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Abstract. Shadows for bicategories, defined by Ponto, provide a useful framework that gener-

alizes classical and topological Hochschild homology. In this paper, we define Hochschild-type

invariants for monoids in a symmetric monoidal, simplicial model category V, as well as for small
V-categories. We show that each of these constructions extends to a shadow on an appropriate

bicategory, which implies in particular that they are Morita invariant. We also define a gener-

alized theory of Hochschild homology twisted by an automorphism and show that it is Morita
invariant. Hochschild homology of Green functors and Cn-twisted topological Hochschild homol-

ogy fit into this framework, which allows us to conclude that these theories are Morita invariant.

We also study linearization maps relating the topological and algebraic theories, proving that
the linearization map for topological Hochschild homology arises as a lax shadow functor, and

constructing a new linearization map relating topological restriction homology and algebraic re-
striction homology. Finally, we construct a twisted Dennis trace map from the fixed points of

equivariant algebraic K-theory to twisted topological Hochschild homology.

1. Introduction

Theories of Hochschild homology play an essential role in the trace method approach to algebraic
K-theory. Classical Hochschild homology of a ring R receives a map from the algebraic K-theory
of R, called the Dennis trace,

Kq(R)→ HHq(R).

In this sense, Hochschild homology of a ring serves as an approximation to algebraic K-theory. To
arrive at a much better approximation, however, one needs to consider a topological analogue of
Hochschild homology, called topological Hochschild homology, THH(R). There is similarly a trace
map from algebraic K-theory to topological Hochschild homology, which factors the Dennis trace

Kk(R)→ πk THH(R)→ HHk(R).

Through an understanding of the full structure of topological Hochschild homology, one can then
define topological cyclic homology (see [12, 31]), which often closely approximates algebraic K-
theory.

In recent years, equivariant generalizations of Hochschild homology and topological Hochschild
homology have been developed. In [4] the authors define Cn-twisted topological Hochschild ho-
mology for a Cn-equivariant ring spectrum R, denoted THHCn(R), where Cn is the cyclic group
of order n. Twisted topological Hochschild homology has an algebraic analogue as well, twisted
Hochschild homology for Green functors, HHCn

k , as defined in [10].
In the classical setting the Hochschild homology of a ring R and its topological analogue, THH(R)

are related by a map

πk THH(R)→ HHk(R).
1
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More generally, for A a (−1)-connected ring spectrum this map takes the form

πk THH(A)→ HHk(π0A),

and is an isomorphism in degree 0. As we will see in Section 5, this map is induced by the lin-
earization map A→ Hπ0A of a (−1)-connected ring spectrum, where Hπ0A denotes the Eilenberg–
MacLane spectrum of π0A. Hence, this map relating topological Hochschild homology and Hochschild
homology is referred to as the linearization map. Similarly, in the equivariant setting there is a lin-
earization map relating twisted topological Hochschild homology and the Hochschild homology for
Green functors. In particular, for R a (−1)-connected Cn-ring spectrum, linearization for twisted
topological Hochschild homology is a map

πCn

k THHCn
(R)→ HHCn

k (π0R),

where πCn
∗ denotes the homotopy Mackey functors for the group Cn. In [10], the authors construct

this linearization map and prove it is an isomorphism in degree 0.
In [2] we developed computational tools to study twisted topological Hochschild homology, in-

cluding an equivariant Bökstedt spectral sequence, and computed several examples of twisted THH.
In this article, we adopt the framework of bicategorical shadows to deepen our understanding of
twisted THH and Hochschild homology for Green functors.

The notion of a shadow on a bicategory, introduced by Ponto in [32], has proved instrumen-
tal in the study of (topological) Hochschild homology, topological restriction homology, algebraic
K-theory, and fixed point theory. Both classical Hochschild homology and its homotopical gener-
alization, topological Hochschild homology of ring spectra and of spectral categories, are examples
of shadows [33],[14]. An advantage of the shadow approach to studying Hochschild theories is that
their Morita invariance is immediate once we have established that they are indeed shadows. View-
ing rings and modules in a bicategorical framework, Morita equivalence serves as the natural notion
of equivalence between 0-cells in a bicategory. As shadows respect bicategorical structure, they are
invariant under Morita equivalences.

The shadow framework also allows for an easy proof that the topological Hochschild homology
of a ring spectrum A agrees with the topological Hochschild homology of its category of perfect
modules, PerfA. One can consider A and PerfA as 0-cells of a bicategory in which they are Morita
equivalent. Since topological Hochschild homology is a shadow, the agreement result follows.

It is clear from the examples above that the theory of shadows provides a powerful and useful
organizing principle for Hochschild-type theories. There is therefore good reason to elaborate a
general framework in which to define Hochschild homology of “ring objects” and to show that it is
a shadow and thus deduce Morita invariance and an appropriate version of agreement. In Section 3.1
we construct a Hochschild-type invariant of monoids in a nice enough symmetric monoidal, simplicial
model category V, and show that it extends to a shadow on the bicategory RV of (cofibrant) monoids
and (homotopy classes of) bimodules, from which we deduce Morita invariance of this generalized
Hochschild homology (Corollary 3.1.7).

We then extend this Hochschild-type invariant in a natural manner to “monoids in V with
many objects”, i.e., small V-categories, in Section 3.2. The “many objects” version of bimodules
is formulated in terms of enriched functors and enriched natural transformations. We show that
this invariant of V-categories extends to a shadow on the bicategory CV of (pointwise cofibrant)
V-categories and (homotopy classes of) enriched bimodules. We then prove that a monoid A in V,
seen as a V-category with one object, is Morita equivalent in CV to (a cofibrant replacement of)
its category of perfect modules (Proposition 3.2.12), from which we deduce that the Hochschild
homology of A is indeed isomorphic to that of its category of perfect modules (Corollary 3.2.18).
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In Section 4 we develop a construction of Hochschild homology twisted by an automorphism and
prove that this new framework, which is not quite a shadow but does satisfy Morita equivalence,
encompasses existing notions of equivariant Hochschild homology theories. In particular, we prove
that twisted topological Hochschild homology and Hochschild homology for Green functors fit into
this framework and hence are Morita invariant. The following theorem combines Theorems 4.2.4
and 4.3.5.

Theorem 1.0.1. Twisted topological Hochschild homology, THHCn , and Hochschild homology for

Green functors, HHCn

H , satisfy Morita invariance.

We also investigate the linearization map

πk THH(R)→ HHk(π0R)

in the context of bicategorical shadows. In particular, we show in Proposition 5.1.4 that this
linearization map arises from a lax shadow functor between these bicategorical shadows. Lax
shadow functors, defined in [33], can be thought of as structure-preserving natural transformations
between bicategorical shadows.

This perspective on linearization maps also allows us to define a new linearization map, from
topological restriction homology (TR) to algebraic restriction homology, tr. This algebraic version
of TR, tr, was defined in [10] using Hochschild homology for Green functors. We prove that tr
is a bicategorical shadow and conclude that it is Morita invariant. We also show that our new
linearization map from TR to tr arises from a lax shadow functor. The following is proven as
Propositions 4.4.2 and 5.2.3 and Corollary 5.2.4.

Theorem 1.0.2. For a (−1)-connected ring spectrum R, there is a linearization map

πkTR(R)→ trk(π0(R)).

This linearization map arises from a lax shadow functor.

One of the central properties of Hochschild theories is that they receive trace maps from algebraic
K-theory. The Dennis trace map from algebraic K-theory to Hochschild homology factors through
THH. It was shown in [10] that the Dennis trace map also factors through Hochschild homology
for Green functors and through algebraic tr.

It is natural to ask whether twisted topological Hochschild homology, THHCn
, also receives a

trace map from a version of algebraic K-theory. In Theorem 6.1.1 and Corollary 6.2.1, we prove
that indeed it receives a trace map from the fixed points of equivariant algebraic K-theory, KCn .
Like the classical Dennis trace K→ THH, this map is given by taking the trace of an endomorphism
(for example, the trace of a matrix.)

Theorem 1.0.3. Let R be a Cn-ring spectrum. There is a twisted Dennis trace map

KCn
(R)Cn → THHCn

(R).

For a prime p that does not divide n, THHCn
(R) has a p-cyclotomic structure [4]. This can

be used to define twisted topological restriction homology, TRCn
(R; p). We use work on algebraic

K-theory from the shadow perspective [13] to prove that when p is prime to n, the trace map
KCn(R)Cn → THHCn(R) lifts to TRCn(R; p).
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1.1. Organization. In Section 2, we cover necessary background on bicategories and shadows.
In Section 3, we define a generalized Hochschild-type invariant and prove that it is a shadow;
we conclude that it satisfies Morita invariance. In Section 4, we develop a theory of Hochschild
homology twisted by an automorphism and use this generalized framework to prove that THHCn

,

and HHCn are Morita invariant. In Section 5, we study linearization maps from the perspective of
lax shadow functors, including a new linearization map from TR to algebraic tr. In Section 6, we
show that THHCn receives a trace map from the fixed points of equivariant algebraic K-theory, and
that this trace map factors through TRCn

.

1.2. Notation and Conventions. The indexing universe for equivariant spectra is always under-
stood to be complete.
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2. Background

2.1. Bicategorical preliminaries. Recall that a bicategory B consists of a class B0 of 0-cells
(also called objects), together with a category B(A,B) for every pair A,B of 0-cells. The objects
and morphisms of the category B(A,B) are called 1-cells and 2-cells, respectively. For every zero
cell A, there is a distinguished identity 1-cell, UA, in B(A,A). For every triple A,B,C of 0-cells,
there is a composition functor

−�− : B(A,B)×B(B,C)→ B(A,C),

along with natural isomorphisms

a : (M �N)� P
∼=−→M � (N � P )

l : UA �M
∼=−→M

r : M � UB
∼=−→M

which satisfy the same coherence axioms as those for a monoidal category. We refer the reader to
[24, Definition 1.2.1] for a complete definition.

Notation 2.1.1. We often write AMB to denote a 1-cell M in B(A,B).



A SHADOW PERSPECTIVE ON EQUIVARIANT HOCHSCHILD HOMOLOGIES 5

Well-known examples of bicategories include the bicategory R of (ordinary) rings, in which the
0-cells are rings, while R(A,B) is the category of (A,B)-bimodules for any pair of rings A,B, and
the composite of an (A,B)-bimodule M and a (B,C)-bimodule N is their tensor product over B,
M ⊗B N . The bicategory C of small categories, functors, and natural transformations is another
useful example to keep in mind.

Generalizing simultaneously the notions of a dualizable bimodule and its dual and of an adjoint
pair of functors, we have the following definition of dual pairs of 1-cells in a bicategory.

Definition 2.1.2. Let B be a bicategory, and let A,B ∈ B0. A pair of 1-cells (AMB ,BNA) is a
dual pair for (A,B) if there exist 2-cells ε : N �M → UB and η : UA → M �N , called evaluation
and coevaluation, respectively, satisfying the triangle identities, i.e., the composites of 2-cells

N ∼= N � UA
N�η−−−→ N � (M �N) ∼= (N �M)�N ε�N−−−→ UB �N ∼= N

and

M ∼= UA �M
η�M−−−→ (M �N)�M ∼= M � (N �M)

M�ε−−−→M � UB ∼= M

are identities.

The standard notion of equivalence of 0-cells, formulated below in terms of dual pairs, generalizes
the notions of both Morita equivalence of rings and equivalence of categories.

Definition 2.1.3. Let B be a bicategory. A dual pair (AMB ,BNA) is a Morita equivalence between
A and B if (BNA,AMB) is also a dual pair, and the evaluation morphism of each dual pair is an
isomorphism, with inverse the coevaluation morphism of the other dual pair.

Let A and B be 1-cells of B. If there exists a Morita equivalence (AMB ,BNA), then A and B
are Morita equivalent.

2.2. The shadow framework. In [32], Ponto formulated the following definition, which has proved
crucial to developing a global understanding of Hochschild homology and its properties, in all its
variants and generalizations.

Definition 2.2.1. Let C be a category. A C-shadow on a bicategory B consists of a family of
functors {

d−eA : B(A,A)→ C | A ∈ B0

}
together with natural isomorphisms

θA,B : dM �NeA
∼=−→ dN �MeB ,

for all 1-cells AMB and BNA and all 0-cells A and B, that are appropriately associative and unital.
In particular, the following diagrams commute, where a is the associator and u the unitor, and l
and r are the left and right units, respectively, of the bicategory.

d(M �N)� P )e θ //

dae
��

dP � (M �N))e
dae // d(P �M)�N)e

dM � (N � P )e θ // d((N � P )�Me
dae // dN � (P �M)e

θ

OO
,

dM � UAe
θ //

dre ''

dUA �Me
θ //

dle
��

dM � UAe

dreww
dMe

.
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When the source of a shadow component d−eA : B(A,A)→ C is clear from context, we usually
suppress it from the notation.

