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Abstract—This paper considers structures of systems beyond
dyadic (pairwise) interactions and investigates mathematical
modeling of multi-way interactions and connections as hyper-
graphs, where captured relationships among system entities are
set-valued. To date, in most situations, entities in a hypergraph
are considered connected if there is at least one common
“neighbor”. However, minimal commonality sometimes discards
the “strength” of connections and interactions among groups. To
this end, considering the “width” of a connection, referred to
as the s-overlap of neighbors, provides more meaningful insights
into how closely the communities or entities interact with each
other. In addition, s-overlap computation is the fundamental
kernel to construct the line graph of a hypergraph, a low-order
approximation of the hypergraph which can carry significant
information about the original hypergraph. Subsequent stages
of a data analytics pipeline then can apply highly tuned graph
algorithms on the line graph to reveal important features. Given
a hypergraph, computing the s-overlaps by exhaustively consid-
ering all pairwise entities can be computationally prohibitive. To
tackle this challenge, we develop efficient algorithms to compute
s-overlaps and the corresponding line graph of a hypergraph.
We propose several heuristics to avoid execution of redundant
work and improve performance of the s-overlap computation.
Our parallel algorithm, combined with these heuristics, is orders
of magnitude (more than 10⇥) faster than the naive algorithm
in all cases and the SpGEMM algorithm with filtration in most
cases (especially with large s value).

Index Terms—Hypergraphs, parallel hypergraph algorithms,
line graphs, intersection graphs.

I. INTRODUCTION

Graph-theoretical mathematical abstractions represent en-
tities of interest as vertices connected by edges between
pairs of them. Classical graph models benefit from simplicity
and a degree of universality. But as abstract mathematical
objects, graphs are limited to representing pairwise rela-
tionships between entities, whereas real-world phenomena in
these systems can be rich in multi-way relationships involving
interactions among more than two entities, dependencies be-
tween more than two variables, or properties of collections
of more than two objects. Representing group interactions
is not possible in graphs natively, but rather requires either
more complex mathematical objects, or coding schemes like
“reification” or semantic labeling in bipartite graphs. Lacking
multi-dimensional relations, it is hard to address questions of
“community interaction” in graphs: e.g., how is a collection of
entities A connected to another collection B through chains of
other communities? Where does a particular community stand
in relation to other communities in its neighborhood?

(a) A hypergraph, H . (b) The dual hypergraph of H ,
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(c) The line graphs Ls(H) of hypergraph H for s = 1, 2, 3.
Fig. 1: Euler diagram of (a) a hypergraph H and (b) its dual
H

⇤. H has hyperedges E = {A,B,C,D} on the vertex set
V = {1, 2, . . . , 12}. Dually, H⇤ has edge set E⇤ = {1, 2, . . . , 12}
with vertex set V ⇤ = {A,B,C,D}. The diagram shows each of the
four hyperedges as a “lasso” around its vertices. The visualization
was done with the HyperNetX library [32]. (c) The s-line graphs for
H for s = 1, 2, 3

The mathematical object that natively represents multi-
way interactions in networks is called a “hypergraph” [7].
In contrast to a graph, in a hypergraph H = (V,E) those
same vertices are now connected generally in a family E of
hyperedges, where now a hyperedge e 2 E is an arbitrary
subset e ✓ V of k vertices, thereby representing a k-way
relationship for any integer k > 0. Hypergraphs are thus the
natural representation of a broad range of systems, including
those with the kinds of multi-way relationships mentioned
above. Indeed, hypergraph-structured data (i.e. hypernetworks)
are ubiquitous, occurring whenever information presents nat-
urally as set-valued, tabular, or bipartite data.

An example of a hypergraph H = (V,E) is shown in
Figure 1. Here the vertex set is V = {1, 2, . . . , 12}, and
there are four hyperedges e 2 E = {A,B,C,D}, where each
e ✓ V . For example, B = {3, 4, . . . , 10} 2 E. Note that
edges vary in size, with e.g. |A| = 4, |B| = 8. Note also that
|D| = 2. Thus D, and D alone, is a proper graph edge. In
fact, every graph is a 2-uniform hypergraph, where every edge
has size 2. Every hypergraph H has a dual H⇤ constructed by
considering the set E as a new vertex set V ⇤ and the set V



Stage Naive Our method
s-overlap 314.757s 0.684s
Squeeze 0.005s 0.005s
s-connected component <1ms <1ms
Total time 314.762s 0.689s
Speedup 1⇥ 460⇥
#set intersections 3.52⇥ 1010 3.26⇥ 107

TABLE I: Computational cost of each step of the pipeline to compute
the s-line graph from the email-EuAll dataset [15]. Clearly, s-overlap
computation (in bold) time is the dominant stage in the process.

as hyperedge set, E⇤ in H⇤. In a graph, incident edges share
a common vertex, while in a hypergraph, incident hyperedges
can vary in intersection size. For example, |A\B| = 2, while
|B\C| = 3 and |B\D| = 1. We use the variable s to indicate
edge intersection size, and call that intersection the s-overlap
between those edges.

Computation of s-overlaps of a hypergraph to find all pairs
of connecting hyperedges with minimal s common neighbors
is the most fundamental kernel in the general framework of
hypergraph analytics for connectivity and traversal [4]. As we
will show, hypergraph structures naturally stratify into sub-
structures parameterized by s-overlap, each of which lends
itself to being exploited by traditional, highly efficient graph
algorithms. In particular, the s-line graph of a hypergraph is
a form of dual graph (not a hypergraph) now on the set of
hyperedges as vertices, where each pair of hyperedges are
connected if they have an s-overlap. Figure 1c shows the s-line
graphs for s = 1, 2, 3 for H from Figure 1a.

