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Abstract—This paper presents NWHypergraph, (NWHy), a
parallel high-performance C++ framework for both exact and
approximate hypergraph analytics. NWHy provides data struc-
tures for various representations of hypergraphs and their asso-
ciated graph projections (lower order approximations), including
a new technique for hypergraph representation called adjoin
graphs. We present a set of hypergraph algorithms for exact
and approximate hypergraph analytics implemented in NWHy
and demonstrate scalability and performance, operating on a
variety of hypergraph representations, that is competitive with
the state of the art. In addition, we propose two new queue-
based algorithms for s-line graph construction, a lower-order
approximation of hypergraphs, to demonstrate the effectiveness
and versatility of work queue-based algorithm design. Our queue-
based algorithms demonstrate similar performance to the non-
queue-based algorithms for bipartite graphs.

Index Terms—Hypergraph analytics, hypergraph representa-
tion, parallel hypergraph algorithms.

I. INTRODUCTION

Hypergraphs have recently gained significant traction due
to their robustness in modeling interactions that go beyond
dyadic relationships [3]], [10] and have emerged as a powerful
alternative to modeling data with graphs. As a mathematical
model, a graph represents pairwise relationships (edges) be-
tween entities (vertices or nodes). However, this abstraction
is insufficient to model mutual relationships involving more
than two entities. For example, modeling an author-paper
relationship with graphs is challenging, when a three-authors
paper needs to be represented. Here pairwise connections
between the authors in an author-paper graph fail to capture
the three-way relationships among the authors.

When modeling interactions beyond dyadic relationships,
sets with cardinality > 2 are better mathematical tools than
edges (or pairs) for modeling datasets. As a generalized
set-theoretic abstraction, hypergraphs are generalizations of
graphs that allow mutual relationships among multiple entities
to be expressed. That is, an edge in a hypergraph (hyperedge)
may connect more than a pair of vertices (hypervertices
or hypernodes). Note that, "hypervertices” and “hyperedges”
represent two different types of entities (authors and papers
for example), hence their representations (index or ID spaces)
may be separate.

This paper presents NWHypergraph (NWHy), a high-
performance, modern C++ library for hypergraph analytics.
We discuss various intricacies and nuances related to im-
plementing a hypergraph library that supports different hy-
pergraph representations, hypergraph construction, generat-

ing approximations to hypergraphs, and algorithm design. In
contrast to existing hypergraph libraries that only support
exact hypergraph computations, NWHy provides support for
computation on both exact hypergraphs and on their lower
order approximations. These lower order approximations in-
clude clique expansion [1], and s-line graph [2], [17], [18]]
of hypergraphs. By providing interfaces to enable operations
on both the original hypergraphs and their approximations,
our library supports a wide variety of computations on hyper-
graphs. The user can choose one type of computation (exact
or approximate) over another, based on the time and space
requirements, as well as the availability of the algorithms
for operating on the original hypergraph. For example, if a
third party graph library, such as NWGraph [4] is available,
one could create a lower order approximation of a given
hypergraph in the form of a special graph (such as clique
expansion, line graphs etc.) in NWHy and leverage the highly-
tuned, parallel graph algorithms in the traditional graph library,
without needing to devise new algorithm to operate on the
original hypergraph.

Summary of contributions. NWH is a modern C++
parallel library for both exact and approximate hypergraph
metrics computation. Its contributions include the following:

o Data structures supporting different representations of
a hypergraph, namely bipartite graphs, adjoin graphs,
clique-expansion graphs, and s-line graphs;

o A suite of important parallel algorithms for exact and
approximate hypergraphs metric computations; and

« A Pybind-based Python API to make our high-
performance C++-based library backend conveniently ac-
cessible to Python users.

The rest of the paper is organized as follows. In Section [II}
we give formal definitions of a graph, a bipartite graph and a
hypergraph. The following section provides a brief introduc-
tion to our library and four hypergraph representations, data
structures supported in our library, followed by our algorithms,
parallelization effort, and Python APIs Section We report
the scalability and performance results of our hypergraph
algorithms in Section discuss related work in Section [V
and draw conclusions in Section

!Forthcoming code for our framework NWHypergraph will, pending insti-
tutional approval, be posted at https://github.com/pnnl/NWHypergraph
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II. PRELIMINARIES

Before proceeding to the details of our framework, we first
present our terminology and notation.

A. Graphs

A graph G = (V, E) is a finite set V = {v1, va, ..., v, } of
nodes (or vertices) and a finite set E C {(z,y)|z,y €V, x #
y} of edges, which are pairs of vertices. When the underlying
graph is not necessarily obvious, for clarity, we will denote
the vertex set V' by V(G) and the edge set E denoted by
E(G). The edge is said to join = and y, and is said to be
incident on x and y. The number of edges incident on z is
called degree of x, and is denoted by d(x). The vertices  and
y are called adjacent if (z,y) is an edge, and x and y are said
to be neighbors. The set of neighbors of a vertex x in graph
G is denoted by Ng(z).

One way to represent a graph is using an incidence matrix.
A graph G has a n x m incidence matrix B = (Sij, 1 <1<
n,1 < j < m) where n and m are the numbers of vertices
and edges respectively, such that:

1 if v; and e; are incident
8ij = . (1
0 otherwise

Another way to represent a graph is using an adjacency
matrix. A graph G has a n X n square adjacency matrix A =
(aij,1 < 4,7 < n) where:

0 = 1 ifwy 1s. adjacent to v @)
0 otherwise

Another representation for a graph is an adjacency list, a
combination of adjacency matrix with edge list, which we
define as follows. The adjacency list of a graph G contains n
lists, one for vertex v;,¢ = 1,2,...,n. Each list contains the
neighbors (Ng(v;) : v; € V) to which v; is adjacent.

