
39

Direction-Optimizing Label Propagation Framework for
Structure Detection in Graphs: Design, Implementation, and
Experimental Analysis
XU T. LIU,Washington State University, USA and Paci�c Northwest National Lab, USA
ANDREW LUMSDAINE, University of Washington, USA and Paci�c Northwest National Lab, USA
MAHANTESH HALAPPANAVAR and KEVIN BARKER, Paci�c Northwest National Lab, USA
ASSEFAW H. GEBREMEDHIN,Washington State University, USA

Label Propagation is not only a well-known machine learning algorithm for classi�cation, but it is also an
e�ective method for discovering communities and connected components in networks. We propose a new
Direction-Optimizing Label Propagation Algorithm (DOLPA) framework that enhances the performance of the
standard Label Propagation Algorithm (LPA), increases its scalability, and extends its versatility and application
scope. As a central feature, the DOLPA framework relies on the use of frontiers and alternates between label
push and label pull operations to attain high performance. It is formulated in such a way that the same basic
algorithm can be used for �nding communities or connected components in graphs by only changing the
objective function used. Additionally, DOLPA has parameters for tuning the processing order of vertices
in a graph to reduce the number of edges visited and improve the quality of solution obtained. We present
the design and implementation of the enhanced algorithm as well as our shared-memory parallelization of
it using OpenMP. We also present an extensive experimental evaluation of our implementations using the
LFR benchmark and real-world networks drawn from various domains. Compared with an implementation
of LPA for community detection available in a widely used network analysis software, we achieve at most
�ve times the F-Score while maintaining similar runtime for graphs with overlapping communities. We also
compare DOLPA against an implementation of the Louvain method for community detection using the same
LFR-graphs and show that DOLPA achieves about three times the F-Score at just 10% of the runtime. For
connected component decomposition, our algorithm achieves orders of magnitude speedups over the basic
LP-based algorithm on large diameter graphs, up to 13.2⇥ speedup over the Shiloach-Vishkin algorithm, and
up to 1.6⇥ speedup over A�orest on an Intel Xeon processor using 40 threads.

CCS Concepts: • Computing methodologies! Shared memory algorithms; •Mathematics of comput-
ing! Graph algorithms.

Additional Key Words and Phrases: Community Detection, Connected Components, Label Propagation,
Direction-optimizing

Authors’ addresses: Xu T. Liu, Washington State University, Pullman, WA, USA, 99164 and Paci�c Northwest National Lab,
Richland, WA, USA, 99354, xu.liu2@wsu.edu; Andrew Lumsdaine, University of Washington, Seattle, WA, USA and Paci�c
Northwest National Lab, Richland, WA, USA, 99354, al75@uw.edu; Mahantesh Halappanavar, mahantesh.halappanavar@
pnnl.gov; Kevin Barker, Paci�c Northwest National Lab, Richland, WA, USA, 99354, kevin.barker@pnnl.gov; Assefaw H.
Gebremedhin, Washington State University, Pullman, WA, USA, 99164, assefaw.gebremedhin@wsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1084-6654/2022/10-ART39 $15.00
https://doi.org/10.1145/3564593

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

HTTPS://ORCID.ORG/0000-0003-3980-9803
HTTPS://ORCID.ORG/0000-0002-9153-6622
HTTPS://ORCID.ORG/0000-0002-2323-4753
HTTPS://ORCID.ORG/0000-0003-4947-0559
HTTPS://ORCID.ORG/0000-0001-5383-8032
https://orcid.org/0000-0003-3980-9803
https://orcid.org/0000-0002-9153-6622
https://orcid.org/0000-0002-2323-4753
https://orcid.org/0000-0003-4947-0559
https://orcid.org/0000-0001-5383-8032
https://orcid.org/0000-0001-5383-8032
https://doi.org/10.1145/3564593

39:2 Liu, Xu T, et al.

ACM Reference Format:
Xu T. Liu, Andrew Lumsdaine, Mahantesh Halappanavar, Kevin Barker, and Assefaw H. Gebremedhin.
2022. Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs: Design, Im-
plementation, and Experimental Analysis. ACM J. Exp. Algor. 9, 4, Article 39 (October 2022), 32 pages.
https://doi.org/10.1145/3564593

1 INTRODUCTION
Background. The label propagation algorithm (LPA) is a machine learning approach for data
classi�cation where label information is propagated from labeled to unlabeled entities within a
network [73]. The method is iterative: starting with an initial (typically small) subset of data points
that have labels, the method successively propagates labels to unlabeled data points until all data
points are properly labeled. Raghavan et al. [46] showed that LPA could be an e�ective method for
identifying communities in networks. LPA has also been applied for �nding other graph structures,
including connected components [22, 29, 51].

Community detection is a fundamental structure and function discovery tool in network analysis.
Its goal is to identify groups of tightly-knit entities—known as communities—in social, biological,
technological and other types of complex networks. For example, video sharing services such as
YouTube cluster users with similar viewing interests together to enable recommendation systems
that provide better services. As sizes of networks continue to increase, we generally need fast
algorithms to enable large-scale graph analytics. Two of the main advantages of LPA over many
other community detection algorithms are that its run time is nearly linear in the size of the network
and that it requires no a priori information about community structures in a network. Both of these
make it practical for processing graphs with billions of edges.

Finding connected components in graphs is another well-studied fundamental problem in graph
theory. Given an undirected, unweighted graph⌧ = (+ , ⇢), �nding a connected component amounts
to �nding a labeling ! such that for any two vertices D and E , !(D) = !(E) if D and E are in the same
connected component and !(D) < !(E) if they are not.
Discovering connected components or community structures using LPA are essentially similar

tasks. They di�er only in how the objective function is de�ned and used. In both cases, initially, each
vertex is assigned a unique label, for example, the ID of the vertex. In �nding connected components,
the goal then is to select the minimum label among a vertex’s adjacent vertices. The analogous
goal in the case of community detection is to select the most frequently used label among a vertex’s
adjacent vertices (or the label associated with the largest weight in a weighted graph). Therefore,
the same algorithmic framework can be used to handle the two problems by appropriately de�ning
the objective function and interpreting the labeling information ! when the algorithms converge.
Proposed framework. In this paper, we propose a frontier-based Direction-Optimizing Label
Propagation Algorithm (DOLPA) that enforces a desirable processing order on vertices, enhances
performance, and o�ers �exible design for scalable implementations for community detection and
connected components identi�cation in graphs within a uni�ed framework.
In parallel graph processing, di�erent graph algorithms use di�erent processing orders on

vertices. One extreme is the case where the processing order is random. Another extreme is
where the processing order is strictly sequential. The Parallel Label Propagation (PLP) algorithm
proposed by Staudt and Meyerhenke [56], which is a parallelization of the standard LPA algorithm,
belongs to the �rst type (random order), achieved via multi-threading. DOLPA o�ers a tunable
middleground between the two extreme processing orders. More speci�cally, it provides a “knob”
through which a trade-o� between runtime and quality of solution is achieved. To achieve this,
DOLPA maintains frontiers and switches between two abstractions, called a ���� operation and
a ���� operation. DOLPA can be used for �nding either connected components or community

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

https://doi.org/10.1145/3564593

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:3

structures by merely customizing the objective functions. In this work, we apply DOLPA to both
community detection and connected component decomposition. We experimentally show that the
processing order DOLPA enforces reduces the runtime compared to state-of-the-art algorithms in
both community detection and connected component decomposition, and improves the quality of
solution in community detection.
To jump-start DOLPA, we need to pre-select a set of vertices as “seeds” into the initial frontier

using some strategy. Selection of seeds in the context of the LP algorithm has been looked at by a
few previous studies but only to a limited extent. As a part of the contributions of this paper, we
propose nine seeding strategies and conduct an extensive empirical study on their performance
and provide insights on their operations.
We evaluate the performance of our OpenMP DOLPA implementation and the quality of solu-

tion produced with both synthetic graphs and real-world graphs. We show that, compared with
PLP, DOLPA achieves at most �ve times the F-Score while maintaining similar runtime. We also
compare DOLPA with a state of the art parallel implementation of the Louvain method available in
Grappolo [40] and �nd DOLPA to be both faster (speedup of ten) and more accurate (three times in
F-Score). The Louvain method is based on modularity maximization.
Summary of contributions. In summary, in this work, we:

• Introduce a new LP algorithm (called DOLPA) that uses frontier and applies direction opti-
mization to LPA for graph structure detection (§3).

• Apply DOLPA to community detection (§4) and connected component decomposition (§5).
• Propose a variety of seeding strategies for community detection grouped as random, exact, and
approximate (§4.4). The approximate seeding strategies use subgraph sampling to approximate
a parent graph and save runtime.

• Conduct extensive experimental analysis along three objectives:
(i) Evaluate the runtime and the number of iterations obtained by DOLPA for connected

component decomposition on synthetic and real-world graphs (§6);
(ii) Empirically study how di�erent seeding strategies behave in DOLPA in terms of time and

quality of solution (§8); and
(iii) Evaluate the runtime and quality of solution obtained by DOLPA for community detection

using both synthetic and real-world graphs (§9).

The DOLPA source code, scripts to reproduce all the experiments, and the scripts to generate the
plots in this paper are made available at: https://datascience.aeolus.wsu.edu/tlieu/dolpa. A portion
of the material presented in this paper has appeared in the conference paper [39] that focused on
only community detection. The present work extends the conference paper in two major ways. First,
the DOLPA framework is extended to apply to both community detection and �nding connected
components. In particular, the entire discussion of connected components algorithms (§5) and
their expertimental evaluations (§6) is new to this paper. Second, the proposed seeding strategies
(§4.4) and their detailed evaluation (§8) is also new to this paper. In addition, the seeding strategies
have informed design choices we made in crafting variants of DOLPA tailored for best runtime
performance and quality of solution depending on properties of input graph and requirements of
the application.

2 LABEL PROPAGATION
Loosely speaking, the goal of community detection is to �nd a grouping (or clustering) of the
vertices in a graph in such a way that intra-connection within a group is maximized and inter-
connection between groups is minimized. The problem has attracted a lot of attention in the

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

https://datascience.aeolus.wsu.edu/tlieu/dolpa

39:4 Liu, Xu T, et al.

Algorithm 1 PLP: Parallel Label Propagation [56].
Input: Graph ⌧ = (+ , ⇢), termination threshold \
Output: 8 E 2 + : label [E] stores the label of E
1: for all E 2 + do in parallel
2: label[E] 83 [E]
3: D?30C43 |+ |, +02C8E4 +
4: while D?30C43 >= \ do
5: D?30C43 0
6: for all E 2 +02C8E4 |346(E) > 0 do in parallel
7: for all adjacent vertexF of E do
8: frequency[label[F]]++
9: ; ������(frequency[label[F]])
10: if label[E] < ; then
11: label[E] ;
12: atomically increment D?30C43
13: +02C8E4 +02C8E4 [{E ’s neighbors}
14: else
15: +02C8E4 +02C8E4 \ {E}

literature and a variety of di�erent algorithms have been suggested for solving it. See the survey
paper by Fortunato [14] for a comprehensive review.
One of the simplest and fastest algorithms for community detection is label propagation (LP).

Garza and Schae�er give a detailed investigation of LP-based approaches [16] and Section 10 of this
paper o�ers a brief review of related work. Since it forms the basis for our proposed algorithms, we
brie�y discuss the standard LP algorithm here.

In the standard LP algorithm, each vertex is initially assigned a unique label and at every iteration
a vertex adopts a label that is the most commonly used among its adjacent vertices. As the algorithm
progresses, densely connected groups of nodes form a consensus on their labels and vertices that
attain the same labels are grouped as communities.

Algorithm 1 outlines a parallelization of the standard LP as given in the Parallel Label Propagation
(PLP) work [56]. In Line 1, a unique label is initially assigned to each vertex in the graph. In each
iteration, each vertex’s adjacent vertices are examined in parallel so that the label of the vertex is
updated with a maximum label among its adjacent vertices (Line 6 to 15). A maximum label could
be the most common label or the label associated with highest weight. The stopping criterion in
Line 4 is that the number of updated labels is less than a threshold \ , an input to the algorithm. The
algorithm outputs an array of vertex labels, where a set of vertices having the same label signi�es
membership in the same community.
Line 7–8 takes O(3 (E)) time, where 3 (E) is the degree of the vertex E . In practice, LPA requires

only a few iterations to converge, and therefore the runtime is nearly linear, i.e.$ (: (< +=)), where
: is the number of iterations,< is the number of edges, and = is the number of vertices.