There are three main motivations for computing the s-line
graph of a hypergraph. First, optimized graph kernels can be
computed on the s-line graph directly to compute important
metrics such as s-connected components, s-centralities etc.
Second, s-line graph computation enables structural analyses
of hypergraphs that are otherwise challenging or impossible
to determine without their formation. As we illustrate in
Section II, one such example is spectral analyses of hyper-
graphs. Third, s-line graphs best capture applications in many
important domains [4], [17]. For example, in [17], s-overlap
walks are used to define hypergraph s-centralities applied to
gene expression levels in virology data sets.

Computing the s-line graph of a hypergraph on large
datasets can become computationally challenging when con-
sidering each possible combination of pairs of hyperedges
(Table I). To the best of our knowledge, the only avail-
able, sequential implementation of the s-overlap computa-
tion is found in the Python-based HyperNetX [32] library
with NetworkX [19] as the backend. However, the algorithm
implemented in HyperNetX (naive algorithm discussed in
Section IV) is quite inefficient and fails to execute on the
large datasets that we consider in Section V. Hence devising
efficient, parallel algorithm to compute s-line graph is vital.
Our paper aims to address these two aspects. We propose
efficient algorithms for computing s-line graphs, apply dif-
ferent heuristics to eliminate redundant work, and discuss
the parallelization strategies for our algorithms. To the best
of our knowledge, we are the first to take such endeavor
and propose efficient parallel algorithms for s-line graph

computation. Considering the potentials for applicability of
s-overlap computation in many application domains, we hope
our algorithms will be useful to the data analytics and network
science community.

The contributions of this paper are:
• Identifying the core kernel for hypergraph-related connec-

tivity and traversal algorithms, namely s-overlap compu-
tation. Efficient s-overlap and corresponding s-line graph
computation algorithms and parallelization techniques for
the s-overlap computation algorithms.

• Implementation of our own customized cyclic range parti-
tioner to distribute workload cyclically among the threads
to avoid load imbalance. We also consider Intel’s Thread-
ing Building Block’s built-in blocked range partitioning
strategy and evaluate both cyclic and blocked distribution
strategies for our parallel algorithms.

• Experimental results demonstrating the efficacy of our
algorithm and heuristics.

The rest of the paper is organized as follows. Section II
provides a motivating example of an application of s-line
that offers valuable insight about a dataset. In Section III, we
provide formal mathematical definitions and concepts related
to hypergraphs and our current work. Next, we present our
algorithm and heuristics in Section IV. We report experimental
results in Section V. We discuss related work in Section VI
and draw conclusions in Section VII.

II. A MOTIVATING EXAMPLE

Fig. 2: Normalized algebraic connectivity
for dataset in [3] with various s values.

For certain
hypergraph
analytics, the
formation of s-line
graphs is strictly
necessary. To
illustrate a particular
type of analysis that
necessitates s-line
graph construction,
we compute the
normalized algebraic
connectivity of the

s-line graphs of a Disease-Gene dataset [3]. Normalized
algebraic connectivity is the second smallest eigenvalue of
the normalized Laplacian matrix [11]; larger values imply
stronger connectivity properties of the s-line graph and hence
the hypergraph. As plotted in Figure 2, the fluctuations in
algebraic connectivity across values of s reveals information
about the network structure: the sharp dip from s = 1 until
s = 7 suggests most diseases are linked to one another via
sparse gene overlaps. The subsequent increase until s = 11
suggests that diseases which are associated with at least 11
genes are notable in being more well-connected amongst each
other. In this way, eigenvalues can provide insight into how
well each of the connected components in an s-line graph
remains connected and consequently provide insight about the
original hypergraph connectivity. In addition, as the s value



grows, these techniques can assist in understanding how well
the connectivity is preserved. These observations are a small
example of the insights afforded by spectral methods; see
[11] for more.

III. BACKGROUND

There are disparities among different definitions of hyper-
graphs in the literature (in terms of allowing duplicates, iso-
lated vertex etc.). Here, we adopt the most general definitions
from [4].

A hypergraph H = (V,E) has a set V = {v1, . . . , vn}
of elements called vertices, and an indexed family of sets
E = (e1, . . . , em) called hyperedges in which ei ✓ V for
i = 1, . . . ,m. The degree d(v) = |e 3 v| of a vertex v is
the number of hyperedges it belongs to. The size (degree)
|e| of a hyperedge e is the number of vertices it contains. A
hypergraph for which the size of all the hyperedges are the
same, let’s say k, is called a k-uniform hypergraph. If the size
of the hyperedges varies, the hypergraph is non-uniform. In
case of graphs, |ei| = 2, i.e. an edge connects exactly two
vertices. Hence, graphs are also called 2-uniform hypergraph.

Defining E as an indexed family of sets (as opposed to a
set system or a multi-set) allows for multiple copies of edges
that can be differentiated by index. This definition also allows
for isolated vertices not included in any hyperedge, empty
edges, and singleton edges. In a hypergraph two vertices are
considered adjacent if there is a hyperedge ei that contains
both of these vertices. We do not allow self-loops in this paper.

For each hypergraph H = (V,E), there exists a dual
hypergraph H⇤ whose vertices are the edges ei of H and
whose hyperedges are the vertices vi of H . The incidence
matrix, I of a hypergraph H = (V,E) is an n ⇥ m matrix
where

I(i, j) =

(
1 if vi 2 ej
0 otherwise

(1)

B

C

D

A

10

9

8

7

6

5

4

3

2

1

11

12

Fig. 3: The bipartite graph repre-
sentation for H in Figure 1a.