B. Bipartite Graphs

A bipartite graph B = (U,V, E) is a graph whose vertices
are divided into two disjoint sets U = {uy,ua,...,u,} and
V = {v1,va,...,vs} such that the edges set £ C {{z,y}|z €
U,y € V} connects a vertex in U to a vertex in V. Such a
partition (U, V') is called a bipartition of B, and U and V are
its parts. A bipartite graph B has a r X s bi-adjacency matrix
A =(a;;,1 <i<r1<j<s) where:

0 = 1 ifwy 1s‘ adjacent to v; 3)
0 otherwise
C. Hypergraphs

Hypergraphs are one form of a set system, which is an
ordered pair (U, V), where U is a set of elements and V is
a family of subsets of U. Adopting some of the terminology
and notation from [2], [[7], [8], we define a hypergraph and
various related notations below.

A hypergraph H = (U,V) includes a finite set U =
{u1,ug,...,u,}, called hypernodes or hypervertices, and a
finite set of subsets of V' = {ey, ea, ..., ey }, called hyperedges,
in which e; C U for ¢ = 1,2,...,m. To avoid ambiguity, U
will be denoted by U(H), and V by V(H) also.

H = {V,E}
Vo= {’Uo,Ul,..-,’US}
E = {eo,e1,e2,e3}
€ = {UOaUQ}

er = {vo,vs,v4,0s}
€2 = {U4,06,U77U8}
€3 = {1)5}

(a) Hyperedges in a hypergraph are subsets of one or more
vertices.

B = {U,V,E)}

U = {eo,e1,e2,e3}

V' = Avp,v1,...,vs}
E' = {{eo,v0},{e0,v2}

{61,02}7 {617@3}
{617714},{@17'08}
{62704}, {627'[16}
{627117}, {6271}8}

{es,v5}}

(b) Bipartite graph representation for the hypergraph above. Edges
in the bipartite graph represent inclusion of a vertex in a hyperedge.
Fig. 1: Example hypergraph H and its equivalent bipartite repre-
sentation B. The entities, and the relationships among them, are the
same in either representation.

We generalize the concept of incidence and the concept of
adjacency in graphs to hypergraphs. A hyperedge may join
one or more hypernodes, and is considered to be incident on
these hypernodes. A hypernode may join arbitrary number of
hyperedges, and is considered to be incident on these hyper-
edges. Hypernode u; and hypernode u; are called adjacent if
u; and u; are incident on the same hyperedge, and u; and u;
are neighbors. We denote a set of neighbors of a hypernode
(or a hyperedge) x in H by Np(x).

A hypergraph can be represented with an incidence matrix,
defined as follows. An incidence matrix of a hypergraph H is
anxmmatrix, B = (s;;,1 <i < n,1 <j<m)wheren and
m are the number of hypernodes and hyperedges respectively,
such that:

sy = 1 if v 1s.1n01dent to e; @
0 otherwise

The transpose B? of the incidence matrix is the dual of H,
H* = (U*,V*). Here U* is the hyperedge set V(H) and V*
is the hypernode set U (H). For instance, the incidence matrix
of the dual H* of the hypergraph H in Figure |14 is:

v vq vg v3 vyg vg Vg v7 vg
1

1
e 1 1 1 1
B%:BH*: e; ( 1 1 1 1)

D. s-line Graphs
graphs
Two hyperedges e, f € E are s-incident if e N f| > s
for s > 1. For integer s > 1, define the s-line graph of a

and Clique-expansion Graphs of Hyper-
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Fig. 2: The bi-adjacency list of the hypergraph in Figure |l| can
be indexed independently and represented as two mutually indexed
incidence lists as the hyperedge incidence list and the hypernode
incidence list.

hypergraph H = (V, E) as a graph L,(H) = (E,,V) where
vV C (ZJ) and {e, f} € V iff e and [ are s-incident.

Dually, given a hypergraph H = (V, E) and its dual H* =
(V*, E*), the s-clique graph is defined as a graph Cs(H*) =
(E*,V*) where V* C (b;) and {e, f} € V*iff e and f are s-
incident. 1-clique graph is also known as the clique-expansion
graph of the hypergraph.

III. NWHY: NORTHWEST HYPERGRAPH FRAMEWORK

This section discusses our Northwest Hypergraph (NWHy,
short for NWHypergraph) framework in detail. NWHy is based
on modern C++ and oneAPI Threading Building Blocks [21].
We describe different hypergraph representations that are
available in NWHy, the corresponding APIs for various ways
of constructing hypergraphs and their lower order approxi-
mations, the hypergraph algorithms implemented in NWHy,
parallelization techniques and the Python interfaces to our
library. For computation of graph metrics, our framework
leverages our graph processing library, NWGraph.

A. Hypergraphs As Ranges

Recently the std::range concept has been added to
C++20 [20]. Loosely speaking, std: : range provides a com-
pact, syntactic mechanism in C++20 to iterate over a collection
of objects and compose iterations in various ways. Inspired
by this abstraction and to build our library on top of modern,
idiomatic C++20, in NWHypergraph (and NWGraph), we con-
sider hypergraphs (graphs) as range of ranges, where the outer
range iterates over the set of hyperedges (hypernodes) and
the inner range iterates over the neighbor list (hypernodes or
hyperedges). Two range concepts std: : ranges: : forward |
_range and std::ranges::random_access_range are
particularly useful to us for hypergraphs. std: :ranges::
forward_range concept is a refinement of std: : range for
which it provides multi-pass access (only forward advance-
ment) over the ranges of elements and guarantees that two
iterators to the same range can be compared against each other.
std: :ranges::random_access_range concept is a re-
finement of std: :bidirectional_range for which it pro-

vides constant time advancement (both forward and backward)
with the +=, +, -=, and - operators, and array notation with
subscripting. In NWHy, the data structures for hypergraphs
model (for example biadjacency, cf. Section the
outer range as a std::ranges::random_access_range
and the inner range as a std: :ranges: :forward_range.