3 DIRECTION-OPTIMIZING LABEL PROPAGATION
In the early iterations of LPA, instead of passively propagating labels, we choose a more “important”
label for a vertex E in the network and eagerly broadcast the label to E ’s adjacent vertices. We
abstract this kind of label update as a ���� operation. Furthermore, in LPA, for each vertex E , the

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:5

Algorithm 2 Parallel, Direction Optimizing Label Propagation Algorithm.
Input: Graph ⌧ = (+ , ⇢), seeding parameter g , switch threshold l .
Output: 8 E 2 + : label [E] stores the label of E
1: for all E 2 + do in parallel
2: label[E] a unique value in {0, 1, · · · , |+ | � 1}
3: unset bit[E]
4: frontier fraction g of + ù Select randomly
5: pullswitch False, iteration 0
6: while (frontier< ;) do
7: iteration++
8: if pullswitch = False and l = iteration then
9: pullswitch True ù Enter only once
10: if pullswitch = True then
11: for all E 2 frontier do in parallel
12: unset bit[E]
13: P���(E)
14: if label[E] has changed then
15: set bit[E 0B =486⌘1>AB] atomically
16: else
17: for all E 2 frontier do in parallel
18: unset bit[E]
19: P���(E)
20: if bit[E 0B =486⌘1>AB] is unset then
21: set bit[E 0B =486⌘1>AB] atomically
22: frontier ;
23: for all E 2 + do
24: if bit[E] is set then
25: frontier frontier [{E }

labels of E ’s adjacent vertices are queried to obtain the maximum label or the minimum label. We
abstract this label update operation as a ���� operation.
To make best use of both label update operations, we use a frontier as a processing queue. The

frontier is a set of paths originating from a given set of start vertices. By pre-selecting “seed” vertices
into a frontier, we can jump-start the �rst iteration (we will discuss seeding strategies in §4.4).
When the workload is small in the early iterations, we apply ���� for label updates; when the
workload reaches a speci�ed threshold or the iteration number reaches a direction switch threshold,
we switch to ���� for label updates. This idea of direction optimization was pioneered by Beamer et
al. [6] in parallel Breadth-First Search and inspires our work.
DOLPA is summarized in Algorithm 2. The ���� abstraction is outlined in Algorithm 3 and

the ���� abstraction is given in Algorithm 4. In both Algorithm 3 and Algorithm 4, the operations
are specialized for community detection. The ���� abstraction tailored for �nding connected
components is given in Algorithm 5 and the variant of ���� specialized for connected components
is given in Algorithm 6.

Line 1 to 5 in Algorithm 2 constitute the pre-processing steps. The purpose of Line 1 is to give a
unique label to each vertex in the graph. We select a fraction g of vertices randomly as seed vertices

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:6 Liu, Xu T, et al.

Algorithm 3 Pseudocode of PUSH for community detection.
1: function P���(vertex E)
2: for all adjacent vertexF of E do in parallel
3: label[F] label[E]

Algorithm 4 Pseudocode of PULL for community detection.
1: function P���(vertex E)
2: for all adjacent vertexF of E do
3: frequency[label[F]]++
4: label[E] ������(frequency[label[F]]) ù Find the most frequent label

Algorithm 5 Pseudocode of PUSH for �nding connected components.
1: function P���(vertex E)
2: change False
3: for all adjacent vertexF of E do in parallel
4: if label[F] > label[E] then
5: label[F] label[E]
6: change True
7: return change

Algorithm 6 Pseudocode of PULL for �nding connected components.
1: function P���(vertex E)
2: minlabel label[E]
3: for all adjacent vertexF of E do
4: minlabel <8=(minlabel, label[F])
5: if minlabel < label[E] then
6: label[E] minlabel
7: return True
8: return False

and add them to the initial frontier. The fraction g is a seeding parameter passed as a part of the
input. The pullswitch Boolean variable is initially turned o�.
In each iteration, we process each vertex in the frontier and add all the adjacent vertices of the

vertex to the next frontier if there is any label update. The direction optimization is triggered at
Line 8 by the switch threshold l , which is an input parameter. Speci�cally, when the number of
iteration is equal to l , pullswitch is turned on. Note that if l is equal to one, no ���� operation is
applied. The stopping criterion for iterations at Line 6 is an empty frontier. The output of DOLPA
is a set of labels associated with vertices, where vertices having the same label indicates that they
belong to the same structure.

Complexity of DOLPA. We �rst analyze DOLPA’s complexity in the sequential setting. Both
P��� and P��� take O(3 (E)) time each, where 3 (E) is the degree of the vertex E . Selecting vertices
and adding to the frontier is O(=) in time and also in space, where = is the number of vertices. The
worst case performance of DOLPA happens when the frontier holds all of the vertices in the graph,
in which case the space complexity of the frontier is O(=). Therefore, the runtime of DOLPA is

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:7

bounded by O(: (< + =)), where : is the number of iterations,< is the number of edges, and = is
the number of vertices.

Let us consider next the upper bound for : . For �nding connected components, the upper bound
for : is the diameter of the graph ⇡ , which is the maximum steps required for a label to propagate
from one end of a connected component to the other end. For community detection, the upper
bound for : is in practice close to ⇡ . However, there may be cases where two labels keep swapping
(discussed shortly in Section 4.2) and : could be much larger than ⇡ .

Now we analyze DOLPA in the parallel setting using the work-depth model [20]. In the work-
depth model, the work F is the total number of operations executed by a computation, and the
depth 3 is the longest chain of sequential dependencies in the computation. If ? processors are
available, with a randomized work-stealing scheduler, Brent’s scheduling principle dictates that
the runtime is$ (F/? +3). In DOLPA, the overall work is O(: (< +=)), and the depth is O(⇡ · ;>6=).
In the worst case, each frontier contains at most = vertices and there are at most ⇡ frontiers built
throughout the algorithm. In this case, the depth is O(⇡=), and the total work is O(⇡ (< + =)).

4 APPLICATION TO COMMUNITY DETECTION
We discuss in this section in more detail how we adopt DOLPA for community detection. We also
outline and address various challenges that arise in parallelizing DOLPA. Finally, we discuss nine
seeding strategies for community detection proposed in this work.

4.1 Frontier Expansion
In DOLPA, the next frontier expands as either a ���� or ���� operation updates the label of a
vertex. For each vertex, the algorithm inserts all of the vertex’s neighbors into the next frontier
without knowing whether any of its neighbors have been inserted. This situation happens in both
the serial and the parallel cases. In DOLPA, we use a bitmap [43] to avoid duplicate entries in
frontier expansion. A set bit indicates an ensuing insertion of that vertex, hence latter insertion
attempt is aborted. Line 15 and Line 21 in Algorithm 2 show how we test and set the bitmap.
The frontier expansion rate of DOLPA determines how fast the workload increases in each

iteration. The rate is decided by the branching factor of the vertices in the current frontier. (A
branching factor of a vertex is the number of unvisited vertices of it.)

4.2 Local Maxima and Label Swapping
Figure 1 shows a scenario where two vertices reach a local maxima and swap labels in parallel. The
upper left vertex �nds label 2 as the most common in its neighborhood, while the lower right vertex
�nds label 1 as the most common label in its neighborhood. In this scenario, these two vertices
keep swapping their labels in each iteration. This is called label oscillation [46]. An oscillation
also happens in the serial algorithm when the input graph is bipartite. To detect and prevent label
oscillation, before a label is updated, the maximum label currently received is compared with the
previous label. If the maximum label is the same as the previous label, a label swap is detected.
When this happens, the vertex is manually marked as inactive and the algorithm moves on.

Fig. 1. An illustration of swapping labels.

A more practical way to handle label swapping is to
ignore it. This can be achieved by applying the same stop-
ping criterion as PLP: if the amount of labels updated in
the previous iteration is less than a certain threshold, the
iteration stops (Line 6). However, this stopping criterion
depends on the condition that the termination threshold
is greater than the number of label swapping.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:8 Liu, Xu T, et al.

4.3 Parallelizing P��� and P���
To e�ectively parallelize ���� and ����, we exploit two
levels of parallelism in Algorithm 2: task level (coarse-
grained) and vertex level (�ne-grained). The coarse-
grained parallelism is re�ected in Line 11 and Line 17,
where a ���� or ���� task is performed on each vertex in the frontier. The �ne-grained parallelism
happens within ���� and ����, where the label propagation is performed on the neighborhood of a
vertex E . The reason we introduce two levels of parallelism is to address workload imbalance at the
task level, where the vertices could have various number of neighbors. With the help of the two
level parallelism, DOLPA achieves balanced workload.
When multiple vertices perform ���� concurrently, they access their neighborhood in parallel.

Because of the shared neighbors, these vertices will “�ght” for the labels of their common neighbors.
This is a benign race that does not harm correctness of the algorithm but can hurt performance [32].
Benign race entails repeated work and makes the algorithm non-deterministic.

Each ���� operation is almost data independent disregarding insertion of vertices into the next
frontier. But if we allow concurrent insertions into a frontier, the order of insertion into the frontier
will force a processing order on the ���� operations in the next iteration. We want to prevent
this from happening. Therefore, we do not physically insert vertices into the next frontier during
label propagation. Instead, we simply mark the bit belonging to that vertex. The frontier insertion
actually happens, and does so only once, at the end of each iteration (at Line 25).
The frontier insertion is implemented in serial at the end of each iteration (at Line 25), instead

of within multi-threading. A possible parallel implementation here is to let each thread insert
the vertices into a thread-local frontier and then merge these into the global frontier in a critical
section. Each thread would randomize the order of the insertion into the frontier, which is the same
randomization that PLP algorithm uses. In practice, we observed that such a parallel implementation
does converge faster than the serial implementation, however, the quality of the solution the parallel
implementation produces is much lower than that of the serial implementation. Hence, we adopt
the serial implementation in DOLPA.
Within ����, there are concurrent reads on the labels of the neighbors of a vertex E , which

is embarrassingly parallelizable. In practice, we accumulate the frequencies of the labels using
std::unordered_map which does not support concurrent write. Since we already have su�cient
parallelism at the coarse-grained level, we adopt serial ���� in our implementation.

4.4 Seeding Strategies
A set of seed (or in�uential) vertices forms the potential core of a community structure in the
network. Nodes with high degree or clustering coe�cient, fully-connected cliques, and maximal
cliques are usually treated as seeds of a community structure [72]. In general, a node with more
connections could be viewed as more important in the network [64]. It has been proven that the
membership contribution of a vertex to a community is highly related to its degree [48]. However,
there has not been a principled study on how a seeding strategy should be chosen and how the
combination of seeding strategy and parameter a�ect the performance of a community detection
algorithm. We propose and investigate nine seeding strategies, grouped under three categories:
random seeding strategy, exact seeding strategies and approximate seeding strategies. Table 1 gives
an overview of the strategies.

4.4.1 Random Seeding Strategy. Our baseline strategy, called random seeding strategy, selects seed
vertices randomly. In particular, each vertex is selected to be a seed independently with equal

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:9

Table 1. Nine seeding strategies in three categories: Random, Exact and Approximate seeding.

Seeding Strategy Description
1.1. Random Randomly sample a fraction g of vertices as seeds
2.1. High-degree Sort vertices on degrees and select a fraction g of high-degree vertices
2.2. Low-degree Sort vertices on degrees and select a fraction g of low-degree vertices
2.3. High-total degree Count total degree of each vertex, sort the vertices on their total

degrees and select a fraction g of high-total-degree vertices
2.4. Low-total degree Count total degree of each vertex, sort the vertices on their total

degrees and select a fraction g of low-total-degree vertices
3.1. High-degree sampling
distribution

Randomly sample a fraction g of vertices and sort them on degrees in
descending order

3.2. Low-degree sampling
distribution

Randomly sample a fraction g of vertices and sort them on degrees in
ascending order

3.3. High-total degree sam-
pling distribution

Randomly sample a fraction g of vertices, count total degree of these
vertex, sort them on total degrees in descending order

3.4. Low-total degree sam-
pling distribution

Randomly sample a fraction g of vertices, count total degree of these
vertex, sort them on total degrees in ascending order

probability. Since random seeding strategy has no bias over the vertices, it maintains a random
order of the vertices in the frontier.

4.4.2 Exact Seeding Strategies. Kloumann and Kleinberg [24] found that performance was higher
when a large fraction of seed vertices’ edges were to vertices that lie within the same community.
This suggests that a seed should have a good internal connectivity within the community relative
to the rest of the graph. We adopt this idea and select high-degree vertices as seeds, a strategy we
refer to as High-degree seeding strategy.
In contrast to the High-degree seeding strategy, we also propose Low-degree seeding strategy.

The rationale for considering low-degree as a seeding strategy is that the label of a low-degree
vertex has a high probability to join the community in which its neighbors belong. Due to the
nature of a low-degree vertex—that it has a small number of adjacent vertices—a low-degree vertex
often maintains its label information throughout the propagation process.
Gao and Zhang [15, 67] proposed selecting seed vertices based on the total degree of the neigh-

borhood of a vertex. The total degree of a vertex is the sum of the degrees of its adjacent vertices. A
neighborhood owning a high total degree thus means that it has a relatively high number of links
to the community structure it resides in. We adopt this idea and propose selecting vertices with a
high total degree of their neighborhood as a strategy, a strategy we call High-total-degree seeding
strategy. For a similar reason as in low-degree seeding strategy, we also propose selecting vertices
having a low total degree of the neighborhood as a strategy, which we call Low-total-degree seeding
strategy.

Because the High-degree, Low-degree, High-total-degree and Low-total-degree seeding strategies
all compute the exact ordering of the selected seeds within the vertex set of the graph and maintain
this ordering in the initial frontier, we categorize the four strategies as exact seeding strategies.

4.4.3 Approximate Seeding Strategies. As a part of a pre-processing step, the cost of an exact
seeding strategy can be quite high as the size of the network increases, due to the need to sort
vertices based on either their degrees or the total degrees of their neighborhoods. A remedy here is
to randomly sample a small portion of the graph that approximates the original graph. Two most

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:10 Liu, Xu T, et al.

common sampling schemes are subgraph sampling and neighborhood sampling [25]. A subgraph
sampling scheme samples each vertex independently with equal probability and observes the
subgraph induced by the sampled vertices. A neighborhood sampling scheme further observes the
edges between the sampled vertices and their adjacent vertices.
Combining these sampling schemes with the exact seeding strategies, we propose several ap-

proximate seeding strategies. These strategies are: High-degree sampling seeding strategy, Low-degree
sampling seeding strategy, High-total-degree sampling seeding strategy and Low-total-degree sam-
pling seeding strategy. The �rst two of these use the subgraph sampling scheme while the latter two
use the neighborhood sampling scheme. In all of these approximate seeding strategies, we sample a
fraction g of the vertices as seeds and sort them based on either the degrees of the sampled vertices
or the total degrees of the sampled neighborhood. Then we insert seeds into the initial frontier.

