterministic algorithms
if and only if PromiseBPP has a solution in ZPP.

4.3 Equivalence in Space Bounded
Computations

We observe that the equivalence between promise problems and
pseudodeterminism also holds in probabilistic space bounded com-
putations. We assume standard de#nitions of log space classes
including BPL where the associated probabilistic machines halt on
all random choices. We also use standard notions of space bounded
transducers when considering function computation using space
bounded Turing machines.

De!nition 4.10 (PromiseBPL). A promise problem Π =

(Π&,Π") ∈ PromiseBPL if there exists a probabilistic logspace
machine/ such that ∀%

% ∈ Π& ⇔ Pr[/ (%) = accepts] ≥ 2/3,

% ∈ Π" ⇔ Pr[/ (%) = accepts] < 1/3,

1559

Pseudodeterminism: Promises and Lowerbounds STOC ’22, June 20–24, 2022, Rome, Italy

De!nition 4.11 (Automata Acceptance Probability Estimation Prob-
lem (AAPEP)). Given a #nite automata / over binary alphabet,
and an integer #, compute an ((,))-additive estimation of the prob-
ability of acceptance of/ : Pr3 ∈{0,1}$ [/ (:) accepts].

Theorem 4.12. There is an randomized logspace algorithm that
given an automata/ , (,) , and # in unary, outputs an ((,))-additive
approximation of Pr3 ∈{0,1}$ [/ (:) accepts].

Techniques used to prove Theorem 4.1 can be adapted to prove
the following equivalence.

Theorem 4.13. AAPEP admits a pseudodeterministic approxima-
tion algorithm if and only if PromiseBPL = BPL.

5 CONSEQUENCES OF THE EQUIVALENCES

5.1 Circuit Lower Bounds and Derandomization
Theorem 5.1. If APEP admits pseudodeterministic approximation

algorithms, then

(1) Every promise problem Π = (Π4 ,Π5) in PromiseMA has a
solution inMA.

(2) MA = ∃ · BPP.
(3) For any " ,MA ! SIZE(#%)
Proof.

(1) We #rst show that if Π is a promise problem in PromiseMA,
then Π ∈ ∃ · PromiseBPP. Let / be a probabilistic
polynomial-time veri#er. Consider the following promise
problem Π

′: A tuple 〈%,7〉 is a positive instance if/ accepts
〈%,7〉 with probability at least 2/3 and is a negative instance
if/ accepts 〈%,7〉 with probability at most 1/3. It is easy to
see that Π = ∃.Π′. By Theorem 4.1, Π′ has a solution +′ in
BPP if APEP admits pseudodeterministic algorithms. Note
that the language + = ∃ · +′ is a solution to Π, and ∃ · +′ is in
∃ · BPP. Since ∃ · BPP is a subset ofMA, the claim follows.

(2) The above proof showed that every promise problem in
PromiseMA has a solution in ∃BPP. Thus it follows that
MA = ∃ · BPP.

(3) Santhanam [40] showed that for every " , there is a problem
Π% in PromiseMA that does not have any solution that ad-
mits $ (#%) size circuits. Since by Item 1 Π% has a solution
+% ∈ MA, we get that +% does not have $ (#%) size circuits.
Combining this with 2, it follows that ∃ · BPP does not have
$ (#%) size circuits.

!

The above result reveals an interesting connection between pseu-
dodeterminism, derandomization of BPP, and circuit complexity.
If APEP has pseudodeterministic algorithms, then derandomizing
BPP to P implies that NP does not have #xed polynomial-size cir-
cuits.

Theorem 5.2. If APEP admits safe-pseudodeterministic algo-
rithms, then MA = NP and NP has problems that cannot be solved

using $ (#%)-size Boolean circuits.

Proof. SinceMA = ∃ · PromiseBPP, if APEP admits safe pseu-
dodeterministic algorithms, then by Theorem 4.9, PromiseBPP has
a solution in ZPP. ThusMA = ∃ ·ZPPwhich equalsNP. The second
part of the theorem follows by combining this with Theorem 5.1. !

We observe that there is a relativized world in which the hypoth-
esis APEP has a safe-pseudodeterministic algorithm holds, but the
hypothesis E does not have 2("-size circuits does not hold.

Observation 5.3. There is an oracle! relative to whichAPEP has
pseudodeterministic algorithms, but EXP has polynomial-size circuits.

Proof. Consider an oracle relative to which EXP equals ZPP [].
SinceAPEP can be solved by PFEXP, it follows thatAPEP is in PFZPP

and this has a safe-pseudodeterministic algorithm. Since ZPP ⊆
P/poly, we have that the EXP has polynomial-size circuits. !

5.2 Complete Problems and Hierarchy
Theorems

In this section, we show that hierarchy theorems for BPTIME
and ZPTIME follow as consequences of Theorems 4.1 and 4.9. For
BPTIME, this gives an alternate proof of the result in Lu, Olivera
and Santhanam [35]. We need the following result due to Barak [5].

Theorem 5.4. If PromiseBPP has a solution in BPP, then there
exists a constant < such that for every time constructible function = (#),
BPTIME(= (#)) is a proper subset of BPTIME(= (#)2).

Theorem 5.5. If APEP has pseudodeterministic algorithms,
then the hierarchy theorems for BPTIME hold. In particular,

BPTIME(#6) " BPTIME(#7) for constant 1 ≤ > < ? .

