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Abstract—Hypergraphs offer flexible and robust data rep-
resentations for many applications, but methods that work
directly on hypergraphs are not readily available and tend to
be prohibitively expensive. Much of the current analysis of
hypergraphs relies on first performing a graph expansion – either
based on the nodes (clique expansion), or on the hyperedges
(line graph) – and then running standard graph analytics on the
resulting representative graph. However, this approach suffers
from massive space complexity and high computational cost with
increasing hypergraph size. Here, we present efficient, parallel
algorithms to accelerate and reduce the memory footprint of
higher-order graph expansions of hypergraphs. Our results focus
on the hyperedge-based s-line graph expansion, but the methods
we develop work for higher-order clique expansions as well. To
the best of our knowledge, ours is the first framework to enable
hypergraph spectral analysis of a large dataset on a single shared-
memory machine. Our methods enable the analysis of datasets
from many domains that previous graph-expansion-based models
are unable to provide. The proposed s-line graph computation
algorithms are orders of magnitude faster than state-of-the-art
sparse general matrix-matrix multiplication methods, and obtain
approximately 2 � 31⇥ speedup over a prior state-of-the-art
heuristic-based algorithm for s-line graph computation.

Index Terms—Hypergraphs, parallel hypergraph algorithms,
line graphs, intersection graphs, clique expansion.

I. INTRODUCTION

Hypergraph models are more natural representation than
graphs for a broad range of systems—in biology, sociology,
telecommunications, and physical infrastructures—involving
multi-way relationships [3], [5], since graph models are limited
to representing pairwise relationships. Mathematically, a hy-
pergraph is a structure H = hV,Ei, with a set V = {vj}nj=1

of vertices, and an indexable family E = {ei}mi=1 of hyper-
edges ei ✓ V . Hyperedges have different sizes |ei|, possibly
ranging from the singleton {v} ✓ V (distinct from the element
v 2 V ) to the vertex set V . A hyperedge e = {u, v} with
|e| = 2 is the same as a graph edge. Indeed, all graphs
G = hV,Ei are hypergraphs: in particular, graphs are “2-
uniform” hypergraphs, so that now E ✓

�V
2

�
and all e 2 E

are unordered pairs with |e| = 2. An example hypergraph H

is shown in Figure 1 on vertices V = {a, b, . . . , f} and edges
E = {1 : {a, b, c}, 2 : {b, c, d}, 3 : {a, b, c, d, e}, 4 : {e, f}}.

A well-known method to study hypergraphs is to cre-
ate a graph representation from the structure of the initial
hypergraph using a graph expansion method such as the
clique expansion [38]. The clique expansion replaces each

hyperedge with a graph edge for each pair of vertices in
the hyperedge. The information associated with hyperedges
in the original hypergraph is lost in the new graph [23].
Moreover, the size of the newly-constructed graph with these
expansion methods increases exponentially ([21], [14]), which
can significantly limit the scalability and applicability of these
techniques. For example, there are approx. 10.3 billion edges
in the clique-expansion graph of the Friendster dataset and
54.5 billion edges in that of Orkut [14]. With billions of non-
zero entries in the adjacency matrix of the clique-expansion
graphs, processing these datasets is not possible on a single
compute node.

Fig. 1: (left) An example hypergraph H. (right) Dual H
⇤ of the

example hypergraph H, defined later in Section II.
In this work, we propose a scalable framework to study non-

uniform hypergraphs with a lower-dimensional approximation
of the original hypergraph called s-line graphs of a hyper-
graph. Our multi-stage, versatile framework starts from the
original hypergraph, and consists of multiple stages, including
pre-processing, s-line graph construction, squeezing the s-
line graph, and s-measure (defined later) computation. An
s-line graph construction considers the number of common
(overlapping) vertices, denoted by s, between each pair of
hyperedges to capture the strength of connections among
hyperedges. Such a model can represent, for example, the
strength of the collaboration in a collaboration network.
Specifically, we are interested in this work with only high-
order s-line graphs, where s � 2. Compared with the clique-
expansion graphs, the s-line graph of Friendster only has 53
edges and that of Orkut has 4,289 edges for s = 1024. In an
s-line graph, vertices (representing hyperedges of the original
hypergraph) are connected when hyperedges intersect in at
least s hypergraph vertices in the original hypergraph.

Dually, s-line graphs can also be constructed by consider-
ing the (hyper)vertices in the original hypergraph and their
overlapping hyperedge sets. In this case, vertex s-line graph
when s = 1 is the clique-expansion graph of a hypergraph.
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Fig. 2: Hyperedge s-line
graphs Ls(H) = hEs, F i

for s = 1, 2, 3, 4 for the
example in Figure 1. The
width of the graph edges
represents the strength of
the connection in the orig-
inal hypergraph.

Figure 2 shows the hyperedge s-
line graphs Ls(H) for our exam-
ple for s = 1, 2, 3, 4. Note the
changing vertex sets Es for each
s value, decreasing to E4={3}
being the single hyperedge with
|e|=5 � 4. Throughout this paper,
we refer s-line graphs as hyper-
edge s-line graphs.

The drastic difference in size
between the clique-expansion
graphs and the s-line graphs has
implications in the adjacency
matrix representations of the
graphs. The size reduction entails

drastic memory footprint reduction while computing a
particular metric on the hypergraph (for example, when
computing the Laplacian). Note that, in the s-line graph view
of a hypergraph, as we vary the value of s, we can still retain
the important connectivities in the original hypergraph.

A naive approach for the s-line graph construction is to find
the intersection of the neighbor list of each pair of hyperedges
in the original hypergraph. This is both compute- and memory-
intensive. A recent parallel heuristic-based algorithm [30] sig-
nificantly improves the performance over the naive approach
by avoiding redundant set intersections. However, the approach
is based on heuristics and can only compute one s-line graph
at a time with one s value. Table I compares the performance
of the algorithm presented in [30] with the method proposed
in this work in terms of runtimes on LiveJournal dataset.
As observed from the table, the s-line computation stage is
the most time-consuming step in the pipeline. Hence, we
propose two new (exact) parallel algorithms for s-line graph
construction to reduce the overall execution time and improve
the efficiency of the process. We apply our framework to
different datasets and real-world problems to gain insights into
its performance and utility.

We identify three additional motivations for computing s-
line graphs of a hypergraph. First, once computed, highly-
tuned graph libraries can be applied to the s-line graphs
to measure different graph-theoretic metrics. The second mo-
tivation stems from applications, where hypergraphs and s-
line graphs enable new insights based on s-line graph metrics.
Third, s-line graphs enable spectral graph analysis of hy-
pergraphs. To the best of our knowledge, there are no known
method for directly computing the eigenvectors and eigenval-
ues of the rectangular incidence matrix of a hypergraph. The
lack of a simple, eigenvalue-preserving algebraic relationship
between the incidence matrix H of a hypergraph, and the
adjacency matrices of s-line graphs suggests the existence of
a method for implicitly determining the s-line graph spectrum
without forming the s-line graph itself is highly unlikely.
Eigenvalues can provide insight into, for example, how well
each of the connected components in an s-line graph remains
connected and consequently provide insight about the original
hypergraph connectivity.