The representative
graph, intersection graph
or line graph L(H) of a
hypergraph H is a simple
graph whose vertices
x1, . . . , xm represent the
hyperedges e1, . . . , em
of H , and vertex xi is
connected with vertex xj if
ei \ ej 6= ;, for i 6= j. The
edges {xi, xj} of L(H)
can be assigned weights
wi,j = |ei \ ej | indicating
the size of the hyperedge
intersection. For two such
nodes xi, xj , for any s
for which s  wi,j , we
say that ei and ej have

an s�overlap or s�width. For some s � 1, restricting
L(H) to those edges with weight wi,j � s yields the s-line

graph denoted Ls(H). Note that thereby the line graph
L(H) = L1(H) is the 1-line graph.

Hypergraphs are one-to-one with bipartite graphs by the
following construction. A bipartite graph consists of two
disjoint sets of vertices such that no two vertices within the
same set are connected by an edge. The bipartite graph of a
hypergraph H has one set of vertices, V1 consisting of the
vertices V and another set V2 consisting of the hyperedges E.
An edge exists between two vertices of the bipartite graph if
the corresponding vertex is included in the incidence of the
hyperedge. Figure 3 shows the bipartite graph for H from
Figure 1.

IV. ALGORITHMS FOR COMPUTING s-OVERLAPS AND
s-LINE GRAPHS

In this section, we discuss in detail our efficient algorithm
and heuristics to compute the s-overlaps of a hypergraph.
Given a dataset represented as a hypergraph H , by computing
the s-overlaps, we can infer interesting relationships among
different entities in the dataset and subsequently apply any
optimized graph algorithm to the line graph, L(H) by execut-
ing the following steps.

Step 1: Compute the number of common neighbors between
each pair of hyperedges in H and discard any pair(s) for which
the common neighbor count is less than s. This is the s-overlap
computation step.

Step 2: Construct the s-line graph Ls(H) based on the
s-overlap computation. This involves only considering the hy-
peredge pairs for which there is at least s common neighbors.
Each of these edge pairs will constitute an edge in the edgelist
of Ls(H). Once we compute all such pairs of hyperedges, we
construct the s-line graph Ls(H). In Ls(H), each hyperedge
ei is considered as a vertex vli and there exists an edge
between vertex vli and vlj if there is at least s common
neighbors between the corresponding hyperedges ei and ej
in H . For example, Figure 1c shows the line graphs of the
hypergraph in Figure 1a when we consider s = 1, 2, 3. For
constructing a 2-line graph, here in the original hypergraph H
in Figure 1a, the hyperedge pairs {B,C} and {A,B} shares at
least 2 vertices: ({8, 9, 10} for the first pair {B,C} and {3, 4}
for the other). Hence, in L2(H) (Figure 1c), we include an
edge between B and C and another edge between A and B.
Note that, there is no edge between A and C, since they do
not share any vertices (s < 3 between A and C).

Step 3: Once the s-line graph is constructed from the s-
overlaps, we can execute any graph algorithm of interest on
the s-line graph.
A. A Naive Algorithm to Compute the s-overlaps

A naive algorithm, which computes the s-overlaps and con-
structs the edge list of the line graph based on the computed s-
overlaps, considers each pair of hyperedges in the hypergraph
to see whether there are at least s common vertices shared by
the pair. If this is the case, the hyperedge pair (ei, ej) is added
to the edge list of the line graph. However, many hyperedges
may not have any common neighbor (vertex) to connect them.
Hence, this algorithm performs a lot of redundant work when
exhaustively checking each pair of hyperedges.



Algorithm 1 An alternative algorithm to compute the s-
overlaps of a hypergraph and construct the edge list of the
line graph based on s-overlaps.
Input: Hypergraph H = (V,E), s
Output: s-line graph edge list Ls(H)

1: Ls(H) ;
2: for each hyperedge ei 2 E do
3: for each incident vertex vk of ei do
4: for each incident hyperedge ej of vk such that (j 6= i)

do
5: count  set intersection(ei, ej)

6: if count � s then
7: Ls(H) Ls(H) [ {ei, ej}
8: return Ls(H)

Algorithm 2 An efficient algorithm with heuristics to compute
the s-overlaps of a hypergraph and construct the edge list of
the line graph based on s-overlaps.
Input: Hypergraph H = (V,E), size[ei] 8ei 2 E, s
Output: s-line graph edge list Ls(H)

1: Ls(H) ;
2: for each hyperedge ei 2 E do
3: if size[ei] < s then . Degree-based pruning
4: continue
5: for each ej 2 E\ {ei} do
6: visited [ej]  false

7: for each incident vertex vk of ei do
8: for each incident hyperedge ej of vk do
9: if ei > ej then . Consider strictly upper triangular

part of the hyperedge adjacency matrix
10: continue
11: if size[ej] < s then
12: continue
13: if visited [ej] == true then
14: continue . The current hyperedge ej has already

been considered for the set intersection with ei

15: else
16: visited [ej] = true

17: s overlapped  set intersection(ei, ej , s)

18: if s overlapped == true then
19: Ls(H) Ls(H) [ {ei, ej}
20: return Ls(H)

B. An Alternative Algorithm to Compute the s-overlaps

To avoid considering redundant pairs of hyperedges when
computing the s-overlaps, we propose an alternative algorithm
in Algorithm 1. In this algorithm, instead of considering each
pair of hyperedges in the hypergraph {(ei, ej)| ei 2 E, ej 2
E, i 6= j} for the s-overlap computation, we only consider
those hyperedge pairs (ei, ej) that are incident to a common
vertex. Mathematically, we only consider hyperedge pairs
{(ei, ej)| ei 2 E, ej 2 E, i 6= j ^ 9 nk| nk 2 V, nk 2
I(ei), nk 2 I(ej)}.