Proof. ByTheorem 4.1, the hypothesis implies that PromiseBPP
has a solution in BPP and by Theorem 5.4, there exists a < > 0 such
that for every 2, BPTIME(#8) is a proper subset of BPTIME(#82).
The theorem follows from applying standard padding arguments.

!

We next observe that if APEP admits pseudodeterministic algo-
rithms, then MA has complete problems.

Theorem 5.6. If APEP admits pseudodeterministic algorithms,
then MA has a complete language and thus there is a hierarchy the-

orem forMA, i.e.,MATIME(#6) is a proper subset ofMATIME(#7)
for 1 ≤ > < ? .

Proof. By Theorem 5.1, the hypothesis implies that MA =

∃ · BPP, thus it su"ces to exhibit a language that is complete for
the class ∃ · BPP. We consider circuits with two types of inputs
nondeterministic inputs and regular inputs. We use'"+9 to denote
circuits with #+@ inputs and for such curcuits we use'& to denote
the circuits obtained by #xing the #rst # inputs to .. Consider the
following language

+ = {'"+9 | ∃. ∈ Σ
" !ape ('&) ≥ 1/2}

Let +′ be a language in ∃BPP. There exists a language +′′ ∈ BPP
and a polynomial 6 such that % ∈ + if and only if there exists
. ∈ Σ

, (|! |) such that 〈%,.〉 ∈ +′′. Let/ be a probabilistic machine
that witness that +′′ is in BPP. Let '! be the circuit obtained by
converting this machine into a circuit and hard wiring % . Note that
'! has two types of inputs . and the random strings of/ .

Now if % ∈ +, there exists . such that / accepts 〈%,.〉 with
probability at least 2/3. Thus the acceptance probability of'!& is at
least 2/3 and the canonical output of!ape ('!&) is at least 1/2. Thus
'! ∈ +. If % ∉ +, for every ., / accepts 〈%,.〉 with probability at

1560

STOC ’22, June 20–24, 2022, Rome, Italy Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

most 1/3 and the canonical output of !ape ('!&) for every . is less
than 1/2. Thus +′ reduces to +. It is easy to see that + is in ∃ · BPP,
as!ape outputs a canonical correct answer with probability at least
2/3. Using the ideas from [5], it follows that if MA has complete
problems, then hierarchy results hold. !

A similar proof establishes the following.

Theorem 5.7. If APEP has safe pseudodeterministic algorithms,
thenZPP has a complete problem and hierarchy theorems forZPTIME

hold. In particular, ZPTIME(#6) " ZPTIME(#7) for constant 1 ≤
> < ? .

5.3 Completeness for Poly-Pseudodeterminism
Theorem 5.8. If APEP admits pseudodeterministic approximation

algorithms, then every multivalued function , that admits a " (#)-
pseudodeterministic algorithm for a polynomial" (#) is in SearchBPP.

Proof. Let , be a multi-valued function and let /0 be a " (#)-
pseudodeterministic algorithm for , . Without loss of generality we
can assume that , maps strings of length # to strings of length 6 (#)
for some polynomial 6 . For input % of length #, let *! be the set of
size ≤ " (#) such that *! ⊆ , (%) and/0 (%) ∈ *! with probability

≥ % (")+1
% (")+2 . From the de#nition of " (#)-pseudodeterminism, we have

the following claim.

Claim 5.9. ∃&∗ ∈ *! such that Pr
[

/0 (%) = &∗
]

≥ 1+1/% (")
% (")+2 .

Moreover, ∀& ∉ *! Pr[/0 (%) = &] < 1
% (")+2 .

Let A =
1+1/2% (")
% (")+2 be a threshold that is the middle point of

1+1/% (")
% (")+2 and 1

% (")+2 . For a pair of strings 〈%, &〉, where |% | = # and

|& | = 6 (#), let '!,* be the following Boolean circuit. '!,* on input
: , outputs 1 if /0 (%) on random string : outputs & , 0 otherwise.
We will show that there is a relation - so that (1) ∀% :B! ≠ C and
B! ⊆ , (%), and (2) - ∈ SearchBPP. We de#ne the relation - as
follows.

- = {〈%, &〉 | the canonical output of !ape ('!,*) ≥ A}

Here !ape is the ((,)) pseudodeterministic algorithm for APEP,
where (= 1/2" (#) (" (#) + 2) and) = 2−" . Note that such an algo-
rithm exists under the assumption by Proposition 3.6 and standard
error reduction techniques.

Claim 5.10. ∀%,B! ⊆ , (%) andB! is not empty.

Proof. For this we show thatB! ⊆ *! . If & ∉ *! , then /0 (%)
outputs & with probability at most 1/(" (#) + 2), thus the canonical
output of !('!,*) is < 1

% (")+2 + (= A and by de#nition & ∉B! . On

the other hand, since &∗ ∈B! , the canonical output of !ape ('!,*∗)
is ≥ 1+1/% (")

% (")+2 − (= A . Thus &∗ ∈B! . ThusB! ≠ C !

Claim 5.11. - ∈ BPP.

Proof. Consider the algorithm that, on input 〈%, &〉, runs
!ape ('!,*) and accepts if and only if the output of !ape is ≥ A .
Since !ape is a pseudodeterministic algorithm for APEP it outputs
a canonical value with probability at least 1− 1/2" . This shows that
- is in BPP. !

Claim 5.12. There is a probabilistic algorithm 8 that on input %
outputs & ∈B! with probability > 2/3.