Stage Algorithm in [30] our method
preprocessing 0.122s 0.152s
s-overlap 313.864s 12.085s
squeeze 3.845s 2.656s
s-connected components 22ms 11ms
total time 329.520s 14.904s
speedup 1⇥ 26⇥
#set intersections 8.66⇥ 109 0

TABLE I: Computational cost of each step of the high-order line
graph framework with the LiveJournal dataset [37]. Clearly, s-
overlap computation (in bold) is the dominant stage in the process.
Note that our method does not perform any set intersection operation.

Fig. 3: (Left) Bipartite graph representation of H. (Middle) Incidence
matrix (H). (Right) 2-section H2.

Summary of contributions. In this paper, we:
• Propose two new hashmap-based s-line graph compu-

tation algorithms that completely avoid set intersection
operations and prove to be significantly faster than the
state-of-the-art efficient algorithm (§III).

• Propose a (C++ based) high performance, scalable frame-
work1 for computing higher order line graph of hyper-
graphs (§IV).

• Apply our framework on three real-world problems:
uncovering collaborations in co-authorship networks and
in co-staring networks, and identifying important genes
in transcriptomics data. We demonstrate both higher
efficiency and practical usability (§V).

• Empirically analyze scalability of our framework on a
variety of real-world datasets and show superior perfor-
mance over the algorithm proposed in [30] (§VI). We
also compare our approach with a state-of-the-art sparse
matrix-matrix multiplication (SpGEMM) library-based
implementation (§VI-G) and show superior performance.

II. BACKGROUND

A. Hypergraph Representations
Hypergraphs may be represented in a number of equivalent

forms. Given a hypergraph H, one can construct the bipartite
graph B(H) = hV t E,E0

i whose vertex set is the disjoint
union of the hypergraph’s vertices V and hyperedges E, and
whose edge set is the undirected graph edges E0

✓ V t
�E
2

�
,

where {v, e} 2 E0 iff v 2 e. Further, one can construct the
Boolean incidence matrix Hn⇥m where for i 2 [n], j 2 [m],
bij = 1 if vi 2 ej , otherwise bij = 0. Note that H is not
square. These two representations are illustrated in Figure 3
for the example hypergraph introduced in Figure 1.

The dual hypergraph H
⇤ = hE⇤, V ⇤

i of H has vertex
set E⇤ = {e⇤i }

m
i=1 and family of hyperedges V ⇤ = {v⇤j }

n
j=1,

where v⇤j : = {e⇤i : vj 2 ei}. The dual H⇤ for our example
is shown in Figure 1. H

⇤ is just the hypergraph with the
transposed incidence matrix HT , and (H⇤)⇤ = H.

In graphs, the structural relationship between two distinct
1Forthcoming code for our framework NWHypergraph will, pending insti-

tutional approval, be posted at https://github.com/pnnl/NWHypergraph
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vertices u and v can only be whether they are adjacent in a
single edge ({u, v} 2 E) or not ({u, v} 62 E); and dually,
that between two distinct edges e and f can only be whether
they are incident at a single vertex (e \ f = {v} 6= ;) or not
(e\ f = ;). In hypergraphs, both of these concepts are appli-
cable to sets of vertices and edges, and additionally become
quantitative. Define adj : 2V ! Z�0 and inc : 2E ! Z�0, in
both set notation and (polymorphically) pairwise:

adj(U) = |{e ◆ U}|, adj(u, v) = |{e ◆ {u, v}}|
inc(F ) = | \e2F e|, inc(e, f) = |e \ f |

for U ✓ V, u, v 2 V, F ✓ E, e, f 2 E. These concepts are
dual, in that adj on vertices in H maps to inc on edges in
H

⇤, and vice versa. And for singletons, adj({v}) = deg(v) =
|e 3 v| is the degree of the vertex v, while inc({e}) = |e| is
the size of the edge e. In our example, we have adj(b, c) = 3,
while inc({1, 2, 3}) = 2.
B. Hypergraph Measures and s-Line Graphs

Two edges e, f 2 E are s-incident if inc(e, f) = |e\f | � s
for s � 1. An s-walk is a sequence of edges he0, e1, . . . , eni
such that each ei�1, ei are s-incident for 1  i  n. An s-path
is an s-walk where no edges are repeated.

Aksoy et al. have developed various s-line graph metrics on
the basis of s-walks [2]. Here, we describe two of the metrics
used in our paper. Let Es : = {e 2 E : |e| � s}. The s-
betweenness centrality of a hyperedge e is

P
f 6=g2Es

�s
fg(e)

�s
fg

,
where �s

fg(e) is the total number of shortest s-walks from
hyperedge f to g and �s

fg is the number of those shortest s-
walks that contain hyperedge e. A subset of hyperedges F ✓
Es is an s-connected component if there is an s-walk between
all edges e, f 2 F , and F is a maximal such subset. These
measures have important applications in hypernetwork science.
For example, Feng et al. apply s-betweenness centrality to
analyze biological datasets [10].

Consider the 2-section H2 = hV, F i of a hypergraph H as a
graph on the same vertex set V , but now with edges F ✓

�V
2

�

such that {u, v} 2 F iff there is some hyperedge e 2 E with
{u, v} ✓ e (see Figure 3). Thus H2 can be thought of as a
kind of “underlying graph” of a hypergraph H.

Also of key interest is the 2-section of the dual hypergraph
H

⇤, called the line graph L(H) = (H⇤)2. Note that the
vertices in L(H) are the hyperedges in E, and two such (now)
vertices e, f 2 E are connected with a line graph edge iff
inc(e, f) > 0. In general, for integer s � 1, define the s-line
graph of a hypergraph H as a graph Ls(H) = hEs, F i where
F ✓

�E
2

�
and {e, f} 2 F iff e and f are s-incident. It is known

that in general, a hypergraph H cannot always be reconstructed
from even all of the s-line graphs Ls(H) together with the s-
line graphs Ls(H⇤) of the dual [23]. Nonetheless, Aksoy et
al. have demonstrated that all of the above measures can be
calculated from the s-line graphs Ls(H). 1-line graphs are
also known as intersection graphs or one-mode projections.
s-line graphs can be naively calculated from the incidence

matrix H, specifically, L : = H
>
H is an m ⇥ m sym-

metric integer weighted adjacency matrix, where each cell
L[i, j], i, j 2 [m], records inc(ei, ej), and the diagonal entries

Algorithm 1 Algorithm proposed in [30] to compute the edge list
of an s-line graph for a given s.
Input: Hypergraph H = (V,E), s
Output: s-line graph edge list Ls(H)

1: Ls(H) ;
2: Lt(H) ;, for each thread t
3: for all hyperedge ei 2 E do in parallel
4: for each vertex vk of ei do
5: for each hyperedge ej of vk where (i < j) do
6: count set intersection(neighbor list(ei),

neighbor list(ej))
7: if count � s then
8: Lt(H) Lt(H) [ {ei, ej}

9: Ls(H) Ls(H)[ every Lt(H)
10: return Ls(H)

L[i, i] record edge size inc({ei}) = |ei|. For integer s � 1,
define a Boolean filtration matrix Ls where Ls[i, j] = 1 if
L[i, j] � s, and 0 otherwise. Then Ls � I is the adjacency
matrix of Ls+1.