Let SH denote the stable homotopy category. Campbell and Ponto proved in [14] that topological
Hochschild homology is an SH-shadow on the bicategory RSp whose objects are structured ring
spectra (i.e., monoids in some nice monoidal model category of spectra, Sp) and whose morphism
categories are the homotopy categories of categories of spectral bimodules.

Shadows satisfy several interesting and useful properties that follow essentially from their bicat-
egorical nature, in particular related to dual pairs of 1-cells. We recall here from [32] those that are
most relevant for our work.

Definition 2.2.2. [32]. Let B be a bicategory equipped with a C-shadow d−e, and let (AMB ,BNA)
be a dual pair. Let BPB and AQA be 1-cells.

The trace of a 2-cell f : Q �M → M � P with respect to the C-shadow d−e is the morphism
tr(f) ∈ C

(
dQe, dP e

)
given by the composite

dQe dQ�ηe−−−−→ dQ�M �Ne df�Ne−−−−−→ dM � P �Ne ∼= dN �M � P e
dε�Pe−−−−→ dP e

where we have suppressed unitor and associator isomorphisms.
The trace of a 2-cell g : N � Q → P � N , which is also a morphism tr(g) ∈ C

(
dQe, dP e

)
, is

defined analogously.

We distinguish the following important special case of the trace.

Definition 2.2.3. Let B be a bicategory equipped with a C-shadow d−e, and let (AMB ,BNA) be
a dual pair.

The Euler characteristic of M , denoted χ(M), is the trace of IdM , the identity 2-cell on M , i.e.,
χ(M) is the composite

dUAe
dηe−−→ dM �Ne ∼= dN �Me

dεe−−→ dUBe.

Traces behave particularly well in the context of Morita equivalences. For any dualizable pair
(AMB ,BNA) and 1-cells AQA and BPB , consider the 2-cells

η �Q�M : Q�M →M �N �Q�M
and

M � P � ε : M � P �N �M →M � P,
where we are suppressing unitors and associators.

Proposition 2.2.4. [14] Let B be a bicategory equipped with a C-shadow. Let (AMB ,BNA) be a
Morita equivalence.

For any 1-cell AQA,

tr(η �Q�M) : dQe → dN �Q�Me
is an isomorphism with inverse

tr(N �Q� ε) : dN �Q�Me → dQe.
In particular, the Euler characteristic χ(M) : dUAe → dUBe is an isomorphism.

Note that the last statement of the proposition above follows from the fact that the Euler
characteristic χ(N) of the right member N of the dual pair (M,N) provides an inverse to χ(M),
by the definition of Morita equivalence.
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3. Hochschild shadows

Hochschild homology theories form an important family of shadows. Classical Hochschild homol-
ogy extends to a shadow (see Example 6.4 of [33].) In Theorem 2.17 of [14], Campbell and Ponto
proved that topological Hochschild homology of ring spectra and of spectral categories does so as
well. In this section, we generalize these results to any nice enough symmetric monoidal, simplicial
model category.

Throughout this section, let (V,⊗, S) denote a symmetric monoidal, simplicial model category,
i.e., a simplicial model category equipped with a symmetric monoidal structure with respect to
which it is a also a monoidal model category. In particular, we assume that V is closed monoidal.

3.1. The one-object case. Here we construct a Hochschild-type invariant of monoids in a sym-
metric monoidal, simplicial model category V, and show that it extends to a shadow, from which
we deduce Morita invariance of this generalized Hochschild homology.

Assumption 3.1.1. We assume henceforth that (V,⊗, S) is cofibrantly generated and has func-
torial fibrant replacements and that for any pair of monoids A and B in V, the category AModB
of (A,B)-bimodules in V admits a model structure right-induced from that of V, i.e., such that
the weak equivalences and fibrations are created in V. This hypothesis holds if, for example, every
object in V is small relative to V, and V satisfies the monoid axiom [37, Theorem 4.1].

Since V is a simplicial model category, there is a homotopy colimit functor

hocolim∆op : V∆op

→ V;

see [19, Definition 18.1.2].

Definition 3.1.2. Let RV denote the bicategory defined as follows.

• The 0-cells of RV are monoids in V whose underlying object in V is cofibrant.
• For any monoids A and B in V, the category RV(A,B) is Ho(AModB), the homotopy

category of the category of (A,B)-bimodules in V, which we view explicitly as the category
with bifibrant objects of AModB as objects and homotopy classes of morphisms in AModB
as morphisms.

• Given objects AMB in Ho(AModB) and BNC in Ho(BModC), their composite M � N is
defined to be their derived tensor product over B. More explicitly, we set

M �N = (hocolim∆op Bar•(M ;B;N))f ,

the fibrant replacement of the homotopy colimit of the bar construction Bar•(M ;B;N).

Notation 3.1.3. Henceforth, if X• is a simplicial object in a simplicial model category M, then we
abuse notation and terminology somewhat and let |X•| denote (hocolim∆op X•)

f , which we refer
to as the geometric realization of X•. If all simplicial objects in M are Reedy cofibrant (e.g., if M
is a topos, such as sSet, or an additive category [34]), then (hocolim∆op X•)

f is weakly equivalent
to the usual geometric realization.

It is not hard, if a bit tedious, to check that RV is indeed a bicategory. In particular, for any
0-cell A in RV, the unit object UA in RV(A,A) is just A seen as a bimodule over itself in the
canonical way. Note that Assumption 3.1.1 and the cofibrancy condition on the 0-cells together
ensure that horizontal composition is well defined by [19, Definition 18.5.3].
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Definition 3.1.4. Let A be a monoid in V, and let M be an A-bimodule. The Hochschild construc-
tion on A with coefficients in M , denoted HHV(A;M), is |Bcyc

• (A;M)|, the geometric realization
of the cyclic bar construction (see, e.g. [12, Section 2]) on A with coefficients in M .

Proposition 3.1.5. The Hochschild construction HHV extends to a HoV-shadow on RV.

Proof. The Hochschild construction clearly defines a functor

HHV(A;−) : Ho(AMod(V)A)→ HoV

for every A. Moreover, a slight generalization of the Dennis–Morita–Waldhausen argument in [11,
Proposition 6.2] shows that there is a natural isomorphism

θA,B : HHV(A;M �N) ∼= HHV(B;N �M)

for all AMB and BNA. Indeed, since all objects are cofibrant, the left-hand side is weakly equivalent
to

hocolim∆op×∆op Bcyc
•
(
A; Bar•(M ;B;N)

)
while the right-hand side is weakly equivalent to

hocolim∆op×∆op Bcyc
•
(
B; Bar•(N ;A;M)

)
.

Since the two bisimplicial objects of which we take the homotopy colimit are in fact isomorphic, we
can conclude.

It is straightforward to check the remaining shadow conditions. The required relations between
the associator and θ and between the unitor and θ follow immediately from associativity and unit
coherence for the symmetric monoidal structure on V. �

Remark 3.1.6. Taking V to be the category of simplicial abelian groups, we recover the result that
Hochschild homology is a shadow on the bicategory RsAb of simplicial rings and their bimodules.

Together with Proposition 2.2.4, the proposition above implies that the following version of
Morita invariance holds.

Corollary 3.1.7. Let (AMB ,BNA) be a Morita equivalence in RV. For any A-bimodule Q, there
is an isomorphism

HHV(A;Q)
∼=−→ HHV(B;N �Q�M).

In particular, the Euler characteristic

χ(M) : HHV(A;A)→ HHV(B;B)

is an isomorphism.

3.2. The many-object case. The constructions above can be generalized in a natural manner
to “monoids in V with many objects”, i.e., small V-categories, which are the objects of a category
that we denote VCat. The “many objects” version of bimodules is formulated in terms of enriched
functors and enriched natural transformations. We begin by fixing notation and recalling a few key
constructions from enriched category theory, for which we recommend the references [23] and [35].

For any V-category A and any a, a′ ∈ ObA, let A(a, a′) denote the V-object of morphisms from
a to a′. Given V-categories A and B, let VFun(A,B) denote the (ordinary) category of V-functors
from A to B and of V-natural transformations between them. Let S denote the V-category with one
object ∗ and such that S(∗, ∗) = S, the unit object in V.
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Given V-categories A, B, and C, and a V-functor F : A→ B, there is an induced adjunction

VFun(A,C)
F! //
⊥ VFun(B,C)
F∗

oo ,

where F ∗ is given by precomposition with F , and F! is enriched left Kan extension. Explicitly, for
all V-functors G : A→ C and all b ∈ ObB, the enriched left Kan extension of G along F evaluated
at b can be computed as an enriched coend [35, 7.6.7]

F!(G)(b) =

∫ A

B
(
F (a), b

)
⊗G(a).

Definition 3.2.1. Let A and B be V-categories. An (A,B)-bimodule is a V-functor

M : Aop ⊗ B→ V,

where Aop⊗B denotes the V-category with class of objects ObA×ObB, where we let a⊗ b denote
the pair (a, b) ∈ ObA × ObB, to avoid conflicting notation. The morphism V-objects of Aop ⊗ B
are specified by

Aop ⊗ B
(
a⊗ b, a′ ⊗ b′

)
= A(a′, a)⊗B(b, b′).

A morphism of (A,B)-bimodules is a V-natural transformation between the corresponding V-functors.

In other words, the category AModB of (A,B)-bimodules is exactly VFun(Aop⊗B,V). In particular,

SModS is isomorphic as a V-category to V.

Example 3.2.2. Let A, B, and C be V-categories. Every pair of V-functors, F : A → C and
G : B→ C, gives rise to an (A,B)-bimodule

FCG : Aop ⊗ B→ V : a⊗ b 7→ C
(
F (a), G(b)

)
.

An important special case of this construction is

Â = IdAId : Aop ⊗ A→ V : a⊗ a′ 7→ A(a, a′),

the canonical A-bimodule structure on A.

Remark 3.2.3. We can also use enriched coends to define a many-objects version of tensoring two
bimodules over a common coefficient base. Let A, B, and C be V-categories. There is a V-functor

−⊗B − : AModB ⊗ BModC → AModC

specified on objects by

M ⊗B N : Aop ⊗ C→ V : a⊗ c 7→
∫ B

M(a⊗−)⊗N(−⊗ c)

for all (A,B)-bimodules M and (B,C)-bimodules N .

There are also “many objects” versions of the bar construction and cyclic bar construction (see,
e.g., [29] for additive categories and [11] for spectral categories), constructed from the following

building blocks. Let A and B be V-categories, and let M be an (A,B)-bimodule. Let Â �M and

M � B̂ denote the (A,B)-bimodules specified on objects by

(Â�M)(a⊗ b) =
∐

a′∈ObA

Â(a⊗ a′)⊗M(a′ ⊗ b) =
∐

a′∈ObA

A(a, a′)⊗M(a′ ⊗ b)
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and
(M � B̂)(a⊗ b) =

∐
b′∈ObB

M(a⊗ b′)⊗ B̂(b′ ⊗ b) =
∐

b′∈ObB

M(a⊗ b′)⊗ B(b′, b).

There are V-natural transformations

λ : Â�M →M and ρ : M � B̂→M

with components given by the following composites∐
a′∈ObA

A(a, a′)⊗M(a′ ⊗ b)→
∐

a′∈ObA

V
(
M(a′ ⊗ b),M(a⊗ b)

)
⊗M(a′ ⊗ b)→M(a⊗ b)

and ∐
b′∈ObB

M(a⊗ b′)⊗ B(b′, b)→
∐

b′∈ObB

M(a⊗ b′)⊗ V
(
M(a⊗ b′),M(a⊗ b)

)
→M(a⊗ b),

where the first morphism in the composite uses the V-functor structure of M(− ⊗ b), which is
contravariant, and of M(a⊗−), respectively, and the second is built from “evaluation” morphisms.
In a slight abuse of language, we call λ and ρ the left action of A and the right action of B on M .

Definition 3.2.4. Let A, B, and C be V-categories. Let M ∈ Ob AModB and N ∈ Ob BModC.
The simplicial bar construction on B with coefficients in M and N is the simplicial (A,C)-bimodule

Bar•(M ; B̂;N) specified by

Barn(M ; B̂;N) = M � B̂�n �N,

with faces given by the right action of B on M , composition in B, and the left action of B on N .
Degeneracies are given by the unit of B.

Similarly, for P ∈ Ob AModA, the cyclic bar construction on A with coefficients in P is the cyclic

object Bcyc
• (Â;P ) in SModS (which can therefore also be seen as a cyclic object in V) that is specified

by

Bcyc
n (A;P ) = P � Â�n,

with faces given by the right action of A on P , composition in A, and the left action of A on P
together with a cyclic permutation of the factors. Degeneracies are given by the unit of A.

Remark 3.2.5. The cyclic bar construction is a simplicial object in SModS rather than AModA
because the cyclic permutation applied in the last face at each level is in general not compatible
with the A-action on either side.