Proof. We #rst design an algorithm 8′ with a nontrivial success
probability and boost it to get algorithm 8.
Algorithm8′:On input % , run/0 (%). Let & be an output. Construct
circuit'!,* and run!ape on'!,* . If the output of!ape is ≥ A , output
& . Otherwise output ⊥.

Consider a & ∉ B! . Then by de#nition of -, we have that the
canonical output of !ape ('!,*) is less than A . Thus !ape ('!,*) out-
puts a value larger than A with probability at most 1/2" . Thus we
have that for every & ∉B!

Pr[8′ outputs & | /0 (%) outputs &] ≤ 1/2"

Pr[8′ outputs a & ∉B!]

=

∑

*∉:"

Pr[8′ outputs & | /0 (%) outputs &]
× Pr[/0 (%)outputs &]

≤ 1/2"
∑

*

Pr[/0 (%) outputs &] ≤ 1/2"

By Claim 5.9, probability that /0 (%) outputs &∗ is at least
1+1/% (")
% (")+2 , it must be the case that the canonical output of !('!,*∗)

is at least 1+1/% (")
% (")+2 −(= A . Thus &∗ ∈B! . Thus!ape ('!,*∗) outputs

a value ≥ A with probability at least 1 − 1/2" . Thus the probability
that 8′ outputs &∗ is at least 1+1/% (")

% (")+2 × (1 − 1/2").
Thus 8′ outputs a value that is not inB! with probability at most

1/2" , it outputs a value inB! with probability at least 1+1/% (")
% (")+2 ×

(1−1/2"), and outputs⊥with the remaining probability. We obtain
8 by repeated invocations ($ (" (#)3) many) of 8′ and outputting
the most frequent output. !

This completes the proof that , is in SearchBPP. !

Using the above result, we obtain the following corollary, which
improves a result from [10].

Theorem 5.13. If APEP admits pseudodeterministic algo-
rithm, then any multivalued function that admits a " (#)-
pseudodeterministic algorithm also admits a pseudodeterministic al-
gorithms, where " (#) is a polynomial.

Proof. By the above theorem, if APEP admits pseudode-
terministic algorithm, then any problem that admits a " (#)-
pseudodeterministic algorithm is in SearchBPP. By Theorem 3.14,
if APEP admits pseudodeterministic algorithms, every problem in
SearchBPP has a pseudodeterministic algorithm. !

6 EQUIVALENCE OF PROBABILISTIC SEARCH
PROBLEMS

Several variants of probabilistic search problems have been con-
sidered in the literature. We de#ne them here. We will show that
making these variants pseudodeterministic is equivalent to making
APEP pseudodeterministic.

De!nition 6.1. A search problem is a relation - ⊆ {0, 1}∗ × {0, 1}∗.
For every % , the witness set of % with respect to - is -(%) = {. |
(%,.) ∈ -}. - is total if for every % , there exists a . such that

1561

Pseudodeterminism: Promises and Lowerbounds STOC ’22, June 20–24, 2022, Rome, Italy

〈%,.〉 ∈ -. A promise search problem is a disjoint pair of relations
(-4 ,-5) where -4 ,-5 ⊆ {0, 1}∗ × {0, 1}∗. A promise search prob-
lem (-4 ,-5) is total if -4 is total.

Goldreich studied probabilistic, promise search problems [17].

De!nition 6.2 (PrSearchBPP [17]). A promise search problem
(-4 ,-5) is in PrSearchBPP if there is a pair of probabilistic poly-
nomial time algorithms ! and 8 so that,

- For every % , !(%) ∈ -4 (%) with probability ≥ 2/3.
- 8 witnesses (-4 ,-5) ∈ PromiseBPP, i.e. if (%,.) ∈ -; , then
8(%,.) accepts with probability > 2/3, and if (%,.) ∈ -5
then 8(%,.) rejects with probability > 2/3.

The following variation of SearchBPP is considered in [35] and
is obtained by relaxing the requirement on the decision algorithm
8. We denote this as WeakSearchBPP.

De!nition 6.3 (WeakSearchBPP [35]). A search problem - is in
WeakSearchBPP, if there exist a pair of probabilistic algorithms !
and 8 such that

- For every % , !(%) ∈ -! with probability ≥ 2/3
- For every (%,.) ∉ -, 8(%,.) rejects with probability ≥ 2/3.
For every % , with probability more than 1/2 over random
choices of !, 8(%,!(%)) accepts with probability ≥ 2/3.

In all the above class of search problems, we say that problem is
in the class witnessed by the pair (!,8) of probabilistic algorithms.

Here we show that APEP is “complete for” both PrSearchBPP
and WeakSearchBPP with respect to pseudodeterminism. Earlier
works have shown that a APEP can be cast as PrSearchBPP [17]
andWeakSearchBPP [35].

Theorem 6.4. The following statements are equivalent.

(1) APEP admits a pseudodeterministic approximation algorithm
(2) PrSearchBPP admits pseudodeterministic algorithms.
(3) WeakSearchBPP admits pseudodeterministic algorithms.

7 QUERY COMPLEXITY LOWERBOUNDS
In this section, we show a #ne separation result for multi-
pseudodeterministic computations in the query complexity model.
We start with the de#nition of the candidate problems that we use
to exhibit the separation. For a string ., let Hamming(.) denote
the fraction of 1’s in ..

De!nition 7.1 ("-Dimensional HammingWeight). Let % =

.1.2 · · ·.% be an # bit string where each .) is of length #/" . Given
1 < 1/2, output 〈21,22, . . . ,2% 〉 such that for every 1 ≤ 3 ≤ " ,
|2) − Hamming(.)) | ≤ 1 .

