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ABSTRACT
Label Propagation, while more commonly known as a machine
learning algorithm for classi�cation, is also an e�ective method for
detecting communities in networks. We propose a new Direction
Optimizing Label Propagation Algorithm (DOLPA) that relies on
the use of frontiers and alternates between label push and label
pull operations to enhance the performance of the standard Label
Propagation Algorithm (LPA). Speci�cally, DOLPA has parameters
for tuning the processing order of vertices in a graph, which in turn
reduces the number of edges visited and improves the quality of
solution obtained. We apply DOLPA to the community detection
problem, present the design and implementation of the algorithm,
and discuss its shared-memory parallelization using OpenMP. Em-
pirically, we evaluate our algorithm using synthetic graphs as well
as real-world networks. Compared with the state-of-the-art Parallel
Label Propagation algorithm, we achieve at least two times the F-
Score while reducing the runtime by 50% for synthetic graphs with
overlapping communities. We also compare DOLPA against state
of the art parallel implementation of the Louvain method using the
same graphs and show that DOLPA achieves about three times the
F-Score at 10% the runtime.
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1 INTRODUCTION
The label propagation algorithm (LPA) is a machine learning al-
gorithm for data classi�cation where label information is prop-
agated from labeled to unlabeled entities within a network [42].
The method works iteratively; initially, a (small) subset of the data
points have labels, and the labels are gradually propagated to the
unlabeled points until all the data points are properly labeled. Ragha-
van et al. [28] showed that LPA could be an e�ective method for
identifying communities in networks.

Community detection is a fundamental structure and function
discovery tool in network analysis. Its goal is to identify groups of
tightly-knit entities—known as communities (or cluster)—in social,
biological and technological networks. For example, video sharing
services such as YouTube cluster users with common viewing inter-
ests together to enable recommendation systems to provide better
services. As sizes of networks continue to increase dramatically,
we generally need fast algorithms to enable large-scale real-time
graph processing. Two of the main advantages of LPA over many
other community detection algorithms are that its run time is nearly
linear in the size of the network and that it requires no a priori
information about community structures in a network. Both of
these make it practical for graphs with billions of edges.

In parallel graph processing, di�erent graph algorithms use dif-
ferent processing orders on vertices. One extreme is the case where
the processing order is completely random. Another extreme is
where the processing order is strictly sequential. The Parallel La-
bel Propagation (PLP) algorithm proposed by Staudt and Meyer-
henke [34] belongs to the �rst type (random order). Instead of
explicitly randomizing the node order, PLP relies on the randomiza-
tion introduced via multi-threading. PLP produces di�erent results
for di�erent runs due to its random selection on labels whenever
there is a tie on the most common labels. Inherited from the “epi-
demic” behavior of LPA [20], PLP forms a “monster community”,
where the dominant label of the large component “plagues” the
labels of other communities, resulting in low quality solution.

In this paper, we propose a frontier-based Label Propagation
Algorithm, called Direction-Optimizing Label Propagation Algo-
rithm (DOLPA), that enforces processing order on vertices (or the
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propagation order of the labels). To achieve this, DOLPA maintains
frontiers and switches between two abstractions, called a ���� oper-
ation and a ���� operation. We apply DOLPA to the community
detection problem and empirically show that the processing or-
der DOLPA enforces reduces runtime and improves the quality of
solution compared to PLP.

Speci�cally, DOLPA provides a “knob” through which a trade-o�
between runtime and quality of solution is achieved. The trade-o�
comes from our frontier-based implementation combined with the
direction optimization organization, and has several elements.

First, the frontiers enforce two kinds of the processing orders
on the vertices. Each frontier in each iteration enforces explicit
order on the vertices. The vertices in the front of the frontier have
a better chance to propagate their labels than those in the back. In
addition, frontiers generated in each iteration enforce an implicit
order on vertices. The vertices in the initial frontier propagate their
labels earlier than their adjacent vertices which are added to the
next frontier. This implicit order is found to yield higher quality
of solution (§5.3). Second, in addition to reducing the number of
the edges visited, ���� results in a higher probability of forming
a stable community core than ����. Third, by adding the adjacent
vertices of a recently updated vertex to the next frontier, we can
reach peak workload faster and therefore attain higher performance
if that vertex has a high degree.

We evaluate the performance of our OpenMP DOLPA implemen-
tation and the quality of solution produced with both synthetic
graphs and real-world graphs, and show that, compared with PLP,
DOLPA achieves at least two times the F-Score while reducing
the runtime by 50%. We also compare DOLPA with a state of the
art parallel implementation of the Louvain method available in
Grappolo [24] and �nd DOLPA to be both faster (speedup of four)
and more accurate (three times in F-Score). The Louvain method is
based on on modularity maximization. Modularity [27] is a broadly
adopted metric for evaluating the quality of clustering obtained by
a community detection algorithm.

Summary of contributions. In this work, we:

• Introduce a new LP algorithm (DOLPA) that uses frontier
and applies direction optimization to LPA (§3).

• Apply DOLPA to community detection and parallelize our
algorithm under shared-memory programming model (§4).

• Demonstrate the trade-o� between time and quality provided
by DOLPA using carefully designed microbenchmarks and
show the bene�ts of the push and pull abstractions (§5.3).

2 LABEL PROPAGATION
Loosely speaking, the goal of community detection is to �nd a
grouping (or clustering) of the vertices in a graph in such a way that
intra-connection within a group is maximized and inter-connection
between groups is minimized. The problem has attracted a lot of
attention in the literature and a variety of di�erent algorithms have
been suggested for solving it. See the survey paper by Fortunato [9]
for a comprehensive review.