B. Hypergraph Representations in NWHy
In NWHy, there are four hypergraph representations. We
discuss each of these representations in the following.

1) Hypergraphs as Bipartite Graphs: Indexed as Two Separate

Index Sets

A hypergraph H = (U, V') can be represented as a bipartite
graph B = (U, V, E), where U(B) is the set of hypernodes of
H, V(B) is the set of hyperedges, and F(B) contains edges
which represent inclusion of a hypernode x in a hyperedge
y when y is incident on x. The bi-adjacency matrix of B
is the incidence matrix of H. Note that, since most of the
real-world hypergraphs are sparsely connected, the neighbor-
hood information encoded as adjacency/incidence matrices are
generally implemented as an adjacency list or other well-
known compact data structures such as Compressed Sparse
Row (CSR) data structure. For instance, the bi-adjacency list
of the bipartite graph in Figure [I] is shown in Figure 2] In
NWHy, we implement the bi-adjacency representation of a
hypergraph as two separate but mutually indexed CSR data
structures. In such a representation, a hypergraph consists of
two separate index sets, one for the hyperedges, another for
the hypernodes. The exact hypergraph algorithms leveraging
bi-adjacency representation iterates over these two mutually
indexed lists for exact hypergraph metric computations. Due
to the fact that two separate index sets are maintained (adja-
cencies), the biggest drawback of any hypergraph algorithms
using bi-adjacency is that the algorithm has to maintain two
independent algorithm-specific data structures (work queue,
frontier, and resultant array, etc.), one for the hyperedges,
another for the hypernodes.

The interface of biadjacency in NWHy is shown in List-
ing m The outer_ iterator and inner iterator of the
biadjacency class models hypergraphs as range of ranges.
Given the biedgelist, to represent a hypergraph, two biad
jacency can be created, one for the hyperedges, and another
one for the hypernodes. Both of these classes are inherited
from the bipartite_graph_base class, which contains the
vertex cardinality information of the two partitions in the
bipartite graph. Note that, due to two separate index spaces,
both the maximum No. of vertices (n0) and the maximum
No. of hyperedges (nl) information may be required to
construct the bipartite graphs. The NWHy-specific API calls to
construct a hypergraph bi-adjacency is shown in Listing[2] The
constructed bi-adjacencies (hyperedges and hypernodes)
can then be iterated over as a C++20 range of ranges, as
demonstrated in listing

The bi-adjacency list of the hypergraph is the most com-
monly adopted hypergraph representations. Hypergraph li-
braries including Hygra [25[], CHGL [13]], MESH []11]] and



Listing 1 Hypergraph data structures
class bipartite _graph base {
public:
bipartite_graph_base(size_t n0O, size_t nl)
: vertex_cardinality_ (n0, nl) {}
protected:
std::array<size_t,

bi

2> vertex_cardinality_;

template<class... Attributes>
class biedgelist : public bipartite_graph_base {
public:

biedgelist (size_t n0 = O,
auto num_vertices();
auto num_edges () ;

size_t nl = 0);

private:

std::tuple<std::vector<Attributes>...> base_;
i
template<class... Attributes>
class biadjacency : public bipartite_graph_base {
public:

biadjacency (biedgelisté& el);

auto num_vertices|();
std::vector<size_t> degrees();
iterator begin();

iterator end();

inner_range operator|[] (size_t 1i);

private:

size t N_;
std::vector<size_t> indices_;
std::tuple<std::vector<Attributes>...> indexed_;

bi

Listing 2 APIs for constructing different representations of a

hypergraph

bie&éelistibi_el = graph_reaaerkmm_file);
biadjacency<0> hyperedges (bi_el);
biadjacency<l> hypernodes (bi_el);

Adjoin (hyper)graph indexed 1 1
size_t nrealedges = 0, nrealnodes = 0;
edge_list adjoin_el =

graph_reader_adjoin(mm_file, nrealedges, nrealnodes);
adjacency<0> adjoin_graph(adjoin_el);

edgelist onelinegraph_els =
to_two_graph_hashmap_cyclic (hypernodes, hyperedges,

degrees (hypernodes), 1, num_threads, num_bins);
adjacency<0> clique_expansion_graph (onelinegraph_els);
edgelist slinegraph_els =

to_two_graph_hashmap_cyclic (hyperedges, hypernodes,
degrees (hyperedges), s, num_threads, num_bins);
adjacency<0> slinegraph (slinegraph_els);

Listing 3 API for iterating over a hypergraph, represented as bi-

adjacencies

for (auto hyperE = 0;
hyperE < num_vertices (hyperedges, 0);
++hyperE) {

for (auto e : hyperedges[hyperE])
auto hyperN = target (e);
}

for (auto e_neighbors : hyperedges) {
for (auto e : e_neighbors)

auto hyperN = target (e);

o [P e

1| e[ 7] e 2
S E e e
3| Lo

s | o

N7

B EEEm

7 A

s DO oE

o |21

10 — 2

n | =2

v | 1] 2]

Fig. 3: The bi-adjacency list of the hypergraph in Figure can be
indexed with a single index set. Both the hyperedge incidence and
the hypernode incidence are represented with a single incidence list.