For the rest of the section we work with 1 = 1/4.

7.1 Lower Bound in the Uniform Query Model
Theorem 7.2. For the "-Dimensional HammingWeight prob-

lem

- There exists a ("+1)-pseudodeterministic algorithmwith query
complexity $ ("5/12) in the uniform query model.

- For every "-pseudodeterministic algorithm ! that solves the

"-Dimensional HammingWeight problem, 9/") 0 (!) ∈
Ω(#/"4).

Clearly, for " = 1, there is 2-pseudodeterministic algorithm 8
such that for every ., the algorithm 8& makes $ (1/12) uniformly
chosen queries and outputs a value ℎ with |ℎ − Hamming(.) | ≤ 1 .
Using this, it is easy to design a 2% -pseudodeterminsitic algorithm
for the "-Dimensional HammingWeight problem that makes
$̃ ("/12) queries. Goldreich [18], using a randomized rounding tech-
nique showed that there is a (" + 1)-pseudodeterministic algorithm
makes $ ("5/12) queries in the uniform query model.

To prove the lower bound, we focus our attention on an explicit
family of strings which we de#ne now. For 0 ≤ 3 ≤ #, let .) be
the string whose #rst 3 bits are 1, and the rest of the bits are 0.
We will show that every "-pseudodeterministic algorithm for the
"-Dimensional HammingWeight problem has high query com-
plexity even when restricted to the above family of input strings.

Consider the "-dimensional hypercube with side length #/" .
Consider the standard partition of this hypercube into (#/")% -many
unit hypercubes. Note that the set of vertices of these hypercubes
is {0, 1, 2, . . . , "% }

% (a subset of the integer lattice). For each such
vertex/lattice point 1& = 〈21, . . . ,2% 〉, we associate the string 1&! =

.81.82 · · ·.8# .

Sperner’s Lemma. An essential ingredient of the proof of the theo-
rem is the cubical Sperner’s lemma [34, 42] which we state next.

De!nition 7.3. Let G% be the standard partition of the "-
dimensional hypercube with integer side length 6 into unit cubes.
Let Δ, be the set of vertices/lattice points of the partition. For

any vertex 1& ∈ Δ, , let 1& [3] denote the 3'ℎ coordinate of 1& . Let
' : Δ, → {1, . . . ," + 1} be a function. We say that ' is proper
coloring function if it satis#es both of the following:

(1) if 1& [3] = 0, then ' (1&) ≤ 3
(2) if 1& [3] = 6 , then ' (1&) ≠ 3 .

Lemma 7.4 (Cubical Sperner’s Lemma [34, 42]). For every proper
coloring of G% , there is a unit cube of the partition whose vertices
contain all the " + 1 distinct colors.

Now we proceed with the proof of Theorem 7.2.

Proof of Theorem 7.2. Let ! be a "-pseudodeterministic algo-
rithm for the "-Dimensional HammingWeight in the uniform
query model that makes D (#) queries. Let 14 and 1& be two adjacent
lattice points (i.e. they di!er by 1 at exactly one coordinate, and
at all other coordinates they have the same value). We claim the
following:

Claim 7.5. E<= (!*" ,!/") ≤ > (")
" .

Proof of Claim. Assume that 14 =

〈21,22, . . . ,2 ?−1,2,2 ?+1, . . . ,2% 〉 and 1& = 〈21,22 . . . ,2 ?−1,2 +
1, . . . ,2% 〉 (so 14 and 1& di!er on the Fth coordinate by 1).

Recall that 4! = .81 · · ·.8 &−1.8 · · ·.% and &! =

.81 · · ·.8 &−1.8+1 · · ·.% . The Fthe substring 4! is .8 and the
Fth substring of &! is .8+1. All other substrings of 4! and &! are
the same. By de#nition, .8 = 180"/%−8 and .8+1 = 18+10"/%−(8+1) .
Thus the strings 4! and &! di!er at exactly one index (index
"
% (F − 1) + (2 + 1)). Now, observe that the behaviour of !*" and
!/" di!er only when ! generates this index as a query. Since ! is
generating its queries uniformly at random, the probability that !
queries this index is at most D (#)/#. Thus, the claim follows. !

1562

STOC ’22, June 20–24, 2022, Rome, Italy Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

From the above claim, we get the following corollary using the
triangle inequality.

Corollary 7.6. Let 14 and 1& be two lattice points. If Pr[!/" =

1G] = H , then

Pr[!*" = 1G] ≥ H −
(

| |14 − 1& | |1 ×
D (#)
#

)

.

Wenowgive an outline of how Sperner’s lemma is used. Consider
the "-dimensional cube with the side length 6 = #/" and let G%
be the partition of it into unit cubes and Δ, be the set vertices of
the partition. We will give a proper coloring of G% based on the
output of!. More precisely, for any lattice point 1& , let 1G be the most
likely output of!*" (if there are multiple, use any one of them). We
will #rst give a coloring '8/! on [0, 1]% which we call a auxiliary
coloring. De#ne ' (1&) = '8/! (1G). We will #rst argue that ' is a
proper coloring. Hence by Sperner’s lemma, there is a unit cube
containing all " + 1 distinct colors. Hence for these " + 1 vertices,
! has to output at least " + 1 distinct values each with probability

>
(%+1)
% (%+2) . However, since all the points on vertices of the unit

cube are close to each other, we can arrive at a contradiction using
Corollary 7.6. Now we give details.