5 APPLICATION TO CONNECTED COMPONENT DECOMPOSITION
We discuss in this section in more detail how we adopt DOLPA for connected component decom-
position. Finding connected components in a graph is an extensively studied problem. We focus on
only parallel algorithms for the problem in this paper. We group the algorithms into four categories:
1) algorithms based on using breadth-�rst search graph traversal [51, 53]; 2) the Shiloach-Vishkin
(SV) algorithm [50] and its variants such as A�orest [59], which is the state-of-the-art SV algorithm
speci�cally optimized for power-law degree graphs; 3) the Minimum Label Propagation for con-
nected component decomposition (LPCC) [9, 36, 57, 65]; and 4) others [52]. The authors of these
algorithms propose many practical optimizations for �nding connected components. We discuss
some of these optimizations in this section and apply them to our algorithm. We also show in our
discussion that the SV algorithm and LPCC are not that di�erent; most of the optimizations that
are applicable to SV can also be applied to LPCC. We discuss the ones we adopt in our algorithms.

5.1 Fast SV Algorithm
Shiloach and Vishkin [50] introduced the �rst parallel connected components algorithm on the
Parallel Random Access Machine (PRAM) model, as shown in Algorithm 7. The SV algorithm relies
on two operations on a union-�nd data structure: “hook” (also known as “union”) and “compress”
(also known as “pointer jumping”). The two operations are outlined in Line 9 and Line 18 of
Algorithm 7, respectively. For a given edge, the hook operation combines vertices into trees such
that the vertices in the same component belong to the same tree. The compress operation shortens
the �nd path in the data structure by pointing the current vertex’s parent pointer directly to the
root of the tree. Both operations can be performed in parallel. The complexity of this algorithm is
$ (<;>6=), where< is the number of edges and = is the number of vertices.

5.2 ����, ����, and ����
Notice that the purpose of the hook operation is essentially to “hook” the labels of two vertices: if
the label of a vertex D is smaller than its adjacent vertexF , the ���� operation pushes the label
of D to vertexF ; if the label of D is bigger thanF , the hook operation pulls the label ofF to D. In
contrast, the ���� function in Algorithm 5 only pushes the label of D toF if label[D] is smaller than
that ofF . The ���� function in Algorithm 6 only pulls the label ofF to D if label[F] is smaller than
that of D. Therefore, ���� is a bidirectional operation combining both ���� and ���� operations.
Notice that ���� may propagate labels two hops per iteration, where it pulls the label to itself �rst,
then pushes the newly updated label.

Figure 2 shows how the labels are updated on a vertex (vertex 3 in the example) and its neighbors
using ����, ����, and ���� operations, respectively. As we can see in the �gure, each vertex starts
with its own vertex ID as a label. ����(vertex 3) pushes label 3 to vertices 1, 2 and 4, but only vertex

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:11

Algorithm 7 Fast Shiloach-Vishkin (SV) Algorithm [50].
Input: Graph ⌧ = (+ , ⇢).
Output: 8 E 2 + : label [E] stores the label of E
1: for all E 2 + do in parallel
2: label[E] a unique value in {0, 1, · · · , |+ | � 1}
3: change True
4: while change do
5: for all E 2 + do in parallel
6: change H���(E , label)
7: for all E 2 + do in parallel
8: C�������(E , label)
9: function H���(E , label)
10: change False
11: for all adjacent vertexF of E do in parallel
12: ; min(label[F], label[E])
13: ⌘ max(label[F], label[E])
14: if ; < ⌘ then
15: update label[⌘] to be ; atomically
16: change True
17: return change
18: function C�������(E , label)
19: while label[E] < label[label[E]] do
20: label[E] label[label[E]]

Fig. 2. An illustration of labels update on vertex 3 and its neighbors using ����, ����, and ���� respectively.
Each vertex starts with its own vertex ID as the initial label. The arrow in the figure represents the direction
of the label propagation. The subfigures at top are the labels of vertices at the beginning of each operation.
The subfigures at bo�om are the labels of the vertices at the end of each operation.

(a) ����(vertex 3) (b) ����(vertex 3) (c) ����(vertex 3)

4 updates its label because it has a bigger label than 3. ����(vertex 3) pulls labels from vertices 1, 2
and 4, and update its label to be the smallest one among them, 1. ����(vertex 3) pushes label 3 to

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:12 Liu, Xu T, et al.

Algorithm 8 Pseudocode of a combination of ���� and ����, aka ����.
1: function H���(vertex E , label)
2: change False
3: for all adjacent vertexF of E do in parallel
4: if label[F] > label[E] then
5: label[F] label[E]
6: change True
7: if label[F] < label[E] then
8: label[E] label[F]
9: change True
10: return change

vertex 4, which has a bigger label than vertex 3, and pulls labels of vertices 1 and 2, which have
smaller labels than vertex 3. The label update in all three operations are monotonic, meaning that
the labels being updated by these three operations never increase. Because of this, the order of
visiting vertex 1 and vertex 2 does not matter, because the label of vertex 3 is going to end up with
the smaller label among vertex 1 and vertex 2 at the end of the neighborhood traversal.

If we combine ���� (Algorithm 5) with ���� (Algorithm 6) for connected component decomposi-
tion, we end up with Algorithm 8, which is equivalent to the hook operation in SV algorithm. Based
on the observations we have made about the relationships among the operations ����, ����, and
����, the SV algorithm is indeed a LP-based algorithm for connected component decomposition.
Therefore, any optimizations/heuristics that are proposed for the SV algorithm are also applicable
to LP-based algorithms.

5.3 Combining ����, ����, and ���� with Compaction Methods
Recent research [21] proposed randomized concurrent algorithms for disjoint set union, which
combines the compaction methods with �nd operations. There are three classical compaction
methods: path compression, path splitting, and path halving. The works [12, 71] have shown that the
���� operation can also be combined with various compaction methods. With these compaction
methods, the authors have shown that SV can take fewer iterations to reach convergence. We refer
to this method as ����A��C�������.

Adopting the same idea, we propose to combine one of the compactionmethodswith our ���� and
���� operations. We show in Algorithm 9 the ���� operation combined with full path compression;
the algorithm is referred to as ����A��C�������. Similarly, the algorithm ����A��C�������
combines ���� with full path compression; its pseudocode is omitted for space considerations.
Algorithm ����A��C������� pulls the smallest label among E ’s neighbors, then updates the
labels of the labeling path until its root to be the smallest label met along the path. Similarly,
����A��C������� pushes E ’s label to its neighbors as well as every vertices on the labeling path
until the root, only if its label is smaller. Previously, without path compression, each label can only
propagate one hop per iteration. With full path compression, each label can propagate O(;>6=)
hops per iteration, where O(;>6=) is the depth of the labeling path from the root to the leaf. In the
best case, such as a line graph, each label can propagate O(⇡) hops per iteration, where ⇡ is the
diameter of the graph, making the LP-based algorithm with path compression converge in one
iteration. Other compaction methods can also be combined with the ���� and ���� operations.
We leave this as the future work. Because the full path compression will �atten the connected

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:13

Algorithm 9 Pseudocode of PULL with full path compression for �nding connected components.
1: function ����A��C�������(vertex E)
2: minlabel label[E]
3: for all adjacent vertexF of E do
4: minlabel <8=(minlabel, label[F])
5: p1 label[E]
6: p2 minlabel
7: while p1 < p2 do
8: ; min(p1, p2)
9: ⌘ max(p1, p2)
10: ;014;_⌘ label[⌘]
11: if ;014;_⌘ = ; or �������A��S���(label[⌘], ⌘, ;) then
12: return True
13: p1 label[label[⌘]]
14: p2 label[;]
15: return False

Algorithm 10 Parallel, P���-based Label Propagation Algorithm with Compress.
Input: Graph ⌧ = (+ , ⇢).
Output: 8 E 2 + : label [E] stores the label of E
1: for all E 2 + do in parallel
2: label[E] a unique value in {0, 1, · · · , |+ | � 1}
3: change True
4: while change do
5: for all E 2 + do in parallel
6: change ����(E) ù ���� can also be replaced with ���� or ����
7: for all E 2 + do in parallel
8: ��������(E , label)

component labeling tree into a star, we expect that ����A��C�������/����A��C������� would
require fewer iterations to reach convergence compared to the basic ���� and ���� operations.

5.4 Slow Convergence for Large Diameter Graphs
A known issue of LPCC is its slow convergence for large diameter graphs [57], where the diameter
⇡ of the graph is a large integer. Recall that the goal of �nding connected components in a graph
using Label Propagation is to propagate the minimum label of each component to its members. At
the end of the algorithm, every vertex having the same label belongs to the same component. For
LPCC, each label is propagated one hop per iteration. For any graph, the minimum label requires
O(⇡) steps to propagate from one end of the largest component to the other. Therefore, a basic
LPCC would converge in O(⇡) iterations, resulting O(⇡ (< + =)) total work. In the worst case, such
as in line graphs, where the diameter is =, LPCC converges in O(=) iterations.

One solution to address this issue is to contract the original graph repeatedly. However, contrac-
tion would mutate the input graph. We are interested in solutions that do not mutate the input
graph. Another solution is to use a compress operation in the SV algorithm. Sterggiou et al. [57]
introduce this in their distributed LPCC algorithm as “shortcut”. They have proven this would

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:14 Liu, Xu T, et al.

Algorithm 11 Pseudocode of subgraph sampling to �nd the largest component ID.
Input: Intermediate component IDs label, an integer =486⌘1>A_A>D=3B (default value = 2)
Output: the largest component ID ;

1: function G�������S�������V��P���(label, =486⌘1>A_A>D=3B)
2: for all E 2 + do in parallel
3: for all �rst =486⌘1>A_A>D=3B adjacent vertexF of E do
4: label[F] label[E]
5: for all E 2 + do in parallel
6: ��������(E , label)
7: return label
8: function G�������S�������V��P���(label, =486⌘1>A_A>D=3B)
9: for all 8 1 to =486⌘1>A_A>D=3B do
10: for all E 2 + do in parallel
11: P���(E)
12: for all E 2 + do in parallel
13: ��������(E , label)
14: return label
15: function S�����F������E������(label)
16: frequency []
17: for all 8 1 to 1024 do
18: generate a random vertex E from 0 to |+ |
19: frequency[label[E]]++
20: ; ������(frequency[label[E]]) ù Find the most frequent label
21: return ;

guarantee LPCC to converge in O(;>6=) iterations with O(<;>6=) total work. We implement this
approach in our algorithms to speedup convergence (see Algorithm 10).

5.5 Skipping the Largest Component in Scale-free Graphs
In scale-free graphs, the degree distribution follows a power law, resulting in a large number of
vertices in the largest component [59]. Based on this observation, A�orest proposes to use subgraph
sampling (we use a similar technique in approximate seeding strategy for community detection
discussed in Section 4.4) to identify the largest component. In the later stages of hooking, A�orest
skips the rest of the unprocessed edges in the largest component. This would either defer edge
processing or skip it altogether. It �rst uses neighbor sampling method to generate a subgraph.
Within each neighborhood, a �xed amount of neighbors are randomly selected (for example, two
neighbors are selected in A�orest). In this way, a subgraph consisting of O(=) random edges is
created. This subgraph is a forest consisting of spanning trees of each connected component.
Next, within the subgraph, a �xed number of component labels is selected (for example, 1024
labels are randomly selected in A�orest) among the intermediate component labels. The most
frequent label is the component ID of the largest component in the graph. Assume that the largest
component contains<! edges and the subgraph sampling phase processes<?A>24BB edges. It has
been shown that by skipping the largest component, the connected component algorithm only
processes<?A>24BB +< �<! edges [12]. In a scale-free graph,<! contains substantial amount of
edges.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:15

Algorithm 12 Direction Optimizing Label Propagation Algorithm with Subgraph Sampling, Com-
press, and Path Compression.
Input: Graph ⌧ = (+ , ⇢), an integer =486⌘1>A_A>D=3B .
Output: 8 E 2 + : label [E] stores the label of E
1: for all E 2 + do in parallel
2: label[E] a unique value in {0, 1, · · · , |+ | � 1}
3: G�������S�������(label, =486⌘1>A_A>D=3B) ù either via ���� or ����
4: ; S�����F������E������(label)
5: change True
6: while change do
7: for all E 2 + do in parallel
8: if ; < label[E] then
9: change ����A��C�������(E) ù can be replaced with ����A��C�������
10: for all E 2 + do in parallel
11: ��������(E , label)

We adopt the subgraph sampling heuristic to �nd the largest component ID as shown in Algo-
rithm 11. There are two steps in the subgraph sampling: generate subgraph (via ���� or ����) and
sample the most frequent label (the largest component ID). Since there are two ways to propagate
the labels in DOLPA, we propose two ways to generate the subgraph in Algorithm 11, one using
���� and the other using ����. The input parameter =486⌘1>A_A>D=3B controls how many num-
ber of neighbors are randomly selected in each sampling step. In practice, we do not randomly
select =486⌘1>A_A>D=3B neighbors, but select the �rst =486⌘1>A_A>D=3B neighbors of a vertex in the
subgraph generation.

5.6 DOLPA with Subgraph Sampling, Path Compression, and Compress
With the above optimizations, we present our DOLPA set of algorithms for connected component
decomposition as shown in Algorithm 12. Our algorithms adopt a combination of ���� and
���� (with or without path compression) to propagate labels, incorporate compress operation to
speedup the convergence rate (especially for large diameter graphs), and include subgraph sampling
operation to skip the largest component for scale-free graphs.