Assumption 3.2.6. We assume henceforth that the unit S of V is cofibrant and that for any
pair of V-categories A and B, the category AModB of (A,B)-bimodules in VCat admits a simplicial
model structure in which the weak equivalences and fibrations are determined objectwise. This
hypothesis holds if, for example, V is a locally presentable base [30, Definition 2.1], and tensoring
with Aop ⊗ B

(
a⊗ b, a′ ⊗ b′

)
preserves acyclic cofibrations in V for every pair of V-categories A and

B. These conditions guarantee the existence of a projective model structure on the category of
(A,B)-bimodules [30, Remark 4.5]. Moreover, the proof of [19, Theorem 11.7.3] applies essentially
verbatim in this case, to show that objectwise tensoring and cotensoring by simplicial sets endows

AModB with the structure of a simplicial model category.
Examples of locally presentable bases include the categories of simplicial sets, of symmetric

spectra, and of chain complexes over a commutative ring [30, Examples 5.6, 6.6, 6.7]. The condition
on preservation of acyclic cofibrations holds if, for example, all objects in V are cofibrant or we
consider only those V-categories such that the morphism objects are cofibrant in V.
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Definition 3.2.7. Let CV denote the bicategory defined as follows.

• The 0-cells of CV are small V-categories such that all hom-objects are cofibrant in V.
• For any V-categories A and B, the category CV(A,B) is Ho(AModB), the homotopy category

of the category of (A,B)-bimodules, in the explicit form of the category with bifibrant
objects of AModB as objects and homotopy classes of morphisms in AModB as morphisms.

• Given AMB and BNC, their composite M �N is defined to be their derived tensor product
over B. More explicitly, we set

M �N = hocolim∆op

(
Bar•(M ; B̂;N)

)f
,

the functorial fibrant replacement of the homotopy colimit of the simplicial bar construction.

As in the case of RV, it is straightforward, if tedious, to check that CV is indeed a bicategory.

Note that for any 0-cell A in CV, the unit object UA in CV(A,A) is Â. Assumptions 3.1.1 and 3.2.6
and the cofibrancy assumption on the 0-cells of CV together imply that horizontal composition is
well defined, as in the one-object case.

Remark 3.2.8. By [36, Proposition 6.3], under our hypotheses on V, for every V-category C, there
exists a V-category QC with same object set such that all hom-objects are cofibrant in V and an
acyclic fibration of V-categories, QC → C, that is the identity on objects and a weak equivalence
on hom-objects. The cofibrancy hypothesis on the 0-cells of CV is therefore not too restrictive.

The following computation of a particular derived tensor product proves useful to us below.

Lemma 3.2.9. Let A, B, and C be V-categories. For every pair of V-functors F : A → C and
G : B→ C and every a⊗ b ∈ Ob(Aop ⊗ B), there is a natural isomorphism

|Bar•(FCId; Ĉ; IdCG)|(a⊗ b) ∼= FCG(a⊗ b)
in HoV.

Proof. Recall that the nth-level of the bar construction is

Barn(FCId; Ĉ; IdCG) = FCId � Ĉ�n � IdCG.

Evaluating this functor at a⊗ b ∈ Ob(Aop ⊗ B), we obtain(
FCId � Ĉ�n � IdCG

)
(a⊗ b) =

∐
c0,...,cn

C
(
F (a), c0

)
⊗ C(c0, c1)⊗ · · · ⊗ C(cn−1, cn)⊗ C

(
cn, G(b)

)
.

The simplicial object Bar•(FCId; Ĉ; IdCG) admits an augmentation∐
c0

C
(
F (a), c0

)
⊗ C

(
c0, G(b)

)
→ C

(
F (a), G(b)

)
given by the composition in C. This augmented simplicial object admits extra degeneracies, defined
from level −1 to level 0 by

C
(
F (a), G(b)

) ∼= S⊗C
(
F (a), G(b)

)
→ C

(
F (a), F (a)

)
⊗C
(
F (a), G(b)

)
↪→
∐
c0

C
(
F (a), c0

)
⊗C
(
c0, G(b)

)
,

where the first morphism is given by the unit of F (a), and analogously in higher levels. (Note that
we could instead have chosen to define the extra degeneracies in terms of the unit on G(b).)

It follows that the augmentation map induces a natural weak equivalence

|Bar•(FCId; Ĉ; IdCG)|(a⊗ b) '−→ FCG(a⊗ b)
in V and thus a natural isomorphism in HoV. �
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Remark 3.2.10. There is a faithful bifunctor

Θ: RV → CV

defined as follows. A 0-cell A of RV, i.e., a monoid in V with cofibrant underlying object in V,
is sent to the V-category Θ(A) with one object ∗, Θ(A)(∗, ∗) = A, and composition given by the
multiplication in A. If AMB is a 1-cell of RV with left A-action λ and right B-action ρ, then Θ(M)
is the

(
Θ(A),Θ(B)

)
-bimodule

Θ(M) : Θ(A)op ⊗Θ(B)→ V

that sends the unique object ∗ ⊗ ∗ of the source to M , and that is defined on the V-object of
morphisms to be the transpose

Aop ⊗B → V(M,M)

of the bimodule action

M ⊗Aop ⊗B ∼= A⊗M ⊗B ρ(λ(−⊗−)⊗−)−−−−−−−−−→M.

We can extend Θ to 2-cells in the obvious way.

Remark 3.2.11. Let PerfA denote the full sub-V-category of perfect left A-modules, i.e., those
cofibrant A-modules M that are finitely generated and such that

homA(M,A)⊗L
A N

∼= homA(M,N)

in HoV for every left A-module N , where −⊗L − is the total left derived functor of

−⊗A − : ModA × AMod→ V.

Note that the finite generation hypothesis implies that PerfA is small.
For every A ∈ ObMon(V) with cofibrant underlying object, there is a faithful V-functor

ιA : Θ(A)→ PerfA

that sends the unique object to A and that is defined on the V-object of morphisms to be the
transpose

A→ PerfA(A,A)

of the multiplication map µ : A⊗A→ A.
Since the 0-cells of the bicategory CV are required to satisfy a cofibrancy condition, we apply

cofibrant replacement and consider QPerfA instead (cf. Remark 3.2.8), which is small, since PerfA
is, and therefore a 0-cell of CV. Since A and therefore Θ(A) are cofibrant, the V-functor ιA lifts
through the acylic fibration QPerfA → PerfA, giving rise to a V-functor

ι′A : Θ(A)→ QPerfA

As special cases of Example 3.2.2, the functor ι′A gives rise to two V-category bimodules,

ι′A
(QPerfA)Id ∈ Ob Θ(A)ModQPerfA

and

Id(QPerfA)ι′A ∈ Ob QPerfAModΘ(A).

Proposition 3.2.12. For every A ∈ ObMon(V) with cofibrant underlying object in V, the pair(
ι′A

(QPerfA)Id, Id(QPerfA)ι′A

)
is a Morita equivalence in CV between Θ(A) and QPerfA.
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Proof. The definition in Example 3.2.2 says that

ι′A
(QPerfA)Id : Θ(A)op ⊗ QPerfA → V : (∗,M) 7→ QPerfA(A,M),

while

Id(QPerfA)ι′A : QPerfop
A ⊗Θ(A)→ V : (M, ∗) 7→ QPerfA(M,A).

We show first that ι′A(QPerfA)Id�Id(QPerfA)ι′A
∼= UΘ(A) and Id(QPerfA)ι′A�ι′A(QPerfA)Id

∼= UQPerfA .
Observe that

ι′A
(QPerfA)Id � Id(QPerfA)ι′A = |Bar•(ι′A(QPerfA)Id; Q̂PerfA; Id(QPerfA)ι′A)|

∼= ι′A
(QPerfA)ι′A

∼= ιA(PerfA)ιA
∼= IdΘ(A)Id

= Θ̂(A) = UΘ(A),

where the first isomorphism follows from Lemma 3.2.9 and the second from the fact that QPerfA is
weakly equivalent to PerfA, while the third is due to the fact that

Θ(A)(∗, ∗) = A ∼= PerfA(A,A).

On the other hand,

Id(QPerfA)ι′A � ι′A
(QPerfA)Id = |Bar•

(
Id(QPerfA)ι′A ; Θ̂(A); ι′A(QPerfA)Id

)
|.

For all n ≥ 0, the V-functor

Barn
(

Id(QPerfA)ι′A ; Θ̂(A); ι′A(QPerfA)Id

)
= Id(QPerfA)ι′A � Θ̂(A)

�n
� ι′A

(QPerfA)Id

from QPerfopA ⊗ QPerfA to V is specified on a pair of perfect A-modules M and N by

Barn
(

Id(QPerfA)ι′A ; Θ̂(A);ι′A(QPerfA)Id

)
(M ⊗N)

= Id(QPerfA)ι′A(M ⊗ ι′A(∗))⊗A⊗n ⊗ ι′A
(QPerfA)Id(ι′A(∗)⊗N)

= QPerfA(M,A)⊗A⊗n ⊗ QPerfA(A,N)

∼= QPerfA(M,A)⊗A⊗n ⊗N,
where the last isomorphism follows from the facts that V is cofibrantly generated and that there is
a weak equivalence QPerfA(A,N)→ PerfA(A,N) ∼= N , with cofibrant domain and codomain.

It follows that for all perfect A-modules M and N(
Id(QPerfA)ι′A � ι′A

(QPerfA)Id

)
(M ⊗N) ∼= |Bar•

(
QPerfA(M,A);A;N

)
|

= QPerfA(M,A)⊗ALN

∼= QPerfA(M,N)

= Id(QPerfA)Id(M ⊗N)

= Q̂PerfA(M ⊗N) = UQPerfA(M ⊗N)

where the second isomorphism holds since QPerfA(M,M ′) and PerfA(M,M ′) = homA(M,M ′) are
weakly equivalent for every A-module M ′, and M is perfect. Thus

Id(QPerfA)ι′A � ι′A
(QPerfA)Id

∼= UQPerfA ,

as desired.
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The natural isomorphisms above provide us with the required structure maps for the dual pairs(
Id(QPerfA)ι′A , ι′A(QPerfA)Id

)
and

(
ι′A

(QPerfA)Id, Id(QPerfA)ι′A

)
. It remains only to show that

triangle equalities are satisfied.
Checking the triangle inequalities is a straightforward exercise, if one starts by describing

ι′A
(QPerfA)Id � Id(QPerfA)ι′A � ι′A

(QPerfA)Id

and

Id(QPerfA)ι′A � ι′A
(QPerfA)Id � Id(QPerfA)ι′A

as realizations of bisimplicial objects and ι′A
(QPerfA)Id and Id(QPerfA)ι′A as realizations of constant

bisimplicial objects. The evaluations and coevaluations can then be easily described in terms of
bisimplicial maps that clearly satisfy the triangle inequalities. �

Definition 3.2.13. Let A be a V-category, and let M be an A-bimodule. The Hochschild construc-
tion on A with coefficients in M , denoted HHVcat(A;M), is |Bcyc

• (A;M)|, the geometric realization
of the cyclic bar construction on A with coefficients in M .

Remark 3.2.14. Since the cyclic bar construction can be viewed as a simplicial object in V (cf.
Definition 3.2.4), the Hochschild construction on A with coefficients in M can be viewed as an
object in V.

Proposition 3.2.15. The Hochschild construction HHVCat extends to a HoV-shadow on CV.

Proof. The Hochschild construction clearly defines a functor

HHVCat(A;−) : Ho(AModA)→ HoV

for every V-category A. As in the proof of Proposition 3.1.5, the usual Dennis–Morita–Waldhausen
argument [11, Proposition 6.2] shows that

HHVCat(A;M �N) ∼= HHVCat(B;N �M)

naturally, for all AMB and BNA. The compatibility of the natural isomorphism above with the
associator and the unitor again follows immediately from the associativity and unit coherence of
the symmetric monoidal structure on V. �

As in the single-object case, the proposition above and Proposition 2.2.4 together imply that
Morita invariance holds in the many-object case as well.

Corollary 3.2.16. Let (AMB, BNA) be a Morita equivalence in CV. For any A-bimodule Q, there
is an isomorphism

HHVCat(A;Q)
∼=−→ HHVCat(B;N �Q�M).

In particular, the Euler characteristic

χ(M) : HHVCat(A;A)→ HHVCat(B;B)

is an isomorphism.

The Hochschild construction on VCat extends that on V, as mediated by the bifunctor Θ.

Lemma 3.2.17. For any monoid A in V and any A-bimodule M ,

Θ
(

HHV(A;M)
) ∼= HHVCat

(
Θ(A); Θ(M)

)
.