III. ALGORITHMS FOR CONSTRUCTING s-LINE GRAPHS

In this section, we start by briefly discussing a previous
state-of-the-art algorithm for the s-line graph computation [30]
and derive the linear-algebraic equivalent formulation of the
algorithm. We next transition to the linear algebraic formu-
lation of our new algorithm and present our parallel s-line
graph and ensemble s-line graph computation algorithms.
Additionally, we discuss the design and implementation details
of our parallel algorithms. We conclude the section with
discussion about the distinctions between our algorithm and
SpGEMM-based approach, the relationship of s-line graph
with the weighted clique-expansion graph and the practicality
of the s-line graph. Crucially, our methods also enable scalable
analysis of higher-order clique expansions, but for the purpose
of this work we mostly frame our language around, and present
results for, s-line graph computations.

A. Previous Approaches
Recently, Liu et al. proposed an algorithm [30] (shown

in Algorithm 1), where only the pair of hyperedges with
at least one common neighbor is considered for the s-line
graph computation. Additional heuristics have been applied to
reduce the amount of redundant work. These heuristics include
degree-based pruning, skipping already visited hyperedges,
short-circuiting set intersection and considering either the
upper or the lower triangular part of the adjacency matrix of
the s-line graphs. The proposed algorithm, in conjunction with
these heuristics, achieves notable performance benefit over the
naive approach. While Algorithm 1 improved the execution
time of the s-line graph computation, performing explicit all-
pairs set intersections despite incorporating different heuristics
may still be computationally inefficient.

B. Linear Algebraic Formulation of Our Algorithms
Our approach exploits the linear algebraic relationships

present in the adjacency matrix L = H
>
H. There are two

basic variants to consider to construct L, which differ based
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on loop ordering. In the first case, we consider the “ijk” loop
ordering, where the inner loop is essentially a dot product
between column i and column j of H, that is, an intersection
between the non-zero locations of those two rows:

1: for i = 0, 1, . . . do
2: for j = 0, 1, . . . do
3: for k = 0, 1, . . . do
4: L[i, j] L[i, j] +H[k, i]H[k, j]

5: Ls  Boolean filtration on L based on s

An alternative ordering of the loops in matrix multiply
interchanges the two inner loops.

1: for i = 0, 1, . . . do
2: for k = 0, 1, . . . do
3: for j = 0, 1, . . . do
4: L[i, j] L[i, j] +H[k, i]H[k, j]

5: Ls  Boolean filtration on L based on s

In this case, the intersection is not so obvious. The inner
loop copies row k of H, scaled by element H[k, i], to row
i of L. The “intersection” now is implicit in whether H[k, i]
is zero or non-zero. (In numerical linear algebra terminology,
the inner loop is an “axpy,” or vector addition, operation.)

If we were to carry out this operation with actual matrices,
the two forms would be computationally equivalent. However,
we are carrying out this computation with graph structures,
which are best represented as sparse matrices. A computation
using the graph structure, corresponding to the “ijk” ordering
is given as

1: for i = 0, 1, . . . do
2: for j = 0, 1, . . . do
3: L[i, j] L[i, j] + |H.Adj[i] \H.Adj[j]|

4: Ls  Boolean filtration on L based on s

H.Adj[i] indicates all vertices k adjacent to vertex i in H, so
that adj(vi, vk) > 0. Note that this form compares all pairs of
vertices, which may be highly redundant if H is sparse.

The alternative “ikj” formulation instead allows us to exploit
the structure of the graph.

1: for i = 0, 1, . . . do
2: for k 2 H

>.Adj[i] do
3: for j 2 H.Adj[k] do
4: L[i, j] L[i, j] + 1

5: Ls  Boolean filtration on L based on s

Here, rather than computing intersections between all pairs, we
accumulate intersecting edges as we traverse the hypergraph.

C. Our Hashmap-based Algorithm to Compute a s-line Graph
Based on the above observation, in contrast to performing

an explicit set intersection between the full neighbor lists of
both ei and ej (Line 6 in Algorithm 1), our new algorithm
(Algorithm 2) only counts the common neighbor vk (Line 9
in Algorithm 2). The new algorithm maintains a running count
of the amount of overlaps between ei and ej observed so far.
This is reminiscent of counting “confirmed” common members
(vk) between ei and ej , instead of “searching” for common
memberships between two neighbor lists of ei and ej .

Algorithm 2 Our algorithm to compute the edge list of an s-line
graph for a given s using a hashmap data structure.
Input: Hypergraph H = (V,E), s
Output: s-line graph edge list Ls(H)

1: Ls(H) ;
2: Lt(H) ;, for each thread t
3: for all hyperedge ei 2 E do in parallel
4: if degree[ei] < s then . Degree-based pruning
5: continue
6: overlap count  []
7: for each vertex vk of ei do
8: for each hyperedge ej of vk where (i < j) do
9: overlap count[ej]++

10: for each [ej , n] 2 overlap count do
11: if n � s then
12: Lt(H) Lt(H) [ {ei, ej}

13: Ls(H) Ls(H)[ every Lt(H)
14: return Ls(H)

Algorithm 3 Our algorithm to compute the edge lists of an
ensemble of s-line graphs using hashmap data structures.
Input: Hypergraph H = (V,E), array s
Output: s-line graph edge lists Lsi(H), 8si 2 array s

1: overlap count  {}

2: s smallest s 2 array s
3: for all hyperedge ei 2 E do in parallel
4: if degree[ei] < s then
5: continue
6: overlap count[ei]  []
7: for each vertex vk of ei do
8: for each hyperedge ej of vk where (i < j) do
9: overlap count[ei][ej]++

10: for all si 2 array s do in parallel
11: Lsi(H) ;
12: for each hyperedge ei 2 E do
13: for each [ej , n] 2overlap count[ei] do
14: if n � si then
15: Lsi(H) Lsi(H) [ {ei, ej}