6 EXPERIMENTAL EVALUATION: CONNECTED COMPONENT DECOMPOSITION
PERFORMANCE

In this �rst experimental section, we evaluate the speed of convergence as well as the runtime
performance obtained by our connected components algorithms in comparison with other parallel
connected component algorithms listed in Table 2. We use the synthetic graphs and real-world
graphs listed in Table 3 for the evaluation. We also implement the frontier-based LPCC using ����
and ���� to evaluate the cost of creating an active frontier in each iteration.

6.1 Experimental Setup
For connected component decomposition experimental evaluation, our experiments are run on a
machine with a two-socket Intel Xeon Gold 6230 processor, having 20 physical cores per socket,
each running at 2.1 GHz, and 28 MB L3 cache. The system has 188 GB of main memory. Our
code is compiled with GCC 10.2 compiler and -Ofast -march=native compilation �ags. We used
OpenMP 4.0 for parallelization with guided scheduling.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:16 Liu, Xu T, et al.

Table 2. Connected component decomposition algorithms studied. Notations of di�erent algorithms are
generated with the combinations of di�erent setups and techniques applied.

Notation Description
PULL ���� (Algorithm 6)
PUSH ���� (Algorithm 5)
HOOK ���� (Algorithm 8)
PUSHF ����, and Frontier-based
HOOKF ����, and Frontier-based
PSPLCC GenerateSubgraphvia����, ����, Path Compression, and Compress (Algorithm 12)
PLPSCC GenerateSubgraphvia����, ����, Path Compression, and Compress (Algorithm 12)
PSPSCC GenerateSubgraphvia����, ����, Path Compression, and Compress (Algorithm 12)
PLPLCC GenerateSubgraphvia����, ����, Path Compression, and Compress (Algorithm 12)
SV SV algorithm (our rewriting) [50]
A�orest SV algorithm with subgraph sampling [59]

Table 3. Synthetic and real-world graphs for performance evaluation.

Input Description |+ | |⇢ | Ref.
road_usa US road network 1M 9.5M [4]

europe_osm European Open Street Map road networks 51M 108M [4]
rgg_n_2_24_s0 Random geometric graphs 17M 265M [11]

kron_g500-logn20 Synthetic graphs from the Graph500 benchmark 1M 89M [11]
uk-2005 2005 crawl of the .uk domain performed by Ubi-

Crawler
39M 936M [8]

LiveJournal LiveJournal social network 4M 69M [66]
Orkut Orkut social network 3M 234M [66]

6.2 Dataset
We conducted experiments with real-world from various domains and synthetic graphs, listed in
Table 3. We selected two road networks from USA and Europe from the 10th DIMACS Implemen-
tation Challenge [4], two synthetic random graphs [11], one web graphs [8, 11], and two social
network datasets obtained from Stanford Large Network Dataset Collection (SNAP) [33]. The road
networks are large diameter graphs. The social networks are scale-free graphs.

6.3 Speed of Convergence and Runtime Performance
In this subsection, we present the runtime results and the number of iterations each algorithm in
Table 2 takes to converge on the datasets in Table 3. We omit the �rst iteration at the beginning of
the algorithm when each vertex initializes its label to be its vertex ID. We set the =486⌘1>A_A>D=3B
parameter to two when generating subgraphs, i.e., we propagate two labels in each vertex’s
neighborhood. All the results are obtained as the average of the runtime divided by the number of
iterations of �ve runs using 40 threads.
In Table 4, we can see that our algorithm (PSPSCC) is 3.7 to 2303.2 times faster than the basic

LP-based algorithm (HOOK), especially on large diameter datasets (road networks). DOLPA is 4.8
to 13.2 times faster than the SV algorithm, and 1.1 to 1.6 times faster than A�orest.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:17

Table 4. The runtime and the number of iterations obtained on the connected component algorithms in
Table 2 using the datasets from various domains in Table 3. The best runtime results are in bold. As we can
see, the subgraph sampling does not reduce the number of iterations to reach convergence. Path compression
dramatically reduces the number of iterations. The compress operation at the end of each iteration also
reduces the number of iterations greatly.

Algo.
Road Network Random Web Social Network

road_usa europe_osm rgg_n_2_24_s0 uk-2005 LiveJournal Orkut
Time/s #It. Time/s #It. Time/s #It. Time/s #It. Time/s #It. Time/s #It.

PULL 314.947 3071 353.232 4031 28.596 287 19.230 79 0.432 7 0.244 3
PUSH 346.139 3071 335.507 4034 33.360 288 40.681 247 0.489 7 0.361 3
HOOK 198.277 1613 313.284 3860 19.820 74 6.866 11 0.325 5 0.180 2
PUSHF 128.754 6259 550.423 17323 20.562 1664 6.436 199 0.136 8 0.170 3
HOOKF 113.551 6250 552.083 17309 24.507 1878 0.928 15 0.126 6 0.163 2
PSPLCC 0.109 3 0.177 3 0.069 4 0.597 35 0.020 4 0.017 4
PLPSCC 0.103 3 0.173 3 0.068 3 0.339 3 0.087 3 0.125 3
PSPSCC 0.086 3 0.154 3 0.064 3 0.518 3 0.017 3 0.014 3
PLPLCC 0.130 3 0.169 2 0.065 1 0.844 34 0.088 1 0.117 1
SV 0.768 9 1.409 7 0.849 6 1.626 7 0.154 3 0.200 2
A�orest 0.097 3 0.196 3 0.069 3 0.381 3 0.027 3 0.019 3

i) Subgraph Sampling. Subgraph sampling works well when combining with ����A��C���
�����, ����A��C�������, and ����A��C�������. If we compare PSPSCC with ���� (or PLPLCC
with ����) in Table 4, we can see that the number of iterations as well as the runtime of PSPSCC
is greatly reduced. With path compression, in G�������S�������V������A��C�������, each
vertex propagates a label which now travels O(;>6=) hops. The newly constructed subgraph consists
of neighbor_rounds⇥;>6= edges, as well as a large intermediate component and a number of small
components. Many vertices within each component hold the minimum component label. When
sampling the most frequent label within this subgraph, the task is most likely going to detect the
largest component of this graph.

ii) Path Compression and the �������� Operation. Path compression dramatically reduces
the number of iterations, especially on large diameter graphs. In Table 4, comparing PSPSCC
with ����, which does not apply path compression or the �������� operation, PSPSCC has
approximately 0.065% of the number of iterations of ���� on road_usa graph. The path compression
makes LP-based algorithm propagate labels more than one hop per iteration. In fact, with full path
compression, each label is propagated O(;>6=) hops per iteration, which is the depth of the labeling
tree within each component.

iii) Direction Optimization. To evaluate the e�ect of direction optimization (switching between
���� and ���� operations), we compare PSPLCC, PLPSCC, PSPSCC, and PLPLCC. The method
PSPSCC performs best overall, while PLPSCC gives the best performance onWeb. In general, we �nd
direction optimization does not give connected components algorithms substantial performance
bene�ts. This is because we are propagating labels conditionally, i.e., we only propagate the
(minimum) label if the label is smaller than others. This means that if there exists only one label
that is smaller than E ’s label in E ’s neighborhood, both ���� and ���� would visit all neighbors but
propagate one label per operation. Switching between ���� and ���� does not contribute to less
number of processed edges or more e�cient label propagation. However, ���� is more e�cient
in propagating labels (with less amortized cost per label propagation) compared with ����; that’s
why PSPSCC has the best overall performance.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:18 Liu, Xu T, et al.

PSPLCC PLPSCC PSPSCC PLPLCC

1 2 5 10 20 40

Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
(
s
)

europe osm

1 2 5 10 20 40

Number of Threads

0.0

0.5

1.0

T
im
e
(
s
)

rgg n 2 24 s0

1 2 5 10 20 40

Number of Threads

0.0

0.5

1.0

1.5

T
im
e
(
s
)

road usa

1 2 5 10 20 40

Number of Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
im
e
(
s
)

LiveJournal

Fig. 3. Strong scaling results on up to 40 threads on four graphs for the connected components algorithm
variants listed in Table 2. The variant PSPSCC has the best performance on four graphs. PSPLCC has close to
the best performance.

iv) Frontier. The frontier-based (PUSHF vs PUSH, HOOKF vs HOOK) algorithms are noticeably
faster than the non-frontier-based ones (except for europe_osm), even though the number of
iterations increases. However, after we apply the frontier to DOLPA (not reported in Table 4),
we �nd the frontier-based ones are always slower than their non-frontier-based variants. This is
because path compression and the compress operation substantially reduce the number of iterations
to converge. The overhead of creating a shared frontier and making sure there is no duplicate entry
in it overcompensates its bene�t, which only processes the vertices with recently updated labels.

6.4 Strong Scaling
Figure 3 shows the runtime scaling results of four parallel implementations of connected component
algorithms on the real-world networks listed in Table 3. In the plot, PSPSCC has the best performance
on four input graphs, followed by PSPLCC. ����-based has better performance than ����-based on
social networks. Our algorithms make the basic implementation more versatile and more adaptable
to di�erent types of graphs, as our implementations show no performance degradation on type of
graphs ranging from road to random to social graphs.

7 EXPERIMENTAL SETUP: COMMUNITY DETECTION
In this and the subsequent two sections, we present various experimental evaluation results around
community detection. This section presents the experimental setup and datasets. Section 8 focuses
on evaluation of the proposed seeding strategies. Section 9 deals with evaluating performance and
scalability of DOLPA in comparison with other community detection methods.
We use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [30] with ground truth commu-

nities to study the behavior of DOLPA and real-world graphs to evaluate the quality of solution
and performance. The LFR benchmark is the most commonly used graph generator to evaluate
community detection algorithms. We compare our implementation with PLP, and with the state-of-
the-art parallel Louvain method implementation in Grappolo [40]. We begin the present section
by detailing the experimental setup and the dataset used in this paper. We quantify the quality of
solutions (of community detection) using Precision, Recall and F-Score (or F-Measure). We omit
de�nitions for these metrics; for details on de�nitions, please refer to [39].

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:19

Table 5. Synthetic and real-world graphs for performance and quality of solution evaluation. The number of
vertices (|+ |) and edges (|⇢ |) along with the maximum degree (�) for the inputs are tabulated here.

Input Description |+ | |⇢ | �E Ground truth Ref.
B0 Generate using the LFR benchmark

with ` = 0
1M 9.5M 100 Yes [30]

B1 Generate using the LFR benchmark
with ` = 0.1

1M 9.5M 100 Yes [30]

B3 Generate using the LFR benchmark
with ` = 0.3

1M 9.5M 100 Yes [30]

B5 Generate using the LFR benchmark
with ` = 0.5

1M 9.5M 100 Yes [30]

B7 Generate using the LFR benchmark
with ` = 0.7

1M 9.5M 100 Yes [30]

B9 Generate using the LFR benchmark
with ` = 0.9

1M 9.5M 100 Yes [30]

S1 Generate using the LFR benchmark
with ` = 0.1

1M 9.5M 100 Yes [30]

S3 Generate using the LFR benchmark
with ` = 0.3

1M 9.5M 100 Yes [30]

LL Low Block Overlap and Low Block
Size Variation

1M 24M 122 Yes [23]

LH Low Block Overlap and high Block
Size Variation

1M 24M 137 Yes [23]

HL High Block Overlap and Low Block
Size Variation

1M 24M 104 Yes [23]

HH High Block Overlap and High Block
Size Variation

1M 24M 180 Yes [23]

fbnt Facebook network 4M 24M 4,915 No [47]
dblp Coauthor-ship from DBLP 0.5M 15M 3,299 No [4]
zbrp Zhishi Baidu related pages 416K 2.4M 127,090 No [27]
cond Condensed matter collaborations 40K 176K 278 No [4]

7.1 Experiment Platform
We used a system having one node with two Intel Xeon E5-2699v3 processors operating at 2.3 GHz.
The system has 18 physical cores per socket, 72 logical cores per node with hyper-threading, 48
MB L3 cache per processor, and 128 GB total main memory. We used GCC 9.3.0 compiler with
-O3 compilation option to build the codes. We used OpenMP 4.0 for parallelization with guided
scheduling.

7.2 Datasets
We generated two groups of the LFR benchmarks—Big and Small: the community size in the Big
group ranges from 20 to 200 and the community size in the Small group ranges from 10 to 100.
The fraction of overlapping vertices is ten, and the number of memberships of the overlapping
vertices is two. We generated six benchmarks in the Big group with mixing parameter values of
` = {0, 0.1, 0.3, 0.5, 0.7, 0.9} and two benchmarks in the Small group with ` = {0.1, 0.3}. The mixing

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:20 Liu, Xu T, et al.

parameter ` of the LFR benchmark indicates the amount of noise in the network, as it controls
the fraction of edges that are between communities. The higher the mixing parameter, the more
di�cult it is for the algorithm to detect communities.

Each benchmark was generated with 1 million vertices, 9.5 million edges, average degree 20, and
max degree 100. Both of the Big and Small groups have the same parameters except the mixing
parameter. The synthetic graphs generated using the LFR benchmark are listed in the top portion
in Table 5. The generating scripts for LFR benchmarks, including the parameters to generate the
benchmarks, are provided in the Gitlab repo1.
The middle portion of Table 5 lists synthetic graphs we downloaded as images from the 2019

Stochastic Block Partitioning Graph Challenge [23]. The bottom portion of the table lists the real-
world graphs in our testbed. Since these graphs do not have ground truth communities, we obtained
the community structure data from fast-tracking resistance (FTR) algorithm as ground-truth data.
The FTR algorithm is a hierarchical multiresolution method to overcome the resolution limit of a
community detection algorithm in a complex network [17]. It is not true ground-truth, but we use
it as a simple reference.

7.3 Parameter Choice for ����–���� Switch
In results reported in detail in previous work [39], we designed a microbenchmark to study the
behaviors of ���� and ����. Based on the results of our microbenchmark, we �nd the best switch
threshold l for DOLPA. To achieve the best runtime with reasonable quality of solution, we set
l = 2. To obtain the best quality of solution in reasonable runtime, we set l = 1. Note that when
l = 1, DOLPA does ���� only for label propagation.