A SHADOW PERSPECTIVE ON EQUIVARIANT HOCHSCHILD HOMOLOGIES 15

Proof. Observe that

Θ
(

HHV(A;M)
)

: Θ(S)op ⊗Θ(S)→ V

is the functor that sends the unique object ∗⊗∗ to HHV(A;M) and that is defined on the morphism
object to be the unit of the endomorphism object for HHV(A;M),

S ⊗ S ∼= S → V
(

HHV(A;M),HHV(A;M)
)
.

On the other hand, the nth level of the cyclic bar construction Bcyc
•
(
Θ(A); Θ(M)

)
is the restric-

tion of the functor

Θ(M) � Θ(A)�n : Θ(A)op ⊗Θ(A)→ V,

which sends the unique object ∗⊗ ∗ to M ⊗A⊗n, to Θ(S)op ⊗Θ(S). (This restriction is necessary,
since the face maps of the cyclic bar construction are not Θ(A)-bimodule maps.) In particular
Θ(M)�Θ(A)�n|Θ(S)op⊗Θ(S) is defined on the morphism object S to be the unit of the endomorphism

object on M ⊗A⊗n,

S ⊗ S ∼= S → V
(
M ⊗A⊗n,M ⊗A⊗n

)
.

The geometric realization of Bcyc
•
(
Θ(A); Θ(M)

)
is thus clearly isomorphic to Θ

(
HHV(A;M)

)
. �

An “agreement”-type result now follows from Propositions 2.2.4, 3.2.12, and 3.2.15.

Corollary 3.2.18. For any monoid A in V,

Θ
(

HHV(A; Â)
) ∼= HHVCat

(
QPerfA; Q̂PerfA

)
.

Example 3.2.19. The theory of unstable topological Hochschild homology fits into this framework.
Introduced by Nikolaus [1], unstable THH is the Hochschild homology of small categories enriched
in Kan complexes. In particular, uTHH = HHVCat for V the category of Kan complexes, which
satisfies Assumption 3.2.6. As this fits into the general framework developed above, by Proposition
3.2.15 unstable topological Hochschild homology is a shadow. It is therefore Morita invariant.

A possible analogue of Proposition 3.2.15 is given by replacing simplicial categories with differ-
ential graded categories.

Remark 3.2.20. In [38, Proposition 3.11, Theorem 4.7], Schweigert and Woike show that the
differential graded conformal block for the torus is an example of the Hochschild complex for a
differential graded category. Although we will not pursue a proof in this paper, we suggest that
these dg Hochschild constructions are also examples of bicategorical shadows. An alternative to
showing this directly would be to pass back and forth between the differential graded and simplicial
contexts using the zig zag of Quillen equivalences in [39, Section 6].

4. Application to equivariant Hochschild theories

One key motivation for developing a general bicategorical framework for Hochschild homology is
to study equivariant versions of Hochschild homology. In particular, in [4], Angeltveit, Blumberg,
Gerhardt, Hill, Lawson, and Mandell define a theory of Cn-twisted topological Hochschild homology
for a Cn-equivariant ring spectrum, THHCn

(R). This theory has an algebraic analogue, the twisted
Hochschild homology of Green functors, developed in [10]. In this section we set up a framework for
Hochschild theories twisted by an automorphism and use this framework to show that both twisted
THH and Hochschild homology for Green functors are Morita invariant.
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4.1. Hochschild theories twisted by an automorphism. Let (V,⊗, S) be a symmetric monoidal,
simplicial model category satisfying Assumption 3.1.1. Generalizing the contexts of both Cn-twisted
topological Hochschild homology of Cn-spectra and Cn-twisted Hochschild homology of Cn-Green
functors, we consider the category Vaut of objects in V equipped with automorphisms. More pre-
cisely, the objects of Vaut are pairs (X,ϕ), where X is an object of V, and ϕ : X → X is an
automorphism; morphisms in Vaut are morphisms in V that commute with the automorphism. The
monoidal structure on V clearly lifts to Vaut, which also naturally inherits a simplicial structure
from V. We denote the lifted tensor product on Vaut by ⊗, and note that the unit object is (S, IdS).

Examples 4.1.1. Let Cn denote the cyclic group of order n, and let g ∈ Cn be a generator.
The following two examples of Vaut are the ground categories for Cn-twisted THH and Cn-twisted
Hochschild homology for Green functors, respectively.

(1) Let V be the symmetric monoidal category of orthogonal Cn-spectra, denoted by (SpCn ,∧, S0).
By [27, Chapter III, Theorem 4.2] the stable model structure on orthogonal G-spectra is
cofibrantly generated and G-topological and therefore topological, whence also a simplicial
model structure by [35, Section 3.8]. Moreover, the desired model structures on categories of
bimodules exist by [27, Chapter III, Theorem 7.6], so that Assumption 3.1.1 is indeed satis-
fied. Since Cn is abelian, the conjugation map cg is the identity. Thus for any Cn-spectrum
X, left multiplication by g induces an automorphism,

g : X = c∗gX → X : x 7→ gx.

This defines an object (X, g) in SpCn
aut .

(2) The category of simplicial Cn-Mackey functors, denoted by sMackCn
, is a symmetric monoidal

simplicial model category by [10, Theorem 4.3]. This category is cofibrantly generated,
similarly to the category of simplicial abelian groups. (For G = {e}, sMackG = sAb.) By
Proposition 4.4 of [10], every object in this category is fibrant. Therefore by Lemma A.3
of [37], sMackCn

satisfies Assumption 3.1.1. For each Cn-Mackey functor M and subgroup
H ⊂ Cn, the Weyl group WH(Cn) = Cn/H acts on M(Cn/H), the Cn-Mackey functor M
evaluated at the orbit Cn/H. Therefore we can define a levelwise g-action on a Cn-Mackey
functor M by passing to the Weyl group, i.e.,

g(Cn/H) : M(Cn/H)
[g]∈Cn/H−−−−−−→M(Cn/H),∀H ⊂ Cn.

This levelwise action is compatible with transfers and restrictions. Therefore it assembles
into a g-action on the Cn-Mackey functor, as well as on a simplicial Cn-Mackey functor.
Thus for a simplicial Mackey functor M•, this defines an object (M•, g) in sMackCn,aut.

In both cases, an object in V gives rise to an object in Vaut, where the automorphism is determined
by g.

Note that the choice of an automorphism of an object X in V is equivalent to the choice of
an action of the infinite cyclic group C∞ on X. More formally, Vaut is isomorphic to VΣC∞ , the
category of functors into V from the one-object category ΣC∞ whose morphism set is C∞. This
identification enables us to prove easily that Vaut also inherits model structure from V, as follows.

The inclusion of the trivial group into C∞ induces two pairs of adjoint functors

V
//
// Vaut,oo

where the functor from Vaut to V forgets the automorphism. If, for example, V is a combinatorial
model category (i.e., cofibrantly generated and locally presented), then by [18, Theorem 3.4.1],
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[7, Theorem 2.23], and [19, Theorem 11.6.1], Vaut admits two combinatorial model structures for
which the weak equivalences are created in V: the left-induced (or injective) model structure,
denoted (Vaut)inj, in which the cofibrations are created in V and the right-induced (or projective)
model structure, denoted (Vaut)proj, in which the fibrations are created in V.

By [7, Lemma 2.24, 4.21, 4.22], when equipped with the lifted monoidal structure, (Vaut)inj is
a monoidal and simplicial model category, which is left (respectively, right) proper if V is. The
analogous results also hold for (Vaut)proj by [19, Theorem 11.7.3], which enables us to conclude
that (Vaut)proj is a simplicial model category. To show that (Vaut)proj is also a monoidal model
category, one can first observe that the V-object underlying the internal hom in Vaut endows the
free-forgetful adjunction between V and Vaut with the structure of V-enriched adjunction, then use
the characterization of monoidal model categories in terms of (acyclic) fibrations [21, Lemma 4.2.2].

It follows that all of the constructions and results above can be applied to
(
Vaut,⊗, (S, IdS)

)
equipped with its injective or projective model structure, giving rise to a Ho(Vaut)-shadow, HHVaut ,
on RVaut

with the properties above, such as Morita invariance (Corollary 3.1.7). Agreement (Corol-
lary 3.2.18) holds as well, at least as long as Vaut is a locally presentable base, and we restrict to
Vaut-categories with cofibrant morphism objects.

Remark 4.1.2. The categories Mon(Vaut) of monoids in Vaut and Mon(V)aut of monoids in V
equipped with monoid automorphisms are clearly isomorphic. For any pair (A,ϕ) and (B,ψ) of
monoids in Vaut, we consider the category

(A,ϕ)Mod(Vaut)(B,ψ)

of
(
(A,ϕ),(B,ψ)

)
-bimodules in Vaut.

It is straightforward to check that this category has the following explicit description.
An object of (A,ϕ)Mod(Vaut)(B,ψ) consists of the following data.

• morphisms in V: λ : A⊗M →M , ρ : M ⊗B →M , and γ : M →M such that
• (M,λ, ρ) ∈ ObAModB ,
• γ is an isomorphism, and
• the diagram

A⊗M

ϕ⊗γ
��

λ // M

γ

��

M ⊗B
ρoo

γ⊗ψ
��

A⊗M λ // M M ⊗B
ρoo

commutes.

The notation we use for an object in this category is (ϕMψ, γ). Note that by definition, γ can be

viewed as an isomorphism of (A,B)-bimodules γ : Mψ−1 ∼=−→ ϕM .

Definition 4.1.3. Let (A,ϕ) be a monoid in Vaut, and let (ϕMϕ, γ) be an (A,ϕ)-bimodule with
left action λ : A⊗M → M and right action ρ : M ⊗ A→ M . The ϕ-twisted Hochschild homology
of A with coefficients in (ϕMϕ, γ) is defined to be

HHϕ(A; (ϕMϕ, γ)) = HHV(A; ϕM),

where ϕM denotes the A-bimodule with left action λ ◦ (ϕ⊗ Id) : A⊗M →M and right action ρ.

Let (A,ϕ) be a monoid in Vaut. The unit element U(A,ϕ) in (A,ϕ)-bimodules is (µAµ, ϕ). We
define the ϕ-twisted Hochschild homology of A to be the ϕ-twisted Hochschild homology of A with
these coefficients, denoted by HHϕ(A).
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Example 4.1.4. We will see in Section 4.2 that when A is a Cn-ring spectrum, equipped with the
automorphism ϕ given by the action of a generator of Cn, the ϕ-twisted Hochschild homology of A
is exactly twisted topological Hochschild homology (see Proposition 4.2.3). In Section 4.3 we will
show that twisted Hochschild homology for Green functors also fits into this framework.

We now show that Morita invariance holds for ϕ-twisted Hochschild homology.

Proposition 4.1.5. Let (A,ϕ), (B,ψ) be two objects in Mon(Vaut). Suppose the dual pair(
(ϕMψ, γM ), (ψNϕ, γN )

)
is a Morita equivalence in RVaut . For any (A,ϕ)-bimodule Q, there is an

isomorphism

HHϕ(A;Q)
∼=−→ HHψ(B;N �Q�M).

In particular, for Q = (µAµ, ϕ) the Euler characteristic

χ(M) : HHϕ(A;A)→ HHψ(B;B)

is an isomorphism.

Proof. It is clear that ϕ-twisted Hochschild homology extends to a functor

HHϕ(A;−) : Ho
(

(A,ϕ)Mod(Vaut)(A,ϕ)

)
→ HoV

for each (A,ϕ) ∈ Mon(Vaut).
We start by proving cyclic invariance. For any (A,ϕ), (B,ψ) ∈ Mon(Vaut), let (ϕMψ, γM ) be

an
(
(A,ϕ),(B,ψ)

)
-bimodule and (ψNϕ, γN ) a

(
(B,ψ),(A,ϕ)

)
-bimodule. As mentioned in Remark

4.1.2, γN can also be seen as an isomorphism from Nϕ−1

to ψN .
Observe that

HHϕ(A;M �N) = HHV(A,ϕ|Bar•(M ;B;N)|)
= |ϕM ⊗B⊗• ⊗N ⊗A⊗•|
∼= |N ⊗A⊗• ⊗ ϕM ⊗B⊗•|
∼= |Nϕ−1

⊗A⊗• ⊗M ⊗B⊗•|
∼= |ψN ⊗A⊗• ⊗M ⊗B⊗•|= HHψ(B;N �M),

where the first isomorphism follows from the Dennis-Morita-Waldhausen argument, the second from
the graded isomorphism

N ⊗ ϕ⊗• ⊗M : N ⊗A⊗• ⊗ ϕM⊗
∼=−→ Nϕ−1

⊗A⊗• ⊗M,

which can easily be shown to commute with face and degeneracy maps, and the third from the

isomorphism γN : Nϕ−1 ∼=−→ ψN.
Having established cyclic invariance, we consider the composite

HHϕ(A;Q)
∼=−→ HHϕ(A;Q� UA)

∼=−→ HHϕ(A;Q�M �N)
∼=−→ HHψ(B;N �Q�M).