16: return Lsi(H), 8si 2 array s

To keep track of the running count, the algorithm allocates
a hashmap data structure for each hyperedge ei (Line 6 in
Algorithm 2) on the fly, with 2-hop neighbors ej as keys
and the current overlap count of (ei, ej) as the values. The
algorithm still considers only the set of edge pairs (ei, ej) with
at least one common neighbor (vk) (Lines 3–8 in Algorithm 2)
and these wedges are considered only from one direction
(i < j). We also apply degree-based pruning heuristic to
filter out the set of hyperedges with degree < s from the
computation, as they are not members of Es.
D. Computing Ensemble of s-line Graphs

Occasionally, we need to compute an ensemble of s-line
graphs, instead of a single one, for different values of s. In
this scenario, running algorithm 2 multiple times to generate
s-line graphs separately may be inefficient. Hence, to compute
an ensemble of s-line graphs, we modify algorithm 2 to first
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accumulate and store the overlap counts, and then filter out
edge-pairs based on a particular s value. The modified algo-
rithm is shown in Algorithm 3. Since multiple s-line graphs
will be constructed, instead of the in-place insertion of edges
(ei, ej) with s overlapping neighbors in the s-line graph’s edge
list (Line 12 in algorithm 2), we decouple this insertion step
from the counting step. The algorithm maintains a running
count of overlaps for each pair of hyperedges (ei, ej) (Line 9
in algorithm 3). Once the counting step is completed, for each
value of s, the algorithm loops through the hashmap containing
all (ej , counts) pairs for each ei and construct the edge list of
the s-line graph (Lines 10–15 in Algorithm 3). Degree-based
pruning can be applied to filter out the hyperedges with degree
smaller than the smallest s in array s. To avoid duplicate
counting for a pair of edges (ei, ej), we prune redundant
computation related to edge (ej , ei).
E. Parallel Time Complexity Analysis

We analyze the complexity of Algorithm 2 and Algorithm 3
in the work-depth model [18]. The work W is equal to the
total number of independent computations. The depth D is
equal to the time required for the critical path computation (in
the computation DAG, the longest chain of dependency). If
P processors are available, with a randomized work-stealing
scheduler, Brent’s scheduling principle dictates that the run-
ning time is O(W/P +D). Each hyperedge is visited once on
the outermost loop (|E|). Without considering any heuristics,
the second inner loop visits dv number of incident hypernodes
on average. The innermost loop visits de incident hyperedges
on average. Because lookup and insertion of elements in a
hashmap is constant on average, therefore, Algorithm 2 takes
O(|E|dvde) on average, and O(|V ||E|

2) time in the worst
case. The overall work is O(|V ||E|

2), and overall depth is
O(log|H|). Here |H| denotes the number of non-zero entries
in the hypergraph incidence matrix. Algorithm 3 has the same
time complexity as Algorithm 2. Next we consider degree-
based pruning and considering only the upper triangular part
of the adjacency matrix Ls(ei, ej pairs with i < j). The
degree-based pruning trims the work in outermost loop to Es.
Considering only the upper triangle of the adjacency matrix
Ls essentially cuts the overall work by half.
F. Parallel Implementation Design Considerations

We implement our framework in C++20. Since s-line
graph computation is the most compute-intensive stage in
the pipeline, we parallelize our algorithms to compute the
s-line graphs in Stage 3. For this purpose, we leverage the
parallel constructs available in Intel oneAPI Threading Build-
ing Blocks (oneTBB) [17]. In particular, the outermost for
loops iterating over the hyperedges in Algorithm 2 and Algo-
rithm 3 are parallelized with the parallel_for construct in
oneTBB. parallel_for, in the form of (range, body,
partitioner), allows different ranges to be passed in to
enable partitioning the range (hyperedges) in different ways
so that different workload distribution strategies among the
threads can be tested, as long as the provided range meets the
C++ range requirements.

Ranges and Partitioning strategies. oneTBB provides

a built-in range, namely blocked range, where the hyper-
edges (IDs) can be divided into blocks (chunks) and each
chunk of contiguous hyperedges (IDs) can be assigned to
one thread. Additionally, we adopt an alternative, customized
range, namely cyclic range. Here, given the stride size equal
to the number of total threads nt, thread 0 processes hyper-
edges e0, e0+nt, e0+2⇤nt, e0+3⇤nt and so on, thread 1 processes
hyperedges e1, e1+nt, e1+2⇤nt, e1+3⇤nt and so on. Here ei
denotes a hyperedge ID. oneTBB is based on work-stealing
runtime scheduler. Work stealing scheduler is particularly
beneficial in our context, since this enables idle threads to
steal work from other straggler threads, which are currently
processing, for example, high-degree hyperedges.

Granularity Control. To accommodate flexibility for load
balancing, oneTBB also provides provision for specifying the
granularity of work done by each thread, while reducing the
overheads of work stealing and task scheduling. We leverage
this fine-grained control to specify the block size of the chunk
of work (i.e. the number of hyperedges assigned to each
thread). We notice that chunk size up to 256 achieves similar
performance. With larger chunk sizes, the scheduling overhead
noticeably impacts algorithm performance.

Data Structures for the Main Performance Cri-
terion (Overlap Count). The hashmap data structures
for maintaining the overlap counts in our algorithms are
thread-local data structures, implemented with the C++
std::unordered_map. In Algorithm 3, for example, each
hyperedge is associated with a hashmap that maintains a list of
neighbors with at least one overlapping vertex. Before apply-
ing filtering (s), the size of each of these individual hashmap
is equal to the degree of each hyperedge. With hypergraphs
with skewed-degree distribution, s-line computation may have
hashmaps for which the sizes vary significantly.

Consideration of dynamic vs pre-allocated thread-local
storage: We have observed that pre-allocated thread-local
storage (TLS) (i.e. per-thread hashmap allocated outside of the
outermost for loop and resetting it after each iteration) may be
beneficial for computing s-line graphs with hypergraphs with
denser overlapping neighbor sets for each pair of hyperedges.
Web dataset, discussed in Section VI, is one such example.
For a particular s value, Web generates denser s-line graph.
Dynamically allocating and deallocating a hashmap in each
iteration on-the-fly inside the outermost for loop is costlier
in this case. All other datasets, however, prefer dynamically-
allocated hashmap for each thread in each iteration.

G. Relationship among Our Hashmap-based s-line Graph
Algorithm, Algorithm 1 and Sparse Matrix-Matrix Mul-
tiplication (SpGEMM).