HyperX [14] provide this representation for hypergraphs.
a) Rectangular Matrix Operation Support

Many of the hypergraph algorithms are operated on the
incidence matrix of a hypergraph. This is generally different
than graph algorithms based on adjacency matrices. When
considering the matrix abstraction for the adjacency and inci-
dence matrices, it is important to note that adjacency matrices
are square matrices while incidence matrices are generally
rectangular (due to the facts that the number of hyperedges
and the number of hypernodes may be different, and they
constitute two different index spaces because they represent
different entities, such as author-paper or community-member
relations). Hence hypergraph libraries need to support rectan-
gular matrices efficiently. NWHy does not assume the matrix
dimension to be the same and provides support for rectangular
matrix computation.

2) Hypergraphs as Adjoined Graphs: Indexed as One Index
Set

In NWHy, we present an alternative way to represent a
hypergraph, by consolidating the two separate index spaces
into one single, shared index space for hypernodes and hy-
peredges. We call the resultant graph an adjoined graph of
a hypergraph. For instance the adjoin graph of Figure [Ta] is
shown in Figure[3] Here, the IDs of hyperedges are from 0 to 3,
while the IDs of the hypernodes are from 4 to 12. Hypergraphs
indexed in a single index set is essentially a general graph. This
hypergraph representation requires the hypergraph algorithms
processing it to be range-aware, i.e., the algorithms must
be aware of which part of the index set corresponds to the
hyperedges, and which part to the hypernodes.

To convert the bi-adjacency of a hypergraph H, specifically
its bipartite graph form B, into an adjoin graph G = (V, E),
the disjoint vertex sets U(B) and V' (B) are re-indexed to a sin-
gle index set V(G), as follows. The set V(@) is the direct sum
of U(B) and V(B), and E(G) C V(G)xV(G). The elements
of E(G) maintain a certain structure due to the origination of
G as a bipartite graph (i.e., edges represent connections only
between U(B) and V(B)). Let Iy : V(G) — V(G) be the
projection operator of V(G) to U(B) and let Iy : V(G) —
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Fig. 4: The adjacency matrix of the adjoined graph G of the
hypergraph H in Figure |ld|

V(G) be the projection operator of V(G) to V(B). Then, any
element e = {u, w} € E(G) will have the following property:
(Iy(uw) =uANTy(w) =w)V Iy (u) =uA Iy(w) = w)
The graph G is called an adjoined graph of a hypergraph H

or a bipartite graph B.

For example, a square adjacency matrix of the adjoined
graph G of the hypergraph H in Figure [Ia]is shown in Fig-
ure [4] Observe that adjacency matrix Ag of G 1) is a sparse
matrix; 2) is symmetric; 3) and has t?e following form:

0 B
4e=\p, o
where By is the incidence matrix of H, B}i is the incidence
matrix of its dual H*. Because Ag is sparse, (G better be stored
in an adjacency list or CSR representation to be space-efficient.
The NWHy-specific API calls to construct an adjoined graph
is shown in Listing [2]

In such an adjoin graph representation of a hypergraph, due
to the shared index set, any graph algorithms can be used
to compute hypergraph metrics. However, this is under the
assumption that the algorithms know the ranges of the shared
index set of the hyperedges and the hypernodes. After the
graph algorithms computed the hypergraph metrics, we split
the resultant array of the graph algorithms into the hyperedge
resultant array and the hypernodes resultant array respectively.

One of the drawbacks of the adjoin graph of a hypergraph
is that this representation cannot adopt relabel-by-degree for
performance optimization. Relabel-by-degree (also known as
permute-by-row/column) is a trick to improve the workload
distribution and memory access pattern in graph algorithms
or matrix-matrix multiplication [9]], [19]. Relabel-by-degree
relabels the vertices of a graph based on their degrees in
descending order, so that the high-degree vertices will be
given smaller IDs and the low-degree vertices will obtain
larger IDs; or vice versa in ascending order. For an adjoin
graph of a hypergraph, after relabel-by-degree, the IDs of
the hyperedges and the hypernodes are mixed together, hence
indistinguishable. We propose a solution in Section to
address this issue.

3) Clique-expansion Graphs of Hypergraphs

The third representation of a hypergraph in NWHy is the
clique expansion graph [29]]. The clique expansion replaces
each hyperedge with a graph edge between each pair of

s=1

O—©

s=2
Fig. 5: There are three s-line graphs of the hypergraph in Figure
in which the vertices are the hyperedges of the original hypergraph.
The width of the graph edges represents the strength of the connection
in the original hypergraph.

s=3

vertices incident on the hyperedge. Once a clique-expansion
graph of a hypergraph is computed, any graph algorithm can
be leveraged to compute different metrics. NWHy supports
clique expansion construction. The NWHy-specific API calls
to construct a clique-expansion graph is shown in Listing

However, there are several well-known drawbacks of clique
expansion. First, the inclusion information of the hypernodes
in the hyperedges of the original hypergraph is lost in the
clique-expansion graph [[15]. Moreover, the construction of
the clique-expansion graph is both computation-heavy and
memory-intensive. The size of the clique-expansion graph
increases exponentially compared to its original hypergraph
representation, which significantly limits the scalability and
usability of clique expansion [11], [[14]]. Finally, the clique-
expansion graph either retains information related to the hy-
pernodes or the hyperedges. Hence only partial information is
retained in each case. Computing hypergraph metrics in this
way can be expensive too.
4) s-line Graphs of Hypergraphs