C. Pruning Strategies for Optimization

To avoid redundant work, we apply the following pruning
techniques in different stages of Algorithm 1, which results in
Algorithm 2. The heuristics for pruning redundant work are:
• Degree-based pruning: When considering a pair of hy-

peredges (ei, ej) for the s-overlap computation, since it is
required that there are at least s vertices in the incidence
list of each of these hyperedges, if the size of either edge
|ei| or |ej | is smaller than s, we can exclude the hyperedge
from consideration when computing the s-overlap (Line 3
and Line 11 in Algorithm 2).

• Skip already visited hyperedges: Consider a connected
hyperedge pair (ei, ej). Here ei and ej denote hyperedge
IDs (associated with each set of vertices in ei and ej). It is
possible that, ei’s one-hop hyperedge neighbor, in this case
ej , can be reached via multiple different vertices vk, vl, vp
etc., where k 6= l 6= p (Line 7 in Algorithm 2). This means
there exist “wedges” (ei, vk, ej), (ei, vl, ej), (ei, vp, ej) etc.
in the bipartite graph representation of the hypergraph. Since
we only need to perform set intersection between potential
hyperedge pairs once, we can keep track of whether a
one-hop hyperedge ej has already been considered for
intersection by maintaining a visited array. This boolean
visited array of size m is allocated outside of the outer
loop in Algorithm 2. At the beginning of each iteration of the
outer loop, the array is cleared first. During the execution of
the innermost loop, we check whether the current hyperedge
ej has already been considered for set intersection. If this
hyperedge is already visited, we can skip the set intersection.
Otherwise we set the visited entry to true for ej and proceed
with the set intersection (Lines 13–16 in Algorithm 2).

• Short-circuiting in set intersection: During the set inter-
section of the vertex neighbor lists of hyperedges ei and
ej , as soon as we detect s overlaps of vertices between ei
and ej , we can return immediately, without iterating through
the complete list of neighbors, and return a boolean value
of true, instead of intersection count, indicating that
the edge pair has at least s common neighbors. Otherwise
the set_intersection returns false. The modified set
intersection takes s as an input for comparison.

• For set intersection, consider strictly upper triangular
part of the hyperedge adjacency: Consider a connected
hyperedge pair (ei, ej). Since each edge ei and ej will
be considered independently (on Line 2 of Algorithm 2),
and since the connected pair has at least one neighboring
vertex in common, set intersection will be performed twice
with the same edges (ei, ej) individually on Line 17: by
considering the wedges (ei, nk, ej) and (ej , nk, ei), where
nk is a common neighboring vertex. We can eliminate one
of these redundant set intersections by only considering
wedge (ei, nk, ej) when ei > ej . In other words, we only
consider the upper triangular matrix of edge adjacency (here
the edge adjacency refers to the m ⇥ m matrix where a
non-zero entry exists whenever the edge-pair ((ei, ej)) is
at least 1-connected. Note that we are not constructing



the edge adjacency concretely, it is just for conceptual
reference. Additionally, to avoid self-loops in Ls(H) (when
ei = ej), we only consider strictly upper triangular part of
the hyperedge adjacency.

D. Linear Algebraic Formulation of the s-line Graph Compu-
tation

Conceptually, considering the incidence matrix H , and
identity matrix I , s-line graph computation can be expressed
as the multiplication of two sparse matrices H and HT (where
HT is the transpose of matrix H), then subtracting 2I from
it (to avoid self loops in the resultant matrix), and finally
applying a filtration operation to each entry of the HHT �2I
matrix, such that, in the resultant matrix R, Ri,j = 0 if
{HHT � 2I}i,j < s, otherwise Ri,j = 1.

Computing the sparse general matrix-matrix multiplications
(SpGEMM) [18] and then applying the filter operation to
find the edgelist of a s-line graph is closely-related (NOT
equivalent) to the alternative approach Algorithm 1. However,
SpGEMM is time-consuming (results shown later) and there
are three reasons why it is not efficient for s-line graph
computation. First, it considers both the upper triangular and
lower triangular parts of the hyperedge adjacency matrix, even
though the matrix is symmetric. Second, since SpGEMM
is more general, SpGEMM has to compute and materialize
the product matrix before applying filtration upon it. This
requires extra space to store the intermediate results (while
the alternative approach does not). This is the only difference
between the alternative approach and SpGEMM plus filtration.
Third, it cannot apply heuristics to speedup the computation,
such as pruning or short circuiting the set intersection.

E. Hypersparsity and ID Squeezing
The edge list of the line graph based on the s-overlap

computation, Ls(H), contains the original hyperedge IDs.
However, as we increase the value of s, where s is bounded
by the maximum size of the hyperedges, many hyperedges
may not be included in the edge list of the line graph, simply
because there may not be enough overlaps between any such
pairs of hyperedges. In terms of adjacency/incidence matrix
representation, hypersparsity refers to the cases where many
rows of the matrix do not have any non-zero element (or zero-
columns for the transposed matrix).

Allocating memory and constructing the line graph based
on the original IDs of the hyperedges is infeasible due to this
observed hypersparsity phenomena. To avoid this problem, we
construct a new set of contiguous IDs for the hyperedges (i.e.
for the vertices in the line graph) included in the line graph’s
edge list and maintain a mapping between original IDs and
the new IDs. Remapping the IDs is termed as squeezing. ID
squeezing is an essential step before materializing the line
graph adjacency from the edge list.

