Pseudodeterminism: Promises and Lowerbounds

Peter Dixon”
tooplark@gmail.com
Ben-Gurion University of the Negev
Be’er Sheva, Israel

Jason Vander Woude
jasonvw@huskers.unl.edu
University of Nebraska-Lincoln
Lincoln, USA

ABSTRACT

A probabilistic algorithm A is pseudodeterministic if, on every input,
there exists a canonical value that is output with high probability. If
the algorithm outputs one of k canonical values with high probabil-
ity, then it is called a k-pseudodeterministic algorithm. In the study
of pseudodeterminism, the ACCEPTANCE PROBABILITY ESTIMATION
ProBLEM (APEP), which is to additively approximate the acceptance
probability of a Boolean circuit, is emerging as a central computa-
tional problem. This problem admits a 2-pseudodeterministic algo-
rithm. Recently, it was shown that a pseudodeterministic algorithm
for this problem would imply that any multi-valued function that
admits a k-pseudodeterministic algorithm for a constant k (includ-
ing approximation algorithms) also admits a pseudodeterministic
algorithm (Dixon, Pavan, Vinodchandran; ITCS 2021).

The contribution of the present work is two-fold. First, as our
main conceptual contribution, we establish that the existence of a
pseudodeterministic algorithm for APEP is fundamentally related
to the gap between probabilistic promise classes and the corre-
sponding standard complexity classes. In particular, we show the
following equivalence: APEP has a pseudodeterministic approxima-
tion algorithm if and only if every promise problem in PromiseBPP
has a solution in BPP. A conceptual interpretation of this equiva-
lence is that the algorithmic gap between 2-pseudodeterminism and
pseudodeterminism is equivalent to the gap between PromiseBPP
and BPP. Based on this connection, we show that designing pseu-
dodeterministic algorithms for APEP leads to the solution of some
open problems in complexity theory, including new Boolean cir-
cuit lower bounds. This equivalence also explains how multi-
pseudodeterminism is connected to problems in SearchBPP. In
particular, we show that if APEP has a pseudodeterministic algo-
rithm, then every problem that admits a k(n)-pseudodeterministic
algorithm (for any polynomial k) is in SearchBPP and admits a
pseudodeterministic algorithm. Motivated by this connection, we

“Part of the work done while the author was at Iowa State University

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

STOC ’22, June 20-24, 2022, Rome, Italy

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9264-8/22/06.
https://doi.org/10.1145/3519935.3520043

1552

A. Pavan
pavan@cs.iastate.edu
Iowa State University

Ames, USA

N. V. Vinodchandran
vinod@cse.unl.edu
University of Nebraska-Lincoln
Lincoln, USA

also explore its connection to probabilistic search problems and es-
tablish that APEP is complete for certain notions of search problems
in the context of pseudodeterminism.

Our second contribution is establishing query complexity lower
bounds for multi-pseudodeterministic computations. We prove
that for every k > 1, there exists a problem whose (k + 1)-
pseudodeterministic query complexity, in the uniform query model,
is O(1) but has a k-pseudodeterministic query complexity of Q(n),
even in the more general nonadaptive query model. A key contri-
bution of this part of the work is the utilization of Sperner’s lemma
in establishing query complexity lower bounds.

CCS CONCEPTS

« Theory of computation — Pseudorandomness and deran-
domization; Complexity classes; Circuit complexity; Oracles
and decision trees.

KEYWORDS

probabilistic computations, pseudodeterminism, promise problems,
circuit lower bounds, completeness, hierarchy theorems, query
complexity

ACM Reference Format:

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran.
2022. Pseudodeterminism: Promises and Lowerbounds. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC
'22), June 20-24, 2022, Rome, Italy. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3519935.3520043

1 INTRODUCTION

Probabilistic algorithms lack reproducibilty compared to their de-
terministic counterparts. Two different runs of a probabilistic algo-
rithm can produce two different outputs. For example, consider the
problem of generating an n-bit prime number. A straightforward
probabilistic algorithm for this problem randomly picks an n-bit
positive integer and outputs it if it is a prime number. However, two
different simulations of this algorithm will most likely produce two
different prime numbers. Can we design a probabilistic algorithm
that consistently outputs the same prime number on different runs
of the algorithm? Although there is a polynomial-time determinis-
tic algorithm for testing primality [1], there are no deterministic
algorithms known for the prime generation problem. There are
many other computational problems for which the only efficient
algorithms known are non-reproducible probabilistic algorithms.
This deficiency led Gat and Goldwasser to introduce the notion


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1145/3519935.3520043

STOC ’22, June 20-24, 2022, Rome, Italy

of pseudodeterministic algorithms [14]. (originally termed Bellagio
algorithms in their paper). A probabilistic algorithm A is pseudo-
deterministic if for every x, there exists a canonical value vy such
that Pr[A(x) = vyx] is high. Unless otherwise stated, a pseudodeter-
ministic algorithm is assumed to run in polynomial time.

Pseudodeterministic algorithms are appealing in several con-
texts, such as distributed computing and cryptography, where it
is desirable that different invocations of a probabilistic algorithm
by different parties produce the same output. For example, in cryp-
tography, it is important to share a common key among multiple
parties. It is desirable to have a mechanism to share a common
key without communication and shared randomness. Reproducibil-
ity guaranteed by pseudodeterminism is a sought-after feature in
software engineering. In enterprise software products, the repro-
ducibility of computational results has long been considered the
gold standard. Applications that cannot reproduce their results on
multiple runs may not be trusted by users and may be viewed as an
error in the code. The need for reproducibility in software develop-
ment and the associated challenges involved has been highlighted
in the literature, for example [3].

Since its introduction, the notion of pseudodeterminism has re-
ceived considerable attention from the theory community. One line
of research focused on designing pseudodeterministic algorithms
for various natural computational problems. Gat and Goldwasser
designed polynomial-time pseudodeterministic algorithms for alge-
braic problems such as finding quadratic non-residues and finding
non-roots of multivariate polynomials [14]. Goldwasser and Gross-
man exhibited a pseudodeterministic NC algorithm for computing
matchings in bipartite graphs [22]. Anari and Vazirani [2] improved
this result to general graphs. Grossman designed a pseudodeter-
ministic algorithm for computing primitive roots whose runtime
matches the best known Las Vegas algorithm [26]. Oliveira and San-
thanam [37] designed a sub-exponential time pseudodeterministic
algorithm for generating primes that works at infinitely many in-
put lengths. Goldreich, Goldwasser and Ron [19], and Holden [29],
investigated the possibility of obtaining pseudodeterministic algo-
rithms for BPP search problems. Other lines of work extended the
notion of pseudodeterminism to several other scenarios including
interactive proofs, streaming and sublinear algorithms, learning al-
gorithms, influential bit algorithms, and multi-pseudodeterministic
algorithms [15, 18, 19, 23, 24, 27, 38]. The works of Goldreich, Gold-
wasser and Ron [19], and Goldwasser, Grossman, Mohanty, and
Woodruff [24] exhibited impossibility results on the existence of
pseudodeterministic algorithms in sub-linear and streaming com-
putation models.

In complexity theory, the notion of pseudodeterminism clari-
fies the relationship between search and decision problems in the
context of randomized computations. It is not known whether de-
randomizing BPP to P implies derandomization of probabilistic
search algorithms. However, BPP = P implies every search algo-
rithm that is pseudodeterministic can be derandomized [19].

1553

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

1.1 Circuit Acceptance Probability Estimation
Problem (APEP)

APEP is the following computational problem!. Given a Boolean
circuit C : {0,1}" — {0, 1}, additively estimate the acceptance
probability of C. This problem has a simple and efficient proba-
bilistic algorithm. Indeed, the algorithm that randomly samples
O(gi2 log %) strings from {0, 1}"* and outputs the fraction of strings
on which circuit C evaluates to 1 is an ¢-additive approximation
of the acceptance probability of C with probability > 1 — §. How-
ever, this standard algorithm is not pseudodeterministic: different
runs of this algorithm will output different correct approximations.
Does there exist a pseudodeterministic algorithm for APEP? This
computational question is emerging as a central question in the
study of pseudodeterminism [10, 35, 38]. In [10], it was shown
that APEP is a complete problem in the context of pseudodetermin-
ism [10]: if there is a pseudodeterministic algorithm for APEP, then
every problem in SearchBPP, including the prime generation prob-
lem mentioned earlier, admits pseudodeterministic algorithms, and
APEP admits a pseudodeterministic polynomial algorithm if and
only every efficient approximation algorithm can be made pseu-
dodeterministic. Thus APEP captures the challenge of making a
large class of randomized algorithms pseudodeterministic. While
designing a pseudodeterministic algorithm for APEP is an open
problem, Oliveira and Santhanam have designed a subexponential-
time pseudodeterministic algorithm for APEP that is correct on
average at infinitely many input lengths [38]. The significance of
the above question in computational complexity theory is emerging
in very recent works. Lu, Oliviera, and Santhanam [35] explored
the relationship between pseudodeterministic algorithms for APEP
and the structure of probabilistic polynomial time classes. In partic-
ular, they showed that a pseudodeterministic algorithm for APEP
(even on average) will result in hierarchy theorems for bounded
probabilistic polynomial-time classes (BPTIME).

Our first set of results establishes that the question of designing
pseudodeterministic algorithms for APEP is intricately connected to
several well-studied notions and questions in complexity theory. In
particular, one of our main conceptual contributions is to establish
a crisp connection between the question of designing pseudodeter-
ministic algorithms for APEP and the complexity of probabilistic
promise problems. Based on this connection, we relate pseudode-
terminism to circuit lower bounds, derandomization, hierarchy
theorems, completeness, and probabilistic search problems.

1.2 Multi-Pseudodeterminism

It is easy to observe that the above-mentioned probabilistic algo-
rithm for APEP can be modified to output two canonical values with
very high probability. This is done by rounding the value computed
to the nearest multiple of ¢. The resulting algorithm has an accuracy
guarantee of 2¢. This rounding trick can be used for converting
any additive approximation algorithm to a 2-pseudodeterministic
algorithm, a probabilistic polynomial-time algorithm that outputs
two canonical values with high probability. To capture this, Gol-
dreich introduced the notion of multi-pseudodeterminism [18]. A
k-pseudodeterministic algorithm is a probabilistic-polynomial time

!n the literature, APEP is also referred to as CAPP.



