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AbstractWe provide quantitative upper bounds on the total variation mixing time of the Markov chain
corresponding to the unadjusted Hamiltonian Monte Carlo (uHMC) algorithm. For two general classes of
models and fixed time discretization step size h, the mixing time is shown to depend only logarithmically
on the dimension. Moreover, we provide quantitative upper bounds on the total variation distance between
the invariant measure of the uHMC chain and the true target measure. As a consequence, we show that an
"-accurate approximation of the target distribution µ in total variation distance can be achieved by uHMC
for a broad class of models with O �d3�4"−1�2 log(d�")� gradient evaluations, and for mean field mod-
els with weak interactions with O �d1�2"−1�2 log(d�")� gradient evaluations. The proofs are based on the
construction of successful couplings for uHMC that realize the upper bounds.
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1. Introduction
A central problem in Markov chain Monte Carlo (MCMC) is to determine the number of MCMC
steps that guarantees that the distribution of the chain is a good approximation of its invariant
probability measure. This “mixing time” is commonly measured in terms of the total variation
distance. Many tools have been developed for bounding mixing times, see [26] for an overview
in the case of discrete state spaces. For Markov processes on continuous state spaces, these tools
include geometric and analytic approaches based on conductance and isoperimetric inequalities
[37, 42], spectral gaps and functional inequalities [41, 2], and hypocoercivity [43, 10, 1, 29],
as well as probabilistic approaches that are mainly based on couplings, possibly in combination
with drift/minorization conditions, see for example [27, 28, 34, 19, 20, 14, 15, 16]. A focus of
current research has become to understand the mixing properties of Hamiltonian Monte Carlo
(HMC) in representative models that exhibit both high-dimensionality and non-convexity.
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2 N. Bou-Rabee and A. Eberle

HMC is an MCMC method that is based on deterministic Hamiltonian dynamics combined
with momentum randomizations [11, 39]. With few exceptions, the Hamiltonian dynamics is not
analytically solvable, and therefore, it is normally discretized in time using an evenly spaced
grid with time step size h > 0 and a numerical integrator; most often velocity Verlet [18, 25,
3, 32]. Time discretization leads to an error in the invariant measure of the HMC method based
on Verlet, which can in principle be reduced by taking a smaller time step size or removed by
adding a Metropolis accept-reject step per HMC step. The latter gives rise to adjusted HMC (or
Metropolis-adjusted HMC, or Metropolized HMC), and the method without adjustment is called
unadjusted HMC (uHMC). The method based on the exact Hamiltonian dynamics is called exact
HMC and is mainly used as a theoretical tool.

In recent years, there has been considerable progress in developing quantitative Wasserstein
convergence bounds for HMC. For strongly logconcave distributions, a synchronous coupling
was used to derive L1-Wasserstein convergence bounds for exact HMC in [31], and this result
was subsequently sharpened in [8]. These papers use perturbative arguments to study the effect
of time discretization error. For more general target distributions, a coupling-based argument for
unadjusted and adjusted HMC was developed in [5] to obtain contractivity in a carefully designed
Wasserstein distance equivalent to the standard L1-Wasserstein distance W 1. By applying this
coupling componentwise, this result has been extended to mean-field models [6]. Moreover, by
using a two-scale coupling, the approach has also been extended to perturbations of Gaussian
measures in infinite dimension [4].

On the other hand, explicit total variation (TV) bounds for HMC are scarce. The few existing
results [31, 7] hold only under restrictive conditions on the target and/or the initial distribution
(strong logconcavity, warm start), and except for very special cases, the optimal order of upper
bounds is unknown. This paper makes a contribution towards filling this gap in the literature. It
provides explicit upper bounds on (i) a one step W 1 to TV regularization of the uHMC transition
kernel, (ii) the mixing time of the uHMC chain started at an arbitrary initial distribution with
finite first moment, and (iii) the TV bias between the stationary distribution of uHMC and the
true target distribution.

Recall that by the dual descriptions of the distances, TV bounds correspond to bounds for inte-
grals of arbitrary bounded measurable functions (“observables”), while W 1 bounds correspond
to bounds for Lipschitz continuous functions. Thus, one advantage of TV bounds is that they
require less regularity of the observables and in particular apply to indicator functions. More-
over, in contrast to W 1 distances, the TV distance is scale invariant. If the transition kernels of
a Markov chain have strong smoothing properties, then it is not difficult to deduce TV bounds
from W 1 bounds. For HMC, however, such regularizing properties and their precise dependence
on the dimension are not obvious.

Although the results are stated below in a slightly different way, the main idea underlying the
mixing time bounds for uHMC derived in this work is the construction of a successful coupling of
two copies of uHMC starting from different initial conditions. This coupling builds on recently
introduced couplings for uHMC which bring the two copies arbitrarily close in representative
models having both non-convexity and high dimension [5, 6]. After the two copies are close,
a “one-shot coupling” is used to get them to coalesce with high probability [30]. This strategy
works provided for small distances between the two copies, there is a large overlap between their
corresponding distributions in the next step. A key element of our proofs is correspondingly a
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precise upper bound on this overlap, which is equivalent to a W 1 to TV regularization bound for
the uHMC transition kernel, see Lemmas 16 and 17 below. The regularizing effect stems from
the initial velocity randomization in each transition step of the uHMC chain. We stress that it is
not trivial to quantify the overlap precisely because each HMC step involves many deterministic
moves. A similar overlap bound can also be applied in combination with a triangle inequality
trick and existing bounds for the Wasserstein bias in order to quantify the total variation bias of
the invariant measure, see Lemmas 18 and 19.

Our work is closely related to the recent work by Chen, Dwivedi, Wainwright and Yu [7]. In
the former paper, conductance methods are applied to prove TV convergence bounds for adjusted
HMC assuming a warm start and that either an isoperimetric or a log-isoperimetric inequality
holds. An important ingredient in their proofs is an overlap bound that is similar to the more
refined bounds we develop for the one-shot coupling. For a warm start, it is shown in [7] that an
"-accurate approximation can be achieved by adjusted HMC with O(d11�12 log("−1)) gradient
evaluations for strongly log-concave target distributions, and with O(d4�3 log("−1)) gradient
evaluations for weakly non-log-concave target distributions. The convergence bounds for uHMC
stated below have a substantially better dependence on the dimension d and on the initial law.
In particular, we show that the mixing time of the uHMC Markov chain often depends only
logarithmically on d. The price to pay is that both the required step size and, correspondingly,
the required number of gradient evaluations per transition step of the Markov chain, depend
substantially on the accuracy ". Unfortunately, it is currently not clear how to develop a coupling
approach that can provide sharp bounds for adjusted HMC. The problem is that straightforward
couplings are not efficient in combination with accept-reject steps. See however the recent work
[9] for promising first steps in this direction.

Overlap bounds for the one-step transition distributions of HMC on Riemannian manifolds
were also developed by Lee and Vempala [24, 23]. This variant of HMC is stated in terms of
the exact Hamiltonian flow, and their idea is to use an ODE solver to approximate this flow
without Metropolis adjustment. The overlap bounds were used to estimate the conductance and
in turn mixing time of Riemannian HMC with application to faster methods for polytope volume
computation. For a flat space, their overlap bounds are stated in terms of the Frobenius norm of
the Hessian of the potential energy, which can lead to an implicit dimension dependence in high
dimensional models. In contrast, we assume only a bound on the operator norm of the Hessian.
To see this difference, compare Assumption 2 below to Definition 17 of [23].

A related strategy as in our work has also recently been implemented for an “OBABO” dis-
cretization of second-order Langevin dynamics; see Proposition 3 and Proposition 22 of [36]. In
this case, the proofs simplify substantially because they involve designing a one-shot coupling
based on only one step of the OBABO scheme instead of many Verlet steps. The price to pay
is that the resulting bounds in [36] are less sharp because in contrast to Lemma 16 below, the
overlap bound for OBABO applies only if the two copies are very close to each other (within
distance of order O(h1�2), where h is the time step size).

We now outline the main results of this paper. Let ⇡(x, dy) denote the one-step transition
kernel of exact HMC with fixed integration time T > 0 of the Hamiltonian flow during each
transition step, and let ⇡̃(x, dy) denote the one-step transition kernel of uHMC operated with
integration time T and discretization time step size h > 0 satisfying T ∈ hZ. Denote by µ
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4 N. Bou-Rabee and A. Eberle

and µ̃ the corresponding invariant probability measures of exact HMC and unadjusted HMC,
respectively, and let TV(⌫, ⌘) denote the TV distance between probability measures ⌫, ⌘ on Rd.

The main result of this paper is a quantitative bound on TV(µ̃, ⌫⇡̃m+1) that holds for any
m ≥ 0 and any probability measure ⌫ on Rd. More precisely, by using a one-shot coupling we
first obtain

TV(µ̃, ⌫⇡̃m+1) ≤ (3�4) �T −2 + 27dL2
H
T 4�1�2 W 1(µ̃, ⌫⇡̃m) (1)

where W 1 is the standard L1-Wasserstein distance. Therefore, if the uHMC chain converges
geometrically in W 1, i.e., W 1(µ̃, ⌫⇡̃m) ≤ M1e

−cmW 1(µ̃, ⌫), then

TV(µ̃, ⌫⇡̃m+1) ≤ (3�4) �T −2 + 27dL2
H
T 4�1�2 M1 e

−cmW 1(µ̃, ⌫) . (2)

As long as the constant M1 and the L1-Wasserstein distance between the initial distribution of
the chain and the invariant measure of uHMC W 1(µ̃, ⌫) depend polynomially on the dimension
d, (2) implies that the mixing time of the uHMC chain depends at most logarithmically on d.
Alternatively, it would also be possible to rephrase the bound in (2) in the spirit of [16] as a
contraction bound in a Kantorovich distance that has both a TV and a Wasserstein part.

In a second step, we quantify the TV distance between µ̃ and µ. By the triangle inequality

TV(µ, µ̃) ≤ TV(µ⇡, µ⇡̃) +TV(µ⇡̃, µ̃⇡̃)
≤ TV(µ⇡, µ⇡̃) + (3�4) �T −2 + 27dL2

H
T 4�1�2 W 1(µ, µ̃) . (3)

By strong accuracy of the underlying integrator, i.e., W 1(µ, µ̃) ≤ M2 h
2, and using another

one-shot coupling to estimate TV(µ⇡, µ⇡̃), we obtain

TV(µ, µ̃) ≤ C h2 + (3�4) �T −2 + 27dL2
H
T 4�1�2 M2 h

2 , (4)

where C is a constant given in (13) which grows like d3�2 for general U and d1�2 for quadratic U ;
and the constant M2 grows like d for general U and d1�2 for quadratic U . For mean-field U , the
corresponding upper bound on TV(µ, µ̃) grows like O(dh2). Applying the triangle inequality
again, and inserting (2) and (4) gives an overall convergence bound on TV(µ, ⌫⇡̃m+1). These
results are stated precisely in Theorems 5 and 7, and Corollary 8 in the next section for general
U , and in Theorems 9 and 11, and Corollary 12 for mean-field U . The remaining sections contain
detailed proofs. In the special case T = h, i.e., one integration step per HMC step, one recovers
TV convergence bounds for the unadjusted Langevin algorithm (uLA) [13]. In this case, (2)
shows that the mixing time again depends logarithmically on d, while (4) shows that the accuracy
of the invariant measure is O(dh) for general U .

We conclude this introduction by remarking that mixing time bounds based on coupling meth-
ods might be relevant to recently developed unbiased estimators based on couplings [21]. Both in
theory and in practice, the usefulness of these unbiased estimators requires a successful coupling
that realizes these bounds. Therefore, to understand the performance of these unbiased estima-
tors, it is crucial to obtain quantitative TV convergence bounds and geometric tail bounds on the
corresponding coupling times.
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2. Main Results

2.1. Notation

Let P(Rd) denote the set of probability measures on Rd. Define the total variation (TV) distance
between ⌫, ⌘ ∈ P(Rd) by

TV(⌫, ⌘) ∶= sup{�⌫(A) − ⌘(A)� ∶ A ∈ B(Rd)}
where B(Rd) is the Borel �-algebra on Rd. Denote the set of all couplings of ⌫, ⌘ ∈ P(Rd) by
Couplings(⌫, ⌘). A useful property of the TV distance is the following coupling characterization

TV(⌫, ⌘) = inf �P [X ≠ Y ] ∶ Law(X,Y ) ∈ Couplings(⌫, ⌘)� . (5)

Let d be a metric on Rd. For ⌫, ⌘ ∈ P(Rd), define the L1-Wasserstein distance with respect to d
by

W 1
d(⌫, ⌘) ∶= inf �E [d(X,Y )] ∶ Law(X,Y ) ∈ Couplings(⌫, ⌘)� .

In the special case where d is the standard Euclidean metric, we write the corresponding L1-
Wasserstein distance as W 1.