F. Parallelization
We implemented our algorithms in C++17 and utilize

Intel’s Threading Building Block (TBB) [1] to parallelize
our algorithms. For example, the outer for loop (Line 2 in

Algorithm 2) is parallelized with TBB’s parallel_for.
We invoke TBB’s parallel_for in the form of (range,
body, partitioner). Considering this form enables us
to provide custom range to TBB. We discuss one of the custom
ranges (cyclic range) in the context of workload balancing
techniques later in this section. parallel_for breaks the
hyperedge iteration space (range) in chunks and schedules
each chunk on a separate thread. Each thread executes the
body (a lambda function, containing the logic for the s-line
graph computation) on each of these chunks.

1) Workload distribution strategies for load balancing:
The first argument (range) of TBB’s parallel_for API,
(range, body, partitioner), provides provision to
supply different strategies to partition and distribute the itera-
tion space (range) among the threads. As long as the provided
range adheres to the C++ Range concept [31], it enables
the user to experiment with different workload balancing
techniques.

Blocked range. When considering one-dimensional it-
eration space of hyperedges for partitioning, one pos-
sibility is to specify the range of hyperedges as a
blocked_range (other options include 2D, 3D partitioning
etc.). A blocked_range represents a recursively splittable
range and is provided as a built-in range in TBB. Each thread
is assigned a contiguous chunk of iteration space to work
on. Additionally we specify TBB’s auto_partitioner

as the range partitioning strategy to enable optimization of
the parallel loop by range subdivision based on work-stealing
events. The auto_partitioner adjusts the number of
chunks depending on the available execution resources and
load balancing needs.

However, applying the blocked range strategy to distribute
the workload can be problematic for applications with irregular
work pattern such as hypergraph algorithms. This is because
the degree distributions of the hyperedges of the hypergraphs
we experimented with are mostly non-uniform. Splitting the
hyperedge range (ID range of the hyperedges) with blocked
distribution can create uneven workload if hyperedges with
consecutive IDs have high degrees. In this case, some threads
will be assigned larger workload compared to others.

Cyclic range. An alternative to the blocked range strategy
is a cyclic range, where, assuming the stride size is equal
to the number of threads nt, thread 0 processes hyperedges
e0, e0+nt, e0+2⇤nt, e0+3⇤nt etc., thread 1 processes hyperedges
e1, e1+nt, e1+2⇤nt, e1+3⇤nt and so on. Here ei denotes hyper-
edge ID. If a hypergraph contains high-degree hyperedges with
consecutive IDs, the cyclic range will distribute the workload
more evenly among the threads than the blocked range by
reducing the effect of consecutive high-degree hyperedge IDs
(induced locality) on the workload.

Relabel by degree. When applying the cyclic workload dis-
tribution strategy, it may be useful to relabel the hyperedge IDs
according to their degrees, so that the high-degree hyperedges
will be given smaller IDs and the low-degree hyperedges will
obtain larger IDs. The high-degree hyperedges will be adjacent
to each other (since their new IDs will be consecutive). In this
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Fig. 4: Spy plot of the incidence matrix of a hypergraph before and
after relabeling. We also show how workloads are distributed among
threads when using blocked vs cyclic range in each case (assuming
that workloads are distributed among 5 threads).

way, when processing the hyperedges, each thread will have
a better chance of load-balanced workload assignment when
applying the cyclic distribution.

Figure 4 shows the spyplots of a hypergraph incidence
matrix before and after relabeling the IDs of the hyperedges.
In addition, the figure also illustrates how workload is dis-
tributed among threads when considering the blocked and
cyclic partitioning. As can be observed from the figure, before
relabeling the IDs of the hyperedges, the blocked range-based
partitioning suffers from uneven workload distribution among
the threads (color coding in the figure shows the range of
hyperedges assigned to each thread for processing). On the
other hand, the cyclic range circumvents this problem by
trying to scatter the high-degree hyperedges among all the
threads. To make this approach even more effective, relabel-
by-degree ensures that all high-degree hyperedges ends up
with consecutive IDs so that each thread will choose one high-
degree hyperedge ID at a time for processing when considering
the cyclic distribution of the hyperedges among the threads.

2) Thread-local data structures: To avoid any duplicate
set intersection, each thread also maintains a boolean

visited array of size m = |E| to track the set of hyperedges
that have already participated in the set intersection with a
hyperedge. In addition, each thread also maintains a thread-
local vector for inserting edge pairs, if such pair meets the
s-overlap requirement. Once all the threads finish processing

Network type hypergraph |V | |E| de �v �e

Social Friendster 7.94M 1.62M 14 1700 9299
LiveJournal 3.2M 7.49M 15 300 1.05M

Webgraph Web 27.7M 12.8M 11 1.1M 11.6M
Cyber activeDNS (256 files) 4.5M 43M 8 1M 10M

Collaboration IMDB 896k 3.8M 8 1.6k 1334
Miscellaneous email-EuAll 265.2k 265.2k 1.6 7.6k 930

TABLE II: Input hypergraph characteristics. Total number of ver-
tices (|V |) and hyperedges (|E|) along with the average size of each
edge (de), max degree of a vertex (�v), and maximum size of a
hyperedge (�e) for the hypergraph inputs are tabulated here. All the
hypergraphs have a skewed hyperedge degree distribution.

their assigned edge range, the thread-local edgelists are con-
solidated into one array to construct Ls(H).

G. Time Complexity Analysis
Given a hypergraph H = (V,E), where |V | = n, |E| =

m, let us denote the average degree of vi 2 V by d, and
average size of ei 2 E by k. In the worst case scenario,
each set intersection will perform O(m) comparisons. Hence,
Algorithm 1 takes O(nm3) time in the worst case.