De#ne '8/! : [0, 1]" → {1, 2, . . . ," + 1} as follows: for a 1G =

〈G1, . . . , G% 〉

'8/! (G1, . . . , G%) =

{

3 : G1, . . . , G)−1 ≥ 1
2 , G) <

1
2

" + 1 : G1, . . . , G% ≥ 1
2

Now we de#ne the coloring of Δ, . Consider a lattice point 1& of
the partition, and and let 1G be the most probable out of !*" (break
the ties arbitrarily if there are multiple most probable outputs).

' (1&) = '8/! (1G)
See Figure 2 for an illustration of '8/! and ' in the two dimen-

sional case.

Lemma 7.7. ' is a proper coloring of Δ, .

Proof of Lemma. Consider a lattice point 1& = 〈21, . . . ,2% 〉, and
let 1G = 〈G1, G2, . . . , G% 〉 be the most likely output of !*" . We need to
show (1) 2) = 0 ⇒ ' (1&) ≤ 3 and (2) 2) = #/" ⇒ ' (1&) ≠ 3 .

Assume 2) = 0. Note that the 3th substring of &! is the all-
zeros string .0 whose hamming weight is 0. Note that since
|G) − Hamming(.0) | ≤ 1 , we have G) ≤ 1 <

1
2 . Suppose

that '8/! (〈G1, · · · G% 〉) = F > 3 , then it must be the case that
G1, . . . , G ?−1 ≥ 1/2, thus in particular G) ≥ 1/2, and this is a contra-
diction. Thus ' (1&) = '8/! (1G) ≤ 3 .

Suppose that 2) = 6 = #/" . Now, the 3th substring of &! is the all
ones string ."/% whose hamming weight is 1. Thus it must be the
case that the 3th component, G) , of the output of!*" is ≥ 1−1 > 1/2.
Suppose that ' (1&) = 3 , this means that '8/! (〈G1, . . . , G% 〉) = 3 .
However '8/! (〈G1, · · · , G% 〉) = 3 implies that G) < 1/2 and this is a
contradiction. Thus ' (1&) ≠ 3 . !

By cubical Sperner’s Lemma, there must be a unit cube in the par-
tition with vertices where all "+1 colors are present. Let 1&1, . . . , 1&%+1
be vertices of such a unit cube with colors 1, . . . ," + 1 respectively.
Let 1G1, . . . 1G%+1 be the most likely outputs of !*1" ,!*2" · · ·!*#" re-
spectively. Since the colors of 1&1, · · · 1&% are all distinct from each

(0,0)

(0,1)

(1,0)

(1,1)

(0,0)

(0,5)

(5,0)

(5,5)

u

A(u)

v

A(v)

Figure 2: 14 is colored orange because !(14) is in the orange
area. Likewise, 1& is colored blue because !(14) is in the blue
area.

other, it must be the case that 1G1, . . . , 1G%+1 are all distinct. We have
the following:

Pr[!*1" = 1G1] ≥
" + 1

" (" + 2)

Pr[!*1" = 1G ?] ≥
" + 1

" (" + 2)
−
" · D (#)

#
for all 2 ≤ F ≤ " + 1

The #rst inequality is due to the fact that ! is "-
pseudodeterministic and hence the most likely output appears with

probability at least (%+1)
% (%+2) . The second set of inequalities are a con-

sequence of Corollary 7.6 and the fact that +1 distance between any
two points on the "-dimensional unit cube is at most " . Thus,

Pr[!*" = 1G : 1G ∈ {1G1, . . . , 1G%+1}] ≥
(" + 1)2

" (" + 2)
−
"2D (#)

#

When D (#) < "
%2 (%2+2%) , the above probability is bigger than 1,

which is a contradiction. Thus the theorem follows. !

7.2 Lower Bound in the Non-Adaptive Query
Model

In this section, we extend the above result to the more general
non-adaptive query model. For this we combine the ideas from
the earlier section with the work of Goldreich, Goldwasser, and
Ron [19].

Theorem 7.8. In the non-adaptive query model,
any "-pseudodeterministic algorithm ! that solves the
"-Dimensional HammingWeight problem requires

9 | | (!) ∈ Ω(#/"4).

Proof. Let ! be a "-pseudodeterministic algorithm for the
"-Dimensional HammingWeight problem that makes D (#) non-
adaptive queries. Given 0 ≤) ≤ 1, an element 3 ∈ {1, . . . ,#} is
)-low if ! queries 3 with probability at most) . Note that in the non-
adaptive query model the distribution of queries is independent of
the input/oracle string % .

Observation 7.9. The number of queries that are)-low is ≥ 2#1
for D (#) ≤ (1 − 21)#) .

Proof of Observation. Since the algorithm makes D (#)
queries, the number of queries that are not)-low is at most D (#)/) .
If D (#) ≤ (1 − 21)#) , the number of)-low queries is at least
2#1 . !

1563

Pseudodeterminism: Promises and Lowerbounds STOC ’22, June 20–24, 2022, Rome, Italy

We now prove that if two strings di!er on a low indices, then
the algorithm will give similar approximations.

Lemma 7.10. Let D be a)-low query. Let 6 and I be two #/"-
bit strings such that 6 and I di"er only at the Dth index. Let
61, 62, . . . , 6)−1, 6)+1, . . . , 6% be #/"-bit strings.