One of the simplest and fastest algorithms for community detec-
tion is label propagation (LP). Garza and Schae�er have a detailed
investigation of LP-based approaches [10]. Section 6 o�ers a brief

Algorithm 1 PLP: Parallel Label Propagation [34].
Input: Graph ⌧ = (+ , ⇢), termination threshold \
Output: 8 E 2 + : label [E] = label of E

1: for all E 2 + do in parallel
2: label[E]  83 [E]
3: D?30C43  |+ |, +02C8E4  +
4: while D?30C43 >= \ do
5: D?30C43  0
6: for all E 2 +02C8E4 |346(E) > 0 do in parallel
7: for all adjacent vertexF of E do
8: frequency[label[F]]++
9: ;  ������(frequency[label[F]])
10: if label[E] < ; then
11: label[E]  ;
12: atomic increment D?30C43
13: +02C8E4  +02C8E4 [ {E ’s neighbors}
14: else
15: +02C8E4  +02C8E4 \ {E}

review of related work. Since it forms the basis for our proposed
algorithm we brie�y discuss the standard LP algorithm here.

In the standard LP algorithm, each vertex is initially assigned a
unique label and at every iteration a vertex adopts a label that is the
most commonly used among its adjacent vertices. As the algorithm
progresses, densely connected groups of nodes form a consensus
on their labels and vertices that attain the same labels are grouped
as communities.

Algorithm 1 outlines a parallelization of the standard LP as given
in the Parallel Label Propagation (PLP) [34]. In Line 1, a unique label
is initially assigned to each vertex in the graph. In each iteration,
each vertex’s adjacent vertices are examined in parallel so that
the label of the vertex is updated with a maximum label among
its adjacent vertices (Line 6 to 15). A maximum label could be the
most common label or the label associated with highest weight. The
stopping criterion in Line 4 is that the number of updated labels is
less than the threshold \ , an input to the algorithm. The algorithm
outputs an array of vertex labels, where a set of vertices having the
same label signi�es membership in the same community.

Line 7–8 takes O(3 (E)) time, where 3 (E) is the degree of the
vertex E . In practice, LPA requires only a few iterations to converge,
and therefore the runtime is nearly linear, i.e. $ (:<), where : is
the number of iterations and< is the number of edges.

3 DIRECTION-OPTIMIZING LABEL
PROPAGATION

In the early iterations of LPA, instead of passively propagating la-
bels, we choose amore “important” label of a vertex E in the network
and broadcast the label to v’s adjacent vertices aggressively. We
abstract this kind of label update as a ���� operation. Furthermore,
in LPA, for each vertex E , the labels of v’s adjacent vertices are
queried to obtain the maximum label. We abstract this label update
operation as a ���� operation. To make best use of both label update
operations, we use a frontier as a processing queue. The frontier is
a set of paths from one set of start vertices. By pre-selecting “seed”
vertices (§4.1) into a frontier, we jump start the �rst iteration. When
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Algorithm 2 Direction Optimizing Label Propagation Algorithm.
Input: Graph⌧ = (+ , ⇢), seeding parameter g , switch threshold l ;
Output: 8 E 2 + : label [E] = label of E

1: for all E 2 + do in parallel
2: label[E]  a unique value in {0, 1, · · · , |+ | � 1}
3: unset bit[E]
4: frontier fraction g of + ù Select randomly
5: pullswitch False, iteration 0
6: while (frontier< ;) do
7: iteration++
8: if pullswitch = False and l = iteration then
9: pullswitch True ù Enter only once
10: if pullswitch = True then
11: for all E 2 frontier do in parallel
12: unset bit[E]
13: P���(E)
14: if label[E] has changed then
15: set bit[E 0B =486⌘1>AB] atomically
16: else
17: for all E 2 frontier do in parallel
18: unset bit[E]
19: P���(E)
20: if bit[E 0B =486⌘1>AB] is unset then
21: set bit[E 0B =486⌘1>AB] atomically
22: frontier ;
23: for all E 2 + do
24: if bit[E] is set then
25: frontier frontier [ {E }

Algorithm 3 Pseudocode for PUSH.

1: function P���(vertex E)
2: for all adjacent vertexF of E do in parallel
3: label[F]  label[E]

Algorithm 4 Pseudocode for PULL.

1: function P���(vertex E)
2: for all adjacent vertexF of E do
3: frequency[label[F]]++
4: label[E]  ������(frequency[label[F]])

the workload is small in the early iterations, we apply ���� for
label updates; when the iteration number reaches a direction switch
threshold, we switch to ���� for label updates. This idea has been
called direction optimization by Beamer et al. [4] in their parallel
Breadth-First Search work and inspires our work.

DOLPA is summarized in Algorithm 2. P��� is listed as Al-
gorithm 3 and P��� as Algorithm 4. Line 1 to 5 in Algorithm 2
constitute the pre-processing steps. The purpose of Line 1 is to give
a unique label to each vertex in the graph. We select a fraction g
of vertices randomly as seed vertices and add them to the initial
frontier. The fraction g is a seeding parameter passed as a part of
the input. The pullswitch Boolean variable is initially turned o�.

In each iteration, we process each vertex in the frontier and add
all the adjacent vertices of the vertex to the next frontier if there is
any label update. The direction optimization is triggered at Line 8
by a switch threshold l , which is an input parameter. Speci�cally,
when the number of iteration is equal to l , pullswitch is turned on.
Note that if l is equal to one, no push operation is applied. The
stopping criterion for iterations at Line 6 is an empty frontier. The
output of DOLPA is a set of labels associated with vertices. Vertices
having the same label belong to the same group.