Pseudodeterminism: Promises and Lowerbounds

algorithm that, for every input x, outputs a value from a set Sy

of size at most k with probability at least % The probability

bound % is crucial in the definition. See [18] for justification.
Given that APEP admits a straightforward 2-pseudodeterministic
algorithm, the difficulty in designing a pseudodeterministic algo-
rithm for APEP is intriguing. In addition, the results we establish
in the first part of the paper show that designing a pseudodeter-
ministic algorithm for APEP will lead to the resolution of some
long-standing open questions in complexity theory. Thus, it is im-
portant to understand the gap between multi-pseudodeterminism
and pseudodeterminism. Is 2-pseudodeterminism more powerful
than pseudodeterminism? More generally, are there multivalued
functions that admit (k + 1)-pseudodeterministic algorithms but
do not admit k-pseudodeterministic algorithms?

Our second set of results establishes an exponential separation be-
tween (k+1)-pseudodeterminism and k-pseudodeterminism in certain
query complexity models. In particular, as one of our main results,
we establish that for every constant k > 1, there exists a function
whose (k + 1)-pseudodeterministic uniform query complexity is
constant, but its k-pseudodeterministic non-adaptive query com-
plexity is Q(n). We utilize Sperner’s lemma to establish these lower
bounds.

REMARK. Pseudodeterminism can be seen as a finer notion of
derandomization. The study of pseudodeterminism is only rele-
vant in the scenario where we are unable to construct pseudo-
random generators. Indeed, if pseudorandom generators that fool
linear-size Boolean circuits exist, various classes of probabilistic
algorithms, including probabilistic search algorithms and multi-
pseudodeterministic algorithms can be made deterministic (and
hence trivially pseudodeterministic). Thus it is only meaningful to
study the notion of pseudodeterminism without assumptions about
the existence of pseudorandom generators.

1.3 Organization

The rest of the paper is organized as follows. In the next section,
we give an overview of the results we establish in this paper. In
Section 3, we introduce the necessary notation and definitions. In
Section 4, we show our main conceptual contribution that equates
the existence of pseudodeterministic algorithms for APEP to prob-
abilistic promise problems. In Section 5, we show consequences of
the equivalence theorems established in Section 4. In Section 6, we
show equivalence between probabilistic search problems and the
existence of pseudodeterministic algorithms for APEP. The equiv-
alence and implication results that we establish in this paper are
depicted in Figure 1. In Section 7 we establish lower bounds in the
query complexity model. Finally, in Section 8 we discuss some open
problems that are raised by this work.

2 OUR RESULTS
2.1 Pseudodeterminism and Promise Problems

Our main conceptual contribution is a new connection between
the relatively new notion of pseudodeterminism and the well estab-
lished notion of promise problems. The notion of promise problems
was introduced in the work of Even, Selman, and Yacobi in the
1980’s [12]. A promise problem IT is a pair of disjoint sets (IIy, IT,)

1554

STOC 22, June 20-24, 2022, Rome, Italy

of instances. An algorithm solving II is only required to distinguish
instances in IT; from instances in I1,. While much of complexity
theory is based on language recognition problems (where every
problem instance is either in ITy, or in I1,,), the study of promise prob-
lems turned out be an indispensable tool that led to new insights in
many areas in theoretical computer science. Promise problems arise
naturally in several settings such as hardness of approximations,
public-key cryptography, derandomization, and completeness. For
example, typically, hardness of approximation results are obtained
by reducing NP to an appropriate promise problem (often called
a gap problem). We refer the reader to the comprehensive survey
article by Goldreich [16] for a treatment on the necessity and wide-
ranging applicability of promise problems.

Many significant open questions regarding probabilistic com-
plexity classes can be answered when we consider their promise
versions. Does derandomization of BPP imply a derandomization
of MA?; does derandomization of BPP imply Boolean circuit lower
bounds?; does derandomization of the one-sided-error class RP im-
ply derandomization of BPP?; do probabilistic complexity classes
have complete problems? As of now, we do not know the answers
to any of these questions. However, all these questions have an
affirmative answer if we consider the promise-version of the cor-
responding complexity classes. For example, it is known that de-
randomizing PromiseBPP (refer to Section 3 for definitions of the
promise classes) implies a derandomization of MA [21], and also
implies Boolean circuit lower bounds [30]. It is known that de-
randomizing PromiseRP derandomizes BPP. Similarly, there exist
promise problems that are complete for classes such as PromiseBPP,
PromiseRP, and SZK [39].

The role of promise problems in circumventing certain defi-
ciencies of language recognition problems is intriguing. A way to
formalize the gap between promise problems and languages is by
considering solutions to promise problems. A language L C {0, 1}"
is a solution to a promise problem IT = (TI,,II,) if I, € L and
L NI, = 0. For a complexity class C, we say that PromiseC = C if
every promise problem in PromiseC has a solution in C. Intuitively,
when PromiseC equals C, then there is no gap between the class C
and its promise counterpart.

A contribution of this paper is the discovery that the gap between
PromiseBPP and BPP can be exactly characterized by the existence
of pseudodeterministic algorithms for APEP.

THEOREM 2.1. APEP has a pseudodeterministic approximation
algorithm if and only if PromiseBPP = BPP.

APEP has an efficient 2-pseudodeterministic algorithm, so the
algorithmic gap between 2-pseudodeterminism and pseudodeter-
minism in the context of APEP (and more generally in the context
of approximation algorithms) precisely captures the gap between
PromiseBPP and BPP.

We also show that a similar equivalence between pseudodeter-
minism and promise problems happens in other settings includ-
ing zero-error probabilistic classes and randomized space bounded
classes. In particular, we show that the notion of safe pseudodeter-
minism can be used to characterize the gap between PromiseBPP
and the zero-error complexity class ZPP. These equivalence results
have implications in the derandomization of MA which is discussed
in the next subsection.



STOC ’22, June 20-24, 2022, Rome, Italy

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

PrSearchBPP has PD

— T

‘ WeakSearchBPP has PD

PromiseBPP = ZPP |

3 | APEP has PD | ¢

PolyPD has PD

PromiseBPP = BPP

APEP has safe PD

NP ¢ SIZE(nk)

—~
l
o~

L MA = NP

‘ ZPP has complete problems and hierarchy theorems ‘

MA ¢ SIZE(nF)

SearchBPP has PD

L '%

‘ MA has complete problems and Hierarchy theorems ‘

‘ BPP has complete problems and Hierarchy theorems [35] ‘

Figure 1: Equivalences and Implications established.

2.2 Consequences of the Equivalences

The equivalences we establish give rise to new results that connect
pseudodeterminism to circuit lower bounds, probabilistic hierarchy
theorems, SearchBPP, and multi-pseudodeterminism.

Circuit Lower Bounds. Establishing lower bounds against fixed
polynomial-size circuits has a long history in complexity theory. In
this line of work, the focus is on establishing upper bounds on the
complexity of languages that cannot be solved by any Boolean cir-
cuit of a fixed polynomial size. For a constant k, let SIZE(n*) denote
the set of languages that can be solved using Boolean circuits of
size O(n¥). One of the central open questions in this area is to show
that NP ¢ SIZE(n*) for any k. That is, to show that for any k there
is a language in NP that cannot be solved by Boolean circuits of size
O(n%). Over the years, researchers have made steady progress on
this question. Kannan [32] showed that ZS g SIZE(n*) for any k.
Later, using techniques from learning theory, the Zg upper bound
was improved to ZPPNP [6, 33] and later to 52P [7]. Vinodchan-
dran showed that the class PP ¢ SIZE(n*) [41]. Santhanam [40]
showed that further progress can be made if we relax the complex-
ity classes to also include promise classes. In particular, he showed
that PromiseMA does not have fixed polynomial-size circuits. It is
not known whether this result can be improved to the traditional
class MA. Showing that MA ¢ SIZE(n*) for any k is a significant
open question in complexity theory. We show that this problem can
in fact be solved by designing a pseudodeterministic algorithm for

1555

APEP. In particular, as a corollary to our main equivalence theorem,
we show that if APEP has a pseudodeterministic algorithm then
MA ¢ SIZE(nF).

THEOREM 2.2. If APEP admits a pseudodeterministic approxima-
tion algorithm, then for any k, MA ¢ SIZE(nk).

In fact, we show that under the assumption, we get a slightly
better result that MA = 3 - BPP (please refer to Section 3 for a
definition of 3- BPP) and thus 3 - BPP ¢ SlZE(nk). The above
result strengthens the connection between pseudodeterministic
algorithms and circuit lower bounds established in [9], where it
was shown that designing a BPP[t\‘tP pseudodeterministic algorithm
for problems in #NP would yield super-linear circuit lower bounds
for languages in ZPP’;‘tP.

Derandomization. A significant open problem in complexity the-
ory is whether MA can be derandomized to NP. It is known that any
pseudorandom generator that derandomizes PromiseBPP can also
derandomize MA to NP [20] and such pseudorandom generators are
known to exist if E has problems with 2¢"-circuit complexity [31].
We show that designing a certain type of pseudodeterministic al-
gorithm for APEP will lead to a derandomization of MA to NP. A
pseudodeterministic algorithm for APEP is called safe if the algo-
rithm is allowed to output L, never outputs a wrong approximation,
and outputs a canonical value with a probability at least 2/3. Safe
pseudodeterministic algorithms are considered explicitly in the
works of Goldreich, Goldwasser and Ron [19] and implicitly in [13].



Pseudodeterminism: Promises and Lowerbounds

THEOREM 2.3. If APEP has a safe pseudodeterministic approxima-
tion algorithm, then MA = NP and NP ¢ SIZE(nk).

The above theorem is a consequence of the equivalence that
we show: APEP has a safe pseudodeterministic approximation al-
gorithm if and only if PromiseBPP = ZPP. Combining this with
Theorem 2.2, we obtain that if APEP has safe pseudodeterministic
algorithm, then NP ¢ SIZE(nF).

This theorem presents an alternate hypothesis that can deran-
domize MA to NP. We observe that the hypothesis that “APEP has a
safe pseudodeterministic algorithm” is potentially weaker than the
hypothesis “E does not have 2¢"-size circuits”. If E does not have 2¢"-
size circuits, then APEP has deterministic algorithms (and hence
trivially have safe pseudodeterministic algorithms). Moreover, in
the relativized world where EXP equals ZPP, EXP has polynomial-
size circuits and APEP has safe-pseudodeterministic algorithms.