8 EXPERIMENTAL EVALUATION: SEEDING STRATEGIES AND PARAMETERS
We present in this section results of experiments conducted to understand the behavior and
performance of the proposed seeding strategies in conjunction with the choice of the seeding
parameter g .

8.1 Experimental Design
For each of the nine seeding strategies, we run DOLPA on the LFR benchmark Big (B0 - B9) group
and collect the average of their runtime and F-Score. While we report results from only one of three
groups of the benchmarks, we note that similar results were observed in the other two groups.

To determine the seeding parameter g that produces best performance for each seeding strategy,
we do a grid search on g through a manually speci�ed subset of g where the lower bound is selecting
one vertex as seed and the upper bound is selecting the whole + as seeds. We provide the subset of
g as follows.

Let the density of the graph be de�ned as X⌧ = 2 |⇢ |
|+ | (|+ |�1) and the average degree of the graph be

de�ned as d⌧ = 2 |⇢ |
|+ | . We run DOLPA with g = {14 � 6, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1

d⌧
, 2
d⌧
, X⌧ }.

We do so 5 times for each input. Considering that selecting one vertex as seed out of 1 million
vertices and running this for �ve times may not fairly reveal the actual results, we run DOLPA 20
times when g = 14 � 6. Notice that for the benchmarks we generated (B0-B9), 1

d⌧
⇡ 0.05, 2

d⌧
⇡ 0.1.

8.2 Runtime and�ality of Solution Results
We collect two metrics of performance: runtime and F-Score. Figure 4 shows runtime (in log scale)
versus mixing parameter results and Figure 6 shows F-Score versus mixing parameter results for

1https://datascience.aeolus.wsu.edu/tlieu/dolpa

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

https://datascience.aeolus.wsu.edu/tlieu/dolpa

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:21

0 0.1 0.3 0.5 0.7 0.9
0.0

0.1

1.0

10.0

T
im
e
in

lo
g
(
s
)

⌧ = 1
dG

0 0.1 0.3 0.5 0.7 0.9
0.0

0.1

1.0

10.0
⌧ = 2

dG

0 0.1 0.3 0.5 0.7 0.9
0.1

1.0

10.0

T
im
e
in

lo
g
(
s
)

⌧ = 0.2

0 0.1 0.3 0.5 0.7 0.9
0.1

1.0

10.0
⌧ = 0.4

0 0.1 0.3 0.5 0.7 0.9

Mixing Parameter

0.1

1.0

10.0

T
im
e
in

lo
g
(
s
)

⌧ = 0.6

0 0.1 0.3 0.5 0.7 0.9

Mixing Parameter

0.1

1.0

10.0
⌧ = 1.0

highdegree

lowdegree

hightotaldegree

lowtotaldegree

random

highdegreeSD

lowdegreeSD

hightotaldegreeSD

lowtotaldegreeSD

Fig. 4. Runtime results (in log scale) versus mixing parameter for the nine seeding strategies under various
seeding parameter g and various LFR benchmarks. For g between 0.025 and 0.1, we observe that the High-
degree seeding strategy achieves the best runtime compared to all other seeding strategies. For g greater
than 0.2, there is no clear winner in terms of runtime among all nine seeding strategies.

the nine seeding strategies under various values of g . We also plot runtime versus the seeding
parameter g of the nine seeding strategies under various LFR benchmarks; these are shown in
Figure 5. Each subplot in Figure 5 has the same mixing parameter. In the experiments that led to
results in Figure 6, similar patterns were observed for g = 0.2, 0.4, 0.6, 0.8, 1.0. Hence we plot only
for g = 0.2. We do not report the F-Score results for g = 14 � 6 and g = X⌧ because the F-Score
results are too low to be meaningful.

The approximate seeding strategies (except for highdegreeSD) have much slower runtime results
than those of the random and the exact seeding strategies as can be seen in Figure 4. Figure 5
shows that the normalized runtime results of all the strategies when g � 0.6 are much larger than
the corresponding results when g 0.6. It can also be seen that the runtime of every strategy
gets larger when the benchmark graphs become harder for an algorithm to tackle (i.e. the mixing
parameter increases).

In Figure 6, the F-Score results of Random, Low-degree and Low-total-degree seeding strategies
deteriorate slower than others when g is between 0.025 and 0.1 and the mixing parameter of the LFR
benchmark varies from 0 to 0.7. The F-Score results are similar when g � 0.2 for all strategies. Low
F-Score results are observed in Figure 6 on the approximate strategies when the mixing parameter
of the LFR benchmark is 0.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:22 Liu, Xu T, et al.

1.00E-06 2.50E-02 5.00E-02 1.00E-01 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00
0.0

0.5

1.0

1.5

2.0

T
im
e
(
s
)

Graph B0

1.00E-06 2.50E-02 5.00E-02 1.00E-01 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00
0.0

1.0

2.0

3.0

4.0

T
im
e
(
s
)

Graph B3

1.00E-06 2.50E-02 5.00E-02 1.00E-01 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00

Seeding Parameter ⌧

0.0

2.0

4.0

6.0

8.0

10.0

T
im
e
(
s
)

Graph B7

highdegree

lowdegree

hightotaldegree

lowtotaldegree

random

highdegreeSD

lowdegreeSD

hightotaldegreeSD

lowtotaldegreeSD

Fig. 5. Runtime versus seeding parameter g results for the nine seeding strategies under various LFR bench-
marks generated under di�erent mixing parameters. The mixing parameters ` from the top subfigure to
the bo�om are 0, 0.3, 0.7. A clear pa�ern can be observed that when g > 0.4, every seeding strategy has a
dramatically increased runtime within each subfigure. From the top subfigure to bo�om the y-axis of each
subfigure is also increasing. While we do not report the F-Score when g = 14 � 6 and g = 0.025 in Figure 6, we
report their runtime results as references.

8.3 Analysis
Below we make several important observations from an analysis of the results in Figure 4, Figure 5
and Figure 6.
i) A tiny g does not produce reasonable solution. The F-Score results for g = 14 � 6 and

g = X⌧ are too low to be reported in Figure 6 even though both cases converge fairly fast in Figure 5.
This shows that a tiny g (i.e., only one seed or a few seeds are selected) is not practical for DOLPA
to achieve reasonable quality of solution. It is impractical to assume that there are only one or a
few community structures in the graphs.

ii) A large g dramatically increases runtime. Figure 5 shows that the runtime of every seeding
strategy increases dramatically when g � 0.6 (we called this a large g). The approximate seeding
strategies are particularly highly impacted by this, especially when the mixing parameter is 0. This
indicates that g should not be made greater than 0.6 to achieve reasonable runtime. In particular,
we conclude that g should always be smaller than 0.5. Let us elaborate on this. When g > 0.5, more
than 50% of the vertices are treated as seeds of a community structure. This means there exists an
edge 4 2 ⇢ where at least one end point of 4 has its label updated twice. The larger g is, the more
labels are updated redundantly. This results in slow convergence.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:23

0 0.1 0.3 0.5 0.7 0.9

0.0

0.2

0.5

0.8

1.0

F
-S
c
o
re

⌧ = 0.025

0 0.1 0.3 0.5 0.7 0.9

0.0

0.2

0.5

0.8

1.0 ⌧ = 1
dG

0 0.1 0.3 0.5 0.7 0.9

Mixing Parameter

0.0

0.2

0.5

0.8

1.0

F
-S
c
o
re

⌧ = 2
dG

0 0.1 0.3 0.5 0.7 0.9

Mixing Parameter

0.0

0.2

0.5

0.8

1.0 ⌧ = 0.2

highdegree

lowdegree

hightotaldegree

lowtotaldegree

random

highdegreeSD

lowdegreeSD

hightotaldegreeSD

lowtotaldegreeSD

Fig. 6. F-Score versus mixing parameter plots for the nine seeding strategies under various seeding parameter
g and various LFR benchmarks. Similar pa�erns are observed for g � 0.2, hence we only plot results for g = 0.2.
Moreover, we do not report the F-Score results for g = 14 � 6 and g = X⌧ because their results are too low.

iii) The approximate seeding strategies perform poorly when sample size is small.When
the sample size is small, there is a higher probability that the sampled vertex set or the sampled
neighborhood set has a bias over the original graph, either in terms of the vertex degree or the
total degree of a neighborhood. Hence, a small g for an approximate seeding strategy often fails to
represent the parent graph faithfully. When the sample size is large enough, the sampled vertex set
or the sampled neighborhood set can properly approximate the parent graph. This is why when
g � 0.2, the approximate seeding strategies become as robust as the exact seeding strategies and
achieve similar F-Scores.
The runtime results of the approximate seeding strategies in Figure 4 are (surprisingly) higher

than those of the exact seeding strategies as g increases. As g increases, the advantage of saving time
on sorting is overcompensated by the increased time for sampling. In addition, the approximate
strategies involve random selection of vertices/neighborhoods during sampling, which in turn
results in slower convergence.
iv) Random, Low-degree, and Low-total-degree seeding strategies are robust. First, we

observe that Random, Low-degree and Low-total-degree seeding strategies are not sensitive to the
value of g . They have stable F-Score results no matter the value of g (excluding a tiny g = 14 � 6 or
X⌧), as can be seen in Figure 6. Second, we notice that these strategies are also not sensitive to noise
(for benchmark graphs whose mixing parameter ` > 0). Their F-Score results do not deteriorate
dramatically as the mixing parameter increases as can be seen in Figure 6. Among these three
strategies, Low-degree and Low-total-degree (the top two lines in Figure 6) have better performance
than Random.

However, the reasons behind the robustness of the three seeding strategies are di�erent. Random
seeding strategy is robust because it has no bias over the vertices in the graph. Each vertex is
selected independently with equal probability. Low-degree and Low-total-degree seeding strategies
are robust because the labels of a low-degree vertex or a low-total-degree neighborhood has a higher
probability to survive the early propagation stages. A low-degree vertex or a low-total-degree
neighborhood has a small number of neighbors, making their labels having less competitors. This

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:24 Liu, Xu T, et al.

1e-6 �G 1
dG

2
dG

0.025 0.05 0.1 0.2 0.4 0.6 0.8 1.0
0

5

10

15

Best runtime on graph LL, LH, HL and HH

1e-6 �G 1
dG

2
dG

0.025 0.05 0.1 0.2 0.4 0.6 0.8 1.0
0

10

20
Best F-Score on graph LL, LH, HL and HH

1e-6 �G 1
dG

2
dG

0.025 0.05 0.1 0.2 0.4 0.6 0.8 1.0

Seeding parameter ⌧

0

10

20

30

Best runtime on graph B0 - B9

1e-6 �G 1
dG

2
dG

0.025 0.05 0.1 0.2 0.4 0.6 0.8 1.0

Seeding parameter ⌧

0

10

20

Best F-Score on graph B0 - B9

Fig. 7. We count the number of cases a specific g value produces best runtime results (le� pane) and best
F-Score results (right pane) as g is varied. Results for the graphs LL, LH, HL and HH (top row) and the graph
B0-B9 (bo�om row) are plo�ed separately. The se�ing g = 14 � 6 produced 16 best runtime results out of 36
cases on graphchallenge data, and 36 best runtime results out of 54 cases on the LFR graphs. The se�ing
g = 2

d⌧
produced 21 (out of 36) best F-Scores for the graphs LL, LH, HL and HH, while the se�ing g = 1.0

produced 22 (out of 54) best F-Score results for the LFR graphs.

makes their labels vigorous and thus makes a low-degree vertex or a low-total-degree neighborhood
an e�ective seed.

v) Noise makes DOLPA converge slower.Nomatter which seeding strategy is used in Figure 5,
DOLPA converges slower (the y-axis scale of each subplot increases) as the mixing parameter ` of
the LFR benchmark graph increases. It requires more time for DOLPA to get rid of noises when
the noises increase. We observe similar linear correlation between the runtime of DOLPA and the
mixing parameter in Figure 4 as was observed in Lancichinetti et al. [30].

8.4 What is a Good Seeding Parameter g Value?
To �nd out the best g setting for best performance (both runtime and quality of solution), we
summarize the number of g settings that produce the best runtime and best F-Score results on
the graphs LL, LH, HL, HH and the graphs B0-B9 separately in Figure 7. The �gure shows that
g = 14 � 6 is clearly the winner for producing best runtime. However, the F-Scores of g = 14 � 6 are
too low to be useful. We therefore recommend a larger g for a reasonable combination of runtime
and F-Score.
In Figure 7, we notice that the best F-Score results of the LFR graphs and the graphchallenge

graphs are achieved at two extremely di�erent g values. Most of the best F-Scores of the graphchal-
lenge graphs cluster around g = 2

d⌧
, which is a small g . In contrast, most of the best F-Scores of

the LFR graphs are achieved at g = 1.0, which is a big g . However, the runtime results of g = 1.0 is
extremely high due to redundant label updates.
To conclude, a small g such as g = 2

d⌧
gives the best runtime at a reasonable (even best F-Score

results) quality of solution; a large g such as g = 1.0 can provide best quality of solutions at the cost
of slow convergence. With this conclusion, we can adjust g to achieve a balance between runtime
and quality of solution.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:25

Table 6. Community detection algorithms studied.