An important alternative representation of hypergraphs that
is available in NWHy is the s-line graph of a hypergraph ( [2],
[17], [18]]), a low order approximation of the original hyper-
graph. To construct an s-line graph for a particular value of
s, each hyperedge in the original hypergraph is considered as
a vertex of the newly-constructed line graph. Whenever there
are at least s common neighbors between a hyperedge pair in
the original hypergraph, a graph edge is created between the
vertices in the s-line graph that represent the hyperedge pair
in the original hypergraph. s-line graphs capture the strength
of connections among hyperedges. The s-line graphs of the
hypergraph in Figure [Ta are shown in Figure [3

Dually, an s-clique graph construction considers the hyper-
vertices whenever they join s or more shared hyperedges. Note
that the clique-expansion graph is a special case of the s-clique
graph for s=1. The 1-line graph of the dual hypergraph is the
clique-expansion graph of the original hypergraph. One of the
APIs available in NWHy to construct an s-line graph is shown
in Listing 2} Once the s-line graph is computed, any graph
algorithm can be applied to compute any metric of interest
(such as breadth-first search, connected component, etc.).

Aksoy et al. have developed various s-line graph metrics
on the basis of s-walks [2]. An s-walk is a random walk on
the s-line graph. However, s-line graph construction algorithm
was not outlined in [2]. In previous works [17], [18], we
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Fig. 6: Different categories of hypergraph algorithms in NWHy
dealing with different representations of hypergraphs.

have proposed multiple efficient s-line graph construction
algorithms and have incorporated them in NWHy. We have
also demonstrated the applicability and effectiveness of using
s-line graphs and s-metrics to approximate the hypergraph
metrics, even though information loss is existent. The detail
definition of those metrics is omitted here due to space limit.
We refer our readers to [2], [[17], [[18] for detailed discussion.
In addition to the algorithms presented in [17], [18[], two
new, alternative algorithms for computing an s-line graph will
be presented in Section NWHy also includes several
approximate hypergraph algorithms, including s-connected
component, s-betweenness centrality, s-single source shortest
path, etc., based on s-line graphs.

C. Algorithms

Algorithms implemented in NWHy can be divided into
three categories: 1) algorithms that directly operate on the
bipartite representation of the original hypergraph, 2) al-
gorithms that execute on the adjoin representation, and 3)
algorithms computing different metrics on the s-line graphs
and clique expansion graphs, which are approximations of the
original hypergraph (Figure [6). The first two categories of the
algorithms can compute the exact results (since they operate
on the original hypergraphs). The third category of algorithms
computes the approximate results for different metrics, based
on graph algorithms available in our graph library, NWGraph.

1) Hypergraph Algorithms based on Original Hypergraphs
In NWHy, we implemented Breadth-first Search (BFS) and
Connected Component (CC) algorithms for hypergraphs rep-
resented as bipartite graphs, namely, HyperBFS and HyperCC.
Our HyperBFS implementations include a Top-down BFS
and a Bottom-up BFS implementation [5]. Our HyperCC
implementation is based on Label Propagation ( [22], [28]).
2) Hypergraph Algorithms for Adjoin Graphs of Hypergraphs
NWHy also includes BFS and CC algorithms for adjoin
graph representation of hypergraphs, namely, AdjoinBFS and
AdjoinCC. AdjoinBFS processes adjoin graphs of hyper-
graphs with a graph algorithm implemented with Direction-
optimizing BFS. AdjoinCC implements the well-known Af-
forest algorithm [27]], and the Label Propagation Algorithm.

3) s-line Graph Construction Algorithms

Compared to other hypergraph libraries, a unique feature
of NWHy is that it includes s-line graph construction and s-
metric computation algorithms. Several s-line graph construc-
tion algorithms are available in NWHy. These include a naive

Algorithm 1 A single-phase queue-based algorithm to compute the
edge list of an s-line graph of a hypergraph for a given s using
a hashmap data structure. The hypergraph can be either a bipartite
graph or an adjoin graph.

Input: Hypergraph H = (V, E), s

Output: s-line graph edge list Ls(H)

1: for all hyperedge e; € E do in parallel

2: queue + {e;} > ID can be original or permuted
3: L (H) «—0

4. Ly(H) + 0, for each thread t

5: for all e; € queue do in parallel

6: if degree[e;] < s then

7 continue

8: overlap_count <+ []

9: for each vertex vy, of e¢; do

10 for each hyperedge e; of v, where (i < j) do
11: overlap_count[e;]++

12: for each [e;,n| € overlap_count do

13: if n > s then

14: Lt(H) eLt(H)U{ei,ej}

15: Ls(H) < Ls(H)U every Li(H)
16: return L (H)

approach that considers all possible pairs of hyperedges to
compute overlaps, the heuristic based set intersection algo-
rithm [17]], the hashmap-based counting algorithm [18]], and
the ensemble algorithm [[18]] for computing an ensemble of s-
line graphs. In addition to these four s-line graph construction
algorithms, in this subsection we propose two additional ways
to compute s-line graphs.