E<= (!,1 · · ·,!−1,,!+1 · · ·,# ,!,1 · · ·,!−1@,!+1 · · ·,#) ≤)

Proof of Lemma. Since D is queried with probability at most) ,
and for the rest of the queries the oracle answers are the same, the
claim follows. !

First we de#ne a class of functions which is used to prove the
lower bound. Let D1, D2, . . . , DA be a set of)-low queries (where
+ = 2#) such that D1 < D2 < · · · < DA . For every 1 ≤ 3 ≤ +, we
de#ne a string 6) as follows: for 1 ≤ F ≤ 3 , the D ? th bit of 6) is
1 and all remaining bits are 0. Consider the "-dimensional cube
with side length +, partitioned into +% -many unit cubes. Let ΔA

be the set of all vertices/lattice points of the partition. Consider
a vertex 1& = 〈21, . . . ,2% 〉 of the partition. We associate a string
1&! = 681 · · · 68# to 1& as before.
As before, we de#ne an auxiliary coloring '8/! : [0, 1]" →

{1, 2, . . . ," + 1} as follows. For 1G = 〈G1, . . . , G% 〉,

'8/! (〈G1, . . . , G% 〉) =

{

3 : G1, . . . , G)−1 ≥ 1, G) < 1

" + 1 : G1, . . . , G% ≥ 1

We de#ne a coloring of the partition of the hypercube based
on '8/! . Let 1& be a vertex of the partition, and let 1G be the most
probable output of !(&!).

' (1&) = '8/! (1G)
The proof of the following lemma is similar to the proof of

Lemma 7.7.

Lemma 7.11. ' is a proper coloring of the partition of the hyper-
cube.

By the Cubic Sperner Lemma, there exists a unit cube where all
" + 1 colors appear on the vertices. Consider such a unit cube and
let 1&1, . . . , 1&%+1 be vertices of the unit cube such that ' (1&)) = 3 . Let
1G1, . . . , 1G%+1 be the most likely outputs of!*1" , . . . ,!*#+1" . Since the
colors of 1&1, . . . , 1&%+1 di!er from each other, it must be the case that
all 1G)s 1 ≤ 3 ≤ " + 1 are distinct.

Lemma 7.12. For every 3, F : E<= (!*!" ,!*&") ≤ ") .

Proof of Lemma. Let 1&) = 〈21, . . . ,2% 〉 and 1& ? = 〈J1, . . . ,J% 〉.
Note that 2) and J) di!er by at most 1 as 1&) and 1& ? are the vertices
of the same unit hypercube. Note that &)! = 681 · · · 68# and & ?! =

〈6B1 · · · 6B# 〉. Since 2) and J) di!er by at most 1, the strings 68! and
6B! di!er on at most one index D which is a)-low query. Hence by
triangle inequality and Lemma 7.10, we obtain that

E<= (!*!" ,!*&") ≤ ")

!

Since ! is "-pseudodeterministic and 1G) is the most probable
output of !*!" for all 1 ≤ 3 ≤ " + 1, we have

Pr[!*!" = 1G)] ≥
" + 1

" (" + 2)

By Lemma 7.12, for all 2 ≤ F ≤ " + 1,

Pr[!*1" = 1G ?] ≥
" + 1

" (" + 2)
− ")

Thus

Pr[!*1" ∈ {1G1, · · · , 1G%+1}] ≥
(" + 1)2

" (" + 2)
− "2)

We chose) <
1

%2 (%2+2%) , and the above probability is > 1 leading

to a contradiction. Thus ! cannot be "-pseudodeterministic if it is
making D (#) ≤ (1 − 21)#) non-adaptive queries. For large enough
#, we have D (#) ≤ #/"4. !

8 FUTURE DIRECTIONS
It would be interesting to further explore the connections between
pseudodeterminism and probabilistic complexity classes. Does a
pseudodeterministic algorithm for APEP imply that MA can be
derandomized to NP? More generally, does a pseudodeterministic
algorithm for APEP imply a safe pseudodeterministic algorithm
for APEP? The most important open question is to design a pseu-
dodeterministic algorithm for APEP. For query complexity lower
bounds, it is easy to see that the nonadaptive lower bound implies
a Ω(log#) lower bound in the adaptive query model. Improving
this lower bound is an interesting open problem. We conjecture
that the correct lower bound in the adaptive query model is indeed
Ω(#).

9 DEDICATION TO ALAN SELMAN (1941–2021)
We dedicate this work to Alan Selman who made seminal contri-
butions to both notions studied in this work—promise problems
and pseudodeterminism—in the context of nondeterministic com-
putations. As mentioned in the introduction, the notion of promise
problems continues to play a critical role in several areas. Here we
brie$y discuss Alan’s contributions to pseudodeterminism. The no-
tion of pseudodeterminism introduced by Gat and Goldwasser [14]
asks whether a probabilistic computation can be made to output a
canonical value. Alan and his co-authors considered an analogous
question in the context of nondeterministic computations. Let , be
a partial multi-valued function. We say that , is in NPSV if there
is a nondeterministic polynomial-time machine / such that for
every % , if , (%) ≠ ∅, then there is a canonical value &! ∈ , (%)
such that every path of/ either outputs &! or ⊥, and at least one
path outputs &! . If , (%) = ∅, then every path of/ outputs ⊥. Thus,
NPSV captures pseudodeterminism in the context of nondetermin-
istic computations. A natural question that arises is whether ,SAT
is in NPSV? Here ,SAT (C) is the set of satisfying assignment of
C if C ∈ SAT and is unde#ned if C ∉ SAT. A fundamental result
due to Alan and his coauthors is that if ,SAT is in NPSV, then the
polynomial-time hierarchy collapses [28].