Complexity of DOLPA. We analyze DOLPA’s complexity in
the sequential setting here. Both P��� and P��� take O(3 (E)) time
each, where 3 (E) is the degree of the vertex E . Selecting vertices
and adding to the frontier is O(=) in time and also in space, where
= is the number of vertices. The worst case performance of DOLPA
happens when the frontier holds all of the vertices in the graph,
and the space cost of the frontier is O(=). Therefore, the runtime of
DOLPA is bounded by O(:<), where : is the number of iterations
and< is the number of edges. In practice, we notice DOLPA requires
more iterations than LPA to converge. But : still remains constant.
Hence, DOLPA is nearly linear, just as the standard LPA.

4 APPLICATION TO COMMUNITY
DETECTION

We discuss in this section how we adopt DOLPA for community
detection. We begin by de�ning what seed vertices are and dis-
cussing how other works select them. Then we outline and address
various challenges that arise in parallelizing DOLPA for community
detection.

4.1 Seeding Strategies
A seed (or an in�uential) vertex is the potential core of a commu-
nity structure in the network. Nodes with high degree or clustering
coe�cient, fully-connected cliques and maximal cliques are usually
treated as the seed of a community [41]. In general, a node with
more connections could be viewed as more important in the net-
work [37]. It has been proven that the membership contribution of
a vertex to a community is highly related to its degree [30].

Kloumann and Kleinberg [15] found that the performance was
higher when a large fraction of seed vertices’ edges were to vertices
that lie within the same community. This suggests that a seed vertex
should have a good internal connectivity within the community
relative to the rest of the graph. We adopt this idea and select high-
degree vertices as seeds. We refer to this as a high degree seeding
strategy. As a baseline, we also randomly select vertices as seeds
and refer to the approach as a random seeding strategy. In both
cases, we select a fraction g of the vertices as seeds in DOLPA.

4.2 Challenges in Parallelizing DOLPA
We discuss below issues that arise in parallelizing DOLPA for com-
munity detection and our approaches for addressing them.

4.2.1 Frontier Expansion. In DOLPA, the next frontier expands as
either ���� or ���� updates a label of a vertex. For each vertex,
the algorithm inserts all of the vertex’s neighbors into the next
frontier without knowing whether any of its neighbors have been
inserted. In DOLPA, we use a bitmap [26] to avoid duplicate entries
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Figure 1: An illustration
of swapping labels.

in frontier expansion. A set bit indicates an ensuing insertion of
that vertex, hence latter insertion attempt is aborted. Line 15 and
Line 21 in Algorithm 2 show how we test and set the bitmap.

The frontier expansion rate of DOLPA determines how fast the
workload increases in each iteration. The rate is decided by the
branching factor of the vertices in the current frontier. Hence, the
frontier expansion rate under the high degree seeding strategy is
higher than that under the random seeding strategy.

4.2.2 Local Maxima and Label Swapping. Figure 1 shows a scenario
where two vertices reach a local maxima and swap labels in parallel.
The upper left vertex �nds label 2most common in its neighborhood.
The lower right vertex �nds label 1 as the most common label in its
neighborhood. In this scenario, these two vertices keep swapping
their labels in each iteration. This is called label oscillation [28].
It also happens in the serial algorithm on a bipartite graph. To
detect and prevent this, before a label is updated, the maximum
label currently received is compared with the previous label. If the
maximum label is the same as the previous label, we detect a label
swap. Then we manually mark the vertex as inactive and move on.

Ignoring label swapping is feasible by applying the same stop-
ping criterion as PLP: if the amount of labels updated in the previous
iteration is less than a certain threshold, the iteration stops (Line 6).
However, this stopping criterion depends on the condition that the
termination threshold beats the number of label swapping.

4.2.3 Parallelizing P��� and P���. To e�ectively parallelize ����
and ����, we exploit two levels of parallelism in Algorithm 2: task
level (coarse-grained) and vertex level (�ne-grained). The coarse-
grained parallelism is re�ected in Line 11 and Line 17, where ����
or ���� task is performed on each vertex in the frontier. The �ne-
grained parallelism is within ���� and ����, where the label propa-
gation is performed on the neighborhood of the vertex E . The reason
to introduce two levels of parallelism is to solve the workload im-
balance at the task level, where the vertices could have various
number of neighbors. With two level parallelism, DOLPA balances
the workload.

If multiple vertices perform ���� concurrently, they access their
neighborhood in parallel. Because of the shared neighbors, these
vertices will �ght for the labels of their common neighbors. This is a
benign race, which does not harm correctness of the algorithm but
hurts performance. Benign race entails repeated work and makes
the algorithm non-deterministic.

Each ���� operation is almost data independent without con-
sidering inserting vertices into the next frontier. But if we allow
concurrent insertions into a frontier, the order of insertion into the
frontier will force a processing order on the ���� operations in the
next iteration. We want to prevent this from happening. Therefore,
we do not physically insert vertices into the next frontier during
label propagation but just mark the bit belonging to that vertex.
The frontier insertion actually happens, and does so only once, at
the end of each iteration (at Line 25).

Within ����, there are concurrent reads on the labels of the
neighbors of the vertex E , which is embarrassingly parallelizable.
In practice, we accumulate the frequencies of the labels using
std::unordered_mapwhich does not support concurrent write. Since
we already have su�cient parallelism at the coarse-grained level,
we adopt serial ���� in our implementation.

5 EXPERIMENTAL EVALUATION
We present our experimental evaluation results in this section. We
use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [19]
with ground truth communities to study the behavior of DOLPA
and real-world graphs to evaluate the quality of solution and perfor-
mance. The LFR benchmark is the most commonly used benchmark
graph generator to evaluate community detection algorithms. We
compare our implementation with PLP, and with the state-of-the-
art parallel Louvain method implementation in Grappolo. We begin
the section detailing the experimental setup and then present the
results.