The first two isomorphisms are from the definition of a Morita equivalence, and the third isomor-
phism is cyclic invariance. This gives the desired Morita invariance statement. �

Remark 4.1.6. We observe that although the proof of Proposition 4.1.5 shows that ϕ-twisted
Hochschild homology satisfies cyclic invariance, it is not a shadow. Indeed, the diagram in Definition
2.2.1 relating the cyclic invariance map, θ, and the associator, a, does not commute. However, as
shown above, cyclic invariance is sufficient to prove Morita invariance.
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4.2. Twisted topological Hochschild homology. A key example that fits into the framework
described above is twisted topological Hochschild homology. In [4], Angeltveit, Blumberg, Gerhardt,
Hill, Lawson, and Mandell defined a generalization of topological Hochschild homology for Cn-
equivariant ring spectra. In this section we use the framework developed above to prove that
twisted THH is Morita invariant. We begin by recalling the definition of Cn-twisted THH for
Cn-ring spectra.

The definition uses the Cn-twisted cyclic bar construction Bcyc,Cn
• , which produces a simplicial

spectrum defined as follows. Let R be a Cn-ring spectrum, and let M be an R-bimodule with left

R-action λ and right R-action ρ. The q-th level of the simplicial object Bcyc,Cn
• (R;M) is

Bcyc,Cn
q (R;M) = M ∧R∧q,

with the face and degeneracy maps given by

di =


ρ ∧ Id∧(q−1) : i = 0,

Id∧i ∧ µ ∧ Id∧(q−i−1) : 0 < i < q

(λ ∧ Id∧(q−1)) ◦ αq : i = q,

and

si = Id∧(i+1) ∧ η ∧ Id∧(q−i) ∀ 0 ≤ i ≤ q,
where µ is the multiplication map, η is the unit map, and αq is the map that cyclically permutes
the last factor to the front and then acts on the new first factor by g.

When M = R with the canonical R-bimodule structure, we write Bcyc,Cn
• (R) for this twisted

cyclic bar construction. In this case, the Cn-twisted cyclic bar construction admits the structure of a
Λop
n -object in the sense of Bökstedt-Hsiang-Madsen [12], whence, as observed in [12], the geometric

realization of the Cn-twisted cyclic bar construction of R, |Bcyc,Cn
• (R)|, admits an S1-action. In

[4] the authors define Cn-twisted topological Hochschild homology using this twisted cyclic bar
construction as follows.

Definition 4.2.1. Let U be a complete S1-universe and let Ũ = ι∗Cn
U be the pullback of the

universe U to Cn. Let R be an associative orthogonal Cn-ring spectrum indexed on Ũ . The Cn-

twisted topological Hochschild homology of R is defined to be the norm NS1

Cn
(R), which is given

by

THHCn(R) = IUR∞ |Bcyc,Cn
• (IR

∞

Ũ
R)|,

where I denotes a change-of-universe functor.

In this paper, we extend the definition of Cn-twisted topological Hochschild homology to Cn-
twisted topological Hochschild homology with coefficients.

Definition 4.2.2. Let R be an associative orthogonal Cn-ring spectrum, and let M be an R-
bimodule. The Cn-twisted topological Hochschild homology of R with coefficients in M is defined
to be the following

THHCn(R;M) = |Bcyc,Cn
• (R;M)|.

Note that Cn-twisted topological Hochschild homology with coefficients is in general not an S1-
spectrum, but rather a Cn-spectrum. Throughout this article, we are considering Cn-twisted topo-
logical Hochschild homology as a Cn-spectrum. This version of Cn-twisted topological Hochschild
homology is an example of a twisted Hochschild homology theory as in Definition 4.1.3. In this
case, let (V,⊗, S) be the category of orthogonal Cn-equivariant spectra.
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Proposition 4.2.3. Let R be an orthogonal Cn-ring spectrum, and let g be a generator of Cn.
The generator g defines an automorphism of R, and there is a natural isomorphism between the
Cn-twisted THH of R (as a Cn-spectrum) and the g-twisted Hochschild homology of R:

THHCn
(R) ∼= HHg(R).

Proof. By definition, THHCn
(R) is an S1-spectrum. Its underlying Cn-spectrum is the geometric

realization of the cyclic bar construction Bcyc
• (R, gR), where gR denotes the R-bimodule R, with the

left action twisted by g : R → R, as in Definition 4.1.3. It’s easy to see that it is an isomorphism
on the level of simplicial spectra.

�

Having established that twisted THH fits into the general framework developed in Section 4.1,
Morita invariance then follows immediately from Proposition 4.1.5; we consider the bicategory
RSpCn , a special case of the bicategory RV in Definition 3.1.2 with V = SpCn , the category of
orthogonal Cn-spectra (see Example 4.1.1(1); in particular, Assumption 3.1.1 is satisfied).

We now unpack the notions of Morita equivalence and Morita invariance in this setting. It follows
from Definition 2.1.3 that Cn-ring spectra R and S are Morita equivalent if there exists an (R,S)
Cn-bimodule M and an (S,R) Cn-bimodule N so that (M,N) and (N,M) are dual pairs, and the
evaluation and coevaluation maps of these dual pairs give equivalences of Cn-spectra

M ∧LS N ' R and N ∧LRM ' S.

Theorem 4.2.4. Twisted topological Hochschild homology, THHCn
, is Morita invariant. In other

words, for Morita equivalent Cn-ring spectra R and S, THHCn
(R) ' THHCn

(S).

As noted in Remark 4.1.6, although twisted topological Hochschild homology satisfies cyclic
invariance, it is not a shadow as the coherence axioms for shadows do not hold. However, we show
below that upon taking fixed points, it is a shadow functor. This observation will be important in
our later study of topological restriction homology.

Proposition 4.2.5. The Cn-fixed points of twisted topological Hochschild homology, THHCn
(R;−)Cn ,

extend to a shadow on the bicategory RSpCn of Cn-ring spectra and their bimodules.

Proof. We have proven cyclic invariance of THHCn in Proposition 4.1.5, and therefore the Cn-fixed
points also satisfy cyclic invariance. It remains to show that the coherence properties hold. Let
A,B,C be Cn-ring spectra, M an (A,B)-bimodule, N a (B,C)-bimodule, and P a (C,A)-bimodule.
Let g be the chosen generator of Cn. We study the hexagon diagram

THH(A; g(M �N)� P )
θ //

dae
��

THH(C; gP � (M �N))
dae // THH(C; g(P �M)�N)

THH(A; gM � (N � P ))
θ // THH(B; g(N � P )�M)

dae // THH(B; gN � (P �M))

θ

OO

As in the proof of Proposition 4.1.5, the cyclic isomorphism θ in the top row is given by rotating
the smash factors in the cyclic bar construction, and acting by g on all of the A and P smash factors.
Similarly, the cyclic isomorphism θ in the bottom row is given by rotating the smash factors in the
cyclic bar construction, and acting by g on the A smash factors and the Bar• (N ;C;P ) = N � P
smash factor. Finally, the vertical θ is given by acting by g on all B smash factors, and on the



A SHADOW PERSPECTIVE ON EQUIVARIANT HOCHSCHILD HOMOLOGIES 21

Bar• (P ;A;M) = P � M smash factor. Upon taking Cn-fixed points, the action of g becomes
trivial, and the diagram commutes.

Let M be an (A,A)-bimodule. A similar analysis shows that upon taking Cn-fixed points, the
diagram

THH(A; gM � UA)
θ //

dre ))

THH(A; gUA �M)
θ //

dle
��

THH(A; gM � UA)

dreuu
THH(A; gM)

also commutes. �

Remark 4.2.6. While twisted topological Hochschild homology is not itself a shadow functor, we
expect that it does fit into a framework of equivariant shadows. We will return to the development
of such a framework in subsequent work. The Hochschild homology for Green functors, described
in Section 4.3 below, should similarly fit into the framework of an equivariant shadow.

4.3. Hochschild homology for Green functors. The theory of Cn-twisted topological Hochschild
homology has an algebraic analogue, a theory of Hochschild homology for Green functors. The
twisted Hochschild homology of Green functors was developed in [10] and further studied in [2].
Below, we show that this Hochschild homology for Green functors can also be interpreted as a
twisted Hochschild homology theory as in Definition 4.1.3.

One ingredient in the definition of twisted Hochschild homology for Green functors is the notion
of norms for a Mackey functor. For H ⊂ G, where G is finite, the norm functor NG

H maps an
H-Mackey functor to a G-Mackey functor. It is defined to be a left Kan extension along the
coinduction between the Burnside categories ([22, 2.3.2]) and is compatible with the norm functor
for equivariant spectra.

Let G be a finite cyclic group. As discussed in Example 4.1.1, for any G-Green functor R, a
generator g ∈ G defines an automorphism of R by first passing to the Weyl group and then acting
via the Weyl group action.

Definition 4.3.1. Let G be a finite cyclic group, and let g ∈ G. Let R be a Green functor for G,
and let M be a left R-module with action map λ. Let gM denote M with the module structure
twisted by g. In other words the action map gλ is specified by the commuting diagram

R�M

g�1

��

gλ

##
R�M λ // M.

We can now define the twisted cyclic nerve.

Definition 4.3.2. For an R-bimoduleM , the twisted cyclic nerve of R with coefficients gM , denoted
by HCG• (R; gM), is a simplicial Mackey functor with q simplices given by

HCGq (R; gM) = gM�R�q.

The face maps di are given as usual by multiplication of the ith and (i+ 1)st factors if 0 < i < q.
The face map d0 is the ordinary right module action map for M , while the last face map, dq,
rotates the last factor to the front and then uses the twisted left action map of Definition 4.3.1.
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The degeneracy maps si are induced by inclusion of the unit after the ith factor, for 0 ≤ i ≤ q.
When the inputs R and M are H-Green functors for a subgroup H ⊂ G, we define the G-twisted
cyclic nerve relative to H to be the simplicial Mackey functor

HCGH(R; gM)• := HCG• (NG
HR; gNG

HM).

We now recall the definition of twisted Hochschild homology for Green functors from [10], extend-
ing the original definition to include coefficients. Recall that the homology of a simplicial Mackey
functor is the homology of the associated normalized dg Mackey functor, given by postcomposing
with the Dold-Kan equivalence from simplicial abelian groups to chain complexes.

Definition 4.3.3. Let H ⊂ G be finite cyclic groups. Let R be a Green functor for H, and let M
be an R-bimodule. The G-twisted Hochschild homology of R with coefficients in M is defined to be
the homology of the twisted cyclic nerve

HHG
H(R;M)i = Hi(HCGH(R; gM)•).

When M = R with the canonical bimodule structure, we write HHG
H(R) for HHG

H(R,R), the G-

twisted Hochschild homology of R. When H = G, we abbreviate the notation and write HHG
i (R;M)

and HHG
i (R).

To interpret G-twisted Hochschild homology as the g-twisted Hochschild homology defined in
Definition 4.1.3, we work in the category of simplicial Mackey functors. The category of simplicial
Mackey functors, denoted by sMackG, is a symmetric monoidal simplicial model category by [10,
Theorem 4.3]. Let R be a G-Green functor and let M be a R-bimodule. We view R as a constant
simplicial Green functor denoted by const(R), and similar for M . The automorphism g induces an
automorphism of const(R). From Definition 4.1.3,

HHg(const(R); const(M)) ∼= |Bcyc
• (const(R); gconst(M))|.

The cyclic bar construction defines a bisimplicial Mackey functor. Since MackG is a cocomplete
category, for any bisimplicial Mackey functor M•,•, the associated diagonal simplicial Mackey func-
tor dM•,• is equivalent to the geometric realization |M•,•|.1 The diagonal simplicial Mackey functor
associated to Bcyc

• (const(R); gconst(M)) is HC•(R; gM). Hence we have

HHg(const(R); const(M)) ∼= |Bcyc
• (const(R); gconst(M))|∼= HCG• (R; gM).

Thus, the G-twisted Hochschild homology of Green functors is the homology of a g-twisted
Hochschild homology.

We now consider the bicategory RsMackCn
, which is an example of the bicategory RV in Definition

3.1.2 for V = sMackCn , the category of simplicial Cn-Mackey functors.
The framework developed here allows us to conclude the twisted Hochschild homology of Green

functors is Morita invariant. Given two H-Green functors R and S, we consider them as constant
simplicial H-Green functors. Unwinding Definition 2.1.3, we see that R and S are Morita equivalent
if there exist an (R,S)-bimodule M ∈ sMackH and an (S,R)-bimodule N ∈ sMackH so that
(M,N) and (N,M) are dual pairs, and the evaluation and coevaluation maps of these dual pairs
give equivalences of simplicial Mackey functors

|Bar•(M ;S;N)| ' R and |Bar•(N ;R;M)| ' S

1For simplicial sets, this equivalence is a standard result (see e.g. [17, p. 210]). For bisimplicial Mackey functors,
a similar proof works by checking the diagonal has the same universal property as this geometric realization.
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Proposition 4.3.4. For a finite cyclic group G, the G-twisted Hochschild homology of G-Green
functors, HHG

i , is Morita invariant. That is, if G-Green functors R and S are Morita equivalent

in the sense defined above, then HHG
i (R) ∼= HHG

i (S) for all i.