2.2. Short Overview of Unadjusted Hamiltonian Monte Carlo

Unadjusted Hamiltonian Monte Carlo (uHMC) is an MCMC method for approximate sampling
from a ‘target’ probability distribution on Rd of the form

µ(dx) = Z−1 exp(−U(x))dx , Z = � exp(−U(x))dx , (6)

where U ∶ Rd → R is a twice continuously differentiable function such that Z <∞. The function
U is interpreted as a potential energy. The uHMC algorithm generates a Markov chain on Rd with
the help of: (i) a sequence (⇠k)k∈N0 of i.i.d. random variables ⇠k ∼N (0, Id); and (ii) the velocity
Verlet integrator with time step size h > 0 and initial condition (x, v) ∈ R2d whose discrete
solution takes values on an evenly spaced temporal grid {ti ∶= ih}i∈N0 and is interpolated by(q̃t(x, v), ṽt(x, v)) which satisfies the following differential equations

d

dt
q̃t = ṽ�t�h − (t − �t�h)∇U(q̃�t�h), d

dt
ṽt = −1

2
�∇U(q̃�t�h) +∇U(q̃�t�h)� (7)

with initial condition (q̃0(x, v), ṽ0(x, v)) = (x, v) ∈ R2d. Here we have defined

�t�h =max{s ∈ hZ ∶ s ≤ t} and �t�h =min{s ∈ hZ ∶ s ≥ t} for h > 0 . (8)

For h = 0, we set �t�h = �t�h = t and drop the tildes in the notation. Thus

d

dt
qt = vt,

d

dt
vt = −∇U(qt), (9)
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and correspondingly, (qt(x, v), vt(x, v)) is the exact Hamiltonian flow with respect to the unit
mass Hamiltonian H(x, v) = (1�2) �v�2 +U(x).
By integrating (7), note that q̃t is a piece-
wise quadratic function of time that interpo-
lates between the points {(tk, q̃tk)} and satisfies
d

dt
q̃t�

t=tk+ = ṽtk , while ṽt is a piecewise linear
function of time that interpolates between the
points {(tk, ṽtk)}. In general, q̃t does not satisfy
d

dt
q̃t�

t=tk+ = d

dt
q̃t�

t=tk−, as illustrated in the fig-
ure. In the analysis of the convergence properties
of uHMC, this continuous-time interpolation of
the discrete solution produced by velocity Verlet
is convenient to work with. piecewise quadratic

interpolation of positions

In the n-th step of the unadjusted Hamiltonian Monte Carlo algorithm with complete velocity
refreshment and duration parameter T ∈ (0,∞), the initial velocity ⇠n−1 is sampled indepen-
dently of the previous development, and the current position and initial velocity are evolved by
applying the Verlet approximation of the Hamiltonian flow over a time interval of length T .

Definition 1 (uHMC Markov chain). Given an initial state x ∈ Rd, duration T > 0, and time
step size h ≥ 0 with T �h ∈ Z for h ≠ 0, define X̃0(x) ∶= x and

X̃n(x) ∶= q̃T (X̃n−1(x), ⇠n−1) for n ∈ N .

Let ⇡̃(x,A) = P [X̃1(x) ∈ A] denote the corresponding one-step transition kernel.

For h = 0, we recover the exact Hamiltonian Monte Carlo algorithm. In this case, we drop
all tildes in the notation, i.e., the n-th transition step is denoted by Xn(x), and the correspond-
ing transition kernel is denoted by ⇡. The target measure µ is invariant under ⇡, because the
Hamiltonian flow (9) preserves the probability measure on R2d with density proportional to
exp(−H(x, v)), and µ is the first marginal of this measure. When h > 0, the invariant proba-
bility measure for ⇡̃ is denoted by µ̃. In general, it does not agree with µ, but when it exists, it
typically approaches µ as h ↓ 0.

2.3. Assumptions

Let H ≡D2U denote the Hessian of U . To prove our main results, we assume:

Assumption 2. The function U ∶ Rd → R satisfies the following conditions:

(A1) U has a global minimum at 0 and U(0) = 0.
(A2) U ∈ C2(Rd) with bounded second derivative, i.e., L ∶= sup �H� <∞.
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(A3) U ∈ C3(Rd) with bounded third derivative, i.e., LH ∶= sup �DH� <∞.
(A4) U ∈ C4(Rd) with bounded fourth derivative, i.e., LI ∶= sup �D2

H� <∞.

Here �⋅� denotes the operator norm of a multilinear form.

Remark 3 (Choice of norm and dimension dependence). The dimension dependence of the
subsequent results depends on the choice of norm used in Assumptions (A2)-(A4). By the Cauchy-
Schwarz inequality, note that the operator norm �⋅� of a k-multilinear form A = (ai1�ik) is al-
ways bounded by the Frobenius (or Hilbert-Schmidt) norm that is defined by �A�

F
= (∑d,...,d

i1,...,ik=1 a2i1�ik)1�2,
i.e., �A� ≤ �A�

F
, see [17, Section 2]. Choosing the Frobenius norm in Assumptions (A2)-(A4)

would give an improved dimension dependence in the results below.

We additionally assume that the transition kernel ⇡̃ of uHMC satisfies the following L1-
Wasserstein convergence bound and discretization error bound.

Assumption 4. There exists an invariant probability measure µ̃ of ⇡̃ satisfying the following
conditions.

(A5) There exist constants M1, c ∈ (0,∞) such that for any m ∈ N and ⌫ ∈ P(Rd), W 1(⌫⇡̃m, µ̃) ≤
M1 e

−cmW 1(⌫, µ̃).
(A6) There exists a constant M2 ∈ (0,∞) such that W 1(µ, µ̃) ≤ M2 h

2.

Note that by (A5), the invariant probability measure is unique. Assumption (A6) often holds
as a consequence of (A5), a triangle-inequality trick [33, Remark 6.3] and strong accuracy of
the Verlet integrator; see Section 3.2 of [6]. In general, the constants M1, M2 and c appearing in
(A5) and (A6) will depend on the dimension d, but usually they can be chosen independently of
the discretization step size h. In Section 2.5, we will see several classes of examples where c can
be chosen independently of d, and the dimension dependence of M1 and M2 is explicit.

2.4. TV convergence bounds for uHMC

We are now in position to state our main results. For all of the following results, we assume that
Assumptions 2 and 4 are satisfied. Moreover, we fix a duration parameter T > 0 and a time step
size h ≥ 0 such that T �h ∈ Z for h ≠ 0 and

L(T 2 + Th) ≤ 1�6 . (10)

Theorem 5. For any m ∈ N0 and for any initial law ⌫ ∈ P(Rd),
TV(µ̃, ⌫⇡̃m+1) ≤ (3�4) �T −2 + 27dL2

H
T 4�1�2 M1W

1(µ̃, ⌫) e−cm . (11)

Proof. For m = 0, the statement is a special case of a W 1/TV regularization result that is
proven in Lemma 17 below. The general case follows by combining Lemma 17 and Assumption 4
(A5).
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8 N. Bou-Rabee and A. Eberle

Theorem 5 immediately implies an upper bound on the "-mixing time tmix(", ⌫) ∶= inf {m ≥ 0 ∶ TV(µ̃, ⌫⇡̃m) ≤ "}
of the uHMC Markov chain.

Corollary 6 (Upper bound for mixing time). For any " > 0 and any ⌫ ∈ P(Rd),
tmix(", ⌫) ≤ 2 + 1

c
log �3 �T −2 + 27dL2

H
T 4�1�2 M1W

1(µ̃, ⌫)
4"

� .
In particular, provided that M1 and W 1(µ̃, ⌫) depend at most polynomially on d and c is

independent of d, then the mixing time depends at most logarithmically on d and ". Since sim-
ulating one step of the uHMC chain requires carrying out T �h gradient evaluations (for h ≠ 0),
an "-approximation of µ̃ in total variation distance can be achieved with O �h−1 log(d�")� gra-
dient evaluations. However, in order to control the approximation error with respect to the target
distribution µ, we also have to take into account the systematic error TV(µ, µ̃).
Theorem 7. Under the assumptions made above,

TV(µ, µ̃) ≤ h2 �(3�4) �T −2 + 27dL2
H
T 4�1�2 M2 +C�, where (12)

C ∶= (1�2) �d3�4L2
I
T 4 + 14L2

H
LIT

6 + 14L4
H
T 8�

+ d2�35L2
H
T 2 + 8L2

I
T 4 + 28L2

H
LIT

6 + 28L4
H
T 8�

+ d�16L2 + 4L2
H
T 2) + �2dL2

H
+L2T −2�� �x�2 µ(dx)

+ �dL2
I
+ dL2

H
LIT

2 + dL4
H
T 4 +L2

H
T −2�� �x�4 µ(dx)�1�2 .

(13)

Proof. By the triangle inequality,

TV(µ, µ̃) ≤ TV(µ⇡, µ⇡̃) +TV(µ⇡̃, µ̃⇡̃) . (14)

Moreover, by Lemma 19 below,

TV(µ⇡, µ⇡̃) ≤ C h2 . (15)

Moreover, by Lemma 17, and by Assumption 4 (A6),

TV(µ⇡̃, µ̃⇡̃) ≤ (3�4) �T −2 + 27dL2
H
T 4�1�2 W 1(µ, µ̃)

≤ (3�4) �T −2 + 27dL2
H
T 4�1�2 M2 h

2 . (16)

Inserting (16) and (15) into (14) gives (12).

By the triangle inequality, note that

TV(⌫⇡̃m+1, µ) ≤ TV(⌫⇡̃m+1, µ̃) +TV(µ̃, µ) . (17)

Inserting (12) and (11) into (17) gives the following corollary.
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Corollary 8. For any m ∈ N0 and any initial law ⌫ ∈ P(Rd),
TV(µ, ⌫⇡̃m+1) ≤ (3�4) �T −2 + 27dL2

H
T 4�1�2 M1W

1(µ̃, ⌫) e−cm
+ h2 �(3�4) �T −2 + 27dL2

H
T 4�1�2 M2 +C�. (18)

The constant C appearing in (18) is typically of order O(d3�2), although in the Gaussian case
the dimension dependence improves further. Below, we will see examples where the constant
M2 appearing in (18) is of order O(d). Then the TV accuracy TV(µ, µ̃) is at most of order
O(h2d3�2), and correspondingly, for an "-accurate approximation of µ by µ̃, the step size h has
to be chosen of order O(d−3�4"1�2). Thus if additionally, c is independent of the dimension,
and M1 depends at most polynomially on d, then an "-accurate approximation of the target
distribution µ in TV distance can be achieved by uHMC with O �d3�4"−1�2 log(d�")� gradient
evaluations.

2.5. Examples

By coupling methods, (A5) has been verified in the following models.

2.5.1. Asymptotically Strongly Logconcave Target

Suppose that U ∶ Rd → R satisfies (A1) and (A2), and U is strongly convex outside a Euclidean
ball, i.e., there exist constantsR ∈ [0,∞) and K ∈ (0,∞) such that

(x − y) ⋅ (∇U(x) −∇U(y)) ≥ K �x − y�2 for all x, y ∈ Rd with �x − y� ≥R.

Using a synchronous coupling, and assuming that T > 0 satisfies LT 2 ≤ 1�4, Chen and Vempala
(2019) [8] proved in the globally strongly logconcave case (i.e., for R = 0) that for all initial
distributions ⌫, ⌘ ∈ P(Rd), and for all m ≥ 0, the transition kernel of exact HMC satisfies

W 1(⌫⇡m,⌘⇡m) ≤ e−cmW 1(⌫, ⌘) where c = KT 2�10.
Mangoubi and Smith (2017) [31] obtained a similar result under LT 2 ≤ min(1�4,K�L). Sim-
ple counterexamples demonstrate that a synchronous coupling is not contractive in the non-
logconcave setting where R > 0. Recently, a non-synchronous coupling tailored to HMC was
introduced to obtain a corresponding result for non-convex potentials. Suppose that T > 0 and
h1 ≥ 0 satisfy

L(T + h1)2 ≤min� 3K
10L

,
1

4
,

3K

256 ⋅ 5 ⋅ 26LR2(L +K)� and h1 ≤ KT

525L + 235K .

For any h ∈ [0, h1], Bou-Rabee, Eberle and Zimmer (2020) [5] essentially prove that for all
m ≥ 0 and all ⌫, ⌘ ∈ P(Rd),

W 1(⌫⇡̃m,⌘⇡̃m) ≤ M1 e
−cmW 1(⌫, ⌘), where

M1 = exp
�
�
5

2
(1 + 4R

T

�
L +K
K
)�� and c = KT 2

156
exp
�
�−10

R
T

�
L +K
K

�
� .
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10 N. Bou-Rabee and A. Eberle

Intuitively speaking, the factor LR2 measures the degree of non-convexity of U . The bounds
show that (A5) is satisfied with the explicit constants given above. Now suppose additionally
that U is in C3(Rd) and LH = sup �D3U� <∞. Then by Corollary 7 of [6] with n = 1 and ✏ = 0,
we have

W 1(µ, µ̃) ≤ 1

c
C̃2M1�d +� �x�µ(dx) +� �x�2 µ(dx)� h2

where C̃2 depends only on K, L, LH and T. Therefore, Assumption (A6) holds with

M2 = 1

c
C̃2M1�d +� �x�µ(dx) +� �x�2 µ(dx)� .

If the constants R, K and L are fixed, then c and M1 do not depend on the dimension. As
a consequence, by Corollary 6, the mixing time is of order O(log d), and by Theorem 7, the
TV accuracy TV(µ, µ̃) is of order O(d3�2h2). In particular, an "-accurate approximation can
be achieved with a step size of order O("−1�2h−3�4). The latter bound is not sharp for strongly
logconcave product models with i.i.d. factors where one can prove by elementary methods that
the correct order of TV(µ, µ̃) is ⇥(d1�2h2). In the general setup considered above, however,
we do not expect a bound for TV accuracy of a similar order to hold. In a complimentary work,
Durmus and Eberle [12] show that the L1-Wasserstein accuracy W 1(µ, µ̃) is of order O(d1�2h2)
for “nice” models and of order O(dh2) for general models satisfying the assumptions made
above.

In general, we can not expect that constantsR, K and L as above can be chosen independently
of the dimension d. Then also c and M1 may depend implicitly on the dimension through these
constants. For example, in mean-field models, which we consider next, R can increase with the
number of particles; see Remark 1 of [6].

2.5.2. Mean-Field Model

Consider a mean-field model [22, 35, 6] consisting of n particles in dimension k with potential
energy U ∶ Rnk → R defined as

U(x) = n�
i=1
�V (xi) + ✏

n

n�
`=1,`≠i

W (xi − x`)� , x = (x1, . . . , xn) , xi ∈ Rk . (19)

We assume that V,W are functions in C2(Rk) satisfying:

• V has a local minimum at 0, and V (0) = 0;
• L = sup �D2V � <∞ and L̃ = sup �D2W � <∞; and,
• there exist constantsR ∈ [0,∞) and K ∈ (0,∞) such that

(x1 − y1) ⋅ (∇V (x1) −∇V (y1)) ≥ K �x1 − y1�2
for all x1, y1 ∈ Rk with �x1 − y1� ≥R.
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Mixing Time Guarantees for uHMC 11

Suppose that T > 0, ✏ ≥ 0 and h1 ≥ 0 satisfy

L(T + h1)2 ≤ 3

5
min� 3K

10L
,
1

4
,

3K

256 ⋅ 5 ⋅ 26LR2(L +K)� ,

�✏�L̃ < min
���
K

6
,
1

2
� K

36 ⋅ 149�
2 �
�T + 8R

�
L +K
K

�
�
2

exp
�
�−40

R
T

�
L +K
K

�
�
��� ,

h1 ≤ KT

525L + 235K .