Algorithms proposed in [[17], [18] iterate over the entire
hyperedge set in the outermost for loop of the algorithm. This
loop iterates over contiguous [0, ..., n, — 1], and assumes that
the ID spaces of hyperedges and hypervertices are separate.
Both the set-intersection based and hashmap-based algorithms
are three nested for loops and the amount of work in the
innermost loop is dictated by the pattern: for each hyperedge
e; € FE, for each incident hypernode v; of e;, for each
hyperedge e; that is incident to v;. This “indirection” pattern
is the determinant of the available workload per thread. Once
the workload partition is decided for the outermost parallel
for loop, the amount of work that will be executed by the
threads becomes fixed. Hence, these one-phase, non-queue-
based algorithm may still suffer from uneven workload distri-
bution. Relabeling the hyperedges by degree may improve the
workload distribution and memory access pattern. However,
since all of these algorithms execute under the assumption that
the hyperedges and hypernodes ID spaces are disjoint, i.e., the
hyperedges IDs in the ranges of [0, ...,n. — 1] and the hyper-
nodes IDs in the range of [0, ...,n, — 1] denote two different
ID spaces, they are not directly applicable to the adjoin graph
representation of hypergraphs, indexed as a single index set,
namely the hyperedges and hypernodes uses IDs in the ranges
of [0,...,ne—1,ng, ..., ne+n, — 1]. Moreover, techniques such
as relabel-by-degree can’t be applied on the adjoin graphs,
since in doing so the IDs will be intermingled and IDs of



Algorithm 2 A two-phase queue-based algorithm to compute the
edge list of an s-line graph of a hypergraph for a given s. The
hypergraph can be either a bipartite graph or an adjoin graph.
Input: Hypergraph H = (V, E), s

Output: s-line graph edge list Ls(H)

1: queue; < (), for each thread ¢

2: for all hyperedge e; € E do in parallel

3: for each vertex vy of e; do

4 for each hyperedge e; of v, where (i < j) do

5: queue; < {e;,e;} > ID can be original or
permuted

6: queue <+ queuel every queue;

7 LS(H ) ~0

8: Li(H) « 0, for each thread ¢

9: for all {e;,e;} € queue do in parallel

10: count < set_intersection(neighbor_list(e;),
neighbor_list(e;))

11: if count > s then

12: Lt(H)eLt(H)U{ei,ej}

13: Ly(H) < Ls(H)U every Li(H)
14: return L,(H)

hyperedges and hypernodes will be thus indistinguishable.

To address these problems when hyperedge ID spaces are
not necessarily within [0,...,n. — 1] range, we propose to
add a work queue variant of the existing algorithms in our
framework. This solution is simple yet versatile. Independent
of the hypergraph representation and application of degree-
based relabeling to the IDs, a queue with all the potential
hyperedge IDs are constructed at the beginning of the s-
line graph construction algorithms. Based on this idea, we
introduce two new queue-based algorithms to compute an s-
line graph of a hypergraph for a given s, Algorithm [I] and
Algorithm 2]

Algorithm [I] is based on counting using a hashmap
data structure. Instead of processing the hyperedges from
[0, ...,me — 1] in [18]] (aka instead of assuming contiguous IDs
for hyperedges starting from O for hyperedges), we enqueue
the hyperedge IDs into a work queue at Line [2] of Algorithm [I]
(thus eliminating the fixed iteration structure of the for loop
starting from O and iterating up to n. — 1). Next the algorithm
processes each hyperedge ID fetched from the queue. Since
enqueuing the hyperedges into a work queue is linear to the
number of the hyperedges, hence the time complexity remains
the same as the original hashmap-based counting algorithm.

Algorithm [2] is based on set intersection of the hyperedge
pairs and can be considered as a two-phase algorithm. In
the first phase, instead of processing the hyperedges from
[0,...,me — 1] in one go, Algorithm [2| considers the eligible
(degree > s) hyperedge pairs and enqueues them into a
work queue. In the second phase, it counts the number of
common hypernodes by performing set intersection between
the neighbor lists of each hyperedge pairs in the queue. Note
that, the second phase has only one for loop (barring the
set intersection), and may lend itself to better load balancing
among the threads compared to its non-queue-based intersec-

Algorithm 3 An algorithm to find the toplexes of a hypergraph.
Input: Hypergraph H = (V, E)
Output: Toplexes £ = {#f D e,e € E}
1. B+ 0
2: for all e; € E do in parallel
3 flag < T'rue
4 for each ¢; ¢ F such that (i < j) do
5: if e; C e; then
6
7
8

flag < False; break
if €j Cey; then

E+E \ {e;}
9: if ﬂag = erue then
10: E + EFU{e;}

11: return £

Listing 4 Different ways of iterating over a hypergraph in parallel,
represented as bi-adjacencies

std::for_each(std::execution: :par_unseq,
hyperedges.begin(),
hyperedges.end (), [&] (auto& e_neighbors) {
std::for_each(std::execution: :par_unseq,
e_neighbors.begin (),
e_neighbors.end (), [&] (autos& e) {
auto hyperN = target (e);
1)

tbb: :parallel_for(

tbb::blocked_range (0, num_vertices (hyperedges, 0)),
[&] (auto r) {
for (auto hyperE = r.begin(); hyperE != r.end();
++hyperE) {
for (auto e : hyperedges[hyperE]) {

auto hyperN = target (e);
b}
}, tbb::auto_partitioner());

tbb: :parallel_for (cyclic_neighbor_range (hyperedges,
num_bins), [&] (auto r) {
for (auto j = r.begin(); j != r.end();
auto&s& [hyperE, e_neighbors] = x3j;
for (auto e : e_neighbors) {
auto hyperN = target (e);

++3) |

b}

}, tbb::auto_partitioner());

tion version, since the control of granularity for workload per
thread is more fine-grained.

4) Toplex Computation

In hypergraphs, there exists an inclusion relationship be-
tween two hyperedges ¢ C f, or f C e. A toplex is a maximal
hyperedge e such that #if DO e. We include an algorithm to
compute the toplexes of hypergraphs in NWHy (Algorithm [3).