2.3 Completeness for Poly-Pseudodeterminism

In [10], it is shown that, in the context of pseudodeterminism, APEP
is complete for functions that admit k-pseudodeterministic algo-
rithms for any constant k. That is, multi-valued functions that
admit k-pseudodeterministic algorithms for any constant k have
pseudodeterministic algorithms if and only if APEP admits a pseu-
dodeterministic algorithm. It was not clear how the techniques
used in [10] can be extended to show similar results for functions
that admit k-pseudodeterministic for a non-constant k. Here we im-
prove this result to functions that admit k(n)-pseudodeterministic
algorithms for any polynomial k(n).

THEOREM 2.4. APEP admits a pseudodeterministic approximation
algorithm if and only if every multi-valued function f that admits a
k(n)-pseudodeterministic algorithm for a polynomial k(n) has pseu-
dodeterministic algorithms.

We show this by showing that under the assumption APEP ad-
mits a pseudodeterministic approximation algorithm, every multi-
valued function f that admits a k (n)-pseudodeterministic algorithm
for a polynomial k(n) is in SearchBPP. Earlier, in [10], it was shown
that this assumption implies every problem in SearchBPP has pseu-
dodeterministic algorithms.

2.4 Equivalence of Probabilistic Search
Problems

A search problem is a relation R C * x 3*. Given x, a string y is a
witness for x, if (x,y) € R. In standard definition, a relation R is in
SearchBPP if R € BPP and there is a probabilistic polynomial-time
machine M that on an input x, outputs a y such that (x,y) € R
with high probability (if such y exists). However, earlier works have
considered generalized versions of SearchBPP as they appear to be
more useful in certain contexts. In particular, these works have stud-
ied variants that are obtained by weakening the requirement that
that R € BPP (which we call WeakSearchBPP) [35] or considering
promise versions (which we call PrSearchBPP) [17].

A significant open question in pseudodeterminism is whether
SearchBPP has pseudodeterministic algorithms [14, 19]. One of
our contributions is to clarify the relations among various no-
tions of SearchBPP in regard to pseudodeterminism and show that

1556

STOC 22, June 20-24, 2022, Rome, Italy

APEP has pseudodeterministic algorithms if and only if the above-
mentioned variants of SearchBPP have pseudodeterministic algo-
rithms.

THEOREM 2.5. The following statements are equivalent.

(1) APEP admits a pseudodeterministic approximation algorithm.
(2) PrSearchBPP admits pseudodeterministic algorithms.
(3) WeakSearchBPP admits pseudodeterministic algorithms.

2.5 Query Complexity Lower Bounds for
Multi-Pseudodeterminism

The above set of results indicate that there is a significant gap be-
tween 2-pseudodeterministic algorithms and pseudodeterministic
algorithms: on the one hand, there is a simple 2-pseudodeterministic
algorithm for APEP. However, designing a pseudodeterministic al-
gorithm for APEP will lead to many significant results in com-
plexity theory. Thus, it is important to investigate the gap be-
tween multi-pseudodeterminism and pseudodeterminism. In gen-
eral, we ask the following: Are there multivalued functions that
admit (k + 1)-pseudodeterministic algorithms but do not admit
k-pseudodeterministic algorithms in some computational setting?
We investigate this question in the query complexity model.

Goldreich, Goldwasser and Ron [19] studied the capabilities and
limitations of pseudodeterministic algorithms in the query com-
plexity model. Here, the underlying algorithm has oracle access to
the bits of the input string x. The complexity of the algorithm is
measured in terms of the number of queries made to the input. They
showed that there exists a search problem R that can be solved using
a constant number of queries by a probabilistic algorithm, but every
pseudodeterministic algorithm has query complexity Q(n). It turns
out that there is a 2-pseudodeterministic algorithm that can solve
R by making a constant number of queries. Recent work of Gold-
wasser, Impagliazzo, Pitassi and Santhanam [25] exhibited search
problems that have constant query complexity for probabilistic
algorithms but require Q(~/n) queries for any pseudodeterministic
algorithm.

Our next result is a fine separation on multi-pseudodeterminism
in the uniform query model and non-adaptive query model. Details
of the models are given in Section 3. Here we briefly introduce
them for discussing the results and the proof outline. In the uniform
query model, the algorithm accesses the input by making uniformly
random queries. Non-adaptive query model is a generalization
of the uniform query model where the algorithm can choose the
queries in advance, although non-adaptively.

THEOREM 2.6. For every k > 0, there exists a function f whose
(k + 1)-pseudodeterministic query complexity, in the uniform query
model, is O(1), but its k-pseudodeterminstic query complexity, in the
(more general) non-adaptive query models, is Q(n).

For establishing the lower bounds, we employ a technique that
uses Sperner’s lemma. While the original version of Sperner’s lemma
is concerned with the subdivision of an n-dimensional simplex into
smaller simplices, we use a cubical Sperner’s lemma [42]. We give a
proof sketch in the uniform query model. We note that Sperner’s
lemma has been shown to be useful in establishing lower bounds.
For example, see [8] in the context of communication complexity
lower bounds.



STOC ’22, June 20-24, 2022, Rome, Italy

Proor SKETCH. For a binary string x, let h(x) be its hamming
weight—the number of 1’s in x divided by the length of x. Consider
the problem of approximating the hamming weight of a string x. It
is well known that there is a probabilistic algorithm that outputs an
approximation of h(x) by making constant queries to x. Randomly
query O(1/€?) indices of x and output the fraction of indices that
are 1. The output will be e-additive approximation of h(x) with
probability at least 2/3. Indeed, this algorithm works in the uniform
query model. We consider the k-dimensional version of this prob-
lem, which we call the k-DiMENSIONAL HAMMING WEIGHT prob-
lem. Let x be a string of length n where n is divisible by k. View x as
X1x2 - - - X} where each x; is an n/k-bit substring of x. Consider the
multivalued function f; defined as follows: (a1, a2, -, ar) € fe(x)
if for every 1 < i < k, a; € [h(x;) — €, h(x;) + €]. We will estab-
lish that f¢ has Q(n) k-pseudodeterministic query complexity and
has constant (k + 1)-pseudodeterministic query complexity (in the
uniform query model).

Consider the k-dimensional cube with side length n/k, parti-
tioned into (n/k)¥ unit cubes. A vertex v of the partition is a lattice
point {ay,---,ar) where 0 < a; < n/k. The cubical Sperner’s
lemma states that for every proper coloring (see Definition 7.3 for
definition of proper coloring) of the vertices of the partition with
k + 1 colors, there is a unit cube whose vertices have all k + 1 colors.

With each lattice point = (ay, - - , ag) we associate a string
Ux = Y1Yy2- - Yk, where each y; is an n/k bit string. For each
y;, the first a; bits are all ones and the rest of the bits are
all zeros. Let A be a k-pseudodeterministic algorithm for the
k-DIMENSIONAL HAMMING WEIGHT problem in the uniform query
model. We first prove a distance lemma that states that if 4 and g are
two adjacent vertices of the partition, then the output distribution
of A with oracle access to i must be very close to the output distri-
bution of A with oracle access to . Next, we color the lattice points
of the partition using (k + 1) colors based on the most likely output
of A. To define the coloring, we first design a suitable partition of
the continuous unit cube [0, 1]¥ into (k + 1) regions. Now, for the
vertex U = (ay, - -+ , ay), consider the most likely output of A with
oracle access to the input string dy. If this output falls in the region
i of the unit cube, then the vertex o of the partition gets color i.

We establish that the coloring is proper so that the conditions
of Sperner’s lemma holds. By the cubical Sperner’s lemma, there
is a unit cube of the partition whose vertices have all k + 1 colors.
Let 0 - - - v, be such vertices of such a unit cube (i.e. each 9 has
a distinct color). Since every v; has a distinct color, it must be the
case that the most likely outputs of A’TfX, 1 <i < k+1mustbeall
distinct. Let us denote these most likely outputs with 01,02, - - , 0.
Since A is a k-pseudodeterministic algorithm, A%x must output

o; with probability at least K+ However, since the vertices

k(k+2) "

01, -+ , U belong to the same I(c—dir)nensional unit hyper cube, the
L, distance between any two vertices is bounded by k. Thus, by the
distance lemma, the output distribution of A% must be close to the
output distributions of A%x ... A% This implies that A%x must

k+1
k(k+2)

Thus the probability that Alix outputs
(k+1)? . (k+1)*
K(krz) - Since s
obtain a contradiction. The upper bound on the query complexity

output o7 with probability at least
k+1

(k+2) "

and each of 0, - - - o with

probability close to

a member of {01, - - - 0r41} is close to > 1, we

1557

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

of (k + 1)-pseudodeterministic algorithm follows due to a result
from Goldreich [18].
[m]

We can generalize the lower bound result to a nonadaptive query
model where the underlying algorithm is allowed to make nonadap-
tive queries to the input string x.

An earlier version of this paper with a subset of results (and a
subset of authors) appeared as a technical report [11].

3 PRELIMINARIES

We assume standard notation and definitions from complexity the-
ory [4]. In this paper, we are concerned with additive error approx-
imations. A probabilistic algorithm A is an (¢, §)-additive approxi-
mation algorithm for a function f : {0, 1}* — R if the probability
that A(x) € [f(x) — ¢, f(x) +¢] is atleast 1 — 6.

3.1 Pseudodeterminism

Definition 3.1. ACCEPTANCE PROBABILITY ESTIMATION PROBLEM:
APEP . 5) : Given a Boolean circuit C : {0,1}" — {0,1}, give an
(&, 6)-additive approximation for Prycy, [C(x) = 1].

Definition 3.2 ([14, 18]). Let f be a multivalued function, i.e.
f(x) is a non-empty set. We say that f admits pseudodetermin-
istic algorithms if there is a probabilistic polynomial-time algo-
rithm A such that for every x, there exists a vy € f(x) such
that A(x) = vx with probability at least 2/3. The function f ad-
mits k-pseudodeterministic algorithms if there is a probabilistic
polynomial-time algorithm A such that for every x, there exists a

set Sx € f(x) of size at most k and the probability that A(x) € S(x)
k+1

is at least 1.

Note that the above definition captures pseudodeterminism for
approximation algorithms, as approximation algorithms can be
viewed as multivalued functions. It is known that any function
that admits an (¢, §)-approximation algorithm admits a (2¢, §) 2-

pseudodeterministic algorithm (see [10, 18] for a proof).

ProPOSITION 3.3. For every 0 < &8 < 1, there is a 2-
pseudodeterministic algorithm for APEP , 5.