In the worst case, without any heuristic, our efficient algo-
rithm (Algorithm 2) takes O(nm3) time. To factor in the effect
of the heuristics on the execution time, let us assume that, on
average, each set intersection operation performs k number
of comparisons. Considering this, in the average case, our
algorithm takes O(m ·k ·d ·k) time. The amount of work that
the degree-based pruning saves (O(d·k)) is based on the value
of s. Since this heuristic is encoded in both the outer loop and
inner loop, it saves most of the redundant work by avoiding
execution of two innermost loops. With the upper triangular
heuristic, it saves half of the work by skipping one endpoint of
every hyperedge pair. Additionally, with short-circuiting in set
intersection, we only need s successful comparisons for early
termination. Our approach takes O(m · d · k · s) time after all
heuristics kick in.

V. EVALUATION

In this section, we report and analyze our experimental
results for computing s-overlaps and line graphs.

A. Experimental setup
For experimental evaluation, we ran our experiments on a

machine with a two-socket Intel Xeon Gold 6230 processor,
with 20 physical cores per socket, each running at 2.1 GHz,
has 28 MB L3 cache. The system has 188 GB of main memory.
We implemented our code in C++17, compiled the library with
Intel TBB 2020.2.217, GCC 10.1.0 compiler and -Ofast

compilation flag.

B. Datasets
We conducted our experiments with datasets mentioned

in Table II. These datasets represent a set of hypergraphs
constructed from diverse domains: ranging from social net-
works to cyber data to web, each having different structural
properties. Basic statistics of these hypergraphs are presented
in Table II.



The activeDNS (ADNS) dataset from Georgia Institute of
Technology [24] contains mappings from domains to IP ad-
dresses. When constructing hypergraphs with ADNS dataset,
we consider the domains as the hyperedges and IPs as vertices.
We followed the same procedure as described in [21] to curate
this dataset.

We also ran our experiments with datasets curated in [33].
For these curated datasets, in particular, each hypergraph,
constructed from the social network datasets such as Friend-
ster [26] in Table II, are materialized by running a commu-
nity detection algorithm on the original dataset from Stan-
ford Large Network Dataset Collection (SNAP) [26]. In the
resultant hypergraphs, each community is considered as a
hyperedge and each member of a community as a vertex.
Other larger datasets include Web, and LiveJournal, collected
from Koblenz Network Collection (KONECT) [23] as bi-
partite graphs. The IMDB dataset [15] represents a bi-partite
graph, where the hyperedges are movies and vertices are
actors/actresses.

Notation Algorithm

f0 All heuristics included (Algorithm 2)
f1 Only degree-based pruning
f2 Only skipping of the visited hyperedges heuristic
f3 Only short-circuiting in the set intersection
f4 Baseline efficient with no heuristic (Algorithm 1)

TABLE III: Notation for different algorithms and heuristics.

C. Experimental Results
In this section, we discuss the experimental results in detail.

First we report the performance improvement of our algorithm
over the naive one, as we add different heuristics, one at a
time, as well as combining them altogether. Next, we assess
the effect of our proposed heuristics as we vary the size of
s. We also report the scalability results (strong and weak
scaling) of our algorithms with different workload distribution
strategies. We discuss the inputs for which relabel-by-degree
with the cyclic workload distribution is helpful. Finally we
show how the workload is distributed among threads with
different workload distribution techniques. For the subsequent
discussion, we refer to Table III for the shorthand notations of
our different algorithms and heuristics. To be consistent and
fair, we applied the upper triangular heuristic across all the
algorithms, so that only upper triangular part of the hyperedge
adjacency is considered when computing the s-overlaps (thus
avoiding inclusion of self-loops and duplicate edges in the line
graph edge list).

1) Performance comparison of our algorithm with different
heuristics and the naive algorithm: Figure 5 reports speedup
of our algorithm with different heuristics compared to the
naive algorithm, discussed in Section IV. Here we only
consider s = 8. With other s values, the algorithms exhibit
similar trend. In these experiments, we consider dns-008,
LiveJournal and Friendster datasets. We have chosen these
datasets to represent different application domains and varying
hypergraph sizes (ranging from medium to large).
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Fig. 5: Performance comparison of different s-overlap computation
algorithms, including the naive algorithm. Here, for each dataset, we
report the speedup relative to the slowest execution time that have
ran to completion. In two cases (LiveJournal and Friendster), naive
algorithm did not finish execution in a reasonable time. In addition,
for LiveJournal, f1 did not finish in a reasonable time. Hence these
three data points are missing in the plot. The results are reported
with 32 threads and for s = 8.

From the figure, we observe that, with dns-008 dataset,
our efficient algorithm is significantly faster compared to the
naive algorithm. With LiveJournal and Friendster datasets, the
naive algorithm could not finish within a reasonable time
limit. With dns-008 dataset, our algorithm is more than 10x
faster compared to the naive algorithm. Although not visible
in Figure 5, we also observed that, for these datasets, the most
important heuristic for s-overlap computation is the degree-
based pruning heuristic (f1). In fact, with dns-008 dataset,
by only using degree-based pruning heuristic, our algorithm
is slightly faster than f0. This is because dns-008 dataset has
less than 1% hyperedges with degrees greater than 8. In this
case, adding other heuristics introduced more overhead.

With LiveJournal and Friendster social network-based hy-
pergraph inputs, f2 (skipping visited hyperedges) heuristic is
one of the most impactful heuristics. With the LiveJournal
input, f1 (degree) heuristic based algorithm ran out of mem-
ory. Hence this data point is missing in the figure. Compared
to other inputs, the hyperedges in Livejournal have higher
maximum degree-count (Table II). Hence, compared to other
same-scale hypergraphs, more set-intersections need to be
performed when applying only degree-based heuristic. With
Friendster and LiveJournal inputs, the naive algorithm either
did not finish in reasonable time or ran out of memory.