In latter works, Alan and his co-authors generalized NPSV to
capture multi-pseudodeterminism in the context of nondeterminis-
tic computations. A multivalued function , is in NPkV, if there is a
nondeterministic polynomial-time machine/ such that for every
% , if , (%) ≠ ∅, then there is set *! of size at most " such that every
path of/ outputs a value in *! or ⊥, and at least one path outputs
a value from *! . If , (%) = ∅, then every path of the / outputs ⊥.
Alan and his co-authors generalized the above result to show that if

1564

STOC ’22, June 20–24, 2022, Rome, Italy Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

every function inNP(k + 1)V is inNPkV, then the polynomial-time
hierarchy collapses [36].

On a personal note, Pavan would like to express his gratitude
to Alan for introducing him to the beautiful world of complexity
theory and for stressing the signi#cance of coming up with “simpler
proofs”.

ACKNOWLEDGMENTS
We thank the reviewers for helpful comments and suggestions. We
thank Jamie Radcli!e for discussions related to Sperner’s lemma
and related topics. This work is supported in part by NSF grants
1934884, 2130608, and 2130536.

REFERENCES
[1] M. Agrawal, N. Kayal, and N. Saxena. 2004. PRIMES in P. Ann. of Math. (2) 160, 2

(2004), 781–793.
[2] Nima Anari and Vijay V. Vazirani. 2020. Matching Is as Easy as the Decision

Problem, in the NC Model. In 11th Innovations in Theoretical Computer Science
Conference, ITCS (LIPIcs, Vol. 151). 54:1–54:25.

[3] Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In 33rd Int. Conf.
on Soft. Engg. (ICSE). 1–10.

[4] S. Arora and B. Barak. 2009. Computational Complexity - A Modern Approach.
Cambridge University Press.

[5] Boaz Barak. 2002. A Probabilistic-Time Hierarchy Theorem for "Slightly Non-
uniform" Algorithms. In Randomization and Approximation Techniques, 6th Inter-
national Workshop, RANDOM 2002 (LNCS, Vol. 2483). Springer, 194–208.

[6] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. 1996. Oracles and
Queries That Are Su"cient for Exact Learning. J. Comput. Syst. Sci. 52, 3 (1996),
421–433.

[7] J-Y. Cai. 2001. C'2 ⊆ DEE(' . In 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001. 620–629.

[8] J. Y. Cai, R. Lipton, L. Longpré, M. Ogihara, K. Regan, and D. Sivakumar. 1995.
Communication Complexity of Key Agreement on Small Ranges. In STACS. 38–
49.

[9] Peter Dixon, A. Pavan, and N. V. Vinodchandran. 2018. On Pseudodeterministic
Approximation Algorithms. In 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018 (LIPIcs, Vol. 117). 61:1–61:11.

[10] Peter Dixon, A. Pavan, and N. V. Vinodchandran. 2021. Complete Problems
for Multi-Pseudodeterministic Computations. In 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021 (LIPIcs, Vol. 185). 66:1–
66:16.

[11] Peter Dixon, Aduri Pavan, and N. V. Vinodchandran. 2021. Promise Problems
Meet Pseudodeterminism. Electron. Colloquium Comput. Complex. 28 (2021), 43.
https://eccc.weizmann.ac.il/report/2021/043

[12] Shimon Even, Alan L. Selman, and Yacov Yacobi. 1984. The Complexity of Promise
Problems with Applications to Public-Key Cryptography. Inf. Control. 61, 2 (1984),
159–173.

[13] Eran Gat. 2009. On the canonization of probabilistic algorithms, MS Thesis,
Weizmann Institute of Science.

[14] E. Gat and S. Goldwasser. 2011. Probabilistic Search Algorithms with Unique
Answers and Their Cryptographic Applications. Electronic Colloquium on Com-
putational Complexity (ECCC) 18 (2011), 136.

[15] Michel Goemans, Sha# Goldwasser, and Dhiraj Holden. 2019. Doubly-E"cient
Pseudo-Deterministic Proofs. arXiv (2019).

[16] Oded Goldreich. 2006. On Promise Problems: A Survey. In Theoretical Computer
Science, Essays in Memory of Shimon Even (Lecture Notes in Computer Science,
Vol. 3895), Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman (Eds.).
Springer, 254–290.

[17] Oded Goldreich. 2011. In a World of P=BPP. In Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computation,
Oded Goldreich (Ed.). Lecture Notes in Computer Science, Vol. 6650. Springer,
191–232.

[18] Oded Goldreich. 2019. Multi-pseudodeterministic algorithms. Electronic Collo-
quium on Computational Complexity (ECCC) 26 (2019), 12.

[19] O. Goldreich, S. Goldwasser, and D. Ron. 2013. On the possibilities and limitations
of pseudodeterministic algorithms. In Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013. 127–138.

[20] O. Goldreich and D. Zuckerman. 1997. Another proof that BPP subseteq PH (and
more). Electronic Colloquium on Computational Complexity (ECCC) 4, 45 (1997).

[21] Oded Goldreich and David Zuckerman. 2011. Another Proof That BPP ⊆ PH (and
More). In Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation, Oded Goldreich (Ed.). Lecture Notes in
Computer Science, Vol. 6650. Springer, 40–53.