Goldreich, Goldwasser and Ron [19] studied the notion of safe
pseudodeterministic algorithms that can be adapted to multi-valued
functions and thus approximation algorithms.

Definition 3.4. A multi-valued function f has safe pseudodeter-
ministic algorithm, if there is a probabilistic polynomial-time algo-
rithm A such that for every x, there exist vy € f(x) such that

- Pr[A(x) € {oy, L}] = 1,and
- Pr[A(x) = o] > 2/3.

We will need the following characterization of pseudodetermin-
ism proved by Gat and Goldwasser [14].

THEOREM 3.5. A function admits a pseudodeterministic algorithm
if and only if it is computable in PFBPP.

It is well known that for every 0 < ¢, § < 1, there is a probabilis-
tic algorithm for APEP, s that runs in time poly(n, 1/¢,log 1/6)
where n is the input length. Thus, by the above result, we obtain
the following proposition.



Pseudodeterminism: Promises and Lowerbounds

ProPOSITION 3.6. If APEP (4/100,1/8) has a pseudodeterministic
algorithm, then for every 0 < ¢,6 < 1, APEP, 5) has a pseudodeter-
ministic algorithm.

ReEMARK. In the rest of the paper, we use the phrase “APEP
has a pseudodeterministic algorithm” in place of “APEP (1 /19,1/s)
admits a pseudodeterministic algorithm”, and denote the presumed
pseudodeterministic algorithm with Aape.

3.2 Promise Problems

Definition 3.7 (PromiseBPP). A promise problem II
(Iy,IT) € PromiseBPP if there exists a probabilistic polynomial-
time machine M such that Vx

x € Iy & Pr[M(x) = accepts] > 2/3,
x € II, © Pr[M(x) = accepts] < 1/3,
We can similarly define promise classes such as PromiseMA.

Definition 3.8. Let C be a complexity class. We say that a promise
(ITy, II) has a solution in C if there exists a language L in C such
that Iy, C Land LN 11, = 0.

Definition 3.9. Let IT = (I, II,) be a promise problem. I’ =
3. II is a promise problem (II/,I1},) defined as follows. There is a
polynomial p such that Vx

xelly®3Iwe {0, 132D (x wy € I,
x € H;l < Yw € {0, I}P(lxl), (x,w) € I,
The notion of 3 - L can be defined similarly.

Definition 3.10. We say that a promise problem IT = (ITy, IT,,) €
3 - PromiseBPP if there is a promise problem I’ € PromiseBPP
such that IT = 3 - [I”. We say that a language L € 3 - BPP, if there
is a language L’ € BPP such that L =3 L.

Definition 3.11. A probabilistic polynomial-time machine M has
BPP-type behaviour if on every input x, Pr[M(x) accepts] is either
>2/30r<1/3.

3.3 Search Problems

In this work, all the relations considered are total, although the
results established will hold for relations that are not necessarily
total. We start with the most standard definition of a probabilistic
search problem.

Definition 3.12 (SearchBPP [19]). A search problem R is in
SearchBPP if there is a pair of probabilistic polynomial time al-
gorithms A and B so that,

- For every x, A(x) € R(x) with probability > 2/3.

- B witnesses R € BPP; that is, if (x,y) € R, then B(x,y)
accepts with probability > 2/3, and if (x,y) ¢ R then B(x,y)
rejects with probability > 2/3.

Definition 3.13. For a total multi-valued function f, we say that
f is in SearchBPP if there is a relation R in SearchBPP so that Vx,
the witness set R(x) C f(x).

We use the following result from [10].

1558

STOC 22, June 20-24, 2022, Rome, Italy

THEOREM 3.14. If APEP admits a pseudodeterministic algorithm,
then every problem in SearchBPP has a pseudodeterministic algo-
rithm.

In Section 6, we study certain generalized definitions of
SearchBPP. We will give the needed definitions in that section.

3.4 Query Complexity

In this section, we define pseudodeterministic query complexity
models. In these models, the algorithm cannot access input directly,
but only through queries. Such models are used in the realm of
sub-linear time computations.

Query Complexity Models. Let f be a multi-valued function. In
the query complexity model, the algorithm A gets n as input and
has oracle access to x € 3". The algorithm at any stage during
the computation can make a query i € {1,2,---,n} to the oracle
x € 3™ and receives x; as the answer. We denote the computation
of A on x € " as A¥(n). We say that a probabilistic algorithm A
is a k-pseudodeterministic algorithm (k-PD in short) for f, if for
every x € 3", there exists a set Sy C f(x) of size < k, such that
A*(n) outputs an element of Sy with probability at least % For
a Q : N — N, we say that the query complexity of A is Q(n), if
AX(n) makes at most Q(n) queries for every x € X", for all random
choices of A.

We consider the following three models for accessing the oracle
x: the uniform model, the non-adaptive model and the adaptive
model. In the uniform model, the queries made by the probabilistic
algorithm A are generated uniformly at random from {1,...,n}. In
the non-adaptive model, at the beginning of the computation, the
algorithm A*(n), picks a random string r and generates queries
i1, ip, ..., ¢ and obtain answers x;,, ... x;,. After that, the algorithm
does not make any more queries. Note that the queries generated
can depend on the randomness of A. In the adaptive model, the
algorithm picks a random string r, and makes adaptive queries to x
(that is, the i*" query can depend on the the answer to the (i — 1)t#
query). We use Q“"f (A) to denote the query complexity of A in
the uniform model, Q!/(A) to denote the query complexity of A in
the non-adaptive model, and Q(A) to denote the query complexity
in the adaptive model.

4 PSEUDODETERMINISM AND PROMISE
PROBLEMS

4.1 Main Equivalence

THEOREM 4.1. APEP has a pseudodeterministic algorithm if and
only if PromiseBPP has a solution in BPP.

PRrROOF. (&) : We will first prove that if APEP has a pseudode-
terministic algorithm, then PromiseBPP has a solution in BPP. Let
IT be a promise problem in PromiseBPP and let M be a probabilistic
polynomial-time machine that witnesses this. Given x, let Cy be
the following Boolean circuit:

Cx(r) = 1if and only if M(x) on random string r accepts.

Note that given x, we can construct Cy in time poly(|x]). Con-
sider the following probabilistic algorithm:



STOC ’22, June 20-24, 2022, Rome, Italy

Algorithm B: On input x, construct Cx and run Agpe(Cy). If
Aape(Cx) 2 1/2, accept; else reject.

CramM 4.2. B has BPP-type behavior.

ProoF oF CraiM. Let x be an input to B. Recall that Aape is a
pseudodeterministic approximation algorithm that outputs a canon-
ical value v on input Cx with probability at least 7/8. So either with
probability at least 7/8, v is > 1/2, in which case B accepts x, or
with probability at least 7/8, v is < 1/2 and B rejects. Thus, for
every input x, B either accepts with probability > 7/8 or rejects
with probability > 7/8, and thus B has BPP-type behaviour. O

Let L be the language accepted by the above machine. Then by
the above claim L € BPP.

Cramm 4.3. L is a solution to the promise problem II.

PrOOF OF CLAIM. Let x be a string in IT;. Then Pr[Cy (r) = 1] >
2/3. Thus Aape (Cx) outputs a canonical value v > 2/3-1/100 > 1/2
with probability at least 7/8, so B accepts with probability at least
7/8, and thus x € L.

Suppose x € II,. Then Pr[Cy(r) = 1] < 1/3. Thus Aape(Cx)
outputs a canonical value v < 1/3 +1/100 < 1/2 with probability
at least 7/8, so B rejects with probability at least 7/8, and thus
x & L. [}

By the above two claims we obtain that if APEP has a pseudode-

terministic approximation algorithm, PromiseBPP has a solution
in BPP.
(=): Now suppose that PromiseBPP has a solution in BPP. By
Proposition 3.3, there is a 2-pseudodeterministic (¢, §) approxima-
tion algorithm M for APEP where § = 1/4 and € = 1/200. We
slightly modify M as follows: whenever M outputs a value v, then
output a value v’ that is the closest integer multiple of ¢ to v. Note
that the modified machine M is a (2¢, §)-approximation algorithm
for APEP. The machine M has the property that every output is of
the form ke, 0 < k < 1/e.

For a Boolean circuit C, let pc denote the acceptance probability
of C. Thus, for every C, we have

Pr[M(C) € (pc — 26, pe + 2¢)] > 3/4 (1)

We associate a promise problem IT = (T, IT,) with M. This defi-
nition of promise problem is inspired by the work of Goldreich [17].

Ty = {{C,0) | M(C) outputs v with probability at least 3/8}
IT,, = {(C,v) | M(C) outputs v with probability at most 1/4}
We make the following two critical observations.
OBSERVATION 4.4. If(C,v) ¢ I1,, thenv € (pc — 2¢, pc + 2¢).
This observation follows from equation 1.

OBSERVATION 4.5. For every circuit C, there exists v such that
(C,v) € Ty and v = ke for some k > 0.

PrOOF OF OBSERVATION. Since M is 2-pseudodeterministic,
there is a set S of size at most 2 such that every element in S
lies between pc — 2¢ and pc + 2€ and Pr[M(C) € S] > 3/4. Thus,
there must exist an element v from S such that M(C) outputs v
with probability at least 3/8. Finally, note that the modification of

1559

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

M described earlier ensures that M always outputs a multiple of
€. u]

Craim 4.6. IT € PromiseBPP.

Proor or CramM. Consider the algorithm Mp: On input (C, v)
run M(C). If it outputs v, then accept, else reject. This algorithm ac-
cepts all instances from IT,, with probability at least 3/8 and accepts
all instances from IT,, with probability at most 1/4. Since there is a
gap between 3/8 and 1/4, this gap can be amplified with standard
amplification techniques. This implies that IT is in PromiseBPP. O

Now we will complete the proof of the theorem by designing

a pseudodeterministic algorithm for APEP. By our assumption,
there is a language Li; € BPP that is a solution to II. Consider
the following deterministic algorithm for APEP with oracle access
to Ly. On input C, check if (C, ke) € Ly for integer values of k,
0 < k < 1/e. Let ¢ be the first value such that (C, fe) € Ly, then
output fe. By Observation 4.5, such an £ must exist. Moreover,
if (C,¢e) € Ly, then it must be the case that (C,¢¢) ¢ II,. By
Observation 4.4, we have that f¢ € (p¢ + 2¢, pc — 2¢). Thus APEP
has a (2¢,8), PFBPP approximation algorithm. This implies that
APEP has a (2¢, §) pseudodeterministic algorithm by Theorem 3.5.
m}

4.2 Safe Pseudodeterministic Algorithms

Definition 4.7 ([13, 19]). A multi-valued function f has a safe
pseudodeterministic algorithm, if there is a probabilistic polynomial-
time algorithm A such that for every x, there exist vy € f(x) such
that

- Pr[A(x) € {oy, L}] = 1,and
- Pr[A(x) =uyx] > 2/3.