D. Parallelization

To parallelize different algorithms and to iterate over the
ranges in parallel, NWHy can leverage C++ std::for_
each with parallel execution policies (std: :execution:: |
par_unseq). However, real-world hypergraphs have skewed-
degree distribution and C++ standard library currently does not



provide any mechanism for controlling workload distribution
among threads. Hence, as an alternative, we use oneAPI
Threading Building Blocks (oneTBB) [21]] to parallelize our
algorithms. oneTBB is based on a work-stealing scheduler and
is better suited for load balancing, since it provides the user
with ways to specify workload distribution strategies (blocked,
cyclic or any customized partitioning of work among the
threads) and granularity of tasks. The built-in blocked range,
for example, divides the hyperedges (IDs) into blocks/chunks
of contiguous IDs and each chunk of contiguous hyperedges
(IDs) can be assigned to one thread. Work stealing scheduling
strategy is particularly beneficial for our library, since this
enables idle threads to steal work from other straggler threads
processing a hypergraph with skewed-degree distribution. We
show how users can iterate over a hypergraph using these
different approaches in Listing [4]

However, the built-in blocked range partitioning may be
problematic for skewed-degree distributed hypergraphs, espe-
cially if the hyperedges/hypernodes are sorted according to
their degrees. Here some of the threads will have highly-
unbalanced workload due to assignment of high-degree hy-
peredges to first few threads. To circumvent this problem,
We provide several custom partitioning strategies as range
adaptors in our library.

In one of these custom range adaptor, named cyclic
range, given the stride size equal to the number
of total threads nt, thread 0 processes hyperedges
€0, €0+nt, €0+2+nt, €0+3+nt and so on, thread 1 processes
hyperedges €1, €14nt,€14+24nt, €14+3+nt and so on. Here e;
denotes a hyperedge ID.

Due to the facts that some of the hypergraph algorithms
require neighborhood access, we also provide another adaptor
with a built-in partitioning strategy called cyclic neighbor
range adaptor. Cyclic neighbor range is very similar to cyclic
range, which partitions the hypergraph as a range in cyclic
fashion. The main difference between a cyclic range adaptor
and a cyclic neighbor range adaptor over a hypergraph is that
a cyclic range adaptor returns one hyperedge at a time, while
a cyclic neighbor range adaptor returns a tuple, which consists
of one hyperedge and the hypernodes as a neighborhood that
hyperedge is incident to.

E. Python APlIs.

To provide data scientists with the capability to interact with
our high-performance C++ backend easily, we have created
a Python package called nwhy and provide sufficient Python
APIs to our C++ code with pybindl1 [23]]. Pybindll is a
lightweight header-only library that exposes C++ types in
Python and vice versa. Our Python package has been released
on PyPI and can be installed through pip install nwhy,
assuming oneTBB has been installed. A minimal working
example using these APIs is shown in Listing [5]

IV. EXPERIMENTAL ANALYSIS

In this section, we evaluate the performance of our hy-
pergraph algorithms for bipartite graph representations (Hy-
perCC, HyperBFS) and for adjoin graphs of hypergraph (Ad-

Listing 5 An example of using the Python APIs to interact with our
C++ backend.

import numpy as np

import nwhy

col = np.array ([0, O, O, 1, 1, 11)

row = np.array ([0, 1, 2, O,

weight = np.array([1l, 1,

hg = nwhy.NWHypergraph (row, col, weight)
s2lg = hg.s_linegraph(s=2, edges=True)
tmp = s2lg.is_s_connected(

sn = s2lg.s_neighbors (v=0)

sd = s2lg.s_degree (v=0)

scc =

s21lg.s_connected_components ()

sdist = s2lg.s_distance(src=0, dest=1)

sp = s2lg.s_path(src=0, dest=1)

sbc = s2lg.s_betweenness_centrality (normalized=True)
sc = s2lg.s_closeness_centrality (v=None)

shc = s2lg.s_harmonic_closeness_centrality (v=None)

se = s2lg.s_eccentricity (v=None)

joinCC, AdjoinBFS). We compare the performance of our
algorithms with the ones that are available in the Hygra
framework [25]], called HygraCC and HygraBFS. HygraCC
is a Label Propagation-based connected component algorithm.
HygraBFS is a Top-down BFS algorithm. We also evaluate and
report the performance of our new s-line graph construction
algorithms with the previous non-queue versions in [[17], [[18].

A. Experimental Setup

Our experiments are run on a machine with a two-socket
Intel Xeon Gold 6230 processor, with 20 physical cores per
socket, each running at 2.1 GHz, and 28 MB L3 cache. The
system has 188 GB of main memory. Our code is imple-
mented in C++20, parallelized with oneTBB 2021.4, and com-
piled with GCC 11 compiler and -Ofast -march=native
compilation flags. Hygra is compiled with —fopenmp -03
-march=native compilation flags.

Type hypergraph |V| |E| dy de A, Ac
com-Orkut 2.3M 153M 46 7 3k 9.1k

Social Friendster 79M 1.6M 3 14 1.7k 9.3k
Orkut-group 2.8M 8.7M 118 37 40k 318k

LiveJournal 3.2M 7.5M 35 15 300 1.1M
Web Web 277M 128M 5 11 1.IM 11.6M
Synthetic dataset ~ Rand1 100M 100M 10 10 34 10

TABLE I: Input characteristics. The number of vertices (|V'|) and
hyperedges (|E|) along with the average degree (d), and maximum
degree (A) for the hypergraph inputs are tabulated here. All the real-
world hypergraphs have a skewed hyperedge degree distribution.
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B. Dataset 10 .
We conducted experiments with real-world hypergraphs 2 g @ Hashmap I Intersection
. . . 20 Algorithm 1 B Algorithm 2
(Table |I) curated in [25]]. For these curated datasets, in partic- = g 6
ular, each hypergraph, constructed from the social network =
datasets such as com-Orkut and Friendster in Table [[, are gf 4
materialized by running a community detection algorithm on m‘:: 2 9
the original dataset obtained from Stanford Large Network g _Z g Vi V5
com-Orkut

Dataset Collection (SNAP) [26]]. In the resultant hypergraphs,
each community is considered as a hyperedge and each
member of a community as a hypernode. Other larger datasets
include orkut-groups, Web, and LiveJournal, collected from
Koblenz Network Collection (KONECT) [[16] as bipartite
graphs. The synthetic random hypergraph Rand1 is generated
using Hygra [25]. For Rand1, the hypervertices for each of
the hyperedge are chosen uniformly at random.