When constructing a single s-line graph for a particular s
value, considering the pairs of hyperedges sharing at least one
common node is equivalent to computing the sparse general
matrix-matrix multiplications (SpGEMM) [13] followed by a
filter operation to find the edgelist of an s-line graph. However,
the SpGEMM-based approach is both time-consuming and
memory-intensive. There are three reasons why it is not
efficient for computing s-line graphs. First, it considers both
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the upper triangular and the lower triangular of hyperedge
adjacency matrix Ls even though the matrix is symmetric. In
contrast, our algorithm can exploit this symmetry to consider
either the upper or the lower triangular part of the matrix.
Second, since SpGEMM is more general, it has to compute
and store the product matrix before applying filtration upon
the matrix. This requires extra space to store the intermediate
results (i.e., the product matrix). Our algorithm, on the other
hand, can apply the filtration operation on-the-fly and does not
require to materialize the product matrix due to the known s
value. Third, the SpGEMM-based approach cannot apply other
heuristics to speedup the computation, such as degree-based
pruning (prune all the hyperedges with degree < s) or short
circuit the set intersection as applied in Algorithm 1. We report
the performance comparison of our algorithms with a state-of-
the-art parallel SpGEMM library in Section VI-G.

H. Relation to the (Weighted) Clique-expansion Graph
Given a hypergraph H with incidence matrix H, we can

compute the weighted clique-expansion adjacency matrix as
W = HH

T
�DV where DV is a diagonal matrix with node

degrees as its diagonal entries. It is easy to see that W[i, j] is
the number of hyperedges nodes i and j appear together in.
Note that we can use W to obtain Ls(H⇤) for every integer
s � 1 through its adjacency matrix L

⇤
s. We set L⇤

s[i, j] = 1 if
W[i, j] � s and 0 otherwise. However, the above procedure
would be very memory-intensive as W can be very dense.

This observation implies that we could use our approach to
efficiently compute s-sections, or “s-clique” graphs, where a
graph edge connects two nodes if the nodes appear together
in a hyperedge at least s times, bypassing memory limitation
issues by not having to explicitly compute W. In particular,
this could be accomplished by running our algorithm to
directly compute Ls(H⇤) for a given s. So in other words, the
s-line graph problem is dual to the s-clique problem. Although
we frame our paper through the s-line graph perspective, it is
crucial to note that the tools we develop apply equally well to
the s-clique graph problem. The choice of which perspective
to take depends on whether one wants to investigate edge- (s-
line graph) or node- (s-clique graph) centric properties, and
on the particular application.

I. Motivation for using higher-order graph expansions
A widespread approach to hypergraph analysis is to focus

instead on associated graph projections, such as the clique
expansion. As discussed in Section III-H, our framework
actually includes the clique expansion as a special case: the
s-line graph of the dual hypergraph (i.e. s-clique graph) is
the graph obtained by linking vertices in the hypergraph
whenever they belong to s or more shared hyperedges. In
this way, the 1-line graph of the dual hypergraph is the
clique expansion. Compared to the clique expansion approach,
there are significant, practical benefits afforded by the s-clique
approach, for s > 1.

In particular, s-clique graphs can reduce the density of graph
projections while preserving – or even amplifying – essential
features of the network. Line graphs (or clique expansions)

Disease Rank & Score Percentile
s = 1 s = 10 s = 100

Malignant neoplasm of breast 1 (100%) 1 (100%) 1 (100%)
Breast carcinoma 2 (99.99%) 2 (99.99%) 2 (99.99)
Malignant neoplasm of prostate 3 (99.97%) 4 (99.96%) 4 (99.96%)
Liver carcinoma 4 (99.96%) 3 (99.97%) 3 (99.98%)
Colorectal cancer 5 (99.95%) 5 (99.95%) 6 (99.94%)

TABLE II: Ordinal rank and score percentile of the top 5 diseases
by PageRank score in the clique expansion (i.e. s = 1), as well as
the s-line graphs of the dual hypergraph (s-clique expansion), for
s = 10, 100.

of hypergraph-structured data tend to be prohibitively dense
because a single high degree vertex (resp., large hyperedge)
yields quadratically many edges. For instance, in an author-
paper hypergraph, a single paper with many authors (i.e. large
hyperedge) links all pairs of those authors, whereas for s > 1,
the s-clique graph approach requires more than one joint paper
to link those authors in the collaboration graph.

In practice, we find the density of s-clique graphs drops
off exponentially in s in data sets from far-ranging domains.

Fig. 4: The number of edges in the s-
clique graph of four datasets

In log-log scale,
Figure 4 plots
the number of
edges in s-clique
graphs against s
for disGeNet (a
disease-gene dataset
[36]), condMat
(an author-paper
network from the
condensed matter

section of the arXiv [35]), compBoard (a board member-
company network from [2]), and lesMis (a character-scene
network derived in [24] from Victor Hugo’s Les Miserables).
While the rates of decrease differ across datasets, s-clique
graphs rapidly sparsify as s increases. For larger datasets,
the formation of the clique expansion is intractable; s-clique
graphs provide an alternative in these cases.

Even when s-clique graph formation is feasible for s = 1,
focusing on s > 1 may be sufficient or preferable for a
number of basic analytic tasks. While this of course is data and
question dependent, we illustrate the potential effectiveness of
this approach for one common analytical task: centrality and
ranking. In biology, hypergraphs have been utilized to identify
structurally critical genes and diseases in interactome networks
[12]. Returning to the disease-gene network, we construct the
clique expansion (linking diseases associated with common
genes), compute the PageRank score of the diseases, and com-
pare this to the PageRank rankings of diseases in the s-clique
graphs, for s = 10 and s = 100. Table II presents how the top
5 ranked diseases in the clique expansion (s = 1) are ranked
in the s = 10 and s = 100 higher-order clique expansions.
These three graphs are of vastly different densities, having
2.7M, 246K, 12K edges, respectively. Nonetheless, the ordinal
rankings and score percentiles for the top 5 rated diseases are
nearly identical across all three graphs. Extending to the top
400 diseases – which constitute those above 95% percentile of
scores – shows that 92% and 88% of these diseases remain in
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the top 400 for s = 10 and s = 100, respectively. In this case,
the higher-order s-clique graph approach identifies essentially
the same critical diseases according to their PageRank using a
network with 231 times fewer edges than the clique expansion.

IV. OUR s-LINE GRAPH COMPUTATION FRAMEWORK

We now discuss our s-line graph framework for non-
uniform hypergraphs in detail. The framework has five major
stages, two of which are at least partially optional, depending
on the needs of a particular data set and problem.

Stage-1 Pre-processing. Pre-processing hypergraph in-
cludes removing isolated vertices, empty edges, and relabeling.