THEOREM 4.8 ([19]). A multi-valued function f has a safe pseudo-
deterministic algorithm if and only if f is in PFZPP,

We can extend Theorem 4.1 to safe pseudodeterministic algo-
rithms (we omit the proof).

THEOREM 4.9. APEP admits safe-pseudodeterministic algorithms
if and only if PromiseBPP has a solution in ZPP.

4.3 Equivalence in Space Bounded
Computations

We observe that the equivalence between promise problems and
pseudodeterminism also holds in probabilistic space bounded com-
putations. We assume standard definitions of log space classes
including BPL where the associated probabilistic machines halt on
all random choices. We also use standard notions of space bounded
transducers when considering function computation using space
bounded Turing machines.

Definition 4.10 (PromiseBPL). A promise problem II
(ITy,II,) € PromiseBPL if there exists a probabilistic logspace
machine M such that Vx

x € IIy & Pr[M(x) = accepts] > 2/3,

x € II, & Pr[M(x) = accepts] < 1/3,



Pseudodeterminism: Promises and Lowerbounds

Definition 4.11 (Automata Acceptance Probability Estimation Prob-
lem (AAPEP)). Given a finite automata M over binary alphabet,
and an integer n, compute an (¢, §)-additive estimation of the prob-
ability of acceptance of M: Pr,.c (g 1}» [M(r) accepts].

THEOREM 4.12. There is an randomized logspace algorithm that
given an automata M, ¢, 8, and n in unary, outputs an (¢, §)-additive
approximation of Pr ¢ (o1y= [M(r) accepts].

Techniques used to prove Theorem 4.1 can be adapted to prove
the following equivalence.

THEOREM 4.13. AAPEP admits a pseudodeterministic approxima-
tion algorithm if and only if PromiseBPL = BPL.

5 CONSEQUENCES OF THE EQUIVALENCES

5.1 Circuit Lower Bounds and Derandomization

THEOREM 5.1. If APEP admits pseudodeterministic approximation

algorithms, then

(1) Every promise problem I1 = (Ily,II) in PromiseMA has a
solution in MA.

(2) MA =3-BPP.

(3) For anyk, MA ¢ SIZE(n¥)

Proor.

(1) We first show that if IT is a promise problem in PromiseMA,
then II € 3 - PromiseBPP. Let M be a probabilistic
polynomial-time verifier. Consider the following promise
problem IT’: A tuple (x, w) is a positive instance if M accepts
(x, w) with probability at least 2/3 and is a negative instance
if M accepts (x, w) with probability at most 1/3. It is easy to
see that IT = 3.I1". By Theorem 4.1, I1” has a solution L’ in
BPP if APEP admits pseudodeterministic algorithms. Note
that the language L = 3- L’ is a solution to II, and 3- L’ is in
3. BPP. Since 3 - BPP is a subset of MA, the claim follows.

(2) The above proof showed that every promise problem in
PromiseMA has a solution in 3BPP. Thus it follows that
MA =3 - BPP.

(3) Santhanam [40] showed that for every k, there is a problem
I in PromiseMA that does not have any solution that ad-
mits O(n*) size circuits. Since by Item 1 IT;, has a solution
Ly € MA, we get that L;. does not have 0(nk) size circuits.
Combining this with 2, it follows that 3 - BPP does not have
0(n*) size circuits.

|

The above result reveals an interesting connection between pseu-
dodeterminism, derandomization of BPP, and circuit complexity.
If APEP has pseudodeterministic algorithms, then derandomizing
BPP to P implies that NP does not have fixed polynomial-size cir-
cuits.

THEOREM 5.2. If APEP admits safe-pseudodeterministic algo-

rithms, then MA = NP and NP has problems that cannot be solved
using O(n*)-size Boolean circuits.

ProoF. Since MA = 3 - PromiseBPP, if APEP admits safe pseu-
dodeterministic algorithms, then by Theorem 4.9, PromiseBPP has
a solution in ZPP. Thus MA = 3-ZPP which equals NP. The second
part of the theorem follows by combining this with Theorem 5.1. O

1560

STOC 22, June 20-24, 2022, Rome, Italy

We observe that there is a relativized world in which the hypoth-
esis APEP has a safe-pseudodeterministic algorithm holds, but the
hypothesis E does not have 2¢"-size circuits does not hold.

OBSERVATION 5.3. There is an oracle A relative to which APEP has
pseudodeterministic algorithms, but EXP has polynomial-size circuits.

Proor. Consider an oracle relative to which EXP equals ZPP [].
Since APEP can be solved by PFEXP it follows that APEP is in PFZPP
and this has a safe-pseudodeterministic algorithm. Since ZPP C
P/poly, we have that the EXP has polynomial-size circuits. O

5.2 Complete Problems and Hierarchy
Theorems

In this section, we show that hierarchy theorems for BPTIME
and ZPTIME follow as consequences of Theorems 4.1 and 4.9. For
BPTIME, this gives an alternate proof of the result in Lu, Olivera
and Santhanam [35]. We need the following result due to Barak [5].

THEOREM 5.4. If PromiseBPP has a solution in BPP, then there
exists a constant ¢ such that for every time constructible function t(n),
BPTIME(¢(n)) is a proper subset of BPTIME(t(n)¢).

THEOREM 5.5. If APEP has pseudodeterministic algorithms,
then the hierarchy theorems for BPTIME hold. In particular,
BPTIME(n®) C BPTIME(n#) for constant1 < a < .

Proor. By Theorem 4.1, the hypothesis implies that PromiseBPP
has a solution in BPP and by Theorem 5.4, there exists a ¢ > 0 such
that for every a, BPTIME(n?) is a proper subset of BPTIME(n%).
The theorem follows from applying standard padding arguments.

O

We next observe that if APEP admits pseudodeterministic algo-
rithms, then MA has complete problems.

THEOREM 5.6. If APEP admits pseudodeterministic algorithms,
then MA has a complete language and thus there is a hierarchy the-
orem for MA, i.e., MATIME(n®) is a proper subset of MATIME (nf)
forit<a<p.

Proor. By Theorem 5.1, the hypothesis implies that MA =
3 - BPP, thus it suffices to exhibit a language that is complete for
the class 3 - BPP. We consider circuits with two types of inputs
nondeterministic inputs and regular inputs. We use Cp4, to denote
circuits with n+m inputs and for such curcuits we use Cy to denote
the circuits obtained by fixing the first n inputs to y. Consider the
following language

L ={Cn+m | Fy € 2" Agpe(Cy) 2 1/2}

Let L’ be a language in IBPP. There exists a language L”” € BPP
and a polynomial p such that x € L if and only if there exists
y € 3P(xD) gych that (x,y) € L””. Let M be a probabilistic machine
that witness that L’ is in BPP. Let Cyx be the circuit obtained by
converting this machine into a circuit and hard wiring x. Note that
Cx has two types of inputs y and the random strings of M.

Now if x € L, there exists y such that M accepts (x,y) with
probability at least 2/3. Thus the acceptance probability of Cy is at
least 2/3 and the canonical output of Aape (Cxy) is at least 1/2. Thus
Cx € L.If x ¢ L, for every y, M accepts (x, y) with probability at



STOC ’22, June 20-24, 2022, Rome, Italy

most 1/3 and the canonical output of Aape(Cxy) for every y is less
than 1/2. Thus L’ reduces to L. It is easy to see that L is in 3 - BPP,
as Aape outputs a canonical correct answer with probability at least
2/3. Using the ideas from [5], it follows that if MA has complete
problems, then hierarchy results hold. O

A similar proof establishes the following.

THEOREM 5.7. If APEP has safe pseudodeterministic algorithms,
then ZPP has a complete problem and hierarchy theorems for ZPTIME
hold. In particular, ZPTIME(n%) C ZPTIME(nf) for constant 1 <
a<p.

5.3 Completeness for Poly-Pseudodeterminism

THEOREM 5.8. If APEP admits pseudodeterministic approximation
algorithms, then every multivalued function f that admits a k(n)-
pseudodeterministic algorithm for a polynomial k(n) is in SearchBPP.

Proor. Let f be a multi-valued function and let My be a k(n)-
pseudodeterministic algorithm for f. Without loss of generality we
can assume that f maps strings of length n to strings of length p(n)
for some polynomial p. For input x of length n, let Sx be the set of
size < k(n) such that Sx C f(x) and Mf(x) € Sy with probability
o k(n)+1
= k(n)+2
the following claim.

. From the definition of k(n)-pseudodeterminism, we have

1+1/k(n)

Z Tz

CrLAmm 5.9. Jo* € Sy such that Pr [Mf(x) = 0*]
Moreover, Vo & Sy Pr[Mg(x) = 0]

1
< kw2

1+1/2k(n)

Let 7 = <%

IZXSS) and k(nl)+2'
[o] = p(n), let Cy., be the following Boolean circuit. Cy , on input
r, outputs 1 if M7 (x) on random string r outputs v, 0 otherwise.
We will show that there is a relation R so that (1) Vx : Wy # ¢ and
Wx € f(x), and (2) R € SearchBPP. We define the relation R as

follows.

be a threshold that is the middle point of

For a pair of strings (x, v), where |x| = n and

R = {{x,v) | the canonical output of Azpe(Cx,0) = 7}

Here Aape is the (¢, ) pseudodeterministic algorithm for APEP,
where ¢ = 1/2k(n)(k(n) +2) and § = 27". Note that such an algo-
rithm exists under the assumption by Proposition 3.6 and standard
error reduction techniques.

Cram 5.10. Vx, Wy C f(x) and Wy is not empty.

Proor. For this we show that W, C Sy. If v ¢ Sy, then Mf(x)
outputs v with probability at most 1/(k(n) + 2), thus the canonical
output of A(Cyp) is < W + ¢ = 7 and by definition v ¢ Wyx.. On
the other hand, since v* € Wy, the canonical output of Azpe(Cy,o*)

m—szr.Thusv*EWx.ThusWxi¢

K(n)+2 o

CrLamm 5.11. R € BPP.