5.1 Experimental Setup
We used one node with two Intel Xeon E5-2699v3 processors at 2.3
GHz, 18 physical cores per socket, 72 logical cores per node with
hyper-threading, 48 MB L3 cache, and with 128 GB main memory.
We used GCC 8.2.0 compiler with -O3 compilation option to build
the codes. We used OpenMP 4.0 for parallelization with guided
scheduling.

5.2 Metrics for Quality of Solution
We quantify the quality of solutions using Precision, Recall and F-
Score, which are de�ned below. We list all possible pairs of vertices
in a community structure obtained from DOLPA as ⇠⇡ and the
ground truth information as⇠⌧ . Community assignment of a vertex
G in ⇠⇡ is denoted as ⇠G

⇡ , and similarly, that in ⇠⌧ is denoted
as ⇠G

⌧ . Each pair G,~ of vertices with respect to the community
assignments of ⇠⇡ and ⇠⌧ belong to one of the three categories:

• True Positive (TP): G,~ belong to the same community in⇠⇡
and ⇠⌧ , i.e., ⇠G

⇡ = ⇠~
⇡ and ⇠G

⌧ = ⇠~
⌧ ;

• False Negative (FN): G,~ belong to the same community only
in ⇠⌧ , i.e., ⇠G

⇡ < ⇠~
⇡ and ⇠G

⌧ = ⇠~
⌧ ;

• False Positive (FP): G,~ belong to the same community only
in ⇠⇡ , i.e., ⇠G

⇡ = ⇠~
⇡ and ⇠G

⌧ < ⇠~
⌧ ;

Based on the above de�nitions, we de�ne themetrics of Precision,
Recall and F-Score as follow:

• Precision % = )%
)%+�%

• Recall ' = )%
)%+�#

• F-Score � = 2⇤%⇤'
%+'

F-Score is the harmonic mean of Precision and Recall.

5.3 Benchmarking Direction Optimization
To gain insight into the performance of the ���� and ���� oper-
ations in practice, we design a microbenchmark to analyze their
behaviors. In this subsection, we describe the design, present the
raw results and then provide analysis of the results. The insights
gained give a better understanding of DOLPA.
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Table 1: DOLPA parameter settings in microbenchmark
Version g l Description
DO 1 1 |+ | seeds, direction switch at #iter 1
DO1 |+ |/|⇢ | 1 g · |+ | seeds, direction switch at #iter 1
DO2 |+ |/|⇢ | 2 g · |+ | seeds, direction switch at #iter 2
DO3 |+ |/|⇢ | 3 g · |+ | seeds, direction switch at #iter 3
DO4 |+ |/|⇢ | 4 g · |+ | seeds, direction switch at #iter 4
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Figure 2: Iteration versus edge in PLP and DOLPA variants on a
LFR graphwith 10,000 vertices and 76,754 edges. DO andDO1 switch
from ���� to ���� at iteration 1, i.e., DO and DO1 use no ����. DO
has all the vertices as seeds while DO1 randomly selects 1,302 ver-
tices as the seeds. DO is simply PLP using the frontiers. This is why
PLP and DO have similar workload for each iteration.

1 2 3 4 5 6 7 8
Iteration
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F
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Figure 3: Iteration versus F-Score in PLP and DOLPA variants on a
LFR benchmark. After the convergence (at iteration 8), the F-Score
of DO and DO1 is nearly 1 and the F-Score decreases as more P���
are applied. The F-Score of DO2 oscillates from iteration 4 to itera-
tion 8 due to the label swapping mentioned in Sec. 4.2.2.

5.3.1 Microbenchmark Design. We explore the combination of the
seeding parameter g and the switch threshold l so that the switch
from ���� to ���� in DOLPA happens at iteration l . We adopt
the random seeding strategy to be fair. Table 1 lists the parameter
settings and names of �ve benchmarks. We use the seed parameter
g of |+ |/|⇢ | as default. The design choice for this is omitted for
space considerations. We compare these against each other and
against PLP, our re-implementation of the PLP algorithm.

The experiments are run on an LFR benchmark with 10,000
vertices and 76,754 edges, average degree 15, max degree 50, 20
minimum communities, 50 maximum communities and a mixing
parameter of 0.3. We clock the time for three major steps of the
algorithm and collect statistical results on the workload, i.e., the
number of edges being processed at each iteration. The experiments
are run in single thread to avoid any non-deterministic behaviors.

PLP DO DO1 DO2 DO3 DO4
0.0
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m
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iz
ed
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m
e

Pre-processing

Push
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Figure 4: Normalized runtime (relative to PLP) of PLP and DOLPA
variants on a LFR benchmark in single thread. Three types of com-
putation are clocked. DO4 has best runtime. DO has the worst run-
time. The runtime decreases as more P��� are applied.

5.3.2 The Results. Figure 2 shows the number of edges visited
versus iteration of PLP and the �ve DOLPA benchmark cases. It can
be seen that: PLP and DO process all the edges in the �rst iteration
and converge in the 6th iteration; The workloads of DO1 and DO2
peak at iteration 2; DO3’s workload peaks at iteration 3; and DO4’s
workload peaks at iteration 4.

The iteration versus F-Score is shown in Figure 3 and the nor-
malized runtime is shown in Figure 4. The variants DO and DO1
have nearly perfect F-Score. DO4 takes half the runtime of PLP.
Both the F-Score and runtime decrease as more ���� operations
are applied.