[22] S. Goldwasser and O. Grossman. 2017. Bipartite Perfect Matching in Pseudo-
Deterministic NC. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland. 87:1–87:13.

[23] S. Goldwasser, O. Grossman, and D. Holden. 2017. Pseudo-deterministic Proofs.
CoRR abs/1706.04641 (2017).

[24] Sha# Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodru!.
2020. Pseudo-Deterministic Streaming. In 11th Innovations in Theoretical Com-
puter Science Conference, ITCS (LIPIcs, Vol. 151), Thomas Vidick (Ed.). 79:1–79:25.

[25] Sha# Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam.
2021. On the Pseudo-Deterministic Query Complexity of NP Search Problems. In
36th Computational Complexity Conference, CCC 2021 (LIPIcs, Vol. 200), Valentine
Kabanets (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 36:1–36:22.

[26] O. Grossman. 2015. Finding Primitive Roots Pseudo-Deterministically. Electronic
Colloquium on Computational Complexity (ECCC) 22 (2015), 207.

[27] Ofer Grossman and Yang P. Liu. 2019. Reproducibility and Pseudo-Determinism
in Log-Space. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019.
SIAM, 606–620.

[28] Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman.
1996. Computing Solutions Uniquely Collapses the Polynomial Hierarchy. SIAM
J. Comput. 25, 4 (1996), 697–708. https://doi.org/10.1137/S0097539794268315

[29] Dhiraj Holden. 2017. A Note on Unconditional Subexponential-time Pseudo-
deterministic Algorithms for BPP Search Problems. CoRR abs/1707.05808 (2017).

[30] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. 2002. In search of
an easy witness: exponential time vs. probabilistic polynomial time. J. Comput.
Syst. Sci. 65, 4 (2002), 672–694.

[31] Russell Impagliazzo and Avi Wigderson. 1997. P = BPP if E Requires Exponential
Circuits: Derandomizing the XOR Lemma. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing. ACM, 220–229.

[32] R. Kannan. 1982. Circuit-size Lower bounds and Non-reducibility to Sparse sets.
Information and Control 55 (1982), 40–56.

[33] J. Köbler and O. Watanabe. 1998. New Collapse Consequences of NP Having
Small Circuits. SIAM J. Comput. 28, 1 (1998), 311–324.

[34] H. W. Kuhn. 1960. Some Combinatorial Lemmas in Topology. IBM Journal of
Research and Development 4, 5 (1960), 518–524. https://doi.org/10.1147/rd.45.0518

[35] Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. 2021. Pseudodeterministic
Algorithms and the Structure of Probabilistic Time. In STOC. To Appear. ECCC
Tech Report 21-039.

[36] Ashish V. Naik, John D. Rogers, James S. Royer, and Alan L. Selman. 1998. A
Hierarchy Based on Output Multiplicity. Theor. Comput. Sci. 207, 1 (1998), 131–
157.

[37] I. Oliveira and R. Santhanam. 2017. Pseudodeterministic constructions in subexpo-
nential time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017. 665–677.

[38] Igor Carboni Oliveira and Rahul Santhanam. 2018. Pseudo-Derandomizing Learn-
ing and Approximation. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2018 (LIPIcs, Vol. 116).
55:1–55:19.

[39] Amit Sahai and Salil P. Vadhan. 2003. A complete problem for statistical zero
knowledge. J. ACM 50, 2 (2003), 196–249.

[40] R. Santhanam. 2009. Circuit Lower Bounds for Merlin–Arthur Classes. SIAM J.
Comput. 39, 3 (2009), 1038–1061.

[41] N. V. Vinodchandran. 2005. A note on the circuit complexity of PP. Theor. Comput.
Sci. 347, 1-2 (2005), 415–418.

[42] Laurence A Wolsey. 1977. Cubical sperner lemmas as applications of generalized
complementary pivoting. Journal of Combinatorial Theory, Series A 23, 1 (1977),
78–87. https://doi.org/10.1016/0097-3165(77)90081-4

1565

https://eccc.weizmann.ac.il/report/2021/043
https://doi.org/10.1137/S0097539794268315
https://doi.org/10.1147/rd.45.0518
https://doi.org/10.1016/0097-3165(77)90081-4

	Abstract
	1 Introduction
	1.1 Circuit Acceptance Probability Estimation Problem (APEP)
	1.2 Multi-Pseudodeterminism
	1.3 Organization

	2 Our Results
	2.1 Pseudodeterminism and Promise Problems
	2.2 Consequences of the Equivalences
	2.3 Completeness for Poly-Pseudodeterminism
	2.4 Equivalence of Probabilistic Search Problems
	2.5 Query Complexity Lower Bounds for Multi-Pseudodeterminism

	3 Preliminaries
	3.1 Pseudodeterminism
	3.2 Promise Problems
	3.3 Search Problems
	3.4 Query Complexity

	4 Pseudodeterminism and Promise Problems
	4.1 Main Equivalence
	4.2 Safe Pseudodeterministic Algorithms
	4.3 Equivalence in Space Bounded Computations

	5 Consequences of the Equivalences
	5.1 Circuit Lower Bounds and Derandomization
	5.2 Complete Problems and Hierarchy Theorems
	5.3 Completeness for Poly-Pseudodeterminism

	6 Equivalence of Probabilistic Search Problems
	7 Query Complexity Lowerbounds
	7.1 Lower Bound in the Uniform Query Model
	7.2 Lower Bound in the Non-Adaptive Query Model

	8 Future Directions
	9 Dedication to Alan Selman (1941–2021)
	References