Proor. Consider the algorithm that, on input (x,v), runs
Aape(Cx,p) and accepts if and only if the output of Aape is > 7.
Since Agpe is a pseudodeterministic algorithm for APEP it outputs
a canonical value with probability at least 1 —1/2". This shows that
Ris in BPP. O

1561

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

CrLAmm 5.12. There is a probabilistic algorithm B that on input x
outputs v € Wy with probability > 2/3.

Proor. We first design an algorithm B’ with a nontrivial success
probability and boost it to get algorithm B.

Algorithm B": On input x, run M (x). Let v be an output. Construct
circuit Cy, and run Aape on Cx,p. If the output of Aape is > 7, output
v. Otherwise output L.

Consider a v ¢ Wyx. Then by definition of R, we have that the
canonical output of Azpe(Cx,p) is less than 7. Thus Aape(Cx,o) out-
puts a value larger than 7 with probability at most 1/2". Thus we
have that for every v ¢ Wy

Pr[B’ outputs v | M¢(x) outputs 0] < 1/2"

Pr[B’ outputs a v ¢ Wy]

vgW,

1/2" ZPr[Mf(x) outputs v] < 1/2"
[

Pr[B’ outputs v | Mg (x) outputs 0]
X Pr[Mf(x)outputs o]

IA

By Claim 5.9, probability that My (x) outputs v is at least
1+1/k(n)
k(n)+2 >

is at least

it must be the case that the canonical output of A(Cy )

k *
lzzé)irzl) —¢& = 1. Thus 0™ € Wy. Thus Aape (Cx,o+) outputs

a value > 7 with probability at least 1 — 1/2". Thus the probability

IZ},ﬁﬁ‘i’z’) x (1—1/2m).

Thus B’ outputs a value that is not in W, with probability at most
1+1/k(n)
k(n)+2
(1-1/2"), and outputs L with the remaining probability. We obtain
B by repeated invocations (O(k(n)?) many) of B’ and outputting

the most frequent output. O

that B’ outputs v* is at least

1/2", it outputs a value in W, with probability at least

This completes the proof that f is in SearchBPP. O

Using the above result, we obtain the following corollary, which
improves a result from [10].

THEOREM 5.13. If APEP admits pseudodeterministic algo-
rithm, then any multivalued function that admits a k(n)-
pseudodeterministic algorithm also admits a pseudodeterministic al-
gorithms, where k(n) is a polynomial.

Proor. By the above theorem, if APEP admits pseudode-
terministic algorithm, then any problem that admits a k(n)-
pseudodeterministic algorithm is in SearchBPP. By Theorem 3.14,
if APEP admits pseudodeterministic algorithms, every problem in
SearchBPP has a pseudodeterministic algorithm. O

6 EQUIVALENCE OF PROBABILISTIC SEARCH
PROBLEMS

Several variants of probabilistic search problems have been con-

sidered in the literature. We define them here. We will show that

making these variants pseudodeterministic is equivalent to making
APEP pseudodeterministic.

Definition 6.1. A search problemis a relation R C {0, 1}* x {0, 1}*.
For every x, the witness set of x with respect to R is R(x) = {y |
(x,y) € R}. R is total if for every x, there exists a y such that



Pseudodeterminism: Promises and Lowerbounds

(x,y) € R. A promise search problem is a disjoint pair of relations
(Ry, Ry) where Ry, Ry € {0,1}* x {0, 1}*. A promise search prob-
lem (Ry, Ry) is total if Ry is total.

Goldreich studied probabilistic, promise search problems [17].

Definition 6.2 (PrSearchBPP [17]). A promise search problem
(Ry, Ry) is in PrSearchBPP if there is a pair of probabilistic poly-
nomial time algorithms A and B so that,

- For every x, A(x) € Ry (x) with probability > 2/3.

- Bwitnesses (Ry, Ry) € PromiseBPP, i.e.if (x,y) € Rx, then
B(x,y) accepts with probability > 2/3, and if (x,y) € Ry
then B(x, y) rejects with probability > 2/3.

The following variation of SearchBPP is considered in [35] and
is obtained by relaxing the requirement on the decision algorithm
B. We denote this as WeakSearchBPP.

Definition 6.3 (WeakSearchBPP [35]). A search problem R is in
WeakSearchBPP, if there exist a pair of probabilistic algorithms A
and B such that

- For every x, A(x) € Ry with probability > 2/3

- For every (x,y) ¢ R, B(x,y) rejects with probability > 2/3.
For every x, with probability more than 1/2 over random
choices of A, B(x, A(x)) accepts with probability > 2/3.

In all the above class of search problems, we say that problem is
in the class witnessed by the pair (A, B) of probabilistic algorithms.

Here we show that APEP is “complete for” both PrSearchBPP
and WeakSearchBPP with respect to pseudodeterminism. Earlier
works have shown that a APEP can be cast as PrSearchBPP [17]
and WeakSearchBPP [35].

THEOREM 6.4. The following statements are equivalent.

(1) APEP admits a pseudodeterministic approximation algorithm
(2) PrSearchBPP admits pseudodeterministic algorithms.

(3) WeakSearchBPP admits pseudodeterministic algorithms.

7 QUERY COMPLEXITY LOWERBOUNDS

In this section, we show a fine separation result for multi-
pseudodeterministic computations in the query complexity model.
We start with the definition of the candidate problems that we use
to exhibit the separation. For a string y, let Hamming(y) denote
the fraction of 1’s in y.

Definition 7.1 (k-DIMENsIONAL HAMMING WEIGHT). Let x
Y1Y2 - - - Y be an n bit string where each y; is of length n/k. Given
€ < 1/2, output (a1, ay,...,ax) such that for every 1 < i < k,
la; — Hamming(y;)| < e.

For the rest of the section we work with € = 1/4.

7.1 Lower Bound in the Uniform Query Model

THEOREM 7.2. For the k-DIMENSIONAL HAMMING WEIGHT prob-
lem
- There exists a (k+1)-pseudodeterministic algorithm with query
complexity O(k> /€%) in the uniform query model.
- For every k-pseudodeterministic algorithm A that solves the
k-DIMENSIONAL HAMMING WEIGHT problem, ounif(4) e

Q(n/k%).

1562

STOC 22, June 20-24, 2022, Rome, Italy

Clearly, for k = 1, there is 2-pseudodeterministic algorithm B
such that for every y, the algorithm BY makes O(1/€?) uniformly
chosen queries and outputs a value h with |h — Hamming(y)| < e.
Using this, it is easy to design a 2K-pseudodeterminsitic algorithm
for the k-DiMENsIONAL HAMMING WEIGHT problem that makes
O(k/€e?) queries. Goldreich [18], using a randomized rounding tech-
nique showed that there is a (k + 1)-pseudodeterministic algorithm
makes O(k®/€?) queries in the uniform query model.

To prove the lower bound, we focus our attention on an explicit
family of strings which we define now. For 0 < i < n, let y; be
the string whose first i bits are 1, and the rest of the bits are 0.
We will show that every k-pseudodeterministic algorithm for the
k-DimENSIONAL HAMMING WEIGHT problem has high query com-
plexity even when restricted to the above family of input strings.

Consider the k-dimensional hypercube with side length n/k.
Consider the standard partition of this hypercube into (n/k)*-many
unit hypercubes. Note that the set of vertices of these hypercubes
is {0,1,2,..., %}k (a subset of the integer lattice). For each such
., ay), we associate the string oy

vertex/lattice point 7 = (ay, ..
Ya1Ya; " " Yay-

Sperner’s Lemma. An essential ingredient of the proof of the theo-
rem is the cubical Sperner’s lemma [34, 42] which we state next.

Definition 7.3. Let Gi be the standard partition of the k-
dimensional hypercube with integer side length p into unit cubes.
Let Ap be the set of vertices/lattice points of the partition. For
any vertex & € Ap, let 7[i] denote the it" coordinate of 7. Let
C:Ap — {1,...,k + 1} be a function. We say that C is proper
coloring function if it satisfies both of the following:

(1) ifg[i] = 0, then C(3) < i

(2) if[i] = p, then C(¥) # i.

LEMMA 7.4 (CUBICAL SPERNER’S LEMMA [34, 42]). For every proper
coloring of Gy, there is a unit cube of the partition whose vertices
contain all the k + 1 distinct colors.

Now we proceed with the proof of Theorem 7.2.

ProOF oF THEOREM 7.2. Let A be a k-pseudodeterministic algo-
rithm for the k-DIMENSIONAL HAMMING WEIGHT in the uniform
query model that makes s(n) queries. Let # and ¢ be two adjacent
lattice points (i.e. they differ by 1 at exactly one coordinate, and
at all other coordinates they have the same value). We claim the
following:

CLAIM 7.5. dpy (A%, A¥%x) < %

Proor oF CLaIM. Assume that u
(a, az,...,aj-1,a,aj41,...,a;) and o (ar,az...,aj-1,a
1,...,ax) (so i and g differ on the jth coordinate by 1).

Recall that uy Ya; " Yaj 1 Ya Yk and ox
Ya; ***Ya; 1 Ya+1 - Yg- The jthe substring uy is y, and the
Jjth substring of vy is yg+1. All other substrings of uy and vy are
the same. By definition, yg = 120"k~ and yg4q = 19+10"/k—(a+])
Thus the strings uy and vy differ at exactly one index (index
%(j — 1) + (a + 1)). Now, observe that the behaviour of A% and
AU~ differ only when A generates this index as a query. Since A is
generating its queries uniformly at random, the probability that A
queries this index is at most s(n)/n. Thus, the claim follows. O

+



STOC ’22, June 20-24, 2022, Rome, Italy

From the above claim, we get the following corollary using the
triangle inequality.