Then for all initial distributions ⌫, ⌘ ∈ P(Rnk), for all m ≥ 0 and for any h ∈ [0, h1], Bou-Rabee
and Schuh (2020) [6] use a component-wise coupling method to prove that

W 1
`1
(⌫⇡̃m,⌘⇡̃m) ≤ M e−cmW 1

`1
(⌫, ⌘), where `1(x, y) ∶= n�

i=1
�xi − yi�,

M = exp
�
�
5

2
(1 + 4R

T

�
L +K
K
)�� and c = KT 2

156
exp
�
�−10

R
T

�
L +K
K

�
� .

(20)

Since �x − y� ≤ `1(x, y) ≤√n �x − y�, we obtain

W 1(⌫⇡̃m,⌘⇡̃m) ≤ M e−cmW 1
`1
(⌫, ⌘) ≤ √nM e−cmW 1(⌫, ⌘) .

Thus Assumption (A5) holds with M1 =√nM and c as above. In particular, c is independent of
the number of particles n, and therefore, the mixing time depends only logarithmically on n. This
result also implies that there exists a unique invariant probability measure µ̃ of ⇡̃; see Corollary 5
of [6]. In this mean-field context, we can also obtain slightly better dimension-dependence in the
TV convergence bounds for uHMC. To state these bounds, we additionally assume that V,W are
functions in C3(Rk) such that LH = sup �D3V � < ∞ and L̃H = sup �D3W � < ∞. Moreover,
analogous to (10), we assume that T > 0 and the time step size h ≥ 0 are such that T �h ∈ N for
h ≠ 0 and (L + 4✏L̃)(T 2 + Th) ≤ 1�6 . (21)

Theorem 9. For any m ∈ N0 and for any initial law ⌫ ∈ P(Rnk),
TV(µ̃, ⌫⇡̃m+1) ≤ 3

4
�T −2 + 34k (LH + 8✏L̃H)2 T 4�1�2 M W 1

`1
(µ̃, ⌫) e−cm . (22)

Proof. For m = 0, (22) is a special case of a W 1
`1

/TV regularization result proven in Lemma 30
below. The general case follows by combining Lemma 30 and (20).

As before, Theorem 9 immediately implies an upper bound on the "-mixing time tmix(", ⌫) of
the uHMC Markov chain applied to mean-field U . We stress that the following upper bound typ-
ically depends on the number of particles n through W 1

`1
(µ̃, ⌫), but this dimension dependence

is typically polynomial in n, and therefore, the upper bound typically depends logarithmically
on n.
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12 N. Bou-Rabee and A. Eberle

Corollary 10 (Upper bound for mixing time). For any " > 0 and any ⌫ ∈ P(Rnk),
tmix(", ⌫) ≤ 2 + 1

c
log�3 �T −2 + 34k (LH + 8✏L̃H)2 T 4�1�2 M W 1

`1
(µ̃, ⌫)

4"
� .

Moreover, for mean-field U , we can obtain a better dimension-dependence in the upper bounds
for the TV accuracy TV(µ, µ̃). To this end, we additionally assume that V,W are functions in
C4(Rk) such that LI = sup �D4V � <∞ and L̃I = sup �D4W � <∞. By Corollary 7 of [6],

W 1(µ, µ̃) ≤ W 1
`1
(µ, µ̃)

≤ 1

c
C̃2M�nk + n�̀=1� �x

`�µ(dx) + n�̀=1� �x
`�2 µ(dx)� h2 (23)

where C̃2 depends only on K, L,R, L̃, LH , L̃H , and T. Therefore, Assumption (A6) holds with

M2 = 1

c
C̃2M�nk + n�̀=1� �x

`�µ(dx) + n�̀=1� �x
`�2 µ(dx)� .

Note that M2 depends linearly on the number of particles and on the sum of the first and second
moments of the n components of the target distribution.

Theorem 11. Under the assumptions made above,

TV(µ, µ̃) ≤ h2 �(3�4) �T −2 + 34k (LH + 8✏L̃H)2 T 4�1�2 M2 +C�, where (24)

C ∶= 1

2
�n2k�17(L + 4✏L̃)2 + 28(LH + 8✏L̃H)2T 2 + 104k(LH + 8✏L̃H)2T 2

+ 180(2k + k2)T 4�(LI + 14✏L̃I) + (LH + 8✏L̃H)2T 2�2�
+ n�10k(LH + 8✏L̃H)2 + 7(L + 4✏L̃)2T −2� n�̀=1� �x

`�2 µ(dx)
+ n�40k�(LI + 14✏L̃I)2 + (LH + 8✏L̃H)2T 2�2

+ 7(LH + 8✏L̃H)2T −2� n�̀=1� �x
`�4 µ(dx)�1�2.

(25)

For mean-field U , note that the constant C depends linearly on the number of particles n

provided that n−1∑n

`=1 ∫ �x`�4 µ(dx) does not depend on n.

Proof. By Lemma 32 below,

TV(µ⇡, µ⇡̃) ≤ C h2 . (26)
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Moreover, by Lemma 30, and by (23),

TV(µ⇡̃, µ̃⇡̃) ≤ (3�4) �T −2 + 34k (LH + 8✏L̃H)2 T 4�1�2 W 1
`1
(µ, µ̃)

≤ (3�4) �T −2 + 34k (LH + 8✏L̃H)2 T 4�1�2 M2 h
2 . (27)

Inserting (27) and (26) into (14) gives (24).

Inserting (24) and (22) into (17) gives the following corollary.

Corollary 12. For any m ∈ N0 and any initial law ⌫ ∈ P(Rnk),
TV(µ, ⌫⇡̃m+1) ≤ 3

4
�T −2 + 34k (LH + 8✏L̃H)2 T 4�1�2 M W 1

`1
(µ̃, ⌫) e−cm

+ h2 �3
4
�T −2 + 34k (LH + 8✏L̃H)2 T 4�1�2 M2 +C�. (28)

3. Key ingredients of the proofs

3.1. Velocity Verlet as a Variational Integrator, Revisited

Here we recall a well-known variational characterization of the velocity Verlet integrator. In
particular, velocity Verlet can be derived from a discrete-time variational principle, and hence, is
a variational integrator [32]. A key tool in our analysis is a sufficient condition for convexity of
the corresponding discrete action sum.

To this end, we introduce the discrete Lagrangian Lh ∶ Rd×Rd → R corresponding to velocity
Verlet

Lh(x, y) = h

2
� �y − x�2

h2
−U(y) −U(x)� .

Given a,b ∈ Rd, define the discrete path space

Ch = �q̃ ∶ {tk}Nk=0 → Rd with endpoint conditions q̃0 = a and q̃T = b� ,

and the discrete action sum Sh ∶ Ch → R by

Sh(q̃) = N−1�
k=0

Lh(q̃tk , q̃tk+1) .
Note that t0 = 0 and tN = T . Computing the directional derivative of Sh in the direction of
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14 N. Bou-Rabee and A. Eberle

u ∶ {tk}Nk=0 → Rd with u0 = uT = 0 gives the first variation of Sh

@uSh(q̃) = @

@✏
Sh(q̃ + ✏u)�

✏=0
= N−1�

k=0
[D1Lh(q̃tk , q̃tk+1) ⋅ utk

+D2Lh(q̃tk , q̃tk+1) ⋅ utk+1]
= N−1�

k=1
(D1Lh(q̃tk , q̃tk+1) +D2Lh(q̃tk−1 , q̃tk)) ⋅ utk

where in the last step we used summation by parts and u0 = uT = 0. Stationarity of this action
sum gives the discrete Euler-Lagrange equations

D1Lh(q̃tk , q̃tk+1) +D2Lh(q̃tk−1 , q̃tk) = 0 , k ∈ {1, . . . ,N − 1} . (29)

Introducing discrete velocities and simplifying yields the velocity Verlet integrator

ṽtk = −D1Lh(q̃tk , q̃tk+1)
ṽtk+1 = D2Lh(q̃tk , q̃tk+1)� �⇒

�������
q̃tk+1 = q̃tk + hṽtk − (h2�2)∇U(q̃tk) ,
ṽtk+1 = ṽtk − (h�2)[∇U(q̃tk) +∇U(q̃tk+1)] .

The following lemma indicates that for sufficiently short time intervals the discrete action sum
Sh corresponding to velocity Verlet is strongly convex.

Lemma 13 (Müller & Ortiz 2004 [38]). Suppose that (A2) holds and T > 0 satisfies LT 2 ≤(2�5)⇡2. For any a,b ∈ Rd and h > 0 satisfying T �h ∈ N, the discrete action sum Sh is strongly
convex. Moreover, for h = 0, the corresponding action integral is strongly convex.

Proof. For h = 0, the proof of strong convexity of the action integral is given in Lemma 2.1
of [38]. For h > 0, the proof that follows shows that the second derivative of the action sum is
positive definite. The second derivative of the action sum is given by

D2Sh(q̃)(u,u) = @2

@✏2
Sh(q̃ + ✏u)�

✏=0
= I1 + I2 ,

where I1 and I2 are defined and bounded as follows. Using summation by parts, u0 = uT = 0,
and �D2U� < L (by assumption (A2)) yields

I1 ∶= −h
2

N−1�
k=0
�D2U(q̃tk)(utk

, utk
) +D2U(q̃tk+1)(utk+1 , utk+1)�

= −hN−1�
k=1

D2U(q̃tk)(utk
, utk
) ≥ −LN−1�

k=1
h�utk

�2 .
Applying a Poincaré inequality yields

I2 ∶= h
N−1�
k=0
�utk+1 − utk

�2
h2

≥ ⇡2

T 2
�sin(⇡�(2N))

⇡�(2N) �2 N−1�
k=1

h�utk
�2 ≥ 2

5

⇡2

T 2

N−1�
k=1

h�utk
�2 .

Thus, D2Sh(q̃)(u,u) ≥ ((2�5)(⇡2�T 2) −L)∑N−1
k=1 h�utk

�2.
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Mixing Time Guarantees for uHMC 15

As an immediate corollary to Lemma 13 we obtain.

Corollary 14. Suppose that (A2) holds and T > 0 satisfies LT 2 ≤ (2�5)⇡2. For any a,b ∈ Rd,
and for any h > 0 satisfying T �h ∈ N, there exists a unique solution q̃� ∶ {tk}Nk=0 → Rd of the
discrete Euler-Lagrange equations (29) with endpoint conditions q̃�0 = a and q̃�

T
= b. Moreover,

for h = 0, there exists a unique solution to the corresponding Euler-Lagrange equations.

Note that q� in Cor. 14 is the minimum of the corresponding action sum Sh.

3.2. Overlap between Reference and Perturbed Gaussian Measure

Let ⇠ ∼N (0,1)d and � ∶ Rd → Rd be a differentiable, near identity map. Here we provide a gen-
eral upper bound for the TV distance between the reference Gaussian measure Law(⇠) and the
perturbed Gaussian measure Law(�(⇠)). The couple (⇠,�(⇠)) is an example of a deterministic
coupling [44, Definition 1.2]. In conjunction with Corollary 14, the general bound given below
is crucial to proving that two copies of uHMC can meet in one step.

Lemma 15. Let ⇠ ∼N (0,1)d and suppose that � ∶ Rd → Rd is an invertible and differentiable
map satisfying �D�(v) − Id� ≤ 1�2 for all v ∈ Rd. Then

TV(Law(⇠),Law(�(⇠))) ≤ 1

2

�
E[��(⇠) − ⇠�2 + 2 �D�(⇠) − Id�2F ] . (30)

Let ' denote the probability density function of the standard d-dimensional normal distribu-
tion satisfying

Law(⇠)(dv) = N (0, Id)(dv) = '(v)dv = (2⇡)−d�2 exp(− �x�2 �2)dx .

By change of variables, note that

Law(�(⇠))(dv) = �det(D�−1(v))�'(�−1(v))dv . (31)

To prove Lemma 15, we recall Pinsker’s inequality. For probability measures ⌫1, ⌫2 ∈ P(Rd)
with probability densities p1 and p2 with respect to a common reference measure �, define the
Kullback-Leibler divergence by

KL(⌫1 � ⌫2) ∶= �Rd

p2(v)G�p1(v)
p2(v)��(dv) where G(x) = �������

x log(x) if x ≠ 0,
0 else.

Although non-negative, the Kullback-Leibler divergence is not a metric on P(Rd) because it
is not symmetric and does not satisfy the triangle inequality. In this situation to bound the TV
distance between ⌫1 and ⌫2, it is convenient to use Pinsker’s inequality

TV(⌫1, ⌫2) ≤ �(1�2) KL(⌫1 � ⌫2) . (32)
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16 N. Bou-Rabee and A. Eberle

Proof. Since TV(Law(⇠),Law(�(⇠)) = TV(Law(⇠),Law(�−1(⇠)), by Pinsker’s inequality
(32), it suffices to bound

KL(Law(⇠) � Law(�−1(⇠)) = �Rd

e− �v�22
(2⇡)d�2 �

��(v)�2
2

− �v�2
2
− log �detD�(v)��dv

= �Rd

e− �v�22
(2⇡)d�2 �

1

2
��(v) − v�2 + (�(v) − v) ⋅ v − log �detD�(v)��dv

= �Rd

e− �v�22
(2⇡)d�2 �

1

2
��(v) − v�2 +Trace(D�(v) − Id) − log �detD�(v)��dv (33)

where in the last step we used the following integration by parts identity

�Rd

e− �v�
2

2 (�(v) − v) ⋅ vdv = �Rd

e− �v�
2

2 Trace(D�(v) − Id)dv .

Since �D�(v) − Id� ≤ 1�2, the spectral radius of D�(v) − Id does not exceed 1�2. Therefore,
we can invoke Theorem 1.1 of [40], to obtain

Trace(D�(v) − Id) − log �detD�(v)� ≤ �D�(v) − Id�2F �2
1 − �D�(v) − Id� ≤ �D�(v) − Id�2F . (34)

Inserting (34) into (33) yields

KL(Law(⇠) � Law(�−1(⇠)) ≤ E �(1�2) ��(⇠) − ⇠�2 + �D�(⇠) − Id�2F � .
Applying Pinsker’s inequality (32) gives (30).