Relabeling. Large hypergraphs with highly-skewed, non-
uniform degree distributions generally benefit from relabeling
the hyperedge IDs according to their degrees (henceforth
referred to as relabel-by-degree). Let’s consider a “wedge”
motif (ei, vk, ej) in the bipartite graph hypergraph form
B(H). When counting the common neighbor vk, to avoid
considering vk twice: once in view of (ei, vk, ej) and another
as (ej , vk, ei), all s-line computation algorithms include a
comparison (i < j), so that the “wedge” is traversed only once
(Line 5 in Algorithm 1, Line 8 in Algorithm 2 and Line 8 in
Algorithm 3). This is equivalent to considering only the upper
triangular part of the adjacency matrix Ls.

Relabel-by-degree in ascending order, in conjunction with
considering the upper triangular part of Ls, may improve
the performance of the algorithm. Additionally, this helps
achieve better load balancing among threads while executing
a parallel s-line graph computation algorithm in the later
stage. Equivalently, relabel-by-degree in descending order, in
conjunction with considering the lower triangular part of Ls,
may provide similar performance improvement.

Stage-2 (optional) Computing toplexes. We calculate the
toplexes Ě, and thereby the simplified hypergraph Ȟ. A toplex
is a maximal hyperedge e such that there exits no hyperedge
f where 6 9f ◆ e. Let Ě ✓ E be the set of all toplexes. For a
hypergraph H, Ȟ =

⌦
V, Ě

↵
is the simplification of H, and H

is simple when H = Ȟ, so that all hyperedges are toplexes.
A simplification may result in significantly smaller Ȟ, which,
in turn, reduce the memory footprint of subsequent stages.
Efficient algorithms for computing toplexes [31] are available.

Stage-3 Computation of the edge list of the s-line
graph of a given hypergraph. The most important and
compute-intensive stage of the s-line graph framework in-
volves construction of the s-line graph itself. Depending on
the requirement, the objective of this stage can be two-fold:
the computation of only one s-line graph for a particular s
value or an ensemble of s-line graphs for different values
of s. Computation of an ensemble of s-line graphs is more
memory-intensive in comparison to just computing a single s-
line graph. We discuss in detail two algorithms for computing
individual and ensemble of line graphs in the next section.

Stage-4 ID squeezing (optional) and s-line graph con-
struction. After we finish computing the edge list of the s-
line graphs, many hyperedge pairs may not be included in
the newly-constructed s-line graph due to insufficient overlap

between their vertex sets. Hence, the adjacency matrix of the
s-line graph may be hypersparse (many rows will be empty
when considering s-overlap). Retaining the original IDs of
the hyperedges to construct the new s-line graph will thus
be wasteful in terms of memory. Hence, optionally, we may
remap the IDs to a contiguous space to eliminate the “holes”
in the ID space of the s-line graph. This stage is called
ID squeezing. The s-line graph is constructed based on the
generated edge list.

Stage-5 s-metric computation. Once the s-line graph
is constructed, different s-line graph metrics are computed,
including s-connected components, s-centrality, s-distance,
etc. When computing these metrics, any standard, relevant
graph algorithm can be applied to compute such metrics.

(a) s = 1 (b) s = 3 (c) s = 5

Fig. 5: Line graphs computed from the virology genomics data
[10]. They are plotted using NetworkX in Shell layout. The six most
important genes in the original hypergraph are identified by the 5-line
graph, which are ISG15, IL6, AFT3, RSAD2, USP18 and IFIT1.

V. REAL-WORLD APPLICATIONS

In this section, we illustrate the utility of our frame-
work using three real-world applications: identifying the most
important genes in a transcriptomics data, revealing strong
co-authorships among authors, and uncovering collaboration
networks among actors on Internet Movie Database (IMDB).

A. Identifying Genes Critical to Pathogenic Viral Response
Though graph models are quite successful in biological

data modeling, they have limitations in representing complex
relationships amongst entities. In biology, hypergraphs can be
used to model gene and protein interaction networks. Here
we construct a hypergraph from the virology genomics data
[10], where there are 9760 hyperedges representing genes,
and 201 vertices representing individual biological samples
with specific experimental “conditions” (e.g., mouse lung cells
treated with a strain of Influenza virus and sampled at 8 hours).
We omit the details of extracting the hypergraphs from the
dataset due to space constraint.

To identify important genes in this hypergraph, we compute
the s-connected components and the s-betweenness centrality
scores of the vertices within each s-connected component.
Figure 5 shows these s-line graphs. As s increases, the
important genes are clearly identifiable in the visualization.
In particular, gene IFIT1 and USP18 have the highest cen-
trality scores, implying that they are the two most important
genes. They share more than 100 vertices between them. This
indicates that IFIT1 and USP18 are both perturbed in over 100
experimental conditions at the same time. Our s-line graphs
clearly reveal the strength of the connections of those two
genes that previous graph-based models are unable to deduce.
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B. Revealing Relationships Among Authors
For certain hypergraph analytics, the formation of an ensem-

ble of s-line graphs is strictly necessary. To illustrate a particu-
lar type of analysis that necessitates s-line graph construction,
we construct a hypergraph from the condensed matter author-
paper network in Los Alamos e-Print Archive [35]. This
hypergraph contains 16,726 authors as vertices, 22,016 papers
as hyperedges, and 58,595 author-paper inclusions.

To reveal the relationships among authors in this network,
we compute an ensemble of s-line graphs where s ranges
from 1 to 16 (16 is the max s that produces non-singleton
components). We compute the normalized algebraic connec-
tivity of the s-line graphs of author-paper dataset. Normalized
algebraic connectivity is the second-smallest eigenvalue of
the normalized Laplacian matrix[11], [7]; larger values imply
stronger connectivity properties of the s-line graph and hence
the hypergraph.

Fig. 6: Normalized algebraic con-
nectivity for condensed matter author-
paper network.

As observed from
Figure 6, decreasing
values of algebraic con-
nectivity from s=3 to
s=12 reveals that many
authors collaborate on
papers only sparsely,
meaning the vertices
(authors) within a con-
nected component are

sparsely connected with each other. However, the sharp in-
crease in algebraic connectivity starting from s=13 demon-
strates the fact that authors who have co-authored at least in 13
papers are more likely to collaborate with each other (signified
by the denser connections within a connected component of an
s-line graph). In this way, eigenvalues can provide insight into
how well each of the connected components in an s-line graph
remains connected and consequently provide insight about the
original hypergraph connectivity. In addition, as the s value
grows, these techniques can assist in understanding how well
the connectivity is preserved.

C. Uncovering Collaborations Among Actors
Consider uncovering groupings of actors who have collab-

orated on at least s movies. We can query this information
from Internet Movie Database (IMDB) by constructing a
hypergraph (where the movies are vertices, and actors are
hyperedges), and computing the s-line graphs. We compute s-
connected components and s-betweenness centrality on these
s-line graphs. We start by working on three database ta-
bles from the database: title.basic, name.basic and
title.principals [16]. These tables contain approx. 11
million titles, approx. 8 million actor names, and approx. 18
million principal cast/crew for titles respectively.