Proof. The result follows from Proposition 4.1.5 and the identification that HCG• (R; gR) = HHg(R)
after passing to homology. �

We can further extend this result to the G-twisted Hochschild homology of an H-Green functor,
where H ⊂ G are finite cyclic groups.

Theorem 4.3.5. For a finite cyclic group G, and H ⊂ G, the G-twisted Hochschild homology for
H-Green functors is Morita invariant. That is, if H-Green functors R and S are Morita equivalent
in the sense defined above, then HHG

H(R)i ∼= HHG
H(S)i for all i.

Proof. Denote by NG
H : sMackH → sMackG the induced functor obtained by applying NG

H levelwise.
We first prove cyclic invariance. Let A and B be two simplicial H-Green functors. Let M be

an (A,B)-bimodule and N a (B,A)-bimodule. Note that NG
HM is an (NG

HA,N
G
HB)-bimodule and

similar for NG
HN.

We have that

(4.3.1)

NG
H (M �N)

def
= NG

H |Bar•(M ;B;N)|
(1)∼= |NG

H Bar•(M ;B;N)|
(2)
= |Bar•(N

G
HM ;NG

HB;NG
HN)|def

= NG
HM �NG

HN.

Isomorphism (1) holds since NG
H preserves sifted colimits, while isomorphism (2) holds since NG

H is
strong symmetric monoidal.

By Propositions 4.1.5 and 4.3.4, HHg satisfies cyclic invariance, and thus we have

HHg(NG
HA;NG

HM �NG
HN) ' HHg(NG

HB;NG
HN �NG

HM).

Combining with equation (4.3.1), we have

HHg(NG
HA;NG

H (M �N)) ' HHg(NG
HB;NG

H (N �M)).

Thus HHG
H satisfies cyclic invariance. As in the proof of Proposition 4.1.5 it then follows that HHG

H

is Morita invariant.
�

Remark 4.3.6. The proof of Theorem 4.3.5 requires that the norm functor is strong symmetric
monoidal and commutes with geometric realizations. In general, any such functor F preserves cyclic
invariance, and hence preserves Morita invariance as in Theorem 4.3.5 above.

Remark 4.3.7. Proceeding as in Section 3.2, one can also define many-object versions of THHCn

and HHCn . These will be HHVautCat for V = SpCn and V = sMackCn
respectively. To prove that

these are Morita invariant via this approach, one would need to verify that Assumption 3.2.6 holds
for these categories. We expect that sMackCn is a locally presentable base, and therefore satisfies

Assumption 3.2.6; however, verifying Assumption 3.2.6 is likely to be more difficult for SpCn .

We finish this section by noting that although HHG
H does not have the full structure of a shadow

functor, when evaluated at the orbit (G/G) it is indeed a shadow. This observation will play an
important role in our study of algebraic restriction homology.
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Proposition 4.3.8. Let G be a finite cyclic group, and H ⊂ G. On the bicategory of simplicial
H-Green functors and bimodules, the G-twisted Hochschild homology evaluated at the orbit G/G,

HHG
H(A;−)i(G/G), extends to a shadow.

Proof. We have shown cyclic invariance in Theorem 4.3.5; it remains to show that the coherence
diagrams commute. Let A,B,C be simplicial H-Green functors, M an (A,B)-bimodule, N a
(B,C)-bimodule, and P a (C,A)-bimodule. We study the hexagon diagram

|Bcyc
• (NG

HA; gNG
H ((M �N)� P ))| θ //

dae
��

|Bcyc
• (NG

HC; gNG
H (P � (M �N)))|

dae // |Bcyc
• (NG

HC; gNG
H ((P �M)�N))|

|Bcyc
• (NG

HA; gNG
H (M � (N � P )))| θ // |Bcyc

• (NG
HB; gNG

H ((N � P )�M))|
dae // |Bcyc

• (NG
HB; gNG

H (N � (P �M)))|.

θ

OO

As in the proofs of Proposition 4.1.5 and Theorem 4.3.5, the cyclic isomorphism θ in the top
row is given by rotating the smash factors in the cyclic bar construction, and acting by g on all of
the NG

HA and NG
HP smash factors. Similarly, the cyclic isomorphism θ in the bottom row is given

by rotating the smash factors in the cyclic bar construction, and acting by g on the NG
HA smash

factors and the NG
H Bar• (N ;C;P ) = NG

H (N � P ) smash factor. Finally, the vertical θ is given by
acting by g on all the NG

HB smash factors, and on the NG
H Bar• (P ;A;M) = NG

H (P �M) smash
factor. Recall that the action of g on a G-Mackey functor is induced by the Weyl group action;
thus, once we evaluate at G/G, the Weyl group action becomes trivial and so does the action of g.
Therefore, after evaluating at G/G, the diagram commutes.

Let M be an (A,A)-bimodule. A similar analysis shows that upon evaluating at G/G, the
diagram

|Bcyc
• (NG

HA; gNG
H (M � UA))| θ //

dre ++

|Bcyc
• (NG

HA; gNG
H (UA �M))| θ //

dle
��

|Bcyc
• (NG

HA; gNG
H (M � UA))|

dress
|Bcyc
• (NG

HA; gNG
HM)|

also commutes.
�

4.4. Algebraic tr. In the classical approach to trace methods in algebraic K-theory, one analyzes
the fixed points of topological Hochschild homology, or TR-theory. For a ring A, TRn(A; p) is

defined to be THH(A)Cpn−1 . The spectrum TR(A; p) is then defined to be

TR(A; p) := holim←−
R

TRn(A; p),

where R is the restriction map on THH(A)Cpn−1 , which can be defined using the cyclotomic
structure on THH. In [10], the authors introduce an algebraic analog of TR-theory, using twisted
Hochschild homology for Green functors. For a ring A, they define this algebraic analogue as

trk(A; p) := lim
←−

HHCpn

e (A)k(Cpn/Cpn),

where the maps in the limit are algebraic analogues of the restriction map, defined using a cyclotomic
structure on twisted Hochschild homology for Green functors.

In this paper, we extend the definition of algebraic tr of rings, tr(A; p), to tr of (simplicial) rings
with coefficients in a bimodule, tr(A,M ; p). We will show that this is a bicategorical shadow. We
fix a prime p throughout and omit the prime from the notation.
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To define tr(A,M), we follow the definition of tr(A) in [10]. Let A be a simplicial ring and M
an A-bimodule. As in Proposition 5.17 of [10], there is a natural isomorphism

ΦCp(HCCpn

e (A;M)k) ∼= ΦCp((N
Cpn

e M)�(N
Cpn

e A)�k) ∼= (N
Cpn−1

e M)�(N
Cpn−1

e A)�k.

Here ΦCp denotes the geometric fixed points for Mackey functors, as defined in [10]. The geomet-
ric fixed points functor takes the twisting by a generator to the twisting by a generator. Thus

ΦCp(HCCpn

e (A;M)k) is isomorphic to HC
Cpn−1

e (A;M)k. Note that this is an algebraic analogue of
Proposition 7.5 of [13].

Let N ⊂ G be a normal subgroup, and let A denote the Burnside Mackey functor for G. As in
[10], let EFN (A) denote the sub-Mackey functor of A generated by A(G/H) for all subgroups H

that do not contain N . Let EF̃N (A) denote A/EFN (A). For a simplicial G-Mackey functor M , let

EF̃N (M) := M�EF̃N (A).

Let G be finite cyclic group that contains Cp, and let M be a simplicial G-Mackey functor. As in
the proof of Corollary 5.18 of [10], there is a natural isomorphism of simplicial abelian groups

ẼFCpM(G/G) ∼= (ΦCpM)
(
(G/Cp)/(G/Cp)

)
.

The natural map of simplicial Mackey functors

HCCpn

e (A;M)→ ẼFCpHCCpn

e (A;M)

therefore induces a natural map

HCCpn

e (A;M)(Cpn/Cpn)→ (ΦCpHCCpn

e (A;M))(Cpn−1/Cpn−1) ∼= HC
Cpn−1

e (A;M)(Cpn−1/Cpn−1).

This is our algebraic restriction map, which induces in turn a map

r : HHCpn

e (A;M)k(Cpn/Cpn)→ HH
Cpn−1

e (A;M)k(Cpn−1/Cpn−1)

for each k after passing to homology.

Definition 4.4.1. Algebraic tr with coefficients is obtained by taking the inverse limit along the
restriction maps r:

trk(A,M) := lim←−
r

HHCpn

e (A;M)k(Cpn/Cpn).

As noted in Remark 4.1.6, although Hochschild homology for Green functors satisfies cyclic
invariance, it is not a shadow as the coherence axioms for shadows do not hold. Interestingly,
algebraic restriction homology, tr, is a shadow functor.

Proposition 4.4.2. The functor trk extends to a shadow on the bicategory of simplicial rings and
their bimodules, landing in the category of abelian groups.

Proof. Each HHCpn

e (A;−)k(Cpn/Cpn) is a shadow (Proposition 4.3.8). The restriction maps r
are natural maps which respect the cyclic isomorphisms, and therefore the inverse limit is also a
shadow. �

As shadows respect Morita equivalences, we can conclude that algebraic tr is Morita invariant.

Corollary 4.4.3. Let (AMB ,BNA) be a Morita equivalence of simplicial rings A and B. For any
A-bimodule Q, there is an isomorphism

tr(A,Q)
∼=−→ tr(B,N ⊗L

A Q⊗L
AM).
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where ⊗L denotes derived tensor product, computed using the bar construction. In particular, the
Euler characteristic

χ(M) : tr(A)→ tr(B)

is an isomorphism.

5. Lax shadow functors.

In this section, we show that the linearization maps from THH and TR to their algebraic coun-
terparts are morphisms of shadows. That is, we show that these linearization maps arise from lax
shadow functors in the sense of [33].

5.1. Linearization as a lax shadow functor. Recall that classically, for A a ring, there is a
linearization map

πk THH(HA)→ HHk(A)

relating topological Hochschild homology and ordinary Hochschild homology. In this section we
show that this linearization map arises from a morphisms of shadows between the topological
and algebraic theories. That is, it arises as a lax shadow functor. We further construct a new
linearization map, from topological restriction homology (TR) to algebraic restriction homology
(tr),

πkTR(HA)→ trk(A),

and prove that it also arises as a lax shadow functor.
We first recall the definitions of a lax functor and a lax shadow functor from [33].

Definition 5.1.1. Let B and C be bicategories. A lax functor F : B → C consists of:

• a function F0 from the objects of B to the objects of C
• functors FR,S : B(R,S)→ C

(
F0(R), F0(S)

)
for every pair of objects R,S in B, and

• natural transformations

c : FR,S(M)� FS,T (N)→ FR,T (M �N)

i : UF (R) → F (UR)

satisfying appropriate coherence axioms. For details on the coherence axioms, see Definition 4.1 of
[8]. For illuminating pictures, see section 8 of [33].

Definition 5.1.2. Let B and C be bicategories, and let

d−eB :
∐
A∈B0

B(A,A)→ T

d−eC :
∐
D∈C0

C (D,D)→ Z

be shadows. A lax shadow functor consists of a lax functor F : B → C along with a functor
Ftr : T→ Z, and a natural transformation

φ : d−eC ◦ F → Ftr ◦ d−eB

such that the following diagram commutes whenever it makes sense.
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dF (M)� F (N)e θ //

��

dF (N)� F (M)e

��
dF (M �N)e

φ

��

dF (N �M)e

φ

��
FtrdM �Ne

Ftr(θ) // FtrdN �Me

Remark 5.1.3. Note that a lax shadow functor is not guaranteed to preserve dual pairs. In
Proposition 8.3 of [33], it is shown that a lax shadow functor F will preserve dual pairs if the map
F (M) � F (N) → F (M � N) is an isomorphism. This is rarely true for the example we consider

below, the Eilenberg–MacLane functor H : Ab→ Sp (or H : MackCn → SpCn).

We first consider a generalization of the Eilenberg–MacLane spectrum functor to simplicial
abelian groups. If A• is a simplicial abelian group, define H(A•) = |HA•|, i.e., the geometric
realization of the simplicial spectrum whose ith level is HAi.

Proposition 5.1.4. The Eilenberg–MacLane spectrum functor H : sAb→ Sp defines a lax shadow
functor between the shadows πk THH and HHk. In particular, there is a natural transformation

φA,M : πk THH(HA;HM)→ HHk(A;M)

and a functor Ftr = id : Ab→ Ab, satisfying appropriate coherence conditions.