3.3. TV Bounds and Regularization by One-Shot Couplings

By using the one-shot coupling illustrated in Figure 1 (a), here we prove that the transition kernel
of uHMC has a regularizing effect. To this end, we fix a duration parameter T > 0 and a time
step size h ≥ 0 such that T �h ∈ Z for h ≠ 0 and

L(T 2 + Th) ≤ 1�6 . (35)

Lemma 16. Suppose Assumption 2 (A1)-(A3) hold. For any x, y, v ∈ Rd, let � ∶ Rd → Rd be
the map defined by q̃T (x, v) = q̃T (y,�(v)). Then

TV(�x⇡̃, �y⇡̃) ≤ TV(Law(⇠),Law(�(⇠))) ≤ 3

4
�T −2 + 27dL2

H
T 4�1�2 �x − y�. (36)

This lemma can be viewed as a nontrivial refinement of (35) in the proof of Lemma 6 of [7],
which presents overlap bounds for the transition kernel of uHMC.
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Proof. Since q̃T ∶ R2d → Rd is deterministic and measurable [30, Lemma 3],

TV(�x⇡̃, �y⇡̃) = TV(Law(q̃T (y, ⇠)),Law(q̃T (y,�(⇠))))≤ TV(Law(⇠),Law(�(⇠))) , (37)

which gives the first inequality in (36). Moreover, by Lemmas 15, 25 and 26, we have

TV(Law(⇠),Law(�(⇠))2 ≤ (1�4) �(9�4)T −2 + (121�2)dL2
H
T 4� �x − y�2

where we used �D�(v) − Id�2F ≤ d �D�(v) − Id�2. Taking square roots and inserting 27 >(4�9)(121�2) gives the second inequality in (36).

Lemma 16 implies that the transition kernel of uHMC has a regularizing effect in the following
sense (cf. Theorem 12 (a) of [30]).

Lemma 17. Suppose Assumption 2 (A1)-(A3) hold. For any ⌫, ⌘ ∈ P(Rd),
TV(⌘⇡̃, ⌫⇡̃) ≤ 3

4
�T −2 + 27dL2

H
T 4�1�2W 1(⌘, ⌫) . (38)

Proof. Let ! be an arbitrary coupling of ⌫, ⌘. By the coupling characterization of the TV distance
in (5),

TV(⌘⇡̃, ⌫⇡̃) ≤ E[TV(�X ⇡̃, �Y ⇡̃)] ≤ 3

4
�T −2 + 27dL2

H
T 4�1�2E[�X − Y �]

where Law(X,Y ) = ! and in the last step we inserted (36) in Lemma 16. Since ! is arbitrary,
we can take the infimum over all ! ∈ Couplings(⌫, ⌘) to obtain (38).

To bound the bias in the invariant measure of uHMC, we bound the TV distance between µ⇡̃
and µ⇡ by using the one-shot coupling illustrated in Figure 1(b).

Lemma 18. Suppose Assumption 2 holds. For any x, v ∈ Rd, let � ∶ Rd → Rd be the map
defined by q̃T (x, v) = qT (x,�(v)). Then

TV(�x⇡, �x⇡̃) ≤ TV(Law(⇠),Law(�(⇠)))
≤ h2

2
�d3�4L2

I
T 4 + 14L2

H
LIT

6 + 14L4
H
T 8�

+ d2�35L2
H
T 2 + 8L2

I
T 4 + 28L2

H
LIT

6 + 28L4
H
T 8�

+ d�16L2 + 4L2
H
T 2) + �2dL2

H
+L2T −2� �x�2

+ �dL2
I
+ dL2

H
LIT

2 + dL4
H
T 4 +L2

H
T −2� �x�4 �1�2 .

(39)
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18 N. Bou-Rabee and A. Eberle

Proof. Since qT ∶ R2d → Rd is deterministic and measurable [30, Lemma 3],

TV(�x⇡, �x⇡̃) = TV(Law(qT (x, ⇠)),Law(qT (x,�(⇠))))≤ TV(Law(⇠),Law(�(⇠))) , (40)

which gives the first inequality in (39). By Lemmas 15, 27 and 28, �D�(v) − Id�2F ≤ d �D�(v) − Id�2,
and the Cauchy-Schwarz inequality we have

TV(Law(⇠),Law(�(⇠))2 ≤ 1

4
E ���(⇠) − ⇠�2 + 2d �D�(⇠) − Id�2�

≤ h4

4
E�10dL2 + �2dL2

H
+L2T −2� �x�2 + �6L2 + 33dL2

H
T 2� �⇠�2

+ �dL2
I
+L2

H
T −2 + dL2

H
LIT

2 + dL4
H
T 4� �x�4

+ �L2
H
T 2 + 2dL2

I
T 4 + 7dL2

H
LIT

6 + 7dL4
H
T 8� �⇠�4 �

≤ h4

4
�d3�4L2

I
T 4 + 14L2

H
LIT

6 + 14L4
H
T 8�

+ d2�35L2
H
T 2 + 8L2

I
T 4 + 28L2

H
LIT

6 + 28L4
H
T 8�

+ d�16L2 + 4L2
H
T 2) + �2dL2

H
+L2T −2� �x�2

+ �dL2
I
+ dL2

H
LIT

2 + dL4
H
T 4 +L2

H
T −2� �x�4 �

where in the last step we used E[�⇠�2] = d and E[�⇠�4] = 2d(d+2). Taking square roots gives the
second inequality in (39).

Lemma 18 implies the following bound on the TV distance between µ⇡ and µ⇡̃.

Lemma 19. Suppose Assumption 2 holds. Then TV(µ⇡, µ⇡̃) ≤ Ch2, where C is defined in
(13).

The proof of this result is similar to the proof of Lemma 17 and therefore omitted.

3.4. Successful Coupling for uHMC

The TV bound in Theorem 5 can be realized by a successful coupling for uHMC which com-
bines a coupling that brings the two copies arbitrarily close together and the following one-shot
coupling construction.

Let U ∼ Unif(0,1) and ⇠ ∼ N (0, Id) be independent random variables. For notational conve-
nience, set

↵(v) =min�'(�(v))�det(D�(v))�
'(v) ,1� , (41)

imsart-bj ver. 2020/04/06 file: output.tex date: July 28, 2021



Mixing Time Guarantees for uHMC 19

x
y

q̃T (x, ⇠)

⇠

�(⇠)
x

q̃T (x, ⇠)

⇠

�(⇠)
(a) q̃T (x, ⇠) = q̃T (y,�(⇠)) (b) q̃T (x, ⇠) = qT (x,�(⇠))

Figure 1. One-shot couplings. (a) To obtain TV convergence bounds for uHMC, the initial velocities are
coupled such that q̃T (x, ⇠) = q̃T (y,�(⇠)) with maximal possible probability. (b) For TV accuracy of
the invariant measure of uHMC, the initial velocities are coupled such that q̃T (x, ⇠) = qT (x,�(⇠)) with
maximal possible probability.

where for any x, y, v ∈ Rd we define � via

q̃T (x, v) = q̃T (y,�(v)) . (42)

The transition step of the one-shot coupling is given by
�������
X̃(x, y) = q̃T (x, ⇠),
Ỹ (x, y) = q̃T (y, ⌘), where ⌘ = �������

�(⇠) if U ≤ ↵(⇠),
⌘̃ otherwise,

(43)

where ⌘̃ is independent of ⇠ and U and satisfies

Law(⌘̃)(dv) = ('(v) −'(�−1(v))�det(D�−1(v))�)+
1 − � dv (44)

where � = E[↵(⇠)]. By definition of �, q̃T (x, ⇠) = q̃T (x,�(⇠)).
In order to verify that (X̃(x, y), Ỹ (x, y)) is indeed a coupling of the transition probabilities

⇡̃(x, ⋅) and ⇡̃(y, ⋅), we remark that the distribution of ⌘ is N (0, Id) since, by definition of ⌘ in
(43) and a change of variables,

P [⌘ ∈ B] = E [IB(�(⇠))↵(⇠)] + E [IB(⌘̃)] E [1 − ↵(⇠)]
= � IB(v) min('(�−1(v))�det(D�−1(v))�,'(v))dv

+� IB(v)('(v) −'(�−1(v))�det(D�−1(v))�)+ dv
= � IB(v)'(v)dv = P [⇠ ∈ B]

for any measurable set B. As a byproduct of this calculation, note also that

P [⌘ ≠ �(⇠)] = � �'(v) −'(�−1(v))�det(D�−1(v))��+ dv
= TV(Law(⇠),Law(�(⇠))) .
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20 N. Bou-Rabee and A. Eberle

This calculation shows that the one-shot coupling in (43) ensures that ⌘ = �(⇠) with maximal
possible probability, and with remaining probability, ⌘ = ⌘̃ with ⌘̃ ⊥ ⇠. Thus, the coupling coa-
lesces in one step whenever ⌘ = �(⇠), as illustrated in Figure 1(a).

4. A priori estimates
Here we state several bounds for the dynamics (7) that are crucial in the proof of our main results.
Throughout this section, we fix a duration parameter T > 0 and a time step size h ≥ 0 such that
T �h ∈ N for h ≠ 0 and

L(T 2 + Th) ≤ 1�6 . (45)

4.1. A priori estimates for the dynamics

Lemma 20. Suppose that Assumption 2 (A1)-(A2) hold. For any x, y, u, v ∈ Rd,

max
s≤T �q̃s(x, v)� ≤ (1 +L(T 2 + Th))max(�x� , �x + Tv�), (46)

max
s≤T �ṽs(x, v)� ≤ �v� +LT (1 +L(T 2 + Th))max(�x� , �x + Tv�), (47)

max
s≤T �q̃s(x,u) − q̃s(y, v)�
≤ (1 +L(T 2 + Th))max (�x − y� , �x − y + T (u − v)�) . (48)

Lemma 20 is contained in Lemmas 3.1 and 3.2 of [5] and hence a proof is omitted.

4.2. A priori estimates for velocity derivative flow

The next lemma provides similar bounds for D2q̃T (x,u) ∶= @q̃T (x,u)�@u.

Lemma 21. Suppose that Assumption 2 (A1)-(A3) hold. For any x, y, u, v ∈ Rd,

max
s≤T �D2q̃s(x, v)� ≤ (6�5)T , (49)

max
s≤T �D2ṽs(x, v)� ≤ (6�5) , and (50)

max
s≤T �D2q̃s(x,u) −D2q̃s(y, v)�

≤ LH(6�5)2T 3(1 +L(T 2 + Th))max (�x − y� , �(x − y) + T (u − v)�) . (51)

Proof. From (7), note that D2q̃t(x,u) and D2ṽt(x,u) satisfy:

D2q̃T (x,u) = TId − 1

2 �
T

0
(T − s) �H(q̃�s�h)D2q̃�s�h +H(q̃�s�h)D2q̃�s�h�ds

+ 1

2 �
T

0
(s − �s�h) �H(q̃�s�h)D2q̃�s�h −H(q̃�s�h)D2q̃�s�h�ds ,

(52)

D2ṽT (x,u) = Id − 1

2 �
T

0
�H(q̃�s�h)D2q̃�s�h +H(q̃�s�h)D2q̃�s�h�ds .
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Applying Assumption 2 (A2) and inserting LT 2 ≤ 1�6, we obtain

max
s≤T �D2q̃s(x,u)� ≤ T �Id� + T 2max

s≤T �H(q̃s)D2q̃s(x,u)�
≤ T +LT 2max

s≤T �D2q̃s(x,u)� ≤ T + (1�6)max
s≤T �D2q̃s(x,u)� ≤ (6�5)T ,

max
s≤T �D2ṽs(x,u)� ≤ 1 +LT max

s≤T �D2q̃s(x,u)� ≤ 1 +LT 2(6�5) ≤ 6�5 ,
which gives (49) and (50). For (51), it is notationally convenient to introduce the shorthand
q̃(1)s ∶= q̃s(x,u) and q̃(2)s ∶= q̃s(y, v) for any s ∈ [0, T ]. Then from (52)

D2q̃
(1)
T
−D2q̃

(2)
T
= −1

2 �
T

0
(T − s) �H(q̃(1)�s�h)D2q̃

(1)�s�h −H(q̃(2)�s�h)D2q̃
(2)�s�h�ds

− 1

2 �
T

0
(T − s) �H(q̃(1)�s�h)D2q̃

(1)�s�h −H(q̃(2)�s�h)D2q̃
(2)�s�h�ds

+ 1

2 �
T

0
(s − �s�h) �H(q̃(1)�s�h)D2q̃

(1)�s�h −H(q̃(2)�s�h)D2q̃
(2)�s�h�ds

+ 1

2 �
T

0
(s − �s�h) �H(q̃(2)�s�h)D2q̃

(2)�s�h −H(q̃(1)�s�h)D2q̃
(1)�s�h�ds

= � T

0

T − s
2
�H(q̃(2)�s�h)(D2q̃

(2)�s�h −D2q̃
(1)�s�h) − (H(q̃(1)�s�h) −H(q̃(2)�s�h))D2q̃

(1)�s�h�ds
+� T

0

T − s
2
�H(q̃(2)�s�h)(D2q̃

(2)�s�h −D2q̃
(1)�s�h) − (H(q̃(1)�s�h) −H(q̃(2)�s�h))D2q̃

(1)�s�h�ds
−� T

0

s − �s�h
2

�H(q̃(2)�s�h)(D2q̃
(2)�s�h −D2q̃

(1)�s�h) − (H(q̃(1)�s�h) −H(q̃(2)�s�h))D2q̃
(1)�s�h�ds

−� T

0

s − �s�h
2

�H(q̃(1)�s�h)(D2q̃
(1)�s�h −D2q̃

(2)�s�h) − (H(q̃(2)�s�h) −H(q̃(1)�s�h))D2q̃
(2)�s�h�ds .