5.3.3 Analysis. We make several important observations from the
results in Figure 2, Figure 3 and Figure 4 and discuss them below.

i) DOLPA without ���� is LPA: DO is LPA that uses frontiers.
The close numbers of edges visited at each iteration of PLP and DO
in Figure 2 con�rm this. Since we randomly insert the vertices of
the entire network into the frontier of DO, the processing orders of
the vertices of PLP and DO are di�erent. However, the �nal F-Score
of DO is over two times the F-Score of PLP in Figure 3, which leads
to our next insight.

ii) Early update on more important vertices yields higher
accuracy: ���� or ���� advocate seed vertices labels in the early
iterations. This will produce a candidate label search space where
the labels in this space are more important than the labels in later
spaces. Furthermore, a label updated from this space at this stage
will most likely survive. This is validated by DO2 in Figure 2, where
its workload decreases dramatically at iteration 4 because there are
few label updates at iteration 3 where DO2 has its peak workload.
With a peak workload and a small number of label update, which
meansmost of the vertices in iteration 3 already have truemaximum
labels, we can conclude that the label search space that iteration 2
produces is highly e�cient.

iii) ���� visits less edges but entails benign race: The run-
time decreases as more ���� steps applied in Figure 4. This is
because ���� visits less edges than ����. The amortized cost for
each label update of ���� is O(1) while that of ���� is O(3 (E)).
For each label update, the number of edges visited by ���� on the
vertex E is 3 (E) ⇥ 3 (# (E)), where 3 (# (E)) is the average degree in
the neighborhood # (E) of the vertex E . With 1 iteration of ���� on
1,302 seeds, DO2 saves on average 1, 302⇥15 edges visited, where 15
is the average degree of this graph. With 2 iterations of ���� on the
vertices in the frontier, DO3 visits at most (1, 302 + 1, 302⇥ 15) ⇥ 15
less edges. This is the reason why DO2 performs better than DO1
and DO3 performs better than DO2 in Figure 4. Comparing the
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Table 2: Community detection algorithms studied
Version Description
PLP Parallel Label Propagation algorithm [34]
PUR DOLPA using ���� only with random seeds
PUH DOLPA using ���� only with high degree seeds
DOR DOLPA using ���� & ���� with random seeds
DOH DOLPA using ���� & ���� with high degree seeds
LV parallel Louvain method implementation [24]

runtime di�erence between DO1 and DO2 versus DO3 and DO4
in Figure 4, the gap dramatically decreases due to the benign race
introduced by ����.

In our microbenchmark, we adopt random seeding strategy. We
predict that ���� visits even less number of edges with high degree
seeding strategy. Hence the runtime under high degree seeding
strategy would be lower than that under random seeding strategy.

iv) Too many ����s deteriorate the quality of solution:
Without a priori information, ���� may contribute negatively to
a community especially when the vertex is on the border of two
community structures, as the label of one community can “poison”
the labels of the vertices belonging to the other. If we compare DO2
with DO3 in Figure 3, the F-Score of DO2 and that of DO3 are close
at iteration 2. Then the F-Score of DO2 at iteration 3 doubles after
switching to ����. In contrast, the F-Score of DO3 drops dramati-
cally with one more iteration of ���� than DO2. For this reason, we
recommend label ���� at the early stages of community forming.
For latter stages when the maximum label propagates near the bor-
der of two communities, ���� is more delicate for maximum-label
selection for high-quality community expansion. This is also the
reason why we choose not to interleave ���� and ����.

5.3.4 ���� or ����, What to choose? Since ���� is cheaper than
���� in updating labels, we prefer ���� than ���� for fast label
propagation. However, too many ����s can degrade the quality of
solution. The decision for ���� is made a priori, i.e., we select a set
of seeds during pre-processing step and apply ���� on their labels.
In contrast, the decision for ���� is made on the �y, i.e., we perform
an on-the-�y most common labels query in the neighborhood, cal-
culate the degree/weight associated with those labels, then select
the maximum label among them.

Combining the runtime results in Figure 4 and the �nal F-Score
at iteration 8 in Figure 3, we �nd the best parameter combination
of g and l for DOLPA. To achieve the best runtime with reason-
able quality of solution, we set DOLPA as DO2 in Table 1 where
g is |+ |/|⇢ | and l is 2. To obtain the best quality of solution in
reasonable runtime, we set DOLPA as DO1 in Table 1 where g is
|+ |/|⇢ | and l is 1. Recall we adopt random seeding strategy in our
microbenchmark. We notice these two parameter setting rules also
apply to the high degree seeding strategy.

5.4 Runtime and Solution Quality Evaluation
We evaluate the quality of solution and runtime using the synthetic
graphs and real-world graphs listed in Table 3.

Table 2 lists the variants of parallel LPA we study (PLP, PU and
DO) and the Louvain method (LV). PUR and DOR select random
vertices as seeds. PUH and DOH select high degree vertices as seeds.

Both PU and DO use the seeding parameter g of |+ |/|⇢ |. We use the
switch threshold l of 1 for PU and that of 2 for DO. Recall when l
is 1, there is no ����.

5.4.1 Experiment Methodology. We generated two groups of the
LFR benchmarks—Big and Small: the community size of group
Big ranges from 20 to 200 and the community size of group Small
ranges from 10 to 100. The fraction of overlapping vertices is 10; the
number of memberships of the overlapping vertices is 2. Since the
methods we studied (Table 2) perform well on the non-overlapping
community detection, we only pay attention to the overlapping
communities. We generated a group of low overlapping density
network B1 and S1 (mixing parameter 0.1), and a group of medium
overlapping density network B3 and S3 (mixing parameter 0.3). B1
and B3 have the same parameters except the mixing parameter;
likewise for S1 and S3. We generated 10 for each benchmark. The
synthetic graphs B1, B3, S1 and S3 are listed in the top portion in
Table 3. The middle portion of the table lists synthetic graphs we
downloaded as images from the 2019 Stochastic Block Partitioning
Graph Challenge [14]. The bottom portion of Table 3 lists the real-
world graphs in our testbed. Since these graphs do not have ground
truth communities, we obtained the community structure data from
fast-tracking resistance (FTR) method [11] as ground truth data. It
is not true ground-truth, simply a reference.