COROLLARY 7.6. Let i and ¥ be two lattice points. If Pr[A%x =
Z| = p, then

We now give an outline of how Sperner’s lemma is used. Consider
the k-dimensional cube with the side length p = n/k and let G
be the partition of it into unit cubes and A, be the set vertices of
the partition. We will give a proper coloring of Gy based on the
output of A. More precisely, for any lattice point g, let Z be the most
likely output of A%r (if there are multiple, use any one of them). We
will first give a coloring Cqyx on [0, 1]k which we call a auxiliary
coloring. Define C(0) = Cayux(Z). We will first argue that C is a
proper coloring. Hence by Sperner’s lemma, there is a unit cube
containing all k + 1 distinct colors. Hence for these k + 1 vertices,

A has to output at least k + 1 distinct values each with probability
(k+1)
k(k+2) "
cube are close to each other, we can arrive at a contradiction using

Corollary 7.6. Now we give details.

s(n)

Pr{A% = 2] = p - (na—aul x

>

However, since all the points on vertices of the unit

Define Cayux : [0,1]" — {1,2,...,k + 1} as follows: fora z =
(21, ..+, 2k)
) 1 1
i: 21y Zim1 = 5,21 < 5
Caux(zls-w’zk): ' 12 l :
k+1: z1,...,z, 2 3

Now we define the coloring of A,. Consider a lattice point 7 of
the partition, and and let Z be the most probable out of A% (break
the ties arbitrarily if there are multiple most probable outputs).

C(a) = Caux (Z)

See Figure 2 for an illustration of Cgyx and C in the two dimen-
sional case.

LemmA 7.7. C is a proper coloring of Ap.

Proor oF LEmMaA. Consider a lattice point ¥ = {ay, ..., a), and
let Z = (z1,22, . .., zx) be the most likely output of A%*. We need to
show (1) a; =0 = C(¥) < iand (2) a; = n/k = C(9) # i.

Assume a; = 0. Note that the ith substring of vy is the all-
zeros string yo whose hamming weight is 0. Note that since
lzi — Hamming(yo)| < €, we have z; < € < %. Suppose
that Caux ({z1,---2x)) = j > i, then it must be the case that
21,...,2j-1 = 1/2, thus in particular z; > 1/2, and this is a contra-
diction. Thus C(3) = Caux (Z) < i.

Suppose that a; = p = n/k. Now, the ith substring of vy is the all
ones string y,/x whose hamming weight is 1. Thus it must be the
case that the ith component, z;, of the output of A% is > 1—€ > 1/2.
Suppose that C(3) = i, this means that Cayx({z1,...,2x)) = i.
However Caux ({21, -+ ,2)) = i implies that z; < 1/2 and thisis a
contradiction. Thus C(3) # i. m]

By cubical Sperner’s Lemma, there must be a unit cube in the par-
tition with vertices where all k+1 colors are present. Let 1, . . ., Ug41
be vertices of such a unit cube with colors 1,..., k + 1 respectively.
Let Z1, .. . Zg41 be the most likely outputs of A%x, A%x ... A%sx re-
spectively. Since the colors of 9y, - - - U are all distinct from each

1563

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

0,5) —————— (5,5) (0,1) (1,1)
T
[ T § B
F=t+-t-0—-—==-
\
oy
e ——— 0
B R, A
0,0) ———+——(5,0) (0,0) (1,0

Figure 2: i is colored orange because A() is in the orange
area. Likewise, ¢ is colored blue because A(4) is in the blue
area.

other, it must be the case that z1, . . ., Zx4; are all distinct. We have

the following:

k+1
Pr[A%x = 7 —
tl al 2 v
R k+1 k-s(n) .
Pr[AUlX:Zj] m— fOI'BHZS]Sk'Fl

The first inequality is due to the fact that A is k-

pseudodeterministic and hence the most likely output appears with
(k+1)

k(k+2)
sequence of Corollary 7.6 and the fact that L; distance between any

two points on the k-dimensional unit cube is at most k. Thus,

probability at least . The second set of inequalities are a con-

ISP - (k+1)?%  K%s(n)
Pr[AvX:z:ZE{Zl,...,Zk+1}]Zm— "
When s(n) < m the above probability is bigger than 1,

which is a contradiction. Thus the theorem follows. ]

7.2 Lower Bound in the Non-Adaptive Query
Model

In this section, we extend the above result to the more general
non-adaptive query model. For this we combine the ideas from
the earlier section with the work of Goldreich, Goldwasser, and
Ron [19].

THEOREM 7.8. In  the non-adaptive query  model,
any k-pseudodeterministic ~algorithm A that solves the
k-DIMENSIONAL HAMMING WEIGHT problem requires

oll(A) € Q(n/kY).

Proor. Let A be a k-pseudodeterministic algorithm for the
k-DIMENSIONAL HAMMING WEIGHT problem that makes s(n) non-
adaptive queries. Given 0 < § < 1, an element i € {1,...,n} is
S-low if A queries i with probability at most §. Note that in the non-
adaptive query model the distribution of queries is independent of
the input/oracle string x.

OBSERVATION 7.9. The number of queries that are §-low is > 2ne
fors(n) < (1—2€)nd.

PROOF OF OBSERVATION. Since the algorithm makes s(n)
queries, the number of queries that are not §-low is at most s(n) /4.
If s(n) < (1 — 2¢)nd, the number of §-low queries is at least
2ne. O



Pseudodeterminism: Promises and Lowerbounds

We now prove that if two strings differ on a low indices, then
the algorithm will give similar approximations.

LEmMA 7.10. Let s be a 5-low query. Let p and q be two n/k-
bit strings such that p and q differ only at the sth index. Let

D1, P2 - - o5 Pi1, Pit1s - - -» P e n/k-bit strings.
dTV(Apl"'Pi—lPPiH"'Pk’Apl"'Pi—qui+1"'Pk) )

ProoF oF LEMMA. Since s is queried with probability at most J,
and for the rest of the queries the oracle answers are the same, the
claim follows. o

First we define a class of functions which is used to prove the
lower bound. Let s1,sp,...,s. be a set of §-low queries (where
L = 2n) such thats; < sp < --- < sp.Forevery1 <i < L, we
define a string p; as follows: for 1 < j < i, the s;th bit of p; is
1 and all remaining bits are 0. Consider the k-dimensional cube
with side length L, partitioned into Lk-many unit cubes. Let Ap
be the set of all vertices/lattice points of the partition. Consider
a vertex o = {ay,...,a) of the partition. We associate a string
Ox = Pa; * * * Pay to U as before.

As before, we define an auxiliary coloring Cgyyx : [0,1]" —
{1,2,...,k + 1} as follows. For Z = (z1, ..., zx),
i: Z1y...,2i—1 = €,2; <€
Caux(<zl,~--,zk>) = ' '
k+1: zy,...,2zp > €

We define a coloring of the partition of the hypercube based
on Cgyyx. Let U be a vertex of the partition, and let Z be the most
probable output of A(vy).

C(Z_j) = Caux (E)

The proof of the following lemma is similar to the proof of
Lemma 7.7.

LEMMA 7.11. C is a proper coloring of the partition of the hyper-
cube.

By the Cubic Sperner Lemma, there exists a unit cube where all
k + 1 colors appear on the vertices. Consider such a unit cube and
let 41, . .., U4 be vertices of the unit cube such that C(3;) = i. Let
Z1,. .., Zj41 be the most likely outputs of A”x, ..., A%+1x_Since the
colors of 3y, . . ., Up4q differ from each other, it must be the case that
allZ;s 1 < i < k +1 are distinct.

LEMMA 7.12. Foreveryi, j:dry (A%, AY%x) < k.

PROOF OF LEMMA. Let ¥; = (ay,...,ax) and 0; = (by,..., by).
Note that a; and b; differ by at most 1 as 7; and 9; are the vertices
of the same unit hypercube. Note that vjx = pg, - - pg, and vjx =
(Pb, * * - Pby)- Since a; and b; differ by at most 1, the strings p,, and
Py, differ on at most one index s which is a 6-low query. Hence by
triangle inequality and Lemma 7.10, we obtain that

dry (A%, A%~) < k6
O

Since A is k-pseudodeterministic and Z; is the most probable
output of A%~ forall 1 <i < k + 1, we have

k+1
>
~ k(k+2)

-

Pr[Avi" = Z,’]

1564

STOC 22, June 20-24, 2022, Rome, Italy

By Lemma 7.12, forall 2 < j < k +1,
k+1

PrlATT =2j] > pom o — ko
Thus
o . (k+1)>2
Pr[A”x € {Z1,- -+, Zk}] 2 kkv2) k%8
We chose § < m, and the above probability is > 1 leading

to a contradiction. Thus A cannot be k-pseudodeterministic if it is
making s(n) < (1 — 2¢€)nd non-adaptive queries. For large enough
n, we have s(n) < n/k*. o

8 FUTURE DIRECTIONS

It would be interesting to further explore the connections between
pseudodeterminism and probabilistic complexity classes. Does a
pseudodeterministic algorithm for APEP imply that MA can be
derandomized to NP? More generally, does a pseudodeterministic
algorithm for APEP imply a safe pseudodeterministic algorithm
for APEP? The most important open question is to design a pseu-
dodeterministic algorithm for APEP. For query complexity lower
bounds, it is easy to see that the nonadaptive lower bound implies
a Q(logn) lower bound in the adaptive query model. Improving
this lower bound is an interesting open problem. We conjecture
that the correct lower bound in the adaptive query model is indeed

Q(n).

9 DEDICATION TO ALAN SELMAN (1941-2021)

We dedicate this work to Alan Selman who made seminal contri-
butions to both notions studied in this work—promise problems
and pseudodeterminism—in the context of nondeterministic com-
putations. As mentioned in the introduction, the notion of promise
problems continues to play a critical role in several areas. Here we
briefly discuss Alan’s contributions to pseudodeterminism. The no-
tion of pseudodeterminism introduced by Gat and Goldwasser [14]
asks whether a probabilistic computation can be made to output a
canonical value. Alan and his co-authors considered an analogous
question in the context of nondeterministic computations. Let f be
a partial multi-valued function. We say that f is in NPSV if there
is a nondeterministic polynomial-time machine M such that for
every x, if f(x) # 0, then there is a canonical value vy, € f(x)
such that every path of M either outputs vy or L, and at least one
path outputs vy. If f(x) = 0, then every path of M outputs L. Thus,
NPSV captures pseudodeterminism in the context of nondetermin-
istic computations. A natural question that arises is whether fsar
is in NPSV? Here fsat(¢) is the set of satisfying assignment of
¢ if ¢ € SAT and is undefined if ¢ ¢ SAT. A fundamental result
due to Alan and his coauthors is that if fsat is in NPSV, then the
polynomial-time hierarchy collapses [28].