By using Assumption 2 (A2), Assumption 2 (A3), and (49), we then get

max
s≤T �D2q̃

(1)
s
−D2q̃

(2)
s
�

≤ LT 2max
s≤T �D2q̃(1)

s
−D2q̃(2)

s
� +LH(6�5)T 3max

s≤T �q̃(1)s
− q̃(2)

s
� .

Inserting LT 2 ≤ 1�6 and (48), and simplifying yields (51).

4.3. Discretization error bounds for Verlet

In this part we gather standard estimates of the error between the exact solution qT (x, v) and Ver-
let q̃T (x, v). These estimates are a key ingredient in quantifying the invariant measure accuracy
in TV distance of uHMC.

To this end, the following error estimate for a variant of the trapezoidal rule is useful because
(7) involves this particular trapezoidal rule approximation.
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Lemma 22. Fix T > 0. Let (V, �⋅�) be a normed space. Let f ∶ [0, T ] → V be a twice
differentiable function such that maxs∈[0,T ] �f ′(s)� ≤ B1 and maxs∈[0,T ] �f ′′(s)� ≤ B2. Then
for any h ≥ 0 such that T �h ∈ N for h ≠ 0

�� T

0
(T − s)f(s)ds − 1

2 �
T

0
(T − s) [f(�s�h) + f(�s�h)]ds�

≤ h2

12
(B2T

2 +B1T ) .
(53)

Proof. The error over [tk, tk+1] is given by

✏k ∶= �� tk+1
tk

(T − s)f(s)ds − 1

2 �
tk+1

tk

(T − s) [f(�s�h) + f(�s�h)]ds� .

By integrating by parts,

✏k = �� tk+1
tk

�s2
2
− Ts − ↵k�f ′(s)ds�

where ↵k = (1�4)(t2k+1 − 2Ttk+1 − 2Ttk + t2k). A second integration by parts gives

✏k = �� tk+1
tk

�s3
6
− Ts2

2
− ↵ks + �k�f ′′(s)ds − 1

12
f ′(tk)h3� ≤ 1

12
(B2T +B1)h3

where �k = (1�12)(−6Ttk + 3t2k + t2k+1)tk+1 and in the last step we used

� tk+1
tk

�s3
6
− Ts2

2
− ↵ks + �k�ds = 1

12
(T − tk)h3 ≤ 1

12
T h3 .

Summing these errors over the T �h subintervals gives the upper bound in (53).

Lemma 23. Suppose Assumption 2 (A1)-(A3) hold. For any x, v ∈ Rd,

max
s≤T �qs(x, v) − q̃s(x, v)�
≤ h2� 7

45
L �x� + 1547

1800
LT �v� + 1

120
LH �x�2 + 3

10
LHT 2 �v�2 � . (54)

Proof. By (46) and (47) with h = 0, and since LT 2 ≤ 1�6, note that

max
s≤T �qs� ≤ (7�6) (�x� + T �v�) , (55)

max
s≤T �vs� ≤ �v� + (7�6)LT (�x� + T �v�) ≤ (7�6)LT �x� + (6�5) �v� , (56)

max
s≤T �vs�2 ≤ 2(7�6)2L2T 2 �x�2 + 2(6�5)2 �v�2 ≤ (1�2)L �x�2 + 3 �v�2 . (57)
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Introduce the shorthand qT ∶= qT (x, v) and q̃T ∶= q̃T (x, v). Using (7), note that

qT − q̃T = I + II + III where (58)

I ∶= 1

2 �
T

0
(T − s)[∇U(q̃�s�h) −∇U(q�s�h) +∇U(q̃�s�h) −∇U(q�s�h)]ds

− 1

2 �
T

0
(s − �s�h)[∇U(q̃�s�h) −∇U(q�s�h) − (∇U(q̃�s�h) −∇U(q�s�h))]ds ,

II ∶= −1
2 �

T

0
(s − �s�h)[∇U(q�s�h) −∇U(q�s�h)]ds , and

III ∶= −� T

0
(T − s)∇U(qs)ds + 1

2 �
T

0
(T − s)[∇U(q�s�h) +∇U(q�s�h)]ds .

By Assumption 2 (A2) and the condition LT 2 ≤ 1�6,

�I� ≤ LT 2 max
s≤T �qs − q̃s� ≤ (1�6) max

s≤T �qs − q̃s� , (59)

�II� ≤ (1�2)hL� T

0
�q�s�h − q�s�h �ds = (1�2)hL� T

0
�� �s�h
�s�h vrdr�ds ,

≤ (1�2)Lh2T max
s≤T �vs� ≤ Lh2 ((7�72) �x� + (3�5)T �v�) , (60)

where for (60) we used (56). Next, we apply Lemma 22 with f(s) = −∇U(qs) and

�f ′(s)� = �H(qs)vs� ≤ L �vs� ≤ L(LT (7�6)�x� + (6�5)�v�) =∶ B1 ,

�f ′′(s)� = �−D3U(qs)(vs, vs) +H(qs)∇U(qs)� ,
≤ LH �vs�2 +L2 �qs� ≤ LH(L(1�2) �x�2 + 3 �v�2) +L2(7�6)(�x� + T �v�) =∶ B2 ,

where we used Assumption 2 (A2), (A3) and LT 2 ≤ 1�6. Thus,

�III� ≤ h2

12
� 7

18
L �x� + 251

180
LT �v� + 1

12
LH �x�2 + 3LHT 2 �v�2)� . (61)

Inserting (59), (60) and (61) into (58) and simplifying gives (54).

Lemma 24. Suppose Assumption 2 (A1)-(A4) hold. For any x, v ∈ Rd,

max
s≤T �D2qs(x, v) −D2q̃s(x, v)� ≤ h2�43

50
LT + 1183

4500
LHT �x� + 1847

1250
LHT 2 �v�

+ ( 3

250
L2
H
T 3 + 1

100
LIT ) �x�2 + ( 54

125
L2
H
T 5 + 9

25
LIT

3) �v�2 � . (62)
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Proof. Using (7), write the difference as

D2qT (x, v) −D2q̃T (x, v) = I + II + III + IV where (63)

I ∶= 1

2 �
T

0
(T − s)H(q̃�s�h)(D2q̃�s�h −D2q�s�h)ds

+ 1

2 �
T

0
(T − s)H(q̃�s�h)(D2q̃�s�h −D2q�s�h)ds

− 1

2 �
T

0
(s − �s�h)H(q̃�s�h)(D2q̃�s�h −D2q�s�h)ds

+ 1

2 �
T

0
(s − �s�h)H(q̃�s�h)(D2q̃�s�h −D2q�s�h)ds

II ∶= 1

2 �
T

0
(T − s)(H(q̃�s�h) −H(q�s�h))D2q�s�hds

+ 1

2 �
T

0
(T − s)(H(q̃�s�h) −H(q�s�h))D2q�s�hds

− 1

2 �
T

0
(s − �s�h)(H(q̃�s�h) −H(q�s�h))D2q�s�hds

+ 1

2 �
T

0
(s − �s�h)(H(q̃�s�h) −H(q�s�h))D2q�s�hds

III ∶= −1
2 �

T

0
(s − �s�h)[(H(q�s�h) −H(q�s�h))D2q�s�h]

− 1

2 �
T

0
(s − �s�h)[H(q�s�h)(D2q�s�h −D2q�s�h)]ds , and

IV ∶= −� T

0
(T − s)H(qs)D2qsds

+ 1

2 �
T

0
(T − s)[H(q�s�h)D2q�s�h +H(q�s�h)D2q�s�h]ds .

By Assumptions 2 (A2) and (A3), and the condition LT 2 ≤ 1�6,

�I� ≤ LT 2 max
s≤T �D2qs −D2q̃s� ≤ (1�6) max

s≤T �D2qs −D2q̃s� , (64)

�II� ≤ LHT 2max
s≤T �qs − q̃s� max

s≤T �D2qs� ≤ (6�5)LHT 3 max
s≤T �qs − q̃s� , (65)

�III� ≤ hLH

2
max
s≤T �D2qs�� T

0
�� �s�h
�s�h vrdr�ds + hL

2 �
T

0
�� �s�h
�s�h D2vrdr�ds ,

≤ h2LHT 2

2

6

5
max
s≤T �vs� + h2LT

2
max
s≤T �D2vs� ,

≤ 3

5
h2LT + h2LH( 7

60
T �x� + 18

25
T 2 �v�) , (66)

where for (65) we used (49) and for (66) we used (56) and (50). Next, we apply Lemma 22 with

imsart-bj ver. 2020/04/06 file: output.tex date: July 28, 2021



Mixing Time Guarantees for uHMC 25

f(s) = −H(qs)D2qs and

�f ′(s)� = �(D3U(qs)vs)D2qs +H(qs)D2vs� ≤ LH �vs� �D2qs� +L �D2vs� ,
≤ 6

5
(LH( 7

36
�x� + 6

5
T �v�) +L) =∶ B1 ,

�f ′′(s)� = �(D4U(vs, vs) −D3U∇U −H2)D2qs + 2(D3Uvs)D2vs� ,
≤ (LI �vs�2 +LHL �qs� +L2) �D2qs� + 2LH �vs� �D2vs� ,
≤ [LI(L

2
�x�2 + 3 �v�2) +LHL

7

6
(�x� + T �v�) +L2]6

5
T +LH[7

3
LT �x� + 12

5
�v�] =∶ B2 ,

where we used LT 2 ≤ 1�6, Assumption 2, (56), (57), (49) and (50). Thus,

�IV� ≤ h2

12
�7
5
LT + 77

90
LHT �x� + 611

150
LHT 2 �v� + 1

10
LIT �x�2 + 18

5
LIT

3 �v�2� . (67)

Inserting (64), (65), (66), (67) and Lemma 23 into (63) and simplifying gives (62).

5. One-shot Coupling Bounds
Here we prove bounds related to the one-shot coupling. Throughout this section, we fix a duration
parameter T > 0 and a time step size h ≥ 0 such that T �h ∈ N for h ≠ 0 and

L(T 2 + Th) ≤ 1�6 . (68)

5.1. One-shot for q̃T (x,⇠) = q̃T (y,�(⇠))
By Corollary 14, for any x, y, v ∈ Rd, there exists a unique minimum (q̃�

t
)0≤t≤T of the action

sum satisfying the endpoint conditions q̃�0 = y and q̃�
T
= q̃T (x, v). In terms of this minimum,

we introduce a function � ∶ Rd → Rd defined as �(v) ∶= −D1Lh(q̃�0 , q̃�h), which by definition
satisfies q̃T (x, v) = q̃�T (y,�(v)). Here we develop some bounds for �(v) and D�(v).
Lemma 25. Suppose that Assumption 2 (A1)-(A2) hold. Then for any x, y, v ∈ Rd such that
q̃T (x, v) = q̃T (y,�(v)), we have

T ��(v) − v� ≤ (3�2) �x − y� . (69)

Proof. Let u = �(v). Integrating (7) yields

q̃T (x,u) = x + Tu − 1

2 �
T

0
(T − s) �∇U(q̃�s�h) +∇U(q̃�s�h)�ds

+ 1

2 �
T

0
(s − �s�h) �∇U(q̃�s�h) −∇U(q̃�s�h)�ds
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and since q̃T (x,u) = q̃T (y, v), we obtain

T �u − v� ≤ �x − y� +LT 2max
s≤T �q̃s(x,u) − q̃s(y, v)�

≤ �x − y� +LT 2(1 +L(T 2 + Th))max (�x − y� , �(x − y) + T (u − v)�)
≤ �x − y� + (7�36)(�x − y� + T �u − v�) ,

where in the second to last step we used (48) from Lemma 20 and in the last step we used
L(T 2 + Th) ≤ 1�6. Simplifying and using (1 + 7�36)�(1 − 7�36) < 3�2 gives (69).

Lemma 26. Suppose that Assumption 2 (A1)-(A3) hold. Then for any x, y, v ∈ Rd such that
q̃T (x, v) = q̃T (y,�(v)), we have

�D�(v) − Id� ≤ (1�2)min(1,11LHT 2 �x − y�) . (70)

Proof. Introduce the shorthand q̃(1)s ∶= q̃s(x, v) and q̃(2)s ∶= q̃s(y,�(v)) for any s ∈ [0, T ].
Differentiating both sides of q̃T (x, v) = q̃T (y,�(v)) with respect to v yields

T (D�(v) − Id) =
+ 1

2 �
T

0
(T − s) �H(q̃(2)�s�h)D2q̃

(2)�s�h −H(q̃(1)�s�h)D2q̃
(1)�s�h�ds

+ 1

2 �
T

0
(T − s) �H(q̃(2)�s�h)D2q̃

(2)�s�h −H(q̃(1)�s�h)D2q̃
(1)�s�h�ds

− 1

2 �
T

0
(s − �s�h) �H(q̃(2)�s�h)D2q̃

(2)�s�h −H(q̃(1)�s�h)D2q̃
(1)�s�h�ds

− 1

2 �
T

0
(s − �s�h) �H(q̃(1)�s�h)D2q̃

(1)�s�h −H(q̃(2)�s�h)D2q̃
(2)�s�h�ds

+ 1

2 �
T

0
(T − s) �H(q̃(2)�s�h)D2q̃

(2)�s�h +H(q̃(2)�s�h)D2q̃
(2)�s�h� (D�(v) − Id)ds

− 1

2 �
T

0
(s − �s�h) �H(q̃(2)�s�h)D2q̃

(2)�s�h −H(q̃(2)�s�h)D2q̃
(2)�s�h� (D�(v) − Id)ds .