5.4.2 Runtime and�ality of Solution Results. Table 4 shows the
F-Score and runtime results on the six methods listed in Table 2. The
results show that DOLPA outperforms PLP as well as the Louvain
method in both runtime and F-Score. DOLPA achieves 10 best
runtimes out of 11 and 8 best F-Scores out of 11. DOLPA adopting
high degree seeds achieves 6 best runtimes among 10 (all 6 by DOH).
DOLPA adopting random seeding strategy achieves 6 best F-Scores
among 8 best F-Scores (each 3 best F-Scores by PUR and DOR). We
achieve at least two times the F-Score while reducing the runtime by
50% for the LFR graphs. Compared with Louvain method using the
same graphs, the best results achieved by DOLPA have an average
of three times the F-Score at 1/10 the runtime. We provide further
discussions on Table 4 in the remainder of this subsection.

i) Frontier: The frontier of DOLPA is bene�cial. A frontier can
process the vertices in the order we want them to. During the
initialization of DOLPA, we add the seeds to the initial frontier
such that the labels of seeds can be propagated �rst. This makes
the labels of the seeds to have a higher probability to form a strong
community core without being eliminated. As we observed from
the experiments, PLP and PU have the similar numbers of the label
updates, the propagate steps and the processed edges. The high
Precision of PU proves PU to be more e�cient and accurate in
�nding the “right” maximum label. In Table 4, PUH and PUR has
2.5 and 3.2 times the F-Score than PLP on the graphs B3 and S3. PUH
has comparable runtime with PLP. Note runtime of PUH includes
the steps such as degree sorting and frontier insertion. PUR has
an average 40% of runtime decrease without degree sorting in the
pre-processing step comparing with PUH.

ii) Seed Vertices: The “right” seeds improve accuracy. The seeds
propagate before the others in the �rst iteration. With a unique
label initially, each label is a maximum label in the �rst iteration.
When a seed applies ���� for the �rst time, it abandons its own label
by randomly selecting a maximum label in its neighborhood. This
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Table 3: Synthetic and real-world graphs for performance and quality of solution evaluation
Input Description |+ | |⇢ | Max Degree Reference
B1 Generate using the LFR benchmark 1M 9.5M 100 [19]
B3 Generate using the LFR benchmark 1M 9.5M 100 [19]
S1 Generate using the LFR benchmark 1M 9.5M 100 [19]
S3 Generate using the LFR benchmark 1M 9.5M 100 [19]
LL Low Block Overlap and Low Block Size Variation 1M 24M 122 [14]
LH Low Block Overlap and high Block Size Variation 1M 24M 137 [14]
HL High Block Overlap and Low Block Size Variation 1M 24M 104 [14]
HH High Block Overlap and High Block Size Variation 1M 24M 180 [14]
fbnt Facebook network 4M 24M 4,915 [29]
dblp Coauthor-ship from DBLP 0.5M 15M 3,299 [2]
zbrp Zhishi Baidu related pages 416K 2.4M 127,090 [17]
cond Condensed matter collaborations 40K 176K 278 [2]

Table 4: The runtime and F-Score of the sixmethods listed in Table 2 on eight synthetic graphswith ground truth information. The real-world
graphs use the “ground truth” data obtained from FTR method [11]. All results are obtained under 64 threads.

Input B1 S1 B3 S3 LL LH HL HH fnbt dblp cond
PLP Time 2.30s 3.71s 3.03s 2.64s 1.76s 1.54s 0.94s 1.26s 24.85s 0.72s 0.04s

Prec. 0.7301 0.5712 0.2526 0.1847 0.1305 0.0979 0.0097 0.0192 0.0784 0.0031 0.0008
Recall 0.9998 1.0000 0.9999 0.9997 1.0000 0.9998 1.0000 1.0000 0.8852 0.9402 0.9690
FScore 0.8440 0.7271 0.4033 0.3118 0.2309 0.1784 0.0192 0.0377 0.144 0.0062 0.0015

PUH Time 2.49s 2.98s 2.56s 3.38s 1.47s 1.25s 1.04s 0.89s 4.24s 0.28s 0.06s
Prec. 0.9991 0.9981 0.9951 0.9892 0.0125 0.0149 0.0188 0.0130 0.1154 0.0007 0.0013
Recall 0.9999 1.0000 0.9998 0.9998 0.9999 0.9999 0.9998 0.9999 0.8159 0.9627 0.9293
FScore 0.9995 0.9990 0.9974 0.9945 0.0248 0.0293 0.0370 0.0256 0.2022 0.0014 0.0026

DOH Time 1.81s 2.72s 2.35s 2.95s 0.72s 0.91s 0.97s 0.94s 2.45s 0.16s 0.04s
Prec. 0.1503 0.1262 0.0542 0.0294 0.0115 0.0149 0.0164 0.0139 0.1533 0.0004 0.0014
Recall 0.9993 0.9991 0.9998 0.9997 0.9999 0.9999 0.9998 0.9999 0.7682 0.9105 0.5784
FScore 0.2613 0.2083 0.1028 0.0571 0.0227 0.0294 0.0323 0.0275 0.2556 0.0008 0.0027