In latter works, Alan and his co-authors generalized NPSV to
capture multi-pseudodeterminism in the context of nondeterminis-
tic computations. A multivalued function f is in NPkV, if there is a
nondeterministic polynomial-time machine M such that for every
x, if f(x) # 0, then there is set Sx of size at most k such that every
path of M outputs a value in Sx or L, and at least one path outputs
a value from Sx. If f(x) = 0, then every path of the M outputs L.
Alan and his co-authors generalized the above result to show that if



STOC ’22, June 20-24, 2022, Rome, Italy

every function in NP(k + 1)V is in NPkV, then the polynomial-time
hierarchy collapses [36].

On a personal note, Pavan would like to express his gratitude
to Alan for introducing him to the beautiful world of complexity
theory and for stressing the significance of coming up with “simpler
proofs”.

ACKNOWLEDGMENTS

We thank the reviewers for helpful comments and suggestions. We
thank Jamie Radcliffe for discussions related to Sperner’s lemma
and related topics. This work is supported in part by NSF grants
1934884, 2130608, and 2130536.

REFERENCES

[1] M. Agrawal, N. Kayal, and N. Saxena. 2004. PRIMES in P. Ann. of Math. (2) 160, 2

[2

3

[10

[11

[12

[13

[14

[15

[16

(17

]

]

]

]

]

]

(2004), 781-793.

Nima Anari and Vijay V. Vazirani. 2020. Matching Is as Easy as the Decision
Problem, in the NC Model. In 11th Innovations in Theoretical Computer Science
Conference, ITCS (LIPIcs, Vol. 151). 54:1-54:25.

Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In 33rd Int. Conf.
on Soft. Engg. (ICSE). 1-10.

S. Arora and B. Barak. 2009. Computational Complexity - A Modern Approach.
Cambridge University Press.

Boaz Barak. 2002. A Probabilistic-Time Hierarchy Theorem for "Slightly Non-
uniform" Algorithms. In Randomization and Approximation Techniques, 6th Inter-
national Workshop, RANDOM 2002 (LNCS, Vol. 2483). Springer, 194-208.

N. H. Bshouty, R. Cleve, R. Gavalda, S. Kannan, and C. Tamon. 1996. Oracles and
Queries That Are Sufficient for Exact Learning. J. Comput. Syst. Sci. 52, 3 (1996),
421-433.

J-Y. Cai. 2001. Sf C ZPPNP . In 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001. 620-629.

J. Y. Cai, R. Lipton, L. Longpré, M. Ogihara, K. Regan, and D. Sivakumar. 1995.
Communication Complexity of Key Agreement on Small Ranges. In STACS. 38—
49.

Peter Dixon, A. Pavan, and N. V. Vinodchandran. 2018. On Pseudodeterministic
Approximation Algorithms. In 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018 (LIPIcs, Vol. 117). 61:1-61:11.

Peter Dixon, A. Pavan, and N. V. Vinodchandran. 2021. Complete Problems
for Multi-Pseudodeterministic Computations. In 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021 (LIPIcs, Vol. 185). 66:1—
66:16.

Peter Dixon, Aduri Pavan, and N. V. Vinodchandran. 2021. Promise Problems
Meet Pseudodeterminism. Electron. Colloquium Comput. Complex. 28 (2021), 43.
https://eccc.weizmann.ac.il/report/2021/043

Shimon Even, Alan L. Selman, and Yacov Yacobi. 1984. The Complexity of Promise
Problems with Applications to Public-Key Cryptography. Inf. Control. 61, 2 (1984),
159-173.

Eran Gat. 2009. On the canonization of probabilistic algorithms, MS Thesis,
Weizmann Institute of Science.

E. Gat and S. Goldwasser. 2011. Probabilistic Search Algorithms with Unique
Answers and Their Cryptographic Applications. Electronic Colloquium on Com-
putational Complexity (ECCC) 18 (2011), 136.

Michel Goemans, Shafi Goldwasser, and Dhiraj Holden. 2019. Doubly-Efficient
Pseudo-Deterministic Proofs. arXiv (2019).

Oded Goldreich. 2006. On Promise Problems: A Survey. In Theoretical Computer
Science, Essays in Memory of Shimon Even (Lecture Notes in Computer Science,
Vol. 3895), Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman (Eds.).
Springer, 254-290.

Oded Goldreich. 2011. In a World of P=BPP. In Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computation,
Oded Goldreich (Ed.). Lecture Notes in Computer Science, Vol. 6650. Springer,
191-232.

1565

(18

[19

[20

[21

[22]

(23]

™
=)

[25

[26]

[27

)
22

'@
=

™
fla’

&
2

(37

[38

@
29,

[40

[41

[42

Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran

Oded Goldreich. 2019. Multi-pseudodeterministic algorithms. Electronic Collo-
quium on Computational Complexity (ECCC) 26 (2019), 12.

O. Goldreich, S. Goldwasser, and D. Ron. 2013. On the possibilities and limitations
of pseudodeterministic algorithms. In Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013. 127-138.

O. Goldreich and D. Zuckerman. 1997. Another proof that BPP subseteq PH (and
more). Electronic Colloquium on Computational Complexity (ECCC) 4, 45 (1997).
Oded Goldreich and David Zuckerman. 2011. Another Proof That BPP C PH (and
More). In Studies in Con;plexity and Crygtogrcgrhly. Miscellanea on the Interplay
between Randomness and Computation, Oded Goldreich (Ed.). Lecture Notes in
Computer Science, Vol. 6650. Springer, 40-53.

S. Goldwasser and O. Grossman. 2017. Bipartite Perfect Matching in Pseudo-
Deterministic NC. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland. 87:1-87:13.

S. Goldwasser, O. Grossman, and D. Holden. 2017. Pseudo-deterministic Proofs.
CoRR abs/1706.04641 (2017).

Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff.
2020. Pseudo-Deterministic Streaming. In 11th Innovations in Theoretical Com-
puter Science Conference, ITCS (LIPIcs, Vol. 151), Thomas Vidick (Ed.). 79:1-79:25.
Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam.
2021. On the Pseudo-Deterministic Query Complexity of NP Search Problems. In
36th Computational Complexity Conference, CCC 2021 (LIPIcs, Vol. 200), Valentine
Kabanets (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 36:1-36:22.
O. Grossman. 2015. Finding Primitive Roots Pseudo-Deterministically. Electronic
Colloquium on Computational Complexity (ECCC) 22 (2015), 207.

Ofer Grossman and Yang P. Liu. 2019. Reproducibility and Pseudo-Determinism
in Log-Space. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019.
SIAM, 606-620.

Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman.
1996. Computing Solutions Uniquely Collapses the Polynomial Hierarchy. SIAM
J. Comput. 25, 4 (1996), 697-708. https://doi.org/10.1137/S0097539794268315
Dhiraj Holden. 2017. A Note on Unconditional Subexponential-time Pseudo-
deterministic Algorithms for BPP Search Problems. CoRR abs/1707.05808 (2017).
Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. 2002. In search of
an easy witness: exponential time vs. probabilistic polynomial time. 7. Comput.
Syst. Sci. 65, 4 (2002), 672-694.

Russell Impagliazzo and Avi Wigderson. 1997. P = BPP if E Requires Exponential
Circuits: Derandomizing the XOR Lemma. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing. ACM, 220-229.

R. Kannan. 1982. Circuit-size Lower bounds and Non-reducibility to Sparse sets.
Information and Control 55 (1982), 40-56.

J. Kébler and O. Watanabe. 1998. New Collapse Consequences of NP Having
Small Circuits. SIAM J. Comput. 28, 1 (1998), 311-324.

H. W. Kuhn. 1960. Some Combinatorial Lemmas in Topology. IBM Journal of
Research and Development 4, 5 (1960), 518-524. https://doi.org/10.1147/rd.45.0518
Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. 2021. Pseudodeterministic
Algorithms and the Structure of Probabilistic Time. In STOC. To Appear. ECCC
Tech Report 21-039.

Ashish V. Naik, John D. Rogers, James S. Royer, and Alan L. Selman. 1998. A
Hierarchy Based on Output Multiplicity. Theor. Comput. Sci. 207, 1 (1998), 131—
157.

L. Oliveira and R. Santhanam. 2017. Pseudodeterministic constructions in subexpo-
nential time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017. 665-677.
Igor Carboni Oliveira and Rahul Santhanam. 2018. Pseudo-Derandomizing Learn-
ing and Approximation. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2018 (LIPIcs, Vol. 116).
55:1-55:19.

Amit Sahai and Salil P. Vadhan. 2003. A complete problem for statistical zero
knowledge. 7. ACM 50, 2 (2003), 196-249.

R. Santhanam. 2009. Circuit Lower Bounds for Merlin—-Arthur Classes. SIAM J.
Comput. 39, 3 (2009), 1038-1061.

N. V. Vinodchandran. 2005. A note on the circuit complexity of PP. Theor. Comput.
Sci. 347, 1-2 (2005), 415-418.

Laurence A Wolsey. 1977. Cubical sperner lemmas as applications of generalized
complementary pivoting. Journal of Combinatorial Theory, Series A 23, 1 (1977),
78-87. https://doi.org/10.1016/0097-3165(77)90081-4


https://eccc.weizmann.ac.il/report/2021/043
https://doi.org/10.1137/S0097539794268315
https://doi.org/10.1147/rd.45.0518
https://doi.org/10.1016/0097-3165(77)90081-4

	Abstract
	1 Introduction
	1.1 Circuit Acceptance Probability Estimation Problem (APEP)
	1.2 Multi-Pseudodeterminism
	1.3 Organization

	2 Our Results
	2.1 Pseudodeterminism and Promise Problems
	2.2 Consequences of the Equivalences
	2.3 Completeness for Poly-Pseudodeterminism
	2.4 Equivalence of Probabilistic Search Problems
	2.5 Query Complexity Lower Bounds for Multi-Pseudodeterminism

	3 Preliminaries
	3.1 Pseudodeterminism
	3.2 Promise Problems
	3.3 Search Problems
	3.4 Query Complexity

	4 Pseudodeterminism and Promise Problems
	4.1 Main Equivalence
	4.2 Safe Pseudodeterministic Algorithms
	4.3 Equivalence in Space Bounded Computations

	5 Consequences of the Equivalences
	5.1 Circuit Lower Bounds and Derandomization
	5.2 Complete Problems and Hierarchy Theorems
	5.3 Completeness for Poly-Pseudodeterminism

	6 Equivalence of Probabilistic Search Problems
	7 Query Complexity Lowerbounds
	7.1 Lower Bound in the Uniform Query Model
	7.2 Lower Bound in the Non-Adaptive Query Model

	8 Future Directions
	9 Dedication to Alan Selman (1941–2021)
	References