(71)

By using Assumption 2 (A2), (49), and LT 2 ≤ 1�6, note that

�D�(v) − Id� ≤ (6�5)2LT 2�(1 − (6�5)LT 2) ≤ 1�2 . (72)
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We can also rewrite (71) as

T (D�(v) − Id) =
+ 1

2 �
T

0
(T − s) �H(q̃(2)�s�h)(D2q̃

(2)�s�h −D2q̃
(1)�s�h) − (H(q̃(1)�s�h) −H(q̃(2)�s�h))D2q̃

(1)�s�h�ds
+ 1

2 �
T

0
(T − s) �H(q̃(2)�s�h)(D2q̃

(2)�s�h −D2q̃
(1)�s�h) − (H(q̃(1)�s�h) −H(q̃(2)�s�h))D2q̃

(1)�s�h�ds
− 1

2 �
T

0
(s − �s�h) �H(q̃(2)�s�h)(D2q̃

(2)�s�h −D2q̃
(1)�s�h) − (H(q̃(1)�s�h) −H(q̃(2)�s�h))D2q̃

(1)�s�h�ds
+ 1

2 �
T

0
(s − �s�h) �H(q̃(2)�s�h)(D2q̃

(2)�s�h −D2q̃
(1)�s�h) − (H(q̃(1)�s�h) −H(q̃(2)�s�h))D2q̃

(1)�s�h�ds
+ 1

2 �
T

0
(T − s) �H(q̃(2)�s�h)D2q̃

(2)�s�h +H(q̃(2)�s�h)D2q̃
(2)�s�h� (D�(v) − Id)ds

− 1

2 �
T

0
(s − �s�h) �H(q̃(2)�s�h)D2q̃

(2)�s�h −H(q̃(2)�s�h)D2q̃
(2)�s�h� (D�(v) − Id)ds .

By using Assumption 2 (A2), (49), Assumption 2 (A3), (51), and LT 2 ≤ 1�6, we get

(4�5)T �D�(v) − Id� ≤ (1 −LT 2(6�5))T �D�(v) − Id�
≤ LT 2max

s≤T �D2q̃(1)
s
−D2q̃(2)

s
� +LH(6�5)T 3max

s≤T �q̃(1)s
− q̃(2)

s
�

≤ (42�25)LHT 3 (�x − y� + T ��(v) − v�) .
Inserting (69), using 21�4 < 11�2, simplifying and inserting (72) gives (70).

5.2. One-shot for q̃T (x,⇠) = qT (x,�(⇠))
By Corollary 14, for any x, v ∈ Rd, there exists a unique minimum (q�

t
)0≤t≤T of the action

integral satisfying the endpoint conditions q�0 = x and q�
T
= q̃T (x, v). In terms of this minimum,

we introduce a function � ∶ Rd → Rd defined as �(v) ∶= v�0 , which by definition satisfies
q̃T (x, v) = q�T (x,�(v)). Here we develop some bounds for �(v) and D�(v).
Lemma 27. Suppose that Assumption 2 (A1)-(A3) hold. Then for any x, v ∈ Rd such that
q̃T (x, v) = qT (x,�(v)), we have

T ��(v) − v� ≤ 7

6
h2� 7

45
L �x� + 1547

1800
LT �v� + 1

120
LH �x�2 + 3

10
LHT 2 �v�2 � . (73)

Proof. Introduce the shorthand q̃T = q̃T (x, v), q(1)T
= qT (x, v) and q(2)

T
= qT (x,�(v)). Since

q̃T = q(2)T
we have q(2)

T
− q(1)

T
= q̃T − q(1)T

which implies that

T ��(v) − v� = �� T

0
(T − s)[∇U(q(2)

s
) −∇U(q(1)

s
)]ds + q̃T − q(1)T

�
≤ LT 2

2
max
s≤T �q(2)s

− q(1)
s
� + �q̃T − q(1)T

� . (74)
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28 N. Bou-Rabee and A. Eberle

Moreover, by (48) with h = 0, we obtain maxs≤T �q(2)s − q(1)s � ≤ (7�6)T ��(v) − v�. Inserting this
latter inequality into (74) and simplifying gives

T ��(v) − v� ≤ (7�6)max
s≤T �q̃s − q(1)s

� = (7�6)max
s≤T �q̃s(x, v) − qs(x, v)� .

Inserting (54) gives the required result.

Lemma 28. Suppose that Assumption 2 (A1)-(A4) hold. Then for any x, v ∈ Rd such that
q̃T (x, v) = qT (x,�(v)), we have

�D�(v) − Id� ≤ min
�
�
1

2
, h2�43

45
L + 1946

6075
LH �x� + 873707

486000
LHT �v�

+ ( 121
5400

L2
H
T 2 + 1

90
LI) �x�2 + (121

150
L2
H
T 4 + 2

5
LIT

2) �v�2 ��� .
(75)

Proof. Introduce the shorthand q̃T = q̃T (x, v), q(1)T
= qT (x, v) and q(2)

T
= qT (x,�(v)). The

derivative of q(2)
T
− q(1)

T
= q̃T − q(1)T

with respect to v yields

T (D�(v) − Id) = D2q̃T −D2q
(1)
T
+� T

0
(T − s)[H(q(2)

s
) −H(q(1)

s
)]D2q

(1)
s

ds

+� T

0
(T − s)H(q(2)

s
)[D2q

(2)
s
−D2q

(1)
s
+D2q

(2)
s
(D�(v) − Id)]ds .

By Assumption 2 (A2)-(A3) and (49),

T �D�(v) − Id� ≤ �D2q̃T −D2q
(1)
T
� + LHT 2

2

6T

5
max
s≤T �q(2)s

− q(1)
s
�

+ LT 2

2
max
s≤T �D2q

(2)
s
−D2q

(1)
s
� + LT 2

2

6T

5
�D�(v) − Id� .

Since LT 2 ≤ 1�6, and inserting (48) and (51) with h = 0, we obtain

T �D�(v) − Id� ≤ 10

9
�D2q̃T −D2q

(1)
T
� +LHT 3 14

15
(T ��(v) − v�) .

Inserting (73) and (62), simplifying, and combining with a bound similar to (72) (and therefore
omitted), gives (75).

Appendix A: Proofs of Results for Mean-Field U

In this section, we provide the remaining ingredients needed to prove Theorem 9 and Theorem 11
from Section 2.5.2.
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A.1. Preliminaries

Consider the mean-field model with potential energy function given in (19). Throughout this
section, we assume that V,W are functions in C4(Rk) with

L = sup �D2V � , LH = sup �D3V � , LI = sup �D4V � ,
L̃ = sup �D2W � , L̃H = sup �D3W � , L̃I = sup �D4W � ,

which we assume are all bounded. This assumption is not needed in every statement given in this
section, but for simplicity, we assume it throughout. Moreover, we assume that T > 0 and the
time step size h ≥ 0 are such that T �h ∈ N for h ≠ 0 and

(L + 4✏L̃)(T 2 + Th) ≤ 1�6 . (76)

As we discuss next, the constant (L + 4✏L̃) represents an effective Lipschitz constant for the
gradient of U .

Define Hij(x) = ∇ijU(x) = @2U(x)�@xi@xj for i, j ∈ {1, . . . , n}. From (19), note that for
all x, y ∈ Rnk and i, j ∈ {1, . . . , n},

�∇iU(x)� ≤ (L + 2✏L̃) �xi� + 2✏L̃

n
�̀≠i �x

`� , (77)

�∇iU(x) −∇iU(y)� ≤ (L + 2✏L̃) �xi − yi� + 2✏L̃

n
�̀≠i �x

` − y`� , (78)

�Hij(x)� ≤
�������
L + 2✏L̃ if i = j,
2✏L̃�n else,

(79)

�Hij(x) −Hij(y)� ≤
�������
(LH + 2✏L̃H) �xi − yi� + 2✏L̃H

n
∑`≠i �x` − y`� if i = j,

2✏L̃H

n
(�xi − yi� + �xj − yj �) else,

(80)

where we used ∑`≠i = ∑n

`=1,`≠i. Additionally, for any i1, i2, i3, i4 ∈ {1, . . . , n},

� @3U(x)
@xi1@xi2@xi3

� ≤
�����������
LH + 2✏L̃H if all indices are equal,
2✏L̃H�n if exactly two indices are equal,
0 else,

(81)

� @4U(x)
@xi1@xi2@xi3@xi4

� ≤
�����������
LI + 2✏L̃I if all indices are equal,
2✏L̃I�n if exactly three indices are equal,
0 else.

(82)

As in Section 5 for general U , since we assume (76), we can invoke Corollary 14, to obtain the
existence/uniqueness of a function � ∶ Rnk → Rnk that satisfies either q̃T (x, v) = q̃T (y,�(v))
for any x, y, v ∈ Rnk or q̃T (x, v) = qT (x,�(v)) for any x, v ∈ Rnk.
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A.2. TV bounds and regularization by one-shot couplings

Here we prove that the transition kernel of uHMC for mean-field U has a regularizing effect with
a better dimension dependence than for general U .

Lemma 29. For any x, y, v ∈ Rnk, let � ∶ Rnk → Rnk be the map defined by q̃T (x, v) =
q̃T (y,�(v)). Then

TV(�x⇡̃, �y⇡̃) ≤ TV(Law(⇠),Law(�(⇠)))
≤ 3

2
�T −2 + 34k(LH + 8✏L̃H)2T 4�1�2 n�̀=1 �x

` − y`� . (83)

Note that the prefactor in the upper bound of (83) does not depend on the number n of parti-
cles. In this sense (83) is an improvement over (36).

Proof. This proof is similar to the proof of Lemma 16, except here we directly insert the results
in Lemma 37 and 38 into Lemma 15 to obtain

TV(Law(⇠),Law(�(⇠))2 ≤ �9
4
T −2 + 2401

32
k (LH + 8✏L̃H)2 T 4� � n�̀=1 �x

` − y`��2 .
Taking square roots and inserting 34 > (4�9)(2401�32) gives (36).

Analogous to Lemmas 16 and 17, Lemma 29 similarly implies that the transition kernel of
uHMC has a regularizing effect in the following sense.

Lemma 30. For any ⌫, ⌘ ∈ P(Rnk),
TV(⌘⇡̃, ⌫⇡̃) ≤ 3

2
�T −2 + 34k(LH + 8✏L̃H)2T 4�1�2W 1

`1
(⌘, ⌫) . (84)

The proof of Lemma 30 is very similar to the proof of Lemma 17 except that it involves the
W 1

`1
distance rather than the W 1 distance, and therefore, omitted.

Lemma 31. For any x, v ∈ Rnk, let � ∶ Rnk → Rnk be the map defined by q̃T (x, v) =
qT (x,�(v)). Then

TV(�x⇡, �x⇡̃) ≤ TV(Law(⇠),Law(�(⇠)))
≤ h2 �n2k�17(L + 4✏L̃)2 + 28(LH + 8✏L̃H)2T 2 + 104k(LH + 8✏L̃H)2T 2

+ 180(2k + k2)�(LI + 14✏L̃I)2T 2 + (LH + 8✏L̃H)2T 4�2�
+ n�10k(LH + 8✏L̃H)2 + 7(L + 4✏L̃)2T −2� n�̀=1 �x

`�2
+ n�40k�(LI + 14✏L̃I) + (LH + 8✏L̃H)2T 2�2
+ 7(LH + 8✏L̃H)2T −2� n�̀=1 �x

`�4 �1�2.

(85)
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Proof. The proof is similar to the proof of Lemma 18 except here we directly insert the results
of Lemmas 39 and 40 into Lemma 15, and then use the Cauchy-Schwarz inequality, to obtain

TV(Law(⇠),Law(�(⇠))2 ≤ E ���(⇠) − ⇠�2 + 2 �D�(⇠) − Id�2F �
≤ h4E�10n2k(L + 4✏L̃)2 + n�10k(LH + 8✏L̃H)2 + 7(L + 4✏L̃)2T −2� n�̀=1 �x

`�2

+ n�90k(LH + 8✏L̃H)2T 2 + 7(L + 4✏L̃)2� n�̀=1 �v
`�2

+ n�10k(LI + 14✏L̃I)2 + 7(LH + 8✏L̃H)2T −2
+ 40k(LH + 8✏L̃H)2(LI + 14✏L̃I)T 2 + 40k(LH + 8✏L̃H)4T 4� n�̀=1 �x

`�4
+ n�10k(LI + 14✏L̃I)2T 4 + 7(LH + 8✏L̃H)2T 2

+ 60k(LH + 8✏L̃H)2(LI + 14✏L̃I)T 6 + 90k(LH + 8✏L̃H)4T 8� n�̀=1 �v
`�4 � .

We then use E[�⇠`�2] = k and E[�⇠`�4] = 2k(k + 2) to obtain

TV(Law(⇠),Law(�(⇠))2
≤ h4 �n2k�17(L + 4✏L̃)2 + 28(LH + 8✏L̃H)2T 2 + 104k(LH + 8✏L̃H)2T 2

+ (40k + 20k2)(LI + 14✏L̃I)2T 4 + (240k + 120k2)(LH + 8✏L̃H)2(LI + 14✏L̃I)T 6

+ (360k + 180k2)(LH + 8✏L̃H)4T 8�
+ n�10k(LH + 8✏L̃H)2 + 7(L + 4✏L̃)2T −2� n�̀=1 �x

`�2
+ n�10k(LI + 14✏L̃I)2 + 7(LH + 8✏L̃H)2T −2
+ 40k(LH + 8✏L̃H)2(LI + 14✏L̃I)T 2 + 40k(LH + 8✏L̃H)4T 4� n�̀=1 �x

`�4 � .
Taking square roots and simplifying gives (85).

Lemma 31 implies the following bound on the TV distance between µ⇡ and µ⇡̃.

Lemma 32. We have TV(µ⇡, µ⇡̃) ≤ Ch2, where C is defined in (25).