The three collaboration networks that we uncovered within
IMDB are reported below. Only the actors having a non-zero
centrality scores are shown. These actors collaborated in more
than 100 movies together:
(compute s-connected components) 4 us
Here are the 100-connected components:
[Adoor Bhasi, Bahadur, Paravoor Bharathan, Jayabharati,

Prem Nazir], [Matsunosuke Onoe, Suminojo],
[Kijaku Ôtani, Kitsuraku Arashi],[Panchito, Dolphy].
(compute s-betweenness centrality) 15 us
Adoor Bhasi(0.1111), Matsunosuke Onoe(0.0111),
Kijaku Ôtani(0.0111) //normalized score

We observe that, for the network in which Adoor Bhasi
is a member, he has a centrality score of 0.11, while others
have a score of 0. This means that Adoor Bhasi is the most
important actor. Specifically, this network is a star graph
where Adoor is the center vertex because all the other actors
have a zero centrality score. Previous multigraph-formulation
approach implemented in Python to compute betweenness
centrality along took 10 hours on a Windows 10 machine (a
3.2 GHz CPU with 8 GB RAM) [29]. On the other hand, our
implementation took a total of 80ms to execute on a Mac Mini
(M1 chip, with 16GB RAM) to compute the 100-line graph,
100-connected components and 100-betweenness centrality.

VI. EXPERIMENTAL ANALYSIS

In this section, we evaluate the performance of our s-line
graph algorithms in comparison with the algorithms proposed
in [30] and an efficient SpGEMM algorithm. We also discuss
the scalability, workload characteristics and evaluation of the
workload balancing techniques of our proposed algorithms.
Table III summarizes the shorthand notations we use for differ-
ent algorithms with different workload distribution strategies.

A. Experimental Setup
Our experiments are run on a machine with a two-socket

Intel Xeon Gold 6230 processor, having 20 physical cores
per socket, each running at 2.1 GHz, and 28 MB L3
cache. The system has 188 GB of main memory. Our code
is implemented in C++20, parallelized with Intel oneTBB
2020.3, and compiled with GCC 10.2 compiler and -Ofast
-march=native compilation flags.

B. Dataset
We conducted experiments with real-world hypergraphs

(Table IV) from various domains, ranging from social to
cyber to web. The activeDNS (ADNS) dataset from Georgia
Institute of Technology contains mappings from domains to IP
addresses [26]. When constructing hypergraphs with ADNS
dataset, we consider the domains as the hyperedges and IPs
as vertices. Additionally, we ran our experiments with datasets
curated in [37]. For these curated datasets, in particular, each
hypergraph, constructed from the social network datasets such
as com-Orkut and Friendster in Table IV, are materialized
by running a community detection algorithm on the origi-
nal dataset obtained from Stanford Large Network Dataset
Collection (SNAP) [28]. In the resultant hypergraphs, each
community is considered as a hyperedge and each member of
a community as a vertex. Other larger datasets include Web,
and LiveJournal, collected from Koblenz Network Collection
(KONECT) [25] as bipartite graphs.

Additionally, we selected two large datasets: Amazon-
reviews [1] (where hyperedges are sets of product reviews on
Amazon, and nodes are product categories) and Stackoverflow-
answers [1] (where hyperedges are sets of questions and
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nodes are the tags for questions answered by users on Stack
Overflow).

Notation Algo. Partitioning Relabel-by-degree

1BA Algo. 1 Blocked Ascending
1BD Algo. 1 Blocked Descending
1BN Algo. 1 Blocked No
1CA Algo. 1 Cyclic Ascending
1CD Algo. 1 Cyclic Descending
1CN Algo. 1 Cyclic No
2BA Algo. 2 Blocked Ascending
2BD Algo. 2 Blocked Descending
2BN Algo. 2 Blocked No
2CA Algo. 2 Cyclic Ascending
2CD Algo. 2 Cyclic Descending
2CN Algo. 2 Cyclic No

TABLE III: Notation for different algorithms with different parti-
tioning techniques and relabel-by-degree ordering.

Type hypergraph |V | |E| dv de �v �e

Social
com-Orkut 2.3M 15.3M 46 7 3k 9.1k
Friendster 7.9M 1.6M 3 14 1.7k 9.3k

LiveJournal 3.2M 7.5M 35 15 300 1.1M

Web
Web 27.7M 12.8M 5 11 1.1M 11.6M

Amazon-reviews 2.3M 4.3M 32 17 29k 9.4k
Stackoverflow-answers 1.1M 15.2M 2 24 356 61.3k

Cyber activeDNS 4.5M 43.9M 11 1 714.6k 1.3k
Email email-EuAll 265.2k 265.2k 2 2 7.6k 930

TABLE IV: Input characteristics. The number of vertices (|V |) and
hyperedges (|E|) along with the average degree (d), and maximum
degree (�) for the hypergraph inputs are tabulated here. All the
hypergraphs have a skewed hyperedge degree distribution.
C. Performance Analysis

In Figure 7, we report the performance of different al-
gorithms listed in Table III. The execution time for each
algorithm is normalized w.r.t. 1CN (Algorithm 1 with cyclic
distribution and no relabeling). Here, we do not report results
of Algorithm 3, as it fails on most of the datasets (except for
email-EuAll) due to its memory limitation.

As observed from Figure 7, our algorithm (Algorithm 2), in
conjunction with the right combination of workload distribu-
tion strategy and relabel-by-degree, performs best and achieves
⇡2⇥�31⇥ speedup for Web, and LiveJournal datasets. Larger
inputs with skewed degree distribution (containing a handful
of high-degree hyperedges) perform best when run with 2BA
(Algorithm 2 with blocked distribution and hyperedges rela-
beled by degrees in ascending order). Interestingly, relabeling
the hyperedges based on their degrees (both ascending and
descending) does not provide drastic performance benefit
for Friendster, Amazon-reviews and Stackoverflow-answers.
These 3 datasets have smaller maximum degrees (�e). Hence,
relabel-by-degree does not provide significant benefit in im-
proving the performance. In this case, the additional overhead
of relabeling the hyperedges based on degrees heavily penal-
izes the execution time (we included the pre-processing time
to relabel by degree in the total execution time).