2) Ablation study - effect of different heuristics on different
datasets: We consider the effects of different heuristics on the
s-overlap computation of hypergraphs that are drawn from
different domains. In addition, we also vary the value of s
to see which (set of) heuristic(s) is the most impactful in
improving performance. Figure 6 shows the result of our
experiments with IMDB, dns-128, and Friendster datasets with
s = 2, 4, 6, 8. Here the speedup is reported by normalizing
with respect to the baseline algorithm with no heuristic (f4).

With the IMDB dataset, the performance of the algorithms
varies significantly, based on the s values. When computing the
s-overlaps with cyber datasets, dns-128, degree-based pruning,
f1, significantly improves performance. As we increase the
value of s from 4 to 8, the effect of this heuristic remains
impactful. This implies that pruning the hyperedges based on
their sizes eliminated a lot of redundant set intersections. Other
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(b) dns-128. Degree-based pruning is the
most impactful heuristic in this case.
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(c) Friendster. Skipping visited hyperedges
heuristic is the most impactful heuristic as
well as degree-based pruning for s >= 8.

Fig. 6: Effect of different heuristics on different datasets and with different s values. The speedup is reported by normalizing w.r.t the baseline
algorithm (f4). Here we report execution time running with 32 threads.
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Fig. 7: Strong scaling results with cyclic distribution for Algo-
rithm 2, f0

heuristics also positively effect the execution time, however
less so compared to the degree-based pruning. With s = 2 and
dns-128 dataset, only our algorithm with all heuristics included
(f0) ran successfully. Other variations of the algorithm either
did not finish in reasonable time or ran out of memory.

On the other hand, with Friendster social network dataset,
we observe that f2 heuristic, i.e. skipping already visited
hyperedges for set intersection is the most impactful heuristic.

Other datasets such as with Web dataset and various s
values, only f0 finished in a reasonable time limit. Other
heuristics are not very helpful in isolation for this dataset.

3) Strong scaling results: We also conduct the strong
scaling experiments with the hypergraph inputs from different
domains, both with the blocked partitioning and the cyclic
partitioning strategies. Here we increase the number of threads
while keeping the dataset (input size) constant. We ran our
efficient algorithm (f0) with all the heuristics turned on. We
report the experimental results with the cyclic distribution
in Figure 7. Here we consider dns-128 (representing cyber
dataset), Friendster (representing social network), IMDB (rep-
resenting collaboration network), and Web (webgraph) datasets
as inputs. As can be seen from the figure, as we increase the
number of threads, the performance of the algorithm improves
significantly. Blocked distribution demonstrates similar strong
scaling behavior for most datasets, except for dns-128 and
Web. With the dns-128 dataset, even with smaller number of

threads, the cyclic workload successfully distributes workload
evenly among the threads to achieve better performance. With
large-scale hypergraphs such as Web dataset, for which the
maximum degree of a hyperedge is 11M, f0 with cyclic parti-
tioning achieves 3⇥ speedup over f0 with blocked distribution
(the absolute execution time ⇡ 8000 seconds for cyclic vs
⇡ 21000 seconds for blocked range).

4) Weak scaling results: For weak scaling experiments, we
approximately double the size of the hypergraph (workload)
as we double the number of threads (computing resources).
We perform the weak scaling experiments of Algorithm 2
(f0) with the activeDNS dataset and considering the cyclic
workload distribution strategy. Blocked partition demonstrates
similar trend. To construct the hypergraphs, we start with 4
input files worth of data (dns-004) and progressively increase
the hypergraph size by adding data from more files, as we
increase the resources (dns-004 with 1 thread, dns-008 with
2 threads, dns-016 with 4 threads, and so on, up to dns-128).
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Fig. 8: Weak scaling results of Algorithm 2
(f0) with cyclic distribution with the activeDNS
dataset.

We report
our weak
scaling results
in Figure 8.
As can be
seen from
the figure,
with larger
s values, f0
with cyclic

distribution exhibit better scaling (the execution time remains
almost constant as we increase the problem size and
proportionately increase the computing resources). For higher
s values, the heuristics are more effective to reduce the
amount of redundant work.

5) Evaluation of the relabel-by-degree technique: We also
evaluate how relabeling the hyperedge IDs based on degrees
influences the execution time. We have not observed any
performance benefit of relabeling when it is considered with
blocked partitioning. However, when relabeling is considered
in conjunction with cyclic distribution, the performance of the
s-overlap computation improves. For smaller hypergraphs, the
pre-processing time for relabeling can overshadow the benefit
of faster s-overlap execution time. For example, Friendster
takes ⇡ 8 seconds to relabel the hyperedge IDs based on de-
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Fig. 9: Comparison of SpGEMM-based approach with Algorithm 2 applying cyclic partitioning, and relabeling by degree (ascending), f0

grees and ⇡ 2.7 seconds to compute f0 with cyclic distribution
(s = 8). Without relabeling, the s-overlap computation takes
⇡ 3 seconds. In this case, the overhead is quite significant.