PUR Time 1.48s 1.63s 2.08s 2.32s 1.35s 1.77s 1.61s 1.77s 8.52s 0.19s 0.06s
Prec. 0.9998 0.9900 0.9968 0.9885 0.2018 0.0938 0.0286 0.0181 0.0870 0.2142 0.0044
Recall 0.9998 0.9998 0.9997 0.9997 0.9999 0.9998 0.9998 0.9999 0.2620 0.8677 0.4116
FScore 0.9998 0.9949 0.9983 0.9941 0.3358 0.1715 0.0556 0.0356 0.1306 0.3436 0.0088

DOR Time 1.36s 1.10s 1.51s 1.50s 0.82s 1.14s 0.95s 0.89s 4.60s 0.16s 0.05s
Prec. 0.8285 0.7848 0.6476 0.5706 0.9911 0.6770 0.8483 0.0530 0.1484 0.0914 0.0056
Recall 0.9863 0.9511 0.9987 0.9960 0.9999 0.9993 0.9999 0.9998 0.2023 0.9171 0.4066
FScore 0.9005 0.8600 0.7857 0.7255 0.9955 0.8072 0.9179 0.1007 0.1712 0.1663 0.0110

LV Time 12.16s 10.46s 22.02s 16.38s 15.71s 13.32s 15.54s 22.06s 108.03s 10.43s 4.94s
Prec. 0.2002 0.0732 0.0911 0.0536 0.2226 0.3417 0.1403 0.0802 0.3103 0.0072 0.0235
Recall 1.0000 1.0000 1.0000 1.0000 0.8365 0.8062 0.5304 0.7353 1.0000 1.0000 1.0000
FScore 0.3336 0.1365 0.1669 0.1018 0.3517 0.4800 0.2219 0.1447 0.4736 0.0143 0.0460

The input graphs in this table are listed from easy to hard for community detection algorithms. The results in bold are the best results among the six methods
under the same graph. The runtime includes pre-processing steps such as degree sorting, frontier insertion, etc in PU/DO/LV. There was none in LP.
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Figure 5: Strong scaling results up to 64 threads on three graphs for LP variants in Table 2. DOH has the best performance on three graphs.

will promote that label as the “true” maximum label because it now
appears twice in this neighborhood. If the label the seed chooses

survives in the next few iterations, the core of the community is
formed. With the “right” choice on seeds, the probability of the
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Figure 6: Performance pro�les of PLP, DOH, DOR, PUH and PUR
under various graph-thread counts settings.

seeds to form a strong and stable core is higher than other vertices.
This proves that to update more important vertices in the network
earlier than others works [37].

The “wrong” seeds decrease accuracy. DOH has the worst F-
Score in most instances in Table 4. Pushing labels of the high degree
vertices to their neighbors contribute negatively to the quality of
the solution even though this guarantees a good runtime. DOR has
less chance to “poison” other communities’ labels when DOLPA
uses the random seeds instead of the high degree seeds. This is
shown by a greatly F-Score increase of DOR comparing with DOH.

iii) Direction Optimization: Direction optimization provides
a trade-o� for time and accuracy by adjusting the switch threshold
l to obtain a balance of ���� and ���� operations. When selecting
the seeds in the same strategy, DO has shorter runtime than PU:
DOH is faster than PUH; DOR is faster than PUR. Comparing with
PLP, DOR has an average 50% of runtime decrease on the LFR
benchmarks and DOH has an average 15% of runtime decrease on
graph challenge graphs. With a better seed selection, DOR has an
average of 14 times F-Scores than PLP on graph challenge datasets.

Hence we can adjust l for a good balance on di�erent com-
putation scenarios. DO �ts best for a time-sensitive scenario. An
appropriate switch threshold reduces work by applying certain
amount of the ���� operations on seeds hence higher performance.
However, ���� is harmful to the quality of solution in general as it
forces an unwilling label choice to all its neighbors. The amortized
cost for each label update of ���� is constant, while ���� is O(3 (E)).
PU are well suited for a precision-demanding scenario, where the
switch threshold can be set as small as one so that there is no ����
operation in pursuit of higher accuracy.

iv) Scaling andRuntimeResults: Figure 5 shows performance
of the scaling runtime results of �ve parallel implementations (DOR,
DOH, PUR, PUH and PLP) on real-world networks listed in Table 3.
PLP sometimes fails to converge due to label swapping in multi-
threading. We have to set its termination threshold to 0.001 in
order to have a comparable result with DOLPA on all three graphs.
Figure 6 summarizes the comparison between the algorithms for
the di�erent parallel settings in a performance pro�le plot [7]. We
can see that DOLPA outperforms PLP in 75% of the settings with
maximum speedup up to 10⇥.

6 RELATEDWORK
Since LPA was �rst introduced for community detection, many
other works that improve or extend it have been proposed. We list
only some here. Xie et al. stabilize LPA by eliminating the need

of tie breaking [36]. Other works alleviate the randomness of tie
breaking with other node preference or edge preference instead of
treating each node/edge with the same preference based on :-shell
value [37], local cycle [40], ormodularity [3, 23]. Leung et al. use hop
weight to prevent the occurrence of a “monster” community [20].
Common measures for node preference include degree centrality
and clustering coe�cient [32]. The works using node preferences
are proven to produce a deterministic solution but the approaches
have high computational cost and/or evaluation metric bias.

The quality of solution produced by LPA can be improved by
selecting in�uential nodes [41] or community kernels [21] in the
pre-processing phase and then growing community structures from
them. The algorithm can be made faster by maintaining all label
information in memory instead of computing on the �y [8, 12]. But
this approach require data synchronization for the label information
and it’s not scalable for large network processing. The state-of-the-
art parallel LPA is the Parallel Label Propagation (PLP) algorithm
implemented on multi-core architecture [34]. Other works paral-
lelize LPA on multi-core [18], on GPU [16, 33], in Map-Reduce
model [39] and in distributed memories [1]. Liu et al. [22] also
combine LPA with direction optimization technique, but their work
is implemented in distributed memory with active-message based
runtime system.