Version Description
PLP Parallel Label Propagation algorithm [56]
PUR DOLPA using ���� only and with Random seeding
PUH DOLPA using ���� only and with High-degree seeding
PUL DOLPA using ���� only and with Low-degree seeding
DOR DOLPA using ���� & ���� and with Random seeding
DOH DOLPA using ���� & ���� and with High-degree seeding
DOL DOLPA using ���� & ���� and with Low-degree seeding
LV Parallel Louvain method implementation [40]

9 EXPERIMENTAL EVALUATION: COMMUNITY DETECTION RUNTIME AND
SOLUTION QUALITY

In this �nal experimental section, we evaluate the quality of solution and runtime obtained by
DOLPA in comparison with other community detection methods using the synthetic graphs and
real-world graphs listed in Table 5.
Table 6 lists the variants of parallel LPA we study (PLP, PU and DO) and the Louvain method

(LV). The methods PUR and DOR employ the Random seeding strategy. Methods PUH and DOH
employ the High-degree seeding strategy, and methods PUL and DOL use the Low-degree seeding
strategy. In both PU and DO, we set g = 2

d⌧
to achieve good runtime results with reasonable quality

of solution. We use the switch threshold l of 1 for PU and that of 2 for DO. Recall that when l is 1,
no ���� operation is applied.

Each experiment is run 10 times and the average of the results is reported. We omit the scaling
and runtime results in this section due to space limit. For details of them, please refer to [39].

9.1 Runtime and�ality of Solution Results
Table 7 shows the F-Score and runtime results on the eight methods listed in Table 6. The results
show that DOLPA outperforms PLP as well as the Louvain method in most of the runtime and
F-Score results. In particular, DOLPA achieves eight best runtime results out of eleven cases, and
nine best F-Score results out of the eleven cases. DOLPA adopting a High-degree seeding strategy
(DOH and PUH) achieves �ve best runtime results among eight cases. DOLPA adopting Random
seeding strategy (PUR) achieves three best F-Score results among nine best F-Scores, while DOLPA
adopting Low-degree seeding strategy (DOL and PUL) achieves six best F-Scores among nine best
F-Scores. Compared with PLP, DOLPA achieves at least two times the F-Score while maintaining
similar runtime for the LFR graphs; DOLPA adopting random seeding strategy has up to 48x the
F-Score on the graph HL. Compared with Louvain method using the same graphs, the best results
achieved by DOLPA have an average of three times the F-Score at a tenth of the runtime. We
provide further analysis on the results summarized in Table 7 in the remainder of this subsection.
i) Frontier. The use of frontier in DOLPA is bene�cial. A frontier can process the vertices in

any order desired. During the initialization of DOLPA, the seeds are added to the initial frontier so
that the labels of seeds can be propagated �rst. This makes the labels of the seeds have a higher
probability of forming a strong community core without being eliminated. As can be observed
from the experiments, PLP and PU have similar numbers of label updates, propagated steps, and
processed edges. The high Precision of PU shows that PU is more e�cient and accurate in �nding
the “right” maximum label. In Table 7, the variants PUL and PUR respectively have 2.3 and 2.5
times the F-Score of PLP on the graphs B3 and S3. The method PUR obtains more than ten times

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:26 Liu, Xu T, et al.

Table 7. Runtime and F-Score results of the eight methods listed in Table 6 on eight synthetic graphs with
ground truth information and three real-world graphs. The real-world graphs use as “ground truth” the
results obtained from the FTR method [17]. All results are obtained under 64 threads.

Input B1 S1 B3 S3 LL LH HL HH fnbt dblp cond
PLP Time 0.093s 0.110s 0.108s 0.234s 0.573s 0.291s 0.165s 0.231s 2.668s 0.248s 0.044s

Fscore 0.8867 0.4264 0.824 0.3871 0.1432 0.166 0.0201 0.0559 0.1038 0.0751 0.034
Prec. 0.7965 0.271 0.7007 0.2401 0.0772 0.0905 0.0102 0.0288 0.0565 0.0392 0.0196
Recall 1 0.9999 1 0.9999 1 0.9994 0.9999 1 0.9277 0.9064 0.431

PUH Time 0.121s 0.158s 0.116s 0.166s 0.246s 0.248s 0.337s 0.232s 1.857s 0.217s 0.037s
Fscore 0.3103 0.1285 0.285 0.0817 0.0255 0.0348 0.0414 0.0269 0.0686 0.0034 0.0117
Prec. 0.1837 0.0687 0.1662 0.0426 0.0129 0.0177 0.0211 0.0136 0.0355 0.0017 0.0059
Recall 0.9994 0.9999 0.9997 0.9999 1 1 0.9999 1 0.9971 0.9008 0.4348

DOH Time 0.094s 0.256s 0.113s 0.164s 0.316s 0.200s 0.231s 0.173s 0.998s 0.299s 0.024s
Fscore 0.161 0.06 0.1304 0.0293 0.0877 0.05 0.0241 0.0348 0.0673 0.0029 0.0068
Prec. 0.0876 0.0309 0.0697 0.0149 0.0462 0.0258 0.0122 0.0177 0.0348 0.0014 0.0034
Recall 0.9999 0.9998 1 0.9998 1 1 0.9999 0.9999 0.9956 0.9052 0.458

PUR Time 0.158s 0.179s 0.138s 0.172s 0.370s 0.479s 0.504s 0.417s 2.619s 0.193s 0.027s
Fscore 0.8813 0.7465 0.8621 0.7101 0.997 0.8277 0.8095 0.127 0.1574 0.3531 0.0436
Prec. 0.8028 0.5965 0.7873 0.5522 0.9941 0.7072 0.6954 0.0681 0.0977 0.2212 0.0257
Recall 0.9768 0.9983 0.9525 0.9945 1 0.9996 1 0.9999 0.8947 0.8749 0.4001

DOR Time 0.106s 0.168s 0.106s 0.181s 0.279s 0.312s 0.319s 0.278s 2.186s 0.301s 0.029s
Fscore 0.2651 0.096 0.2594 0.0518 0.7898 0.6069 0.0812 0.0613 0.0648 0.3505 0.0507
Prec. 0.1528 0.0504 0.149 0.0266 0.6529 0.4437 0.0429 0.0317 0.0335 0.2193 0.0305
Recall 1 0.9998 1 0.9999 1 0.9997 0.9999 0.9999 0.9872 0.8757 0.4125

PUL Time 0.126s 0.214s 0.127s 0.166s 0.418s 1.066s 0.630s 0.416s 2.485s 0.463s 0.031s
Fscore 0.999 0.9946 0.9966 0.9909 0.3979 0.2494 0.0713 0.029 0.0679 0.2072 0.0558
Prec. 0.998 0.9894 0.9939 0.9821 0.271 0.1466 0.0381 0.0147 0.0352 0.1171 0.0348
Recall 1 0.9998 0.9994 0.9999 1 0.9997 0.9969 1 0.9822 0.9285 0.4153

DOL Time 0.106s 0.168s 0.178s 0.162s 0.348s 0.297s 0.326s 0.285s 2.118s 0.436s 0.026s
Fscore 0.3223 0.1211 0.3815 0.0764 0.9198 0.9003 0.2135 0.0984 0.134 0.2155 0.0425
Prec. 0.1922 0.0645 0.2358 0.0397 0.8519 0.8218 0.1318 0.0519 0.0775 0.1219 0.024
Recall 0.9999 0.9999 1 0.9999 1 0.9997 0.9998 0.9996 0.8829 0.9281 0.4131

LV Time 4.224s 4.135s 5.698s 5.038s 15.980s 21.904s 21.748s 17.098s 13.671s 1.002s 0.084s
Fscore 0.1519 0.0772 0.0043 0.0014 0.3449 0.4205 0.1876 0.1759 0.2547 0.0105 0.0378
Prec. 0.0822 0.0402 0.0022 0.0007 0.2084 0.2843 0.108 0.0999 0.1545 0.0053 0.0193
Recall 0.9982 0.9984 0.9816 0.9865 0.9995 0.8071 0.7139 0.7331 0.7237 0.9776 0.935

The input graphs in this table are listed from easy to hard to detect for community detection algorithms.
Among the eight methods, the best runtime and the best F-Score results are shown in bold text. The runtime
includes pre-processing steps such as degree sorting, frontier insertion, etc in PU/DO/LV. There are no such

steps in the PLP algorithm.

the F-Score of PLP on the graphs LL and HL. The method PUL has comparable runtime with that
of PLP. Note that the runtime of PUL includes steps such as degree sorting and frontier insertion.
In addition, during the later iterations, frontier guarantees DO only processes nodes that were

activated in the previous iteration. On the contrary, PLP also processes nodes that were activated
in the current iteration if they are visited after being activated. Doing so is harmful to the quality
of the solution, because the importance of the seeds’ labels are overlooked. Further, PLP only
deactivates nodes that were not moved while DO always deactivates a processed node.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:27

ii) Seed Vertices. The “right” seeds improve accuracy. Seeds propagate before others in the
�rst iteration. With a unique label initially, each label is a maximum label in the �rst iteration.
When a seed applies ���� for the �rst time, it abandons its own label by randomly selecting a
maximum label in its neighborhood. This promotes that label as the “true” maximum label because
it now appears twice in the neighborhood. If the label of the seed chooses survives in the next few
iterations, a core of the community is formed. With the “right” choice on seeds, the likelihood of
the seeds to form a strong and stable core is higher than other vertices. This shows that updating
more important vertices in the network earlier than others is e�ective [64].
Conversely, the “wrong” seeds decrease accuracy. The method DOH has the worst F-Score in

most instances in Table 7. Pushing labels of high degree vertices to their neighbors contributes
negatively to the quality of the solution even though this almost guarantees a good runtime. The
method DOR has less chance to “poison” other communities’ labels when DOLPA uses random
seeds instead of high degree seeds. The method DOL behaves similarly. This is re�ected in the
much greater F-Score value of the methods DOR and DOL compared to the method DOH.
iii) Direction Optimization. Direction optimization provides a trade-o� between time and

accuracy by adjusting the switch threshold l to obtain a balance of ���� and ���� operations.
When selecting the seeds in the same strategy, DO has shorter runtime than PU; DOH is faster
than PUH; and DOR is faster than PUR. Compared with PLP, the method DOR has an average 50%
of runtime decrease on the LFR benchmarks and DOH has an average 15% of runtime decrease on
the graph-challenge graphs. With a better seed selection, DOR has an average of 14 times F-Scores
compared to PLP on the graph-challenge datasets.

Hence, we can adjust l for a good balance in di�erent computation scenarios. The method DO
�ts best for a time-sensitive scenario. An appropriate switch threshold reduces work by applying
certain amount of the ���� operations on seeds, thus providing higher performance. However,
���� is harmful to the quality of solution in general since it forces an undesirable label choice to
all neighbors. The amortized cost for each label update of ���� is constant, while the cost of ����
is O(3 (E)). The method PU is well suited for a precision-demanding scenario, where the switch
threshold can be set as small as one so that there is no ���� operation in pursuit of higher accuracy.

10 RELATEDWORK
Community detection. Since LPA was �rst introduced for community detection, many other
works that improve or extend it have been proposed. We discuss only a few here. Xie et al. introduce
a method to “stabilize” LPA by eliminating the need for tie breaking [63]. Other works alleviate
the randomness of tie breaking with other node preference or edge preference method instead
of treating each node/edge with the same preference. Preference methods studied include :-shell
value [64], local cycle [70], or modularity [5, 37]. Leung et al. use hop weight to prevent the
occurrence of a “monster” community [34]. Yet other common measures for node preference
include degree centrality and clustering coe�cient [54]. The works using node preferences are
proven to produce a deterministic solution but the approaches have high computational cost and/or
evaluation metric bias.
The label propagation algorithm can be made faster by maintaining all label information in

memory instead of computing on the �y [13, 18]. But this approach requires data synchronization
for the label information and it is not scalable. The state-of-the-art parallel LPA is the Parallel
Label Propagation (PLP) algorithm implemented on multi-core architecture [56]. Other works
parallelize LPA on multi-core [28], on GPU [26, 55], in Map-Reduce model [69] and in distributed
memories [3]. Liu et al. [38] also combine LPA with direction optimization technique, but their
work is implemented in distributed memory with active-message based runtime system.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

39:28 Liu, Xu T, et al.

The quality of solution produced by LPA can be improved by selecting in�uential nodes [72]
or community kernels [35] in the pre-processing phase and then growing community structures
from them. This method is similar to a main stream of method in overlapping community detection
called seed set expansion. Some works select maximal cliques as seeds [45, 49], some other works
select high degree vertices [42, 61] and yet others select random vertices [31]. Stoica et al. [58] did
a comprehensive study on seed set selection in the context of social in�uence maximization.
Direction optimization has been applied in other graph algorithms, including PageRank[62],

Betweenness Centrality[41], Connected Components [19] and Single Source Shortest Path [10] and
in graph frameworks such as Polymer[68] and Ligra[51]. Besta et al. [7] study push-pull dichotomy
in graph computations in terms of performance, speed of convergence and code complexity. Tithi
et al. [60] propose push-pull based Louvain method that can prune a signi�cant amount of edges to
speedup performance.

Connected component decomposition. Shiloach and Vishkin [50] introduced the �rst parallel
connected components algorithm on the Parallel Random Access Machine (PRAM) model. The
algorithm relies on the disjoint-set data structure based on the union-�nd algorithm. A�orest [59] is
a variant of this approach but focusing on small-world graphs. It identi�es the dominant component
ID via subgraph sampling, then skipping those vertices residing in the component with dominant
component ID. LACC [1, 71] is the latest distributed implementation of fast SV using linear algebra
operations in GraphBLAS.