The most interesting application of relabel-by-degree are for
computing s-overlap with hypergraphs that are larger in size
and have a small set of extremely high degree hyperedges.
One such example is the Web dataset. For computing the s-
overlap with s = 11, f0 with only cyclic distribution takes
4230 seconds. On the other hand, when relabel-by-degree is
combined with the cyclic workload distribution, it takes ⇡
3397 seconds to execute the s-overlap computation step and
⇡ 27 seconds for the pre-processing step, for a total of ⇡ 3424
seconds. In this case, we obtain a speedup of 1.23⇥ over the
version with only the cyclic distribution. We also observe that
relabel-by-degree in ascending order is considerably faster due
to higher cache utility rate according to the profiling done with
Intel VTune profiler. Considering the upper triangular part of
the hyperedge adjacency in conjunction with relabel-by-degree
in ascending order makes our algorithm cache-friendly.
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Fig. 10: Workload distribution of Friendster
among 32 threads with different partitioning
strategies.

6) Analysis
of workload
distribution
strategies:
To visually
assess the
effectiveness
of different
workload
distribution

techniques among the threads when considering the cyclic
and blocked partitioning strategies, we count the total number
of hyperedges considered (number of visits) in the innermost
loop of our efficient algorithm by each thread. We collect
these statistics for the Friendster dataset and report these
workloads in Figure 10. As can be observed from the figure,
with cyclic distribution, most of the threads have similar
workload profile (the longest running horizontal lines). In
contrast, with blocked distribution, the workload varies among
the threads.

7) Comparison with an SpGEMM-based approach: We
also benchmark the performance of our s-line graph com-
putation algorithm against a state-of-the-art SpGEMM-based
library [2], [29]. We add the filtration step to their code. The
SpGEMM library first computes HHT and then a filter is
applied to extract the edgelist which satisfies the s-overlap
constraints. The results are reported in Figure 9. We report

the execution time for the SpGEMM step and both SpGEMM
plus filtration step separately. With email-EuAll and IMDB
datasets, our algorithm is faster with different s values. With
the Friendster dataset, computing the s line graph with smaller
s value is faster with the SpGEMM library. However, as
we increase the s value, our algorithm runs faster than the
SpGEMM-based approach. The improvement can be attributed
to the degree-based pruning and skipping already visited edges
heuristics. Computation of s line graphs with higher s values
(for example s = 1024) is still relevant for Friendster because,
even with such higher s overlap requirement, we found 20 con-
nected components in the constructed s line graph. “Friends
of friends” are mostly part of the same communities, hence
f2 heuristic helps improving the performance of our algorithm
over off-the-shelf SpGEMM by pruning redundant work.

VI. RELATED WORK

While graph theory dominates network science modeling,
hypergraph analytic has also been successfully applied to
many real-world datasets and applications, and the value
of hypergraphs and related structures are increasingly being
recognized, e.g. [6], [20], [21], [25].

The seminal books [7], [8], written by Berge, are the firsts of
their kinds to provide methodological treatment of hypergraphs
as a family of sets and their associated properties. Since then, a
plethora of theoretical work has been published in the context
of hypergraphs [10], [13], [16], [22], and line (intersection)
graphs [9], [30]. For example, Bermond et al. [9] studied s-
line graph of a hypergraph in details. They show that for any
integer s and a graph G, there exists a partial hypergraph H
of some complete h-partite hypergraph such that G is the s-
line graph of H . A recent survey by Niak [30] on intersection
graphs reports recent theoretical developments.

Only recently, Aksoy et al. [4] proposed a high-order hyper-
graph walk framework based on s-overlaps with non-uniform
hypergraphs. The paper extends several notions of graph-based
techniques to hypergraphs. Although the paper discussed in
detail the higher-order analogs of hypergraph methods, the
paper does not look into efficient computation of s-overlaps
and larger dataset, which is the main objective of this paper.
Previously, in the context of uniform hypergraph, Cooley et al.
[12] studied the evolution of s-connected components in the k-
uniform binomial random hypergraph. In contrast, we consider
more general cases of hypergraphs: both uniform and non-
uniform. Thakur and Tripathi studied the linear connectivity



problems in directed hyperpaths, where the hyperconnection
between vertices are called L-hyperpaths [34].

Shun presented a collection of efficient parallel algorithms
for hypergraphs in the Hygra framework [33]. However, there
is no step involved in computing the s-line graph of a
hypergraph and the algorithms are designed to run directly
on the hypergraphs. Recent works presented a fast triangle
counting implementation with cyclic distribution [5], [27].
As reported in [5], this is currently the best performing
implementation compared to all other state-of-the-art graph
frameworks. Our cyclic partitioning strategy is inspired by
their work for workload balancing based on cyclic distribution.

Battiston et al. have provided a comprehensive survey of
the state-of-the-art on the structure and dynamics of complex
networks beyond dyadic interactions [6]. They discussed struc-
ture of systems with higher-order interactions, measures and
properties of these systems, random models used for statistical
inference in these systems, and dynamics of the systems with
higher-order interactions.

The relabel-by-degree operation is equivalent to the row/-
column permutation of a sparse matrix. Both can improve the
workload distribution and memory access pattern [14], [28].

VII. CONCLUSION

In this work, we have proposed efficient, parallel algorithms
and heuristics for computing the s-overlaps and the s-line
graphs. Our algorithm is orders of magnitude (more than 10⇥)
faster than the naive algorithm in all cases and the SpGEMM
algorithm with filtration in most cases (especially with large
s value) for computing the s-overlaps. To balance workload
among the threads, we consider different workload partitioning
techniques including blocked range; we also implement and
apply a customized cyclic range to achieve better performance.
Computing the s-overlaps is the fundamental step for creating
high-order line graphs. Once we compute the s-line graphs,
many important features of the original hypergraph are re-
tained in the s-line graph and yet we can leverage highly tuned
graph algorithms to analyze the data. In this way, analysts
can leverage the multi-way relationships in hypergraph to find
meaningful relationships.
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