Proof. Let H be the Eilenberg–MacLane functor from the bicategory of simplicial rings, bimodules,
and bimodule maps to the bicategory RSp of ring spectra, bimodule spectra and their maps. (The
latter is the bicategory RV from Definition 3.1.2, for V the category of spectra. The former is RsAb.)
Since H is a lax symmetric monoidal functor from (simplicial) abelian groups to spectra, it induces
a lax functor on the aforementioned bicategories. That is:

• if A is a (simplicial) ring, then HA is a ring spectrum;
• if M is a (B,A)-bimodule, then HM is an (HB,HA)-bimodule;
• for (B,A)-bimodules M and (A,B)-bimodules N , there are natural transformations c :
|Bar• (HM ;HA;HN)| → H|Bar• (M ;A;N)| that satisfy appropriate coherence condi-
tions, and

• the unit natural transformation i : HA→ HA is the identity map.

We take Ftr : Ab→ Ab to be the identity. Thus we need to define a natural transformation

φA,M : πk THH(HA;HM)→ HHk(A;M)

that satisfies the appropriate compatibility condition with the shadow structure.
We define φA,M as follows. The pth level in the cyclic bar construction for THH(HA;HM) is

given by HM ∧ (HA)∧p. Since H is lax symmetric monoidal, there is a natural map

HM ∧ (HA)∧p → H(M ⊗A⊗p)
which respects the face and degeneracy maps. Thus we obtain a map on the geometric realizations

|HM ∧ (HA)∧•| → |H(M ⊗A⊗•)|.
The kth homotopy group of the left hand side is πk THH(HA;HM). The 0th space of the right hand
side is the topological abelian group Bcyc(A;M), and its ith space is BiBcyc(A;M); here, Bi denotes
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the i-fold bar construction. The kth homotopy group of the right hand side is HHk(A;M). The
map of geometric realizations thus induces a natural transformation φA,M : πk THH(HA;HM)→
HHk(A;M).

The Eilenberg–MacLane functor H is lax symmetric monoidal, and the cyclic isomorphisms θ
for THH and HH are both obtained on the cyclic bar construction. Therefore the diagram

πk THH(HA; |Bar•(HM ;HB;HN)|) θ //

��

πk THH(HB; |Bar•(HN ;HA;HM)|)

��
πk THH(HA;H|Bar•(M ;B;N)|)

φ

��

πk THH(HB;H(|Bar•(N ;A;M)|)

φ

��
HHk(A; |Bar•(M ;B;N)|) θ // HHk(B; |Bar•(N ;A;M)|)

commutes for all (A,B)-bimodules M and (B,A)-bimodules N . �

For any (−1)-connected ring spectrum R, there is a map of ring spectra R→ Hπ0(R) that is an
isomorphism on π0 and induces 0 on πi for i > 0. The linearization map

πk THH(R)→ HHk(π0R)

is simply the composite

πk THH(R) // πk THH(Hπ0R)
φ // HHk(π0R).

This construction generalizes to the Cn-equivariant case. We first generalize the equivariant Eilenberg–
MacLane spectrum functor to simplicial Mackey functors. Let H : MackCn

→ SpCn denote the
equivariant Eilenberg–MacLane spectrum functor; if M• is a simplicial Mackey functor, define
H(M•) = |HM•|, the geometric realization of the simplicial Cn-spectrum whose ith level is HM i.

Proposition 5.1.5. If R is a simplicial Cn-Green functor, and M is an R-bimodule, then

πk(|H(gM�R�•)|Cn) ∼= HHCn

k (R;M)(Cn/Cn).

Proof. Denote by G the orbit category of the group G = Cn, with objects G/K and morphisms
G-maps. A G-space is a functor from Gop to topological spaces. For example, a Mackey functor M
defines a G-space whose value on G/K is the discrete abelian group M(G/K). A simplicial Mackey
functor M• defines a G-space whose value on G/K is the geometric realization |M•(G/K)|.

In [15], the authors study a functor Ψ from G-spaces to G-spaces that is a variant of the Elmendorf
coalescence functor. In Proposition 4.2 of [15], they show that Ψ is an inverse up to weak equivalence
of the functor from G-spaces to G-spaces that takes a G-space X to the G-space G/K 7→ XK . It
follows that for every G-space X , there is a natural weak equivalence Ψ(X )K → X (G/K). In

particular, when X = gM�R�p, there is a natural weak equivalence

Ψ(gM�R�p)K
∼ // (gM�R�p)(G/K).

By Theorem 4.22 of [15], the 0-space of the spectrum H(gM�R�p) is naturally equivalent to

Ψ(gM�R�p). Let H(0) denote the 0-space of the spectrum |H(gM�R�•)|. We apply geometric
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realization to the equivalence above, using the fact that our groups are all finite, and geometric
realization commutes with finite limits. We obtain

H(0)K
∼ // |HCCn

• (R;M)(G/K)|

and πk(|HCCn
• (R;M)(G/K)|) ∼= Hk(HCCn(R;M))(G/K) = HHCn

k (R;M)(G/K), as required. �

Proposition 5.1.6. The Eilenberg–MacLane spectrum functor H : sMackCn
→ SpCn induces a lax

shadow functor between the shadows πk THHCn
(−;−)Cn and HHCn(−;−)k(Cn/Cn). In particular,

there is a natural transformation

φR,M : πk THHCn(HR;HM)Cn → HHCn

k (R;M)(Cn/Cn)

and a functor Ftr = id : Ab→ Ab, satisfying appropriate coherence conditions.

Proof. In the notation of Definition 5.1.2, let F = H and Ftr = Id : Ab→ Ab. Let g be the generator
e2πi/n of Cn. The functor H is lax symmetric monoidal, so it induces a lax functor between the
bicategory of simplicial Cn-Green functors and the bicategory of Cn-ring spectra. That is:

• if R is a (simplicial) Cn-Green functor, then HR is a Cn-ring spectrum;
• if M is an (S,R)-bimodule, then HM is an (HS,HR)- bimodule;
• for (S,R)-bimodules M and (R,S)-bimodules N , there are natural transformations c :
|Bar•(HM ;HR;HN)| → H|Bar•(M ;R;N)| that satisfy appropriate coherence conditions,
and

• the unit natural transformation i : HR→ HR is the identity map.

For any R-bimodule M , H(gM) = gHM . On each level of the cyclic bar construction, there is
therefore a natural map

gHM ∧ (HR)∧p → H(gM�R�p)

that commutes with the face and degeneracy maps and thus induces a map of Cn-spectra

THHCn
(HR;HM) = |gHM ∧ (HR)∧•| → |H(gM�R�•)|.

By Proposition 5.1.5, applying Cn-fixed points and πk results in the natural transformation

φR,M : πk THHCn(HR;HM)Cn → HHCn

k (R;M)(Cn/Cn)

As in the proof of Proposition 5.1.4, the relevant diagram commutes, whence this a lax shadow
functor, as desired. �

5.2. TR and algebraic tr. Recall from Proposition 4.4.2 that algebraic tr is a shadow on the
bicategory of simplicial rings and their bimodules. We will show that the Eilenberg–MacLane
functor H : Ab → Sp defines a lax shadow functor between TR and algebraic tr. For this, we will
need to discuss TR with coefficients, first defined by Lindenstrauss–McCarthy [25]. We recall the
definition of TR with coefficients from [13]. For a ring spectrum R and an R-bimodule M , pn-fold
THH is defined as a Cpn -spectrum:

THH(pn)(R;M) := THHCpn
(N

Cpn

e R;N
Cpn

e M).

By Proposition 7.5 of [13], when R and M are cofibrant,

ΦCp THH(pn)(R;M) ∼= THH(pn−1)(R;M).

This is then used to define restriction maps

R : THH(pn)(R;M)Cpn → THH(pn−1)(R;M)Cpn−1 .
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Definition 5.2.1. The spectrum TR(R;M) is defined to be the homotopy inverse limit

TR(R;M) := holim←−
R

THH(pn)(R;M)Cpn

The proof of the following proposition was adapted from unpublished work of Campbell, Lind,
Malkiewich, Ponto, and Zakharevich:

Proposition 5.2.2. TR with coefficients, TR(R;−), extends to a shadow on the bicategory RSp of
ring spectra and their bimodules.

Proof. Let A and B be ring spectra, M an (A,B)-bimodule and L a (B,A)-bimodule. We will
construct cyclic isomorphisms

τnA,B : THH(pn)(A; |Bar•(M ;B;L)|)Cpn ∼= THH(pn)(B; |Bar•(L;A;M)|)Cpn

that are compatible with the restriction maps. Therefore we will obtain the desired equivalences

θA,B : TR(A; |Bar•(M ;B;L)|)→ TR(B; |Bar•(L;A;M)|).

First note that

THH(pn)(A; |Bar•(M ;B;L)|) ∼= THHCpn
(N

Cpn

e A; |Bar•(N
Cpn

e M ;N
Cpn

e B;N
Cpn

e L)|).

By Theorem 4.2.4, we have Cpn -equivariant isomorphisms

σnA,B : THH(pn)(A; |Bar•(M ;B;L)|) ∼= THH(pn)(B; |Bar•(L;A;M)|).

Taking Cpn -fixed points, we obtain the isomorphisms

τnA,B : THH(pn)(A; |Bar•(M ;B;L)|)Cpn ∼= THH(pn)(B; |Bar•(L;A;M)|)Cpn .

As in Proposition 4.2.5, these isomorphisms satisfy the shadow coherence conditions. By observing
the interaction of the norm functor with the geometric fixed points functor, we see that the following
diagram commutes.

ΦCp THH(pn)(A; |Bar•(M ;B;L)|)

∼=
��

ΦCpσn
A,B// ΦCp THH(pn)(B; |Bar•(L;A;M)|)

∼=
��

THH(pn−1)(A; |Bar•(M ;B;L)|)
σn−1
A,B // THH(pn−1)(B; |Bar•(L;A;M)|)

It follows that the isomorphisms τnA,B respect the restriction maps, and therefore induce equivalences

θA,B : TR(A; |Bar•(M ;B;L)|)→ TR(B; |Bar•(L;A;M)|)

as required. �

In particular, for every k, πkTR(R;−) extends to a shadow on the bicategory RSp, taking values
in Ab.

Proposition 5.2.3. The Eilenberg–MacLane spectrum functor H : sAb→ Sp defines a lax shadow
functor between the shadows πkTR and trk. In particular, for any ring A there is a natural lin-
earization map

πkTR(HA)→ trk(A).
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Proof. By Proposition 5.1.6, the equivariant Eilenberg–MacLane spectrum functor defines a lax
shadow functor πk THHCpn

(−;−)Cpn → HHCpn (−;−)k(Cpn/Cpn). Precomposing with the norm

N
Cpn

e : sAb→ sMackCpn
, we obtain a lax shadow functor

πk THHCpn
(HN

Cpn

e A;HN
Cpn

e M)Cpn → HH
Cpn

k (N
Cpn

e A;N
Cpn

e M)(Cpn/Cpn)

for each simplicial ring A and bimodule M . For a Mackey functor M , N
Cpn

e M = π
Cpn

0 (N
Cpn

e HM).

If we denote N
Cpn

e HM by R, the linearization map R → Hπ
Cpn

0 (R) therefore results in a natural

transformation N
Cpn

e H → HN
Cpn

e . Thus we obtain a lax shadow functor

πk THHCpn
(N

Cpn

e HA;N
Cpn

e HM)Cpn → HH
Cpn

k (N
Cpn

e A;N
Cpn

e M)(Cpn/Cpn),

or, simplifying notation,

πk THH(pn)(HA;HM)Cpn → HHCpn

e (A;M)k(Cpn/Cpn).

Since these maps are compatible with the restriction maps defined on both sides, there is an induced
lax shadow functor

πk holim←−
R

THH(pn)(HA;HM)Cpn → lim←−
R

πk THH(pn)(HA;HM)Cpn → lim←−
r

HHCpn

e (A;M)k(Cpn/Cpn),

i.e., a lax shadow functor

πkTR(HA;HM)→ trk(A,M)

as desired. �

It follows from the proposition above that there is a linearization map relating TR and its
algebraic analogue, tr, for any (−1)-connected ring spectrum.

Corollary 5.2.4. There is a linearization map

πkTR(R)→ trk(π0(R))

for (−1)-connected ring spectra R.

Proof. For R a (−1)-connected ring spectrum, there is a map of ring spectra R → Hπ0(R). We
then compose with the lax shadow functor of Proposition 5.2.3 to obtain

πkTR(R)→ πkTR(Hπ0(R))→ trk(π0(R)).

�

In [10], the authors compute the algebraic tr of Fp, proving that

trk(Fp; p) =

{
Zp : k = 0

0 : otherwise,

which agrees with πk(TR(Fp; p)). In general, one would like to understand how closely algebraic
restriction homology approximates the analogous topological theory, TR. The highly structured
linearization map we construct in Proposition 5.2.3 is useful in pursuing this question. Below, we
prove that the linearization map is often an isomorphism in degree 0.
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Proposition 5.2.5. Let A be a ring, and let R1 lim denote the first right derived functor of the
limit functor on abelian groups. If

R1 lim←−
R

π1 THH(pn)(HA)Cpn = 0,

then

π0TR(HA) ∼= tr0(A).