D. Strong Scaling
We conducted strong scaling experiments for our algorithms

with different hypergraph inputs and we report the results
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Fig. 7: Speedup relative to Algorithm 1 with cyclic work distribution
(1CN) where s = 8.
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Fig. 8: Strong scaling results with blocked distribution and cyclic
distribution for Algorithm 2 when s = 8.
in Figure 8. Here we double the number of threads while
keeping the input size constant. The performance of the
algorithms improves up to 16 threads. Beyond 16 threads,
performance does not improve significantly. For inputs with
highly-skewed degree distribution (LiveJournal, com-Orkut,
Web), 2CA demonstrates best scaling behaviour, as cyclic dis-
tribution enables better load balancing. Both block and cyclic
distributions without relabeling achieve similar performance.
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Fig. 10: Workload distribution among 32 threads when partitioning
the hyperedges (outermost loop of the s-line graph algorithms) in a
blocked or cyclic manner in Algorithm 2 for LiveJournal input.

E. Weak Scaling
We performed weak scaling experiments of Algorithm 2

with the activeDNS dataset using blocked workload distribu-
tion strategy. Here we approximately double the size of the
hypergraph (workload) as we double the number of threads
(computing resources). We start with 4 AVRO files worth of
data (dns 4) and scale up to 128 files (dns 128). With larger s
values, the performance of the algorithms improves (Figure 9).

F. Workload Characterization
Figure 10 shows the number of hyperedges visited by each

thread in the innermost loop of Algorithm 2 with different
partitioning strategies for LiveJournal dataset. As can be
observed from Figure 10, without relabel-by-degree, cyclic
distribution achieves better workload balance than blocked
distribution. We also observe in Figure 7 that blocked or
cyclic distribution, in conjunction with relabeling by degree
in ascending order, performs best overall. We investigated this
observation in details with Intel VTune Profiler and found
out that relabel-by-degree in ascending order provides more
favorable cache reuse (due to almost 0.5x less LLC cache
misses) to Algorithm 2 than the descending order.

G. Comparison with an SpGEMM-based Approach
SpGEMM+Filter SpGEMM+Filter+Upper 1CA 2BA
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Fig. 11: Comparison of Algorithm 1, and Algorithm 2 with an
SpGEMM-based approach. Here SpGEMM+Filter+Upper refers to
only consider the upper triangular part of the adjacency matrix.

We also compare the performance of our hashmap-based
algorithms and Algorithm 1 with a state-of-the-art SpGEMM-
based library [33]. We modified the SpGEMM code to add
the filtration step, and to only consider the upper trian-
gular part of the matrix. Here, the SpGEMM library first

computes HHT , and then filters the edges with at least
s overlaps. We report the results with email-EuAll and
Friendster datasets. The SpGEMM library fails to run on
other larger hypergraph datasets. The results are reported
in Figure 11. With all datasets and for different s values,
Algorithm 2 runs faster than the SpGEMM+Filter+Upper
algorithm. The efficient algorithm (Algorithm 1) runs faster
than the SpGEMM+Filter+Upper algorithm with the email-
EuAll dataset, but slower than the SpGEMM+Filter+Upper
algorithm with Friendster dataset (for smaller s values). With
larger s values in all cases, our algorithm is orders of mag-
nitude faster than the SpGEMM+Filter+Upper approach. The
improvement can be attributed to the degree-based pruning.
Note that computation of the s-line graphs with higher s values
(s = 1024 for Friendster here) is still relevant, because, even
with such a large s overlap constraint, we found 20 connected
components in the constructed s-line graph. This reveals that
these 20 communities which share at least 1024 common
members are the core of Friendster dataset.

Both the efficient and our hashmap-based algorithm are
more suitable than off-the-shelf SpGEMM algorithm for the
s-line graph computation. The SpGEMM algorithm is too
general since it has to compute and store the product matrix
before applying filtration upon the matrix. In contrast, our
algorithm performs an in-place filtration. In addition, the
SpGEMM+Upper algorithm performs half of the total work
by only considering the upper triangular part of the hyperedge
adjacency matrix. However, it is still orders of magnitude
slower than our algorithm (especially with larger s values).

H. Comparison with the Clique-expansion Approach
In Table V, we report the performance results of Algo-

rithm 2 when s=1 (the clique expansion graph) and s=8 on
larger datasets. We ran the Label Propagation-based Connected
Components (LPCC) after computing the s-line graphs with
Algorithm 2 (2CA). With s=1, only Friendster and Livejournal
datasets completed execution on a 128GB-memory machine.

Friendster LiveJournal com-Orkut Web
s=1 12s 76s OOM OOM
s=8 4s 31s 59s 1510s

TABLE V: Execution time of s=1 (clique expansion)-based and
s-line graph-based with s=8 Label-Propagation Connected Compo-
nents (LPCC) with Algorithm 2 (2CA). With s=1, com-Orkut and Web
ran out of memory on a 128GB machine. The reported time includes
end-to-end execution time of our framework.

VII. RELATED WORK

Hypergraph methods are well known for their applications
in computer science; for example, hypergraph partitioning
enables parallel matrix computations [8] and application in
VLSI [22]. In the network science literature, researchers have
devised several path and motif-based hypergraph data analytics
measures such as clustering coefficients and centrality metrics
[9]. Although an expanding body of research attests to the
utility of hypergraph-based analyses [4], [15] , and we are
seeing increasingly wide adoption [19], [27], [32], many
network science methods have been historically developed
explicitly for graph-based analyses. Naik [34] wrote a survey
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on theoretical developments on line graphs. Bermond et al.
[6] studied the properties of the s-line graphs of hypergraphs.

Shared-memory C++-based framework Hygra [37], and
distributed-memory frameworks such as Chapel-based
CHGL [20], Apache Spark-based MESH [14] and HyperX
[21] presented a collection of efficient parallel algorithms
for hypergraphs in their frameworks. These frameworks
either rely on the original hypergraph or the expansion
graphs of hypergraphs. None of the works computes s-line
graphs with s > 1 and therefore cannot compute the s-walk
measures. Moreover, in MESH/HyperX, on 8 compute nodes,
a Label-Propagation-based Connected Component algorithm
with clique expansion takes more than 2000s. In contrast,
our framework takes ⇡6s for the same computation, on a
single-node.

VIII. CONCLUSION
The notion of s-line graphs of a hypergraph is a novel way

to interpret relationships among different entities in a given
dataset. In this paper, we have presented a scalable s-line graph
computation framework by identifying a core set of stages
required for end-to-end s-metric computation. We proposed
new parallel algorithms for s-line graph computations and
explored different workload distribution strategies for our
parallel algorithms in conjunction with considering relabel-
by-degree and triangularization of the adjacency matrix as
optimization techniques. We demonstrated that our algorithms
outperform current state-of-the-art algorithms. In particular,
hypergraphs with skewed-degree distribution can benefit from
relabeling the hyperedge IDs by degrees. We showed that
proper combination of algorithmic optimization and workload
balancing technique can significantly improve the performance
of the s-line graph computation stage, which is the most
important and compute-intensive part of the framework.
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