The proof of this result is similar to the proof of Lemma 17 and therefore omitted.

imsart-bj ver. 2020/04/06 file: output.tex date: July 28, 2021



32 N. Bou-Rabee and A. Eberle

A.3. A priori estimates for the dynamics

Here we develop estimates on the dynamics (7) for the special case of the mean-field model. Let
q̃t(x, v) = (q̃1t (x, v), . . . , q̃nt (x, v)) and similarly for ṽt(x, v).
Lemma 33. For any x, y, u, v ∈ Rnk and i ∈ {1, . . . , n},

max
s≤T �q̃is(x, v)� ≤ (1 + (L + 2✏L̃)(T 2 + Th))max(�xi� , �xi + Tvi�)
+ 2✏L̃(T 2 + Th)

n
�̀≠imax

s≤T �q̃is(x, v)� ,
(86)

max
s≤T �ṽis(x, v)� ≤ �vi� + 2✏L̃T

n
(1 + (L + 2✏L̃)(T 2 + Th))�̀≠imax

s≤T �q̃is(x, v)�
+ (L + 2✏L̃)T (1 + (L + 2✏L̃)(T 2 + Th))max(�xi� , �xi + Tvi�),

(87)

n�̀=1max
s≤T �q̃`s(x, v)� ≤ (1 + (L + 4✏L̃)(T 2 + Th)) n�̀=1max(�x`� , �x` + Tv`�), (88)

n�̀=1max
s≤T �ṽ`s(x, v)� ≤

n�̀=1 �v
`�

+ (L + 4✏L̃)T (1 + (L + 4✏L̃)(T 2 + Th)) n�̀=1max(�x`� , �x` + Tv`�),
(89)

n�̀=1max
s≤T �q̃`s(x,u) − q̃`s(y, v)�
≤ (1 + (L + 4✏L̃)(T 2 + Th)) n�̀=1max ��x` − y`� , �x` − y` + T (u` − v`)�� .

(90)

Lemma 33 is the mean-field analog of Lemma 20 and is contained in Lemmas 12 and 13 of
[6]. Hence, a proof is omitted.

A.4. A priori estimates for the velocity derivative flow

Here we develop estimates on the velocity derivative flows @vj q̃i
s
= @q̃i

s
�@vj .
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Lemma 34. For any x, y, u, v ∈ Rnk and j ∈ {1, . . . , n},
n�̀=1max

s≤T �@vj q̃`
s
(x, v)� ≤ (6�5)T , (91)

n�̀=1max
s≤T �@v` q̃j

s
(x, v)� ≤ (7�5)T , (92)

n�̀=1max
s≤T �@vj ṽ`

s
(x, v)� ≤ (6�5) , and (93)

n�
i=1

n�̀=1max
s≤T �@vi q̃`

s
(x,u) − @vi q̃`

s
(y, v)� ≤ (42�25)(LH + 8✏L̃H)T 3

× (1 + (L + 4✏L̃)(T 2 + Th)) n�̀=1max ��x` − y`� , �x` − y` + T (u` − v`)�� .
(94)

Lemma 34 is the mean-field analog of Lemma 21.

Proof. From (7), note that for any `, j ∈ {1, . . . , n},
@vj q̃`

T
(x,u) = TIk�`j
− 1

2 �
T

0
(T − s) n�

i=1
�H`i(q̃�s�h)@vj q̃i�s�h +H`i(q̃�s�h)@vj q̃i�s�h�ds

+ 1

2 �
T

0
(s − �s�h) n�

i=1
�H`i(q̃�s�h)@vj q̃i�s�h −H`i(q̃�s�h)@vj q̃i�s�h�ds ,

(95)

@vj ṽ`
T
(x,u) = Ik�`j − 1

2 �
T

0

n�
i=1
�H`i(q̃�s�h)@vj q̃i�s�h +H`i(q̃�s�h)@vj q̃i�s�h�ds.

Using (79) and inserting (L + 4✏L̃)T 2 ≤ 1�6, we obtain
n�̀=1max

s≤T �@vj q̃`
T
(x,u)� ≤ T �Ik� + T 2

n�̀=1
n�
i=1

max
s≤T �H`i(q̃s)@vj q̃i

s
(x,u)�

≤ T + (L + 4✏L̃)T 2
n�
i=1

max
s≤T �@vj q̃i

s
(x,u)� ≤ (6�5)T ,

n�̀=1max
s≤T �@vj ṽ`

s
(x,u)� ≤ 1 + (L + 4✏L̃)T n�̀=1max

s≤T �@vj q̃`
T
(x,u)� ≤ 6�5 ,

which gives (91) and (93). For (92), by (79) and (L + 4✏L̃)T 2 ≤ 1�6 imply that,
n�̀=1max

s≤T �@v` q̃j
T
(x,u)� ≤ T + T 2

n�̀=1
n�
i=1

max
s≤T �Hji(q̃s)@v` q̃i

s
(x,u)�

≤ T + (L + 2✏L̃)T 2
n�̀=1max

s≤T �@v` q̃j
s
(x,u)� + T 2 2✏L̃

n

n�̀=1
n�
i=1

max
s≤T �@v` q̃i

s
(x,u)�

≤ (6�5)T + 2(6�5)2T 3✏L̃ ≤ (7�5)T ,
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where in the second to last step we used (91), and in the last step, we used ✏L̃T 2 ≤ 1�24 and
33�25 ≤ 7�5. For (94), it is notationally convenient to introduce q̃(1),`s ∶= q̃`

s
(x,u) and q̃(2),`s ∶=

q̃`
s
(y, v) for any s ∈ [0, T ] and ` ∈ {1, . . . , n}. Then from (95)

@vj q̃(1),`
T
− @vj q̃(2),`

T
= −

T

�
0

T − s
2

n�
i=1
�H`i(q̃(1)�s�h)@vj q̃(1),i�s�h −H`i(q̃(2)�s�h)@vj q̃(2),i�s�h �ds

−
T

�
0

T − s
2

n�
i=1
�H`i(q̃(1)�s�h)@vj q̃(1),i�s�h −H`i(q̃(2)�s�h)@vj q̃(2),i�s�h �ds

+
T

�
0

s − �s�h
2

n�
i=1
�H`i(q̃(1)�s�h)@vj q̃(1),i�s�h −H`i(q̃(2)�s�h)@vj q̃(2),i�s�h �ds

+
T

�
0

s − �s�h
2

n�
i=1
�H`i(q̃(2)�s�h)@vj q̃(2),i�s�h −H`i(q̃(1)�s�h)@vj q̃(1),i�s�h �ds

=
T

�
0

T − s
2

n�
i=1
�H`i(q̃(2)�s�h)(@vj q̃(2),i�s�h − @vj q̃(1),i�s�h ) − (H`i(q̃(1)�s�h) −H`i(q̃(2)�s�h))@vj q̃(1)�s�h�ds

+
T

�
0

T − s
2

n�
i=1
�H`i(q̃(2)�s�h)(@vj q̃(2),i�s�h − @vj q̃(1),i�s�h ) − (H`i(q̃(1)�s�h) −H`i(q̃(2)�s�h))@vj q̃(1),i�s�h �ds

−
T

�
0

s − �s�h
2

n�
i=1
�H`i(q̃(2)�s�h)(@vj q̃(2),i�s�h − @vj q̃(1),i�s�h ) − (H`i(q̃(1)�s�h) −H`i(q̃(2)�s�h))@vj q̃(1),i�s�h �ds

−
T

�
0

s − �s�h
2

n�
i=1
�H`i(q̃(1)�s�h)(@vj q̃(1),i�s�h − @vj q̃(2),i�s�h ) − (H`i(q̃(2)�s�h) −H`i(q̃(1)�s�h))@vj q̃(2),i�s�h �ds.

By using (79), (80), and (92), we then get

n�
j=1

n�̀=1max
s≤T �@vj q̃(1),`

T
− @vj q̃(2),`

T
� ≤ (L + 4✏L̃)T 2

n�
j=1

n�̀=1max
s≤T �@vj q̃(1),`

T
− @vj q̃(2),`

T
�

+ (LH + 8✏L̃H)(7�5)T 3
n�̀=1max

s≤T �q̃(1),`s
− q̃(2),`

s
� .

Inserting (L + 4✏L̃)T 2 ≤ 1�6 and (90), and simplifying yields (94).

A.5. Discretization error bounds

The following lemma is the mean-field analog of Lemma 23.
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Lemma 35. For any x, v ∈ Rnk,

n�̀=1max
s≤T �q`s(x, v) − q̃`s(x, v)� ≤ h2�(L + 4✏L̃) n�̀=1 �x

`� + (L + 4✏L̃)T n�̀=1 �v
`�

+ (LH + 8✏L̃H) n�̀=1 �x
`�2 + (LH + 8✏L̃H)T n�̀=1 �v

`�2 � .
(96)

Proof. By (88) and (89) with h = 0, and since (L + 4✏L̃)T 2 ≤ 1�6, note that

n�̀=1max
s≤T �q`s� ≤ (7�6)

n�̀=1 �x
`� + (7�6)T n�̀=1 �v

`� , (97)

n�̀=1max
s≤T �v`s� ≤ (7�6) (L + 4✏L̃)T

n�̀=1 �x
`� + (6�5) n�̀=1 �v

`� , (98)

n�̀=1max
s≤T �q`s�2 ≤ (9�2)

n�̀=1 �x
`�2 + (9�2)T 2

n�̀=1 �v
`�2 , (99)

n�̀=1max
s≤T �v`s�2 ≤ (9�2)(L + 4✏L̃)

n�̀=1 �x
`�2 + (9�2) n�̀=1 �v

`�2 . (100)

Introduce the shorthand qT ∶= qT (x, v) and q̃T ∶= q̃T (x, v). Using (7), note that

q`
T
− q̃`

T
= I` + II` + III` where (101)

I` ∶= 1

2 �
T

0
(T − s)[∇`U(q̃�s�h) −∇`U(q�s�h) +∇`U(q̃�s�h) −∇`U(q�s�h)]ds

− 1

2 �
T

0
(s − �s�h)[∇`U(q̃�s�h) −∇`U(q�s�h) − (∇`U(q̃�s�h) −∇`U(q�s�h))]ds ,

II` ∶= −1
2 �

T

0
(s − �s�h)[∇`U(q�s�h) −∇`U(q�s�h)]ds , and

III` ∶= −� T

0
(T − s)∇`U(qs)ds + 1

2 �
T

0
(T − s)[∇`U(q�s�h) +∇`U(q�s�h)]ds .

By (78) and since (L + 4✏L̃)T 2 ≤ 1�6,

n�̀=1 �I
`� ≤ (L + 4✏L̃)T 2

n�̀=1max
s≤T �q`s − q̃`s� ≤ (1�6)

n�̀=1max
s≤T �q`s − q̃`s� , (102)

n�̀=1 �II
`� ≤ h(L + 4✏L̃)

2

n�̀=1�
T

0
�q`�s�h − q`�s�h �ds = h(L + 4✏L̃)

2

n�̀=1�
T

0
�� �s�h
�s�h v`

r
dr�ds,

≤ h2(L + 4✏L̃)T
2

n�̀=1max
s≤T �v`s� ≤ (L + 4✏L̃)h2 � 7

72

n�̀=1 �x
`� + 3

5
T

n�̀=1 �v
`� � , (103)
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where for (103) we used (89). Applying Lemma 22 with f(s) = −∇`U(qs) we obtain

n�̀=1 �III
`� ≤ h2

12
�(L + 4✏L̃)T n�̀=1max

s≤T �v`s� + (L + 4✏L̃)2T 2
n�̀=1max

s≤T �q`s�
+ (LH + 8✏L̃H)T 2

n�̀=1max
s≤T �v`s�2 � .

(104)

Inserting (102), (103) and (104) into the norm of (101) summed over `; then inserting (97), (98),
and (100); and then simplifying gives (96).

Lemma 36. For any x, v ∈ Rnk,

n�
i=1

n�̀=1max
s≤T �@viq`

s
(x, v) − @vi q̃`

s
(x, v)�

≤ h2�(L + 4✏L̃)Tn + (LH + 8✏L̃H)T n�̀=1 �x
`� + 2(LH + 8✏L̃H)T 2

n�̀=1 �v
`�

+ �2(LH + 8✏L̃H)2T 3 + (LI + 14✏L̃I)T� n�̀=1 �x
`�2

+ �2(LH + 8✏L̃H)2T 5 + (LI + 14✏L̃I)T 3� n�̀=1 �v
`�2 � .

(105)
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Proof. Using (7), write the difference as

@viq`
T
(x, v) − @vi q̃`

T
(x, v) = I`

i
+ II`

i
+ III`

i
+ IV`

i
where (106)

I`
i
∶= 1

2 �
T

0
(T − s) n�

m=1H`m(q̃�s�h)(@vi q̃m�s�h − @viqm�s�h)ds
+ 1

2 �
T

0
(T − s) n�

m=1H`m(q̃�s�h)(@vi q̃m�s�h − @viqm�s�h)ds
− 1

2 �
T

0
(s − �s�h) n�

m=1H`m(q̃�s�h)(@vi q̃m�s�h − @viqm�s�h)ds
+ 1

2 �
T

0
(s − �s�h) n�

m=1H`m(q̃�s�h)(@vi q̃m�s�h − @viqm�s�h)ds
II`
i
∶= 1

2 �
T

0
(T − s) n�

m=1(H`m(q̃�s�h) −H`m(q�s�h))@viqm�s�hds

+ 1

2 �
T

0
(T − s) n�

m=1(H`m(q̃�s�h) −H`m(q�s�h))@viqm�s�hds

− 1

2 �
T

0
(s − �s�h) n�

m=1(H`m(q̃�s�h) −H`m(q�s�h))@viqm�s�hds

+ 1

2 �
T

0
(s − �s�h) n�

m=1(H`m(q̃�s�h) −H`m(q�s�h))@viqm�s�hds

III`
i
∶= −1

2 �
T

0
(s − �s�h) n�

m=1[(H`m(q�s�h) −H`m(q�s�h))@viqm�s�h]
− 1

2 �
T

0
(s − �s�h) n�

m=1[H`m(q�s�h)(@viqm�s�h − @viqm�s�h)]ds , and

IV`

i
∶= −� T

0
(T − s) n�

m=1H`m(qs)@viqm
s
ds

+ 1

2 �
T

0
(T − s) n�

m=1[H`m(q�s�h)@viqm�s�h +H`m(q�s�h)@viqm�s�h]ds .
To obtain the following bounds, we use (79) and (L + 4✏L̃)T 2 ≤ 1�6 for (107); (80) and (92) for
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(108); and (79), (80), (92), and for (109).

n�
i=1

n�̀=1 �I
`

i
� ≤ (1�6) max

s≤T
n�
i=1

n�̀=1 �@viq`
s
− @vi q̃`

s
� , (107)

n�
i=1

n�̀=1 �II
`

i
� ≤ (7�5)(LH + 8✏L̃H)T 3

m�̀=1max
s≤T �q`s − q̃`s� , (108)

n�
i=1

n�̀=1 �III
`

i
� ≤ (7�5)h(LH + 8✏L̃H)T

2

n�̀=1�
T

0
�� �s�h
�s�h v`

r
dr�ds

+ h(L + 4✏L̃)
2

n�
i=1

n�̀=1�
T

0
�� �s�h
�s�h @viv`

r
dr�ds

≤ 7h2(LH + 8✏L̃H)T 2

10

n�̀=1max
s≤T �v`s� + h2(L + 4✏L̃)T

2

n�
i=1

n�̀=1max
s≤T �@viv`

s
� . (109)

Applying Lemma 22 with f(s) =H`m(qs)@viqm
s

and using (L+4✏L̃)T 2 ≤ 1�6, (79), (81), (82),
(92) and (93), we obtain

n�
i=1

n�̀=1 �IV
`

i
�

≤ h2

12
�43
30
(L + 4✏L̃)Tn + 4(LH + 8✏L̃H)T 2

n�̀=1max
s≤T �v`s�

+ 7

30
(LH + 8✏L̃H)T n�̀=1max

s≤T �q`s� + 7

5
(LI + 14✏L̃I)T 3

n�̀=1max
s≤T �v`s�2 � .