Minimum label propagation approach is another parallel method [44, 65]. Each vertex is initialized
to its vertex ID and holds as a label of its component ID. Repeatedly, each vertex update its label to
the smallest label among its neighbors until no further update is possible. In the end, the smallest
label in each component serves as the unique component ID.
Given a graph ⌧ , let ⇡ denote the diameter, i.e. the maximum distance in ⌧ , where distance

is the length of the shortest path between two vertices. Paul Burkhardt [9] introduces a method
that works in log-⇡ steps and $ ((< + =);>6⇡) work with $ (< + =) processors using label propa-
gation in the PRAM model that does not require pointer operation. Andoni et al. [2] proposed a
$ (;>6⇡;>6;>6</==) time connectivity algorithm for diameter-D graphs using ⇥(<) total memory
in massive parallel computing (MPC) model. Liu and Tarjan [36] introduced a method that works in
$ (;>6=) steps and sends$ (<;>6=) total messages in the MPC model. Stergiou et. al [57] implement
this approach with shortcutting in bulk synchronous parallel (BSP) model. Label propagation based
methods are implemented in graph processing frameworks such as Ligra[51], PEGASUS[22] and
GraphChi[29].

Shun et. al [52] implement the breadth-�rst search approach for �nding connected components
in the PRAM model. Each unprocessed vertex is processed in parallel BFS and mark all the reached
vertices as the same component. This approach runs in $ (<) time. ConnectIt [12] studies all the
above connected component decomposition algorithms in depth, and summarizes several subgraph
sampling strategies in their framework.

11 CONCLUSION
We presented a new Label Propagation algorithm, called Direction-optimizing Label Propagation Al-
gorithm (DOLPA), for graph structure detection and showed its e�cacy as a method for community
detection and connected component decomposition in networks. We introduced a new label update
heuristic called ����, and abstracted the currently known label update operation as ����. The
algorithm applies ���� for label update in the early iterations and switches to ���� for label update
in later iterations. We incorporated several heuristics for connected component decomposition, and
combined them with ���� and ����. Using a carefully designed microbenchmark, we analyzed the

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:29

characteristics of ���� and ����. We proposed a total of nine seeding strategies and extensively
studied their performance.
We validated our implementation on benchmarks with known ground truth and demonstrated

increased accuracy and decreased runtime compared to the state-of-the-art parallel implementations.
The time-to-solution/quality-of-solution trade-o� that our algorithm provides (a combination of
seeding parameter g and switching threshold l) enables e�ectively addressing many community
detection scenarios. For fast community detection, ���� saves time but too many ���� operations
can harm the precision; also, a small g guarantees best runtime. For accurate community detection,
���� is precise but can be costly; a large g will most likely produce reasonable quality of solution.
We investigated our algorithm for �nding connected components on datasets from various

domains and demonstrated orders of magnitudes speedup over the basic LP-based algorithm, up to
13.2 speedup over the SV algorithm, and competitive performance as the A�orest algorithm.

ACKNOWLEDGEMENTS
This research was supported by NSF awards CAREER IIS 1553528 and SI2-SSE 1716828, by the
U.S. DOE Exascale Computing Project’s (ECP) (17-SC-20-SC) ExaGraph codesign center, and by
the Segmented Global Address Space (SGAS) LDRD under the Data Model Convergence (DMC)
initiative at the U.S. Department of Energy’s Paci�c Northwest National Laboratory (PNNL). PNNL
is operated by Battelle Memorial Institute under Contract DE-AC06-76RL01830. This research used
computing resources from the Aeolus High Performance Computing cluster at Washington State
University and from the Hyak computing cluster at the University of Washington.

REFERENCES
[1] A. Azad and A. Buluç. 2019. LACC: A Linear-Algebraic Algorithm for Finding Connected Components in Distributed

Memory. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). https://doi.org/10.1109/
IPDPS.2019.00012

[2] A. Andoni, Z. Song, C. Stein, Z. Wang, and P. Zhong. 2018. Parallel Graph Connectivity in Log Diameter Rounds. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). 674–685. https://doi.org/10.1109/FOCS.
2018.00070

[3] J. Attal, M. Malek, and M. Zolghadri. 2019. Parallel and distributed core label propagation with graph coloring.
Concurrency and Computation: Practice and Experience 31, 2 (2019), e4355. https://doi.org/10.1002/cpe.4355

[4] D. A. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. 2017. Benchmarking for Graph Clustering
and Partitioning. Springer New York, New York, NY, 1–11. https://doi.org/10.1007/978-1-4614-7163-9_23-1

[5] M. J. Barber and J. W. Clark. 2009. Detecting network communities by propagating labels under constraints. Phys. Rev.
E 80, 2 (Sept. 2009), 026129. https://doi.org/10.1103/PhysRevE.80.026129

[6] S. Beamer, K. Asanović, and D. Patterson. 2013. Direction-Optimizing Breadth-First Search. Scienti�c Programming 21,
3-4 (2013), 137–148. https://doi.org/10.3233/SPR-130370

[7] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoe�er. 2017. To Push or To Pull: On Reducing Communication
and Synchronization in Graph Computations. In Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing (New York, NY, USA) (HPDC ’17). ACM, 93–104. https://doi.org/10.1145/3078597.
3078616

[8] P. Boldi and S. Vigna. 2004. The Webgraph Framework I: Compression Techniques. In Proceedings of the 13th
International Conference on World Wide Web (New York, NY, USA) (WWW ’04). Association for Computing Machinery,
New York, NY, USA, 595–602. https://doi.org/10.1145/988672.988752

[9] P. Burkhardt. 2021. Graph Connectivity in Log Steps Using Label Propagation. Parallel Processing Letters 31, 04 (2021),
2150021. https://doi.org/10.1142/S0129626421500213 Publisher: World Scienti�c Publishing Co..

[10] V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini, and Y. Sabharwal. 2017. Scalable Single Source Shortest Path
Algorithms for Massively Parallel Systems. IEEE Transactions on Parallel and Distributed Systems 28, 7 (2017), 2031–2045.
https://doi.org/10.1109/TPDS.2016.2634535

[11] T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article
1 (2011), 25 pages. https://doi.org/10.1145/2049662.2049663

[12] L. Dhulipala, C. Hong, and J. Shun. 2020. ConnectIt: a framework for static and incremental parallel graph connectivity
algorithms. Proceedings of the VLDB Endowment 14, 4 (2020), 653–667. https://doi.org/10.14778/3436905.3436923

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

https://doi.org/10.1109/IPDPS.2019.00012
https://doi.org/10.1109/IPDPS.2019.00012
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1002/cpe.4355
https://doi.org/10.1007/978-1-4614-7163-9_23-1
https://doi.org/10.1103/PhysRevE.80.026129
https://doi.org/10.3233/SPR-130370
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1145/988672.988752
https://doi.org/10.1142/S0129626421500213
https://doi.org/10.1109/TPDS.2016.2634535
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.14778/3436905.3436923

39:30 Liu, Xu T, et al.

[13] A. M. Fiscarelli, M. R. Brust, G. Danoy, and P. Bouvry. 2019. A Memory-Based Label Propagation Algorithm for
Community Detection. In Complex Networks and Their Applications VII (Studies in Computational Intelligence). Springer
International Publishing, 171–182. https://doi.org/10.1007/978-3-030-05411-3_14

[14] S. Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3 (Feb. 2010), 75–174. https://doi.org/10.
1016/j.physrep.2009.11.002

[15] Y. Gao, X. Yu, and H. Zhang. 2020. Uncovering overlapping community structure in static and dynamic networks.
Knowledge-Based Systems 201-202 (2020), 106060. https://doi.org/10.1016/j.knosys.2020.106060

[16] S. E. Garza and S. E. Schae�er. 2019. Community detection with the Label Propagation Algorithm: A survey. Physica
A: Statistical Mechanics and its Applications 534 (2019), 122058. https://doi.org/10.1016/j.physa.2019.122058

[17] C. Granell, S. Gómez, and A. Arenas. 2012. Hierarchical multiresolution method to overcome the resolution limit
in complex networks. International Journal of Bifurcation and Chaos 22, 7 (2012), 1250171. https://doi.org/10.1142/
S0218127412501714

[18] R. Hosseini and R. Azmi. 2015. Memory-based label propagation algorithm for community detection in social
networks. In 2015 The International Symposium on Arti�cial Intelligence and Signal Processing (AISP). IEEE, 256–260.
https://doi.org/10.1109/AISP.2015.7123488

[19] J. Jaiganesh and M. Burtscher. 2018. A High-performance Connected Components Implementation for GPUs. In
Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing (New York,
NY, USA) (HPDC ’18). ACM, 92–104. https://doi.org/10.1145/3208040.3208041

[20] J. Jájá. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.
[21] S. V. Jayanti and R. E. Tarjan. 2016. A Randomized Concurrent Algorithm for Disjoint Set Union. In Proceedings

of the 2016 ACM Symposium on Principles of Distributed Computing (Chicago, Illinois, USA, 2016-07-25) (PODC ’16).
Association for Computing Machinery, 75–82. https://doi.org/10.1145/2933057.2933108

[22] U. Kang, C. E. Tsourakakis, and C. Faloutsos. 2009. PEGASUS: A Peta-Scale Graph Mining System Implementation
and Observations. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining (ICDM ’09). IEEE
Computer Society, USA, 229–238. https://doi.org/10.1109/ICDM.2009.14

[23] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra, P. Monticciolo, A. Reuther, S. Samsi, W. Song, D.
Staheli, and S. Smith. 2017. Streaming graph challenge: Stochastic block partition. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1–12. https://doi.org/10.1109/HPEC.2017.8091040

[24] I. M. Kloumann and J. M. Kleinberg. 2014. Community Membership Identi�cation from Small Seed Sets. In Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2014)
(KDD ’14). ACM, 1366–1375. https://doi.org/10.1145/2623330.2623621

[25] J. M. Klusowski and Y. Wu. 2018. Counting Motifs with Graph Sampling. In Proceedings of the 31st Conference On
Learning Theory (Proceedings of Machine Learning Research, Vol. 75), S. Bubeck, V. Perchet, and P. Rigollet (Eds.). PMLR,
1966–2011. http://proceedings.mlr.press/v75/klusowski18a.html

[26] Y. Kozawa, T. Amagasa, and H. Kitagawa. 2017. GPU-Accelerated Graph Clustering via Parallel Label Propagation. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (New York, NY, USA) (CIKM
’17). ACM, 567–576. https://doi.org/10.1145/3132847.3132960

[27] J. Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings of the 22Nd International Conference
on World Wide Web (Rio de Janeiro, Brazil) (WWW ’13 Companion). ACM, New York, NY, USA, 1343–1350. https:
//doi.org/10.1145/2487788.2488173

[28] K. Kuzmin, M. Chen, and B. K. Szymanski. 2015. Parallelizing SLPA for scalable overlapping community detection.
Scienti�c Programming 2015 (2015), 4:4. https://doi.org/10.1155/2015/461362

[29] A. Kyrola, G. Blelloch, and C. Guestrin. 2012. GraphChi: Large-Scale Graph Computation on Just a PC. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12). USENIX Association, Hollywood, CA, 31–46.
https://doi.org/10.5555/2387880.2387884

[30] A. Lancichinetti, S. Fortunato, and F. Radicchi. 2008. Benchmark graphs for testing community detection algorithms.
Phys. Rev. E 78, 4 (Oct. 2008), 046110. https://doi.org/10.1103/PhysRevE.78.046110

[31] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato. 2011. Finding Statistically Signi�cant Communities in
Networks. PLOS ONE 6, 4 (2011), e18961. https://doi.org/10.1371/journal.pone.0018961

[32] C. E. Leiserson and T. B. Schardl. 2010. AWork-e�cient Parallel Breadth-�rst SearchAlgorithm (orHow to Copewith the
Nondeterminism of Reducers). In Proceedings of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms
and Architectures (New York, NY, USA, 2010) (SPAA ’10). ACM, 303–314. https://doi.org/10.1145/1810479.1810534

[33] J. Leskovec and A. Krevl. 2016. SNAP datasets: Stanford large network dataset collection; 2014. http://snap. stanford.
edu/data (2016).