C. Strong Scaling Results of Hypergraph Algorithms with

Bipartite Representation

We conduct strong scaling experiments for our hypergraph
algorithms AdjoinCC, AdjoinBFS, HyperCC, and HyperBFS
with different hypergraph inputs. Here we double the number
of threads while keeping the input size constant. The results
of CC is reported in Figure [7] and the results of BFS is
reported in Figure [8] Our connected component algorithms
overall demonstrate better performance and scalability. The
performance of our BFS algorithm on adjoin graph is com-
parable to the BFS algorithm in Hygra for hypergraphs with
uniform degree distribution (Randl). The execution time of
BFS with Orkut-group and Web are small due to the fact that
there are a lot of connected components in the hypergraph
and the traversals cover the connected components pretty
fast. On the other hand, Randl only contains one single
connected component, hence it takes significant amount of
time to traverse the whole hypergraph.

D. Performance Comparison of s-line Graph Construction
Algorithms
We compare our queue-based s-line graph algorithms with
the Intersection algorithm in [[17]], and the Hashmap algorithm
in [18]. We run experiments with both blocked range and
cyclic range partitioning strategies along with ID relabel-by-

LiveJournal Friendster

Fig. 9: Runtime performance relative to the Hashmap algorithm for
s-line graph computation.

degree in ascending/descending order. Among those runtime
results, we only report the fastest among each algorithm.
The normalized runtime results are reported in Figure [9] the
execution time is normalized w.r.t. the execution time of the
Hashmap-based algorithm. As we can see from the plot, our
single-phase queue-based algorithm has similar performance
as its best-performant non-queue-based version (Hashmap
vs Algorithm [T} Intersection vs Algorithm 2). Yet our queue-
based algorithms are more versatile about different hypergraph
representations (either indexed in one index set, or in two
indexed sets).

V. RELATED WORK

For further background and discussion of the concepts of
graphs, bipartite graphs and hypergraphs, we refer the reader
to the books by Berge [[6] and Bretto [[8] for hypergraph
theory; Bondy and Murty [[7] for graph theory. In this section,
we review related works focusing primarily on hypergraph
frameworks, hypergraph representations, and algorithms.

Hypergraph frameworks. Jenkins et al. presented Chapel-
based CHGL [13]], a high-performance library for hypergraph
computation. CHGL is only a prototype with abstract inter-
faces and it mainly focuses on random hypergraph genera-
tion. Shared-memory C++-based framework Hygra [25], and
distributed-memory frameworks Apache Spark-based MESH
[11] and HyperX [14] presented a collection of efficient paral-
lel algorithms for hypergraphs in their frameworks, including
algorithms for betweenness centrality, maximal independent
set, k-core decomposition, hypertrees, hyperpaths, connected-



components, PageRank, and single source shortest paths.
HyperNetX [12] computes s-line graph naively in Python,
alternatively it can use our NWHy Python APIs for s-line
graph construction and s-metric computation.

Hypergraph representation in various frameworks. In
Hygra and MESH, hypergraphs are represented as a bipartite
graph, where one part comprises exclusively of hypernodes,
the other exclusively of hyperedges. These two libraries, as
well as CHGL, index hypergraphs as two separate sets. MESH
and HyperX support hypergraph representation as a clique-
expansion graph. None of the hypergraph frameworks support
hypergraphs as a single index set. Nor do they support s-line
graphs of hypergraphs.

Algorithms for graphs and hypergraphs. For hyper-
graph algorithms, Hygra has breadth-first search and a label-
propagation-based connected component decomposition im-
plemented. For graph algorithms, Shiloach and Vishkin [24]]
introduced the first parallel algorithm (SV CC) to find con-
nected components in general graphs using the Parallel Ran-
dom Access Machine (PRAM) model. Afforest [27] improved
SV CC by skipping the largest component in the graph after
a subgraph sampling step to reduce the number of edges vis-
ited. Minimum label propagation approach is another parallel
method for CC [22], [28].

VI. CONCLUSION

We present a scalable framework for hypergraph analytics,
called NWHypergraph (NWHy). NWHy supports four differ-
ent representations and the corresponding data structures for
these representations of hypergraphs: bipartite graphs, adjoin
graphs, clique-expansion graphs, and s-line graphs. We imple-
ment a set of hypergraph algorithms in NWHy for exact and
approximate hypergraph analytics. We propose a simple yet
effective technique, called adjoin, to consolidate two separate
ID spaces of hypergraphs to enable more flexible algorithm
design. Experimentally, we demonstrate the scalability and
performance of our CC and BFS algorithms operating on
adjoin graphs of hypergraphs as well as algorithms operating
on bipartite graphs, and show competitive performance as Hy-
gra. To accommodate different representations of hypergraphs
in constructing s-line graphs, we propose two new queue-
based s-line graph construction algorithms to demonstrate
the effectiveness of work-queue based algorithm design. We
show that our new queue-based algorithms demonstrate similar
performance to their non-queue-based algorithms.
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