(110)

Insert (107), (108), (109), (110) and Lemma 35 into norm of the double sum of (106) over i and
`; use (97), (98), (100), and (93); and simplify to obtain (105).

A.6. One-shot coupling bounds for q̃T (x,⇠) = q̃T (y,�(⇠))
The following lemmas are the mean-field analogs of Lemmas 25 and 26.

Lemma 37. For any x, y, v ∈ Rnk such that q̃T (x, v) = q̃T (y,�(v)), we have

T ��(v) − v� ≤ T
n�̀=1 ��

`(v) − v`� ≤ (3�2) n�̀=1 �x
` − y`� . (111)

Proof. Let u = �(v). From q̃T (x, v) = q̃T (y, u),
T �u` − v`� ≤ �x` − y`� + (L + 2✏L̃)T 2max

s≤T �q̃is(x, v) − q̃is(y, u)�
+ 2✏L̃T 2

n

n�
i=1,i≠`

�q̃i
s
(x, v) − q̃i

s
(y, u)� .
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Summing over ` and using (90) and (L + 4✏L̃)(T 2 + Th) ≤ 1�6 gives

T
n�̀=1 �u

` − v`� ≤ n�̀=1 �x
` − y`� + (L + 4✏L̃)T 2

n�̀=1max
s≤T �q̃`s(x, v) − q̃`s(y, u)�

≤ n�̀=1 �x
` − y`� + (7�36) n�̀=1 ��x

` − y`� + T �u` − v`�� ≤ (3�2) n�̀=1 �x
` − y`�

where in the last step we used (1 + 7�36)�(1 − 7�36) < 3�2.

Lemma 38. For any x, y, v ∈ Rnk such that q̃T (x, v) = q̃T (y,�(v)), we have that �D�(v) − Id� ≤
1�2 and

�D�(v) − Id�F ≤ 49

8

√
k (LH + 8✏L̃H)T 2

n�̀=1 �x
` − y`� . (112)

Proof. First, note that

�D�(v) − Id�F = � n�̀=1
n�
i=1
�@v`�i(v) − �i`Ik�2

F
�1�2 ≤ √k n�̀=1

n�
i=1
�@v`�i(v) − �i`Ik� .

Next, and in turn, we upper bound �D�(v) − Id� and ∑n

`=1∑n

i=1 �@v`�i(v) − �i`Ik�. Introduce
the shorthand q̃(1)s ∶= q̃s(x, v) and q̃(2)s ∶= q̃s(y,�(v)) for any s ∈ [0, T ]. Differentiating both
sides of q̃`

T
(x, v) = q̃`

T
(y,�(v)) with respect to vj yields

T (@v`�i(v) − �i`Ik) =
+

T

�
0

T − s
2

n�
j=1
�Hij(q̃(2)�s�h)@v` q̃(2),j�s�h −Hij(q̃(1)�s�h)@v` q̃(1),j�s�h �ds

+
T

�
0

T − s
2

n�
j=1
�Hij(q̃(2)�s�h)@v` q̃(2),j�s�h −Hij(q̃(1)�s�h)@v` q̃(1),j�s�h �ds

−
T

�
0

s − �s�h
2

n�
j=1
�Hij(q̃(2)�s�h)@v` q̃(2),j�s�h −Hij(q̃(1)�s�h)@v` q̃(1),j�s�h �ds

−
T

�
0

s − �s�h
2

n�
j=1
�Hij(q̃(1)�s�h)@v` q̃(1),j�s�h −Hij(q̃(2)�s�h)@v` q̃(2),j�s�h �ds

+
T

�
0

T − s
2
�
j,m

�Hij(q̃(2)�s�h)@vm q̃(2),j�s�h +Hij(q̃(2)�s�h)@vm q̃(2),j�s�h � (@v`�m(v) − �m`Ik)ds

−
T

�
0

s − �s�h
2

�
j,m

�Hij(q̃(2)�s�h)@vm q̃(2),j�s�h −Hij(q̃(2)�s�h)@vm q̃(2),j�s�h � (@v`�m(v) − �m`Ik)ds.
(113)
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By using (79), (91), and (L + 4✏L̃)T 2 ≤ 1�6, for fixed ` ∈ {1, . . . , n} note that

n�
i=1
�@v`�i(v) − �i`Ik� ≤ (6�5)2(L + 4✏L̃)T 2

(1 − (6�5)(L + 4✏L̃)T 2) = 1�2 ,
and therefore, for any z = (z1, . . . , zn) ∈ Rnk, we have

�(D�(v) − Id)z�2 ≤ n�̀=1
n�
i=1
�z`�2 �@v`�i(v) − �2

i`
Ik�2 ≤ 1

4

n�̀=1 �z
`�2 .

Thus, �D�(v) − Id� ≤ 1�2. We can also rewrite (113) as

T (@v`�i(v) − �i`Ik) =
+

T

�
0

T − s
2

n�
j=1
�Hij(q̃(2)�s�h)(@v` q̃(2),j�s�h − @v` q̃(1),j�s�h ) − (Hij(q̃(1)�s�h) −Hij(q̃(2)�s�h))@v` q̃(1),j�s�h �ds

+
T

�
0

T − s
2

n�
j=1
�Hij(q̃(2)�s�h)(@v` q̃(2),j�s�h − @v` q̃(1),j�s�h ) − (Hij(q̃(1)�s�h) −Hij(q̃(2)�s�h))@v` q̃(1),j�s�h �ds

−
T

�
0

s − �s�h
2

n�
j=1
�Hij(q̃(2)�s�h)(@v` q̃(2),j�s�h − @v` q̃(1),j�s�h ) − (Hij(q̃(1)�s�h) −Hij(q̃(2)�s�h))@v` q̃(1),j�s�h �ds

+
T

�
0

s − �s�h
2

n�
j=1
�Hij(q̃(2)�s�h)(@v` q̃(2),j�s�h − @v` q̃(1),j�s�h ) − (Hij(q̃(1)�s�h) −Hij(q̃(2)�s�h))@v` q̃(1),j�s�h �ds

+
T

�
0

T − s
2
�
j,m

�Hij(q̃(2)�s�h)@vm q̃(2),j�s�h +Hij(q̃(2)�s�h)@vm q̃(2),j�s�h � (@v`�m(v) − �m`Ik)ds

−
T

�
0

s − �s�h
2

�
j,m

�Hij(q̃(2)�s�h)@vm q̃(2),j�s�h −Hij(q̃(2)�s�h)@vm q̃(2),j�s�h � (@v`�m(v) − �m`Ik)ds.
By using (79), (80), (91), (92), (94), and (L + 4✏L̃)T 2 ≤ 1�6, we get

(4�5)T�
i,`

�@v`�i(v) − �i`Ik� ≤ (L + 4✏L̃)T 2�
j,`

max
s≤T �@v` q̃(2),j

s
− @v` q̃(1),j

s
�

+ (7�5)T (LH + 8✏L̃H)T 2
n�̀=1max

s≤T �q̃(1),`s
− q̃(2),`

s
�

≤ (49�25)(LH + 8✏L̃H)T 3
n�̀=1(�x

` − y`� + T ��`(v) − v`�)
≤ (49�10)(LH + 8✏L̃H)T 3

n�̀=1 �x
` − y`�

where in the last step we inserted (111). Simplifying gives (112).
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A.7. One-shot coupling bounds for q̃T (x,⇠) = qT (x,�(⇠))
The following lemmas are the mean-field analogs of Lemmas 27 and 28.

Lemma 39. For any x, v ∈ Rnk such that q̃T (x, v) = qT (x,�(v)), we have

T ��(v) − v� ≤ T
n�̀=1 ��

`(v) − v`� ≤ 72

65
h2�(L + 4✏L̃) n�̀=1 �x

`�
+ (L + 4✏L̃)T n�̀=1 �v

`� + (LH + 8✏L̃H) n�̀=1 �x
`�2 + (LH + 8✏L̃H)T n�̀=1 �v

`�2 �.
(114)

Proof. Introduce the shorthand q̃T = q̃T (x, v), q(1)T
= qT (x, v) and q(2)

T
= qT (x,�(v)). Noting

that ��(v) − v� ≤ ∑n

`=1 ��`(v) − v`�, and using q̃T = q(2)
T

or q(2)
T
− q(1)

T
= q̃T − q(1)T

and then
applying (78), we obtain

T
n�̀=1 ��

`(v) − v`� ≤ n�̀=1 ��
T

0
(T − s)[∇`U(q(2)s

) −∇`U(q(1)s
)]ds + q̃`

T
− q(1),`

T
�

≤ (L + 4✏L̃)T 2

2

n�̀=1max
s≤T �q(2),`s

− q(1),`
s
� + n�̀=1 �q̃

`

T
− q(1),`

T
�

≤ 7

72
T

n�̀=1 ��
`(v) − v`� + n�̀=1 �q̃

`

T
− q(1),`

T
� ≤ 72

65

n�̀=1 �q
(1),`
T
− q̃`

T
�

where in the next to last step we used (90) and (L + 4✏L̃)T 2 ≤ 1�6. Inserting (96) into this last
inequality gives (114).

Lemma 40. For any x, v ∈ Rnk such that q̃T (x, v) = qT (x,�(v)), we have that �D�(v) − Id� ≤
1�2 and

T �D�(v) − Id�F ≤ √k n�̀=1
n�
i=1
�@v`�i(v) − �i`Ik�

≤ √kh2�(L + 4✏L̃)Tn + (LH + 8✏L̃H)T n�̀=1 �x
`� + 3(LH + 8✏L̃H)T 2

n�̀=1 �v
`�

+ �(LI + 14✏L̃I)T + 2(LH + 8✏L̃H)2T 3� n�̀=1 �x
`�2

+ �(LI + 14✏L̃I)T 3 + 3(LH + 8✏L̃H)2T 5� n�̀=1 �v
`�2 � .

(115)

Proof. The proof that �D�(v) − Id� ≤ 1�2 is similar to the proof in Lemma 38 and therefore
omitted. Note that

�D�(v) − Id�F = � n�̀=1
n�
i=1
�@v`�i(v) − �i`Ik�2

F
�1�2 ≤ √k n�̀=1

n�
i=1
�@v`�i(v) − �i`Ik� .
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Next, we upper bound ∑n

`=1∑n

i=1 �@v`�i(v) − �i`Ik�. Introduce the shorthand q̃T = q̃T (x, v),
q(1)
T
= qT (x, v) and q(2)

T
= qT (x,�(v)). The derivative of q(2),i

T
−q(1),i

T
= q̃i

T
−q(1),i

T
with respect

to v` yields

T (@v`�i(v) − �i`Ik) = @v` q̃i
T
− @v`q(1),i

T

+� T

0
(T − s) n�

j=1
[Hij(q(2)s

) −Hij(q(1)s
)]@v`q(1),j

s
ds

+� T

0
(T − s) n�

j=1
Hij(q(2)s

)[@v`q(2),j
s
− @v`q(1),j

s
]ds

+� T

0
(T − s) n�

j=1
n�

m=1Hij(q(2)s
)@vmq(2),j

s
(@v`�m(v) − �`mIk)]ds.

By (79), (80), (91), (92) and (L + 4✏L̃)T 2 ≤ 1�6,

T �
i,`

�@v`�i(v) − �i`Ik�
≤�

i,`

�@v` q̃i
T
− @v`q(1),i

T
� + 7

5
T (LH + 8✏L̃H)T 2

2
�̀max

s≤T �q(2),`s
− q(1),`

s
�

+ (L + 4✏L̃)T 2

2
�
i,`

�@v`q(2),i
s
− @v`q(1),i

s
� + 6

5
T (L + 4✏L̃)T 2

2
�
i,`

�@v`�i(v) − �i`Ik�
≤ 10

9
�
i,`

�@v` q̃i
T
− @v`q(1),i

T
� + 10

9

7

5
T (LH + 8✏L̃H)T 2

2
�̀max

s≤T �q(2),`s
− q(1),`

s
�

+ 10

9

1

12
�
i,`

�@v`q(2),i
s
− @v`q(1),i

s
�

≤ 10

9
�
i,`

�@v` q̃i
T
− @v`q(1),i

T
� + 49

45
(LH + 8✏L̃H)T 3 �T n�̀=1 ��

`(v) − v`��
where in the last step we used (90) and (94). Inserting (105) and (114) and simplifying gives
(115).
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