Direction optimization has been applied in other graph algo-
rithms, including PageRank[35], Betweenness Centrality[25], Con-
nected Components [13] and Single Source Shortest Path [6] and
in graph frameworks such as Polymer[38] and Ligra[31]. Besta et
al. [5] study push-pull dichotomy in graph computations in terms
of performance, speed of convergence and code complexity.

7 CONCLUSION
We presented a new Label Propagation algorithm, called Direction-
optimizing Label Propagation Algorithm (DOLPA), and showed
its e�cacy as a method for community detection in networks. We
introduced a new label update heuristic called ����, and abstracted
the current label update operation as ����. The algorithm applies
���� for label update in the early iterations and switches to ����
for label update in later iterations. Using a carefully designed mi-
crobenchmark, we summarized the characteristics of ���� and
����, and we validated our implementation on benchmarks with
known ground truth and demonstrated increased accuracy and
decreased runtime compared to the state-of-the-art parallel imple-
mentations. The time-to-solution/quality-to-solution trade-o� that
our algorithm provides enables many community detection sce-
narios. For fast community detection, ���� saves the time, but too
many ���� operations harm the precision. For accurate community
detection, ���� is precise but costly.
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A ARTIFACT DESCRIPTION
After downloading the compressed package from the Zenodo 10.
5281/zenodo.3748897, one needs to extract our package. Our pack-
age has 5 parts: source code (src), unit test (test), tool, scripts, and
Jupyter Notebooks for plotting �gures (plot). Please refer to the
Readme �le in each part in the package.

A.1 Software Prerequisites
CMake >= 3.13
GCC >= 6
Anacoda (only for plotting using Jupyter Notebook)
bash
wget

A.2 Dataset Preparation
A.2.1 Downloading the GraphChallenge and Real-world Datasets.
Download theGraphChallenge and real-world graphs using scripts/data-
prep/download.sh. This script automatically downloads all 4 GraphChal-
lenge graphs and the real-world graphs and extracts the graphs
from the downloaded archives into a data directory.

A.2.2 Generating the LFR Graphs. Download the LFR-benchmark
source code, compile and generate the LFR graphs using scripts/data-
prep/lfr-gen.sh. This script generates 5 groups of LFR graphs: micro,
small-0.1, small-0.3, big-0.1 and big-0.3. Each group has 10 graphs.
(Note: it may take a long time to generate.)

A.3 Compiling and Running
A.3.1 How to compile. Microbenchmark experiments use Debug
build for result collection. Strong scaling and quality of solution
evaluation use Release build. Release build is the default build. To
compile Debug build for microbenchmark, including
-DENABLE_DEBUG=ON :

Listing 1: How to compile
$ cd do lpa
$ mkdir b u i l d
$ cd b u i l d
$ CC=/ us r / b in / gcc CXX=/ us r / b in / g++
cmake . . �DENABLE_DEBUG=ON
$ make

After compilation, the binary LPA and DOLPA will be generated
in the bin directory within build. Also, the tool clusterComp is
generated in the bin directory.

As the real-world data has no ground truth information, we use
the fast-tracking resistance (FTR) method implementation in Grap-
polo to generate the ground truth communities of the real-world
graphs. Use evaluation/compile_louvain.sh to download the source
code of Grappolo and compile it. The script generates executable
LV and executable FTR respectively.

A.3.2 How to run. Basic LPA/DOLPA running option:
-g, –graph-type < 1 � 5 >
1) - LFR Graph
2) - Matrix Market
3) - Metis/DIMACS#10

4) - SNAP
5) - Edge List
-i, –input-graph < 5 8;4=0<4 >
-v, –groundtruth-community < 5 8;4=0<4 >
-n, –thread-number < E0;D4 >
-t, –termination-threshold < E0;D4 > : large value will result early
termination
-m, –max-iteration < E0;D4 > : to assure convergence

Other DOLPA running options are related to the seeding pa-
rameter, switch threshold and two seeding strategies. The seeding
parameter default value 0 (|+ |/|⇢ |) is the expected best solution/run-
tim combo provider.
-r, –random-seeding < E0;D4 >
-h, –highdegree-seeding < E0;D4 >
-s, –switch-threshold < E0;D4 > : default value 0 is the expected
best solution/runtim combo provider.

A.3.3 Microbenchmark. Nowwe run LPA/DOLPA for themicrobench-
mark. There are two scripts in scripts/microbench: random.sh and
random_per_iter.sh. The results from the former script include run-
time breakdown where the pre-process, push and pull step runtime
can be collected. In the latter script, the number of edges visited
(under metric touch) at each iteration is collected here, so is the
F-Score at each iteration for di�erent variants.

A.3.4 QoS Evaluation. After compiling the Release build, we run
LPA/DOLPA for the quality-of-solution evaluation results using
the scripts under scripts/evaluation. We divide the evaluation into 3
parts for 3 di�erent groups of graphs. For real-world graph, before
we evaluate on the real-world data, we generate the ground truth
information of the real-world graphs using FTR method. This step
is automatically done using evaluation/realworld.sh. evaluation/re-
alworld.sh also generates the evaluation results on the real-world
graphs.

A.3.5 Strong Scaling. Using Release build, we run strong scaling
experiments using the scripts in scripts/scaling.

A.4 Plotting
After collecting raw data into comma-separated values (csv) �les, we
plotted the �gures appearing in the paper. We provide the template
of the csv �les with respect to each notebook. To reproduce the
�gures in our paper, run the notebook with the same name of the
csv �les that are in the same directory. The notebook generates
�gure in both pdf and ps (used in our paper).
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