Proof. For a ring A, by Theorem 5.1 of [10], the map

π
Cpn

0 THHCpn
(N

Cpn

e HA)→ HHCpn (N
Cpn

e A)0

is an isomorphism. Therefore the map

lim←−
R

π0 THH(pn)(HA)Cpn → lim←−
r

HHCpn

e (A)0(Cpn/Cpn)

is an isomorphism. If

R1 lim←−
R

π1 THH(pn)(HA)Cpn = 0,

then

π0TR(HA) = π0 holim←−
R

THH(pn)(HA)Cpn = lim←−
R

π0 THH(pn)(HA)Cpn ,

and the conclusion follows. �

Proposition 5.2.5 is analogous to the classical result that the linearization map

πk(THH(A))→ HHk(A)

is an isomorphism in degree 0. Classically, the linearization map on THH is also an isomorphism
in degree 1. It would be interesting to consider under what conditions the linearization map on TR
is similarly an isomorphism in degree 1, although we will not pursue that here.

6. Generalized Dennis traces

In this section, we show that there is a Dennis trace map whose target is THHCn
(R). Further-

more, we show that this map factors through TRCn
(R).

6.1. The twisted Dennis trace. Let (V,⊗, S) be a symmetric monoidal, simplicial model cate-
gory. As in section 4, let (Vaut,⊗, (S, IdS)) denote the symmetric monoidal category with objects
(V, ϕV ), where V is an object of V, and ϕV is an automorphism of V , while morphisms in Vaut are
morphisms in V that commute with the automorphism.

Let (R,ϕ) be a monoid in Vaut, and let Perf(R,ϕ) denote its category of perfect left modules
in Vaut. The objects in this category are perfect R-modules P equipped with an automorphism
γ : P → P such that the following diagram commutes:

R⊗ P act //

ϕ⊗γ
��

P

γ

��
R⊗ P act // P.

That is, γ is an isomorphism of left modules from P to ϕP . Here ϕP indicates that the left
action on P is twisted by ϕ : R→ R, as in Definition 4.1.3. Let K(R,ϕ) denote K(Perf(R,ϕ)).
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Let M be an R-bimodule. Consider the category ofM -parametrized endomorphisms of perfect R-
modules, denoted by Betley [9] as End(R,M). Its objects are maps of left modules γ : P →M⊗RP ,
where P is a perfect left R-module, and its morphisms are maps of left modules P → Q that make
the relevant diagram commute.

Theorem 6.1.1. There is a trace map K(R,ϕ)→ HH(R, ϕR), given by the composite

K(Perf(R,ϕ)) = K(Aut(R, ϕR))→ K(End(R, ϕR))→ HH(R, ϕR).

When R is a Cn-ring spectrum and ϕ is given by the action of a chosen generator g ∈ Cn, we obtain
a trace map

K(Perf(R,g))→ THHCn
(R).

Proof. Observe that End(R, ϕR) is very similar to Perf(R,ϕ), except that in Perf(R,ϕ), γ is required
to be an isomorphism. We may therefore denote Perf(R,ϕ) by Aut(R, ϕR), and it includes naturally
into the category End(R, ϕR).

The K-theory of End(R,M), denoted K(R,M), admits a trace map to HH(R,M) (see, e.g.,
Section 3 of [16]), which can be considered as a twisted version of the trace K(End(R,R))→ HH(R),
through which the Dennis trace K(R)→ HH(R) factors. We consider this trace map when M = ϕR.
The composite of this trace with the map from K(Perf(R,ϕ)) to K(End(R, ϕR)) yields a twisted
Dennis trace from K(R,ϕ) to HH(R, ϕR).

When R is a Cn-ring spectrum, and ϕ is given by the action of a chosen generator g ∈ Cn, we
therefore obtain a trace map

K(Perf(R,g))→ THH(R; gR) ∼= THHCn
(R).

�

If R is a Cn-ring spectrum, let PerfCn

R denote the category of perfect left modules over R in Cn-
spectra. Objects in this category are modules over R in Cn-spectra that are perfect as R-modules.

Corollary 6.1.2. There is a trace map K(PerfCn

R )→ THHCn(R).

Proof. Let g denote a chosen generator of Cn. We can include PerfCn

R into Perf(R,g), by sending a
module P to (P, g) ∈ Perf(R,g). This is a twisted version of the functor PerfR → End(R,R) that
sends P to (P, id) and induces the map K(R)→ K(End(R,R)). We thus obtain a trace map

K(PerfCn

R )→ THHCn
(R)

given by the composite

K(PerfCn

R )→ K(Perf(R,g)) = K(Aut(R, gR))→ K(End(R, gR))→ THH(R; gR).

�

Remark 6.1.3. When R is an ordinary ring, we can identify the trace K0(R,ϕ) → HH0(R; ϕR)
as sending γ : P → ϕP to its Hattori-Stallings trace, i.e., its bicategorical trace in the category of
rings, bimodules, and bimodule maps. Consider the shadow HH0 on this bicategory. The trace of
a 2-cell γ : P ⊗ Z→ ϕR⊗R P , where we regard P as an R− Z bimodule, is a map

HH0(Z)→ HH0(R; ϕR)

and thus an element of HH0(R; ϕR). For more details on the Hattori-Stallings trace as a bicategor-
ical trace, see Section 5 of [33]. More generally, Theorem 1.2 of [13] states that on π0, this twisted
Dennis trace takes an endomorphism f : P → gP to its bicategorical trace S → THH(R; gR) ∼=
THHCn(R).
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This twisted Dennis trace factors through the Cn-twisted TR of [4], TRCn . The following lemma
will be useful in the proof.

Lemma 6.1.4. Let R be a Cn-ring spectrum, and g ∈ Cn a generator. Let p be a prime that does
not divide n, and k an integer such that pk ≡ 1 (mod n). Then

THH(pk)(R; gR) ' THHCn(R)

as Cpk -spectra.

Proof. Recall from [4] that THHCn(R) ' THHC
npk

(N
C

npk

Cn
R) as S1-spectra. Since p does not

divide n, Cnpk ∼= Cn ×Cpk ; let g′ denote a generator of Cpk , so that g′g is a generator of Cnpk . As
Cnpk -spectra,

THHC
npk

(N
C

npk

Cn
R) ' THH(N

C
npk

Cn
R; g

′gN
C

npk

Cn
R) ' THH(N

C
npk

Cn
R; g

′gp
k

N
C

npk

Cn
R).

The second equivalence holds because pk ≡ 1 (mod n). Note that the last term is equivalent to

THH(N
C

npk

Cn
R; g

′
N
C

npk

Cn
(gR)) as a Cnpk -spectrum. We now restrict to Cpk -spectra. The restriction

functor respects smash products and geometric realization, and therefore commutes with THH. In
addition, if K,H are finite groups and X is a K-spectrum, examining the indexed smash product
defining the norm yields ιe×HN

K×H
K×e X

∼= NH
e ιeX as H-spectra. Therefore we obtain

ιC
pk

THH(N
C

npk

Cn
R; g

′
N
C

npk

Cn
(gR)) ' THH(N

C
pk

e ιeR; g
′
N
C

pk

e ιe(
gR)),

which is equivalent as a Cpk -spectrum to

THHC
pk

(N
C

pk

e ιeR;N
C

pk

e ιe(
gR)) = THH(pk)(R; gR)

as required. �

Proposition 6.1.5. The twisted Dennis trace K(Perf(R,g))→ THHCn(R) factors through TRCn(R; p)
for p coprime to n.

Proof. By Theorem 1.3 of [13], the twisted Dennis trace K(R, gR)→ THH(R, gR) factors through
TR with coefficients, K(R, gR) → TR(R, gR). On π0, this takes an endomorphism f : P → gP to

the bicategorical trace of its k-fold composite fk : P → gkP for all k ∈ N.
We claim that when p is coprime to n, TR(R, gR; p) ' TRCn

(R; p). We prove this by comparing
the inverse systems that form both spectra. Recall that TR(R, gR; p) is the inverse limit along the
restriction maps

R : THH(pk)(R; gR)Cpk → THH(pk−1)(R; gR)Cpk−1 .

Note that by Fermat’s little theorem, for p coprime to n, pϕ(n) ≡ 1 (mod n), where ϕ(n) denotes
Euler’s totient function. We can therefore look instead at the composition of ϕ(n) restriction maps
at a time,

THH(pjϕ(n))(R; gR)
C

pjϕ(n) → THH(p(j−1)ϕ(n))(R; gR)
C

p(j−1)ϕ(n) .

By Lemma 6.1.4 above, this agrees with the system

THHCn
(R)

C
pjϕ(n) → THHCn

(R)
C

p(j−1)ϕ(n)

and the limit of this system agrees with the limit of the system

THHCn
(R)Cpk+1 → THHCn

(R)Cpk

which is TRCn
(R; p). �
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Remark 6.1.6. This suggests that TR(R, gR) is a good generalization for TRCn(R), which also
works at primes that divide n.

6.2. Relationship to equivariant algebraic K-theory. We have shown above that there is a
twisted Dennis trace map

K(Perf(R,g))→ THHCn
(R)

that factors through TRCn
(R). A natural question to ask is whether twisted topological Hochschild

homology also receives a trace map from equivariant algebraic K-theory. Merling [28] defined a
genuine equivariant algebraic K-theory G-spectrum, KG(R), for a G-ring R. There is related
work on equivariant algebraic K-theory due to Barwick and Barwick-Glasman-Shah [5, 6] and
Malkiewich–Merling [26].

The equivariant algebraic K-theory KG(R) of a G-ring R is roughly the K-theory of the category
of perfect R-modules, which admits an action of G sending P to gP . Building on Merling’s work
[28], Malkiewich and Merling showed in Theorem 1.3 of [26] that for a G-ring spectrum R, the fixed
point spectrum KG(R)G is equivalent to the K-theory of a category of perfect R-modules on which
G acts semilinearly. In particular, if G is Cn with generator g, then KCn(R)Cn ' K(Perf(R,g)).
Therefore we conclude the following as a corollary of Theorem 6.1.1.

Corollary 6.2.1. For R a Cn-ring spectrum, the twisted Dennis trace is a map

KCn
(R)Cn → THHCn

(R).

Work of Horev [20] shows that twisted topological Hochschild homology can be viewed through
the lens of equivariant factorization homology. In particular, Horev proves in Proposition 7.2.2 of
[20] that for a Cn-ring spectrum R,

THHCn(R) ' ΦCn

∫
S1
rot

R.

Here
∫
S1
rot
R denotes the Cn-equivariant factorization homology of S1 (with the rotation action of

Cn) with coefficients in R. The Cn-spectrum
∫
S1
rot
R is non-equivariantly equivalent to THH(R),

but has a “diagonal” action of Cn– that is, Cn acts on both S1 and R. This perspective on twisted
topological Hochschild homology leads to the following conjecture.

Conjecture 6.2.2. The twisted Dennis trace of Corollary 6.2.1 arises from a Cn-equivariant map
KCn(R)→

∫
S1
rot
R.

Work in progress of Angelini-Knoll, Merling, and Péroux [3] may shed light on this conjecture,
as they expand the definition of norms for compact Lie groups. Take R a Cn-ring spectrum; using

such norms, one would like to construct a Dennis trace map KCn
(R)→ NS1×Cn

e×Cn
R which is S1×Cn

equivariant. Here we extend the Cn-action on KCn
(R) to an S1 × Cn action using the trivial S1-

action. Let H ∼= Cn denote the diagonal subgroup of Cn × Cn ≤ S1 × Cn. An equivariant Dennis
trace of this form would produce a map

KCn(R)Cn = KCn(R)H → (NS1×Cn

e×Cn
R)H → ΦHNS1×Cn

e×Cn
R.

If the diagonal formulas of Proposition 2.19 of [4] still hold for this generalized norm, so that

ΦHNS1×Cn

e×Cn
R ∼= N

S1×Cn/H
e×Cn/(e×Cn∩H)Φ

e×Cn∩HR ∼= NS1

Cn
R,

then a twisted Dennis trace
KCn(R)Cn → THHCn(R)
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would indeed arise from an equivariant Dennis trace

KCn(R)→ NS1×Cn

e×Cn
R.

This norm, NS1×Cn

e×Cn
R, can be thought of as THH(R) taken in the category of Cn-spectra. That is,

it has a Cn-action coming from the fact that R is a Cn-ring spectrum, and an S1-action coming

from the cyclic bar construction. The restriction of NS1×Cn

e×Cn
R to a Cn-spectrum (via the diagonal

subgroup H) should agree with
∫
S1
rot
R.
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