[34] I. X. Y. Leung, P. Hui, P. Liò, and J. Crowcroft. 2009. Towards real-time community detection in large networks. Phys.
Rev. E 79, 6 (2009), 066107. https://doi.org/10.1103/PhysRevE.79.066107

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

https://doi.org/10.1007/978-3-030-05411-3_14
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.knosys.2020.106060
https://doi.org/10.1016/j.physa.2019.122058
https://doi.org/10.1142/S0218127412501714
https://doi.org/10.1142/S0218127412501714
https://doi.org/10.1109/AISP.2015.7123488
https://doi.org/10.1145/3208040.3208041
https://doi.org/10.1145/2933057.2933108
https://doi.org/10.1109/ICDM.2009.14
https://doi.org/10.1109/HPEC.2017.8091040
https://doi.org/10.1145/2623330.2623621
http://proceedings.mlr.press/v75/klusowski18a.html
https://doi.org/10.1145/3132847.3132960
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1155/2015/461362
https://doi.org/10.5555/2387880.2387884
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1371/journal.pone.0018961
https://doi.org/10.1145/1810479.1810534
https://doi.org/10.1103/PhysRevE.79.066107

Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs 39:31

[35] Z. Lin, X. Zheng, N. Xin, and D. Chen. 2014. CK-LPA: E�cient community detection algorithm based on label
propagation with community kernel. Physica A: Statistical Mechanics and its Applications 416 (2014), 386–399. https:
//doi.org/10.1016/j.physa.2014.09.023

[36] S. Liu and R. E. Tarjan. 2018. Simple Concurrent Labeling Algorithms for Connected Components. In 2nd Symposium
on Simplicity in Algorithms (SOSA 2019) (OpenAccess Series in Informatics (OASIcs), Vol. 69), Jeremy T. Fineman and
Michael Mitzenmacher (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 3:1–3:20.
https://doi.org/10.4230/OASIcs.SOSA.2019.3

[37] X. Liu and T. Murata. 2010. Advanced modularity-specialized label propagation algorithm for detecting communities
in networks. Physica A: Statistical Mechanics and its Applications 389, 7 (2010), 1493–1500. https://doi.org/10.1016/j.
physa.2009.12.019

[38] X. T. Liu, J. S. Firoz, M. Zalewski, M. Halappanavar, K. J. Barker, A. Lumsdaine, and A. H. Gebremedhin. 2019. Distributed
Direction-Optimizing Label Propagation for Community Detection. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1–6. https://doi.org/10.1109/HPEC.2019.8916215

[39] X. T. Liu, M. Halappanavar, K. J. Barker, A. Lumsdaine, and A. H. Gebremedhin. 2020. Direction-Optimizing Label
Propagation and Its Application to Community Detection. In Proceedings of the 17th ACM International Conference
on Computing Frontiers (Catania, Sicily, Italy) (CF ’20). ACM, New York, NY, USA, 192–201. https://doi.org/10.1145/
3387902.3392634

[40] H. Lu, M. Halappanavar, and A. Kalyanaraman. 2015. Parallel heuristics for scalable community detection. Parallel
Comput. 47 (2015), 19 – 37. https://doi.org/10.1016/j.parco.2015.03.003

[41] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarria-Miranda. 2009. A faster parallel algorithm and e�cient
multithreaded implementations for evaluating betweenness centrality on massive datasets. In 2009 IEEE International
Symposium on Parallel Distributed Processing. IEEE, 1–8. https://doi.org/10.1109/IPDPS.2009.5161100

[42] A. McDaid and N. Hurley. 2010. Detecting Highly Overlapping Communities with Model-Based Overlapping Seed
Expansion. In 2010 International Conference on Advances in Social Networks Analysis and Mining (Odense, Denmark).
IEEE, 112–119. https://doi.org/10.1109/ASONAM.2010.77

[43] D. Merrill, M. Garland, and A. Grimshaw. 2012. Scalable GPU Graph Traversal. SIGPLAN Not. 47, 8 (2012), 117–128.
https://doi.org/10.1145/2370036.2145832

[44] S. M. Orzan. 2004. On Distributed Veri�cation and Veri�ed Distribution. Ph.D. thesis. VRIJE UNIVERSITEIT. http:
//dare.ubvu.vu.nl/handle/1871/10338

[45] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. 2005. Uncovering the overlapping community structure of complex
networks in nature and society. Nature 435, 7043 (2005), 814–818. https://doi.org/10.1038/nature03607

[46] U. N. Raghavan, R. Albert, and S. Kumara. 2007. Near linear time algorithm to detect community structures in
large-scale networks. Phys. Rev. E 76, 3 (2007), 036106. https://doi.org/10.1103/PhysRevE.76.036106

[47] R. A. Rossi and N. K. Ahmed. 2015. The Network Data Repository with Interactive Graph Analytics and Visualization.
In Proceedings of the Twenty-Ninth AAAI Conference on Arti�cial Intelligence (Austin, Texas) (AAAI’15). AAAI Press,
4292–4293. https://doi.org/10.5555/2888116.2888372

[48] J. Scripps, P. Tan, and A. Esfahanian. 2007. Exploration of Link Structure and Community-Based Node Roles in
Network Analysis. In Seventh IEEE International Conference on Data Mining (ICDM 2007). IEEE, 649–654. https:
//doi.org/10.1109/ICDM.2007.37

[49] H. Shen, X. Cheng, K. Cai, and M. Hu. 2009. Detect overlapping and hierarchical community structure in networks.
Physica A: Statistical Mechanics and its Applications 388, 8 (2009), 1706–1712. https://doi.org/10.1016/j.physa.2008.12.021

[50] Y. Shiloach and U. Vishkin. 1982. An O(logn) parallel connectivity algorithm. Journal of Algorithms 3, 1 (1982), 57–67.
https://doi.org/10.1016/0196-6774(82)90008-6

[51] J. Shun and G. E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. SIGPLAN
Notices 48, 8 (2013), 135–146. https://doi.org/10.1145/2517327.2442530

[52] J. Shun, L. Dhulipala, and G. Blelloch. 2014. A Simple and Practical Linear-work Parallel Algorithm for Connectivity.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (New York, NY, USA) (SPAA
’14). ACM, 143–153. https://doi.org/10.1145/2612669.2612692

[53] G. M. Slota, S. Rajamanickam, and K. Madduri. 2014. BFS and Coloring-Based Parallel Algorithms for Strongly
Connected Components and Related Problems. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. 550–559. https://doi.org/10.1109/IPDPS.2014.64

[54] S. N. So�er and A. Vàzquez. 2005. Network clustering coe�cient without degree-correlation biases. Phys. Rev. E 71, 5
(2005), 057101. https://doi.org/10.1103/PhysRevE.71.057101

[55] J. Soman and A. Narang. 2011. Fast Community Detection Algorithm with GPUs and Multicore Architectures. In 2011
IEEE International Parallel Distributed Processing Symposium. IEEE, 568–579. https://doi.org/10.1109/IPDPS.2011.61

[56] C. L. Staudt and H. Meyerhenke. 2016. Engineering Parallel Algorithms for Community Detection in Massive Networks.
IEEE Transactions on Parallel and Distributed Systems 27, 1 (2016), 171–184. https://doi.org/10.1109/TPDS.2015.2390633

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

https://doi.org/10.1016/j.physa.2014.09.023
https://doi.org/10.1016/j.physa.2014.09.023
https://doi.org/10.4230/OASIcs.SOSA.2019.3
https://doi.org/10.1016/j.physa.2009.12.019
https://doi.org/10.1016/j.physa.2009.12.019
https://doi.org/10.1109/HPEC.2019.8916215
https://doi.org/10.1145/3387902.3392634
https://doi.org/10.1145/3387902.3392634
https://doi.org/10.1016/j.parco.2015.03.003
https://doi.org/10.1109/IPDPS.2009.5161100
https://doi.org/10.1109/ASONAM.2010.77
https://doi.org/10.1145/2370036.2145832
http://dare.ubvu.vu.nl/handle/1871/10338
http://dare.ubvu.vu.nl/handle/1871/10338
https://doi.org/10.1038/nature03607
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.5555/2888116.2888372
https://doi.org/10.1109/ICDM.2007.37
https://doi.org/10.1109/ICDM.2007.37
https://doi.org/10.1016/j.physa.2008.12.021
https://doi.org/10.1016/0196-6774(82)90008-6
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2612669.2612692
https://doi.org/10.1109/IPDPS.2014.64
https://doi.org/10.1103/PhysRevE.71.057101
https://doi.org/10.1109/IPDPS.2011.61
https://doi.org/10.1109/TPDS.2015.2390633

39:32 Liu, Xu T, et al.

[57] S. Stergiou, D. Rughwani, and K. Tsioutsiouliklis. 2018. Shortcutting Label Propagation for Distributed Connected
Components. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (New York,
NY, USA) (WSDM ’18). ACM, 540–546. https://doi.org/10.1145/3159652.3159696

[58] A. Stoica, J. X. Han, and A. Chaintreau. 2020. Seeding Network In�uence in Biased Networks and the Bene�ts of
Diversity. In Proceedings of The Web Conference 2020 (New York, NY, USA) (WWW ’20). ACM, 2089–2098. https:
//doi.org/10.1145/3366423.3380275

[59] M. Sutton, T. Ben-Nun, and A. Barak. 2018. Optimizing Parallel Graph Connectivity Computation via Subgraph
Sampling. In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 12–21. https:
//doi.org/10.1109/IPDPS.2018.00012

[60] J. J. Tithi, A. Stasiak, S. Aananthakrishnan, and F. Petrini. 2020. Prune the Unnecessary: Parallel Pull-Push Louvain
Algorithms with Automatic Edge Pruning. In 49th International Conference on Parallel Processing - ICPP (New York, NY,
USA) (ICPP ’20). ACM, 1–11. https://doi.org/10.1145/3404397.3404455

[61] J. J. Whang, D. F. Gleich, and I. S. Dhillon. 2016. Overlapping Community Detection Using Neighborhood-In�ated
Seed Expansion. IEEE Transactions on Knowledge and Data Engineering 28, 5 (2016), 1272–1284. https://doi.org/10.
1109/TKDE.2016.2518687

[62] J. J. Whang, A. Lenharth, I. S. Dhillon, and K. Pingali. 2015. Scalable Data-Driven PageRank: Algorithms, System Issues,
and Lessons Learned. In Euro-Par 2015: Parallel Processing, J. L. Trä�, S. Hunold, and F. Versaci (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 438–450. https://doi.org/10.1007/978-3-662-48096-0_34

[63] J. Xie and B. K. Szymanski. 2013. LabelRank: A stabilized label propagation algorithm for community detection in
networks. In 2013 IEEE 2nd Network Science Workshop (NSW). IEEE, 138–143. https://doi.org/10.1109/NSW.2013.6609210

[64] Y. Xing, F. Meng, Y. Zhou, M. Zhu, M. Shi, and G. Sun. 2014. A Node In�uence Based Label Propagation Algorithm for
Community Detection in Networks. The Scienti�c World Journal 2014 (2014). https://doi.org/10.1155/2014/627581

[65] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. 2014. Pregel Algorithms for Graph Connectivity Problems with
Performance Guarantees. Proc. VLDB Endow. 7, 14 (2014), 1821–1832. https://doi.org/10.14778/2733085.2733089

[66] J. Yang and J. Leskovec. 2015. De�ning and Evaluating Network Communities Based on Ground-Truth. Knowl. Inf.
Syst. 42, 1 (2015), 181–213. https://doi.org/10.1007/s10115-013-0693-z

[67] H. Zhang, Y. Gao, and Y. Zhang. 2018. Overlapping communities from dense disjoint and high total degree clusters.
Physica A: Statistical Mechanics and its Applications 496 (2018), 286–298. https://doi.org/10.1016/j.physa.2017.12.146

[68] K. Zhang, R. Chen, and H. Chen. 2015. NUMA-aware Graph-structured Analytics. SIGPLAN Not. 50, 8 (Jan. 2015),
183–193. https://doi.org/10.1145/2858788.2688507

[69] Q. Zhang, Q. Qiu, W. Guo, K. Guo, and N. Xiong. 2016. A social community detection algorithm based on parallel grey
label propagation. Computer Networks 107 (2016), 133–143. https://doi.org/10.1016/j.comnet.2016.06.002

[70] X. Zhang, F. Song, S. Chen, X. Tian, and Y. Ao. 2015. Label propagation algorithm based on local cycles for community
detection. International Journal of Modern Physics B 29, 5 (2015), 1550029. https://doi.org/10.1142/S0217979215500290

[71] Y. Zhang, A. Azad, and A. Buluç. 2020. Parallel algorithms for �nding connected components using linear algebra. J.
Parallel and Distrib. Comput. 144 (2020), 14–27. https://doi.org/10.1016/j.jpdc.2020.04.009

[72] Y. Zhao, S. Li, and F. Jin. 2016. Identi�cation of in�uential nodes in social networks with community structure based
on label propagation. Neurocomputing 210 (2016), 34–44. https://doi.org/10.1016/j.neucom.2015.11.125

[73] X. Zhu and Z. Ghahramani. 2002. Learning from Labeled and Unlabeled Data with Label Propagation. Technical Report.
CMU.

ACM J. Exp. Algor., Vol. 9, No. 4, Article 39. Publication date: October 2022.

https://doi.org/10.1145/3159652.3159696
https://doi.org/10.1145/3366423.3380275
https://doi.org/10.1145/3366423.3380275
https://doi.org/10.1109/IPDPS.2018.00012
https://doi.org/10.1109/IPDPS.2018.00012
https://doi.org/10.1145/3404397.3404455
https://doi.org/10.1109/TKDE.2016.2518687
https://doi.org/10.1109/TKDE.2016.2518687
https://doi.org/10.1007/978-3-662-48096-0_34
https://doi.org/10.1109/NSW.2013.6609210
https://doi.org/10.1155/2014/627581
https://doi.org/10.14778/2733085.2733089
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1016/j.physa.2017.12.146
https://doi.org/10.1145/2858788.2688507
https://doi.org/10.1016/j.comnet.2016.06.002
https://doi.org/10.1142/S0217979215500290
https://doi.org/10.1016/j.jpdc.2020.04.009
https://doi.org/10.1016/j.neucom.2015.11.125

	Abstract
	1 Introduction
	2 Label Propagation
	3 Direction-Optimizing Label Propagation
	4 Application to Community Detection
	4.1 Frontier Expansion
	4.2 Local Maxima and Label Swapping
	4.3 Parallelizing Push and Pull
	4.4 Seeding Strategies

	5 Application to Connected Component Decomposition
	5.1 Fast SV Algorithm
	5.2 push, pull, and hook
	5.3 Combining push, pull, and hook with Compaction Methods
	5.4 Slow Convergence for Large Diameter Graphs
	5.5 Skipping the Largest Component in Scale-free Graphs
	5.6 DOLPA with Subgraph Sampling, Path Compression, and Compress

	6 Experimental Evaluation: Connected Component Decomposition Performance
	6.1 Experimental Setup
	6.2 Dataset
	6.3 Speed of Convergence and Runtime Performance
	6.4 Strong Scaling

	7 Experimental Setup: Community Detection
	7.1 Experiment Platform
	7.2 Datasets
	7.3 Parameter Choice for push–pull Switch

	8 Experimental Evaluation: Seeding Strategies and Parameters
	8.1 Experimental Design
	8.2 Runtime and Quality of Solution Results
	8.3 Analysis
	8.4 What is a Good Seeding Parameter t Value?

	9 Experimental Evaluation: Community Detection Runtime and Solution Quality
	9.1 Runtime and Quality of Solution Results

	10 Related Work
	11 Conclusion
	References

