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ABSTRACT
Precision medicine is an important area of research with the goal of identifying the optimal treatment
for each individual patient. In the literature, various methods are proposed to divide the population
into subgroups according to the heterogeneous effects of individuals. In this article, a new exploratory
machine learning tool, named latent supervised clustering, is proposed to identify the heterogeneous
subpopulations. In particular, we formulate the problem as a regression problem with subject specific
coefficients, and use adaptive fusion to cluster the coefficients into subpopulations. This method has
two main advantages. First, it relies on little prior knowledge and weak parametric assumptions on the
underlying subpopulation structure. Second, it makes use of the outcome-predictor relationship, and hence
can have competitive estimation and prediction accuracy. To estimate the parameters, we design a highly
efficient accelerated proximal gradient algorithm which guarantees convergence at a competitive rate.
Numerical studies show that the proposed method has competitive estimation and prediction accuracy, and
can also produce interpretable clustering results for the underlying heterogeneous effect. Supplementary
materials for this article are available online.
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1. Introduction

In clinical research, precision medicine aims at developing the
optimal treatment for each individual according to the subject’s
personal characteristics. The motivation originates from the
findings that different groups of patients can respond dramati-
cally differently to the same health care intervention, which can
be caused by their specific body mechanisms. Failing to detect
a targeted subpopulation can eliminate some precise drugs by
washing out their effects using the whole population. In practice,
it takes tremendous efforts to search for the targeted subpop-
ulation of certain interventions (Brookes et al. 2004; Lagakos
2006). One important reason is that the crucial features that
decide the targeted subpopulation are usually either hidden in
numerous collected ones, or even unmeasured. Therefore, it is
desirable to develop methods that can automatically detect such
subpopulations.

Recently, various machine learning methods have been intro-
duced and applied to identify subpopulations. In supervised
learning, linear regression with two-way interactions becomes
widely used. However, such a method requires strong para-
metric assumptions requiring that the underlying heterogeneity
can be determined by those interactions (Greenland 2009).
Some nonparametric methods such as random forests are also
popular while the results remain less interpretable in practice
(Wager and Athey 2018). In addition, there are also studies
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in unsupervised learning that has weak parametric assump-
tions. Clustering analysis can be a good representative. Clus-
tering analysis usually detects observation similarities using
a predefined distance on the covariates. One typical example
is the usage of hierarchical clustering for heterogeneous gene
expression analysis (Perou et al. 2000). Recently, a new clus-
tering method, convex clustering, was proposed by solving a
convex optimization problem using the pairwise fusion penalty
(Guo et al. 2010; Hocking, Joulin, and Bach 2011; Chi and
Lange 2015). The introduced algorithm tremendously boosts
the efficiency especially when applied to large datasets. However,
such unsupervised learning tools can produce meaningful and
desirable results only when the subpopulations are completely
determined by the covariate similarities defined. In practice,
subpopulations can also heavily depend on the outcomes or
even the relationship between outcomes and covariates. This can
be shown by many clinical studies that aim to split the patient
population according to drug effects.

Other than supervised and unsupervised learning, Wei and
Kosorok (2013) recently introduced a new type of machine
learning tools, named latent supervised learning, to maintain
the advantage of both. Their method assumes that each
observation comes with an unobserved label, that is, the latent
outcome, which identifies its subpopulation and determines
the underlying distribution. Furthermore, they assume that the
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observed outcome follows a mixture Gaussian distribution with
two latent components. These latent components are assumed
to be determined by a linear combination of features. There
are follow-up extensions of Wei and Kosorok (2013) in the
literature. For instance, Altstein and Li (2013) adopted this
idea to the time-to-event response, and Shen and He (2015)
suggested a logistic-normal mixture model instead. Although
these methods showed competitive performance to detect the
subpopulation boundaries, some drawbacks still exist. First,
most of the existing methods still count on prior knowledge on
the parametric functions of the subpopulation boundaries. In
many exploratory studies, such information can be difficult to
obtain. Second, many latent supervised learning methods rely
on certain distribution assumptions of the observed outcomes
as well, which may not hold in practice especially for complex
subpopulation structures.

In this article, we focus on subpopulation detection, and
aim to address the two drawbacks of latent supervised learning.
In particular, we would like to propose an exploratory tool,
named latent supervised clustering (LSC), to estimate the het-
erogeneous effects at the same time of clustering the samples
without prior knowledge on their boundaries. To achieve these
two goals, we formulate the problem as regression with subject-
specific coefficients, which can be treated as the heterogeneous
relationships between the outcomes and covariates from the
observed data. Then we cluster such relationships with the
adaptive fusion penalty, which is extended from the perspective
of convex clustering. The proposed method inherits the advan-
tages of both latent supervised learning and traditional cluster-
ing analysis. On one hand, it enables the data orient the learning
process so that no assumption is needed for the subpopulation
structure. On the other hand, it uses the information of both
covariates and outcomes to estimate the heterogeneity so that
it can both identify the subpopulation and predict the outcome
values. In contrast, regular clustering does not use the outcome
information.

Clustering such outcome-predictor relationships can be very
challenging because they are not observed directly but can only
be derived. One important question is how to define a distance
properly to encourage such clustering patterns. We would like to
adapt the idea of convex clustering. Note that convex clustering
formulates the clustering process as a convex minimization
problem involving the sum of a loss function and a penalty
term with a tuning parameter balancing these two terms. The
loss term is a sum of Euclidean distances between observations
and their corresponding subject-specific centroids. The penalty
term includes a sum of the fusion penalty between each pair of
such centroids to encourage them to merge together. In LSC,
we propose a different loss + penalty form to accommodate the
outcome information. For the loss term, we use a predefined loss
calculated from the observed outcome and its fitted value by a
certain model with subject-specific parameters. In this way, a
smaller loss value indicates a better goodness of fit. This model
can be either parametric or nonparametric such as smoothing
splines. While we only discuss linear regression in this article,
extensions to classification or nonlinear regression can also
be covered by, for example, using a linear function with the
deviance loss or using smoothing splines with the quadratic
loss. We assume that observations from the same subpopulation

have the identical values of the subject-specific parameters. To
encourage such a pattern in the estimation, we impose an adap-
tive pairwise fusion penalty on each pair of the parameters in the
penalty term. The corresponding weights are determined by the
estimated differences of the pairs. In summary, such a convex
optimization formulation can lead to maximizing the overall
goodness of fit at the same time of minimizing the heterogeneity
within each detected cluster.

The main contributions of this article are as follows. First, we
propose a new method using the supervised machine learning
framework that aims to identify the heterogeneity by clustering
the defined outcome-predictor relationship. We borrow the con-
vex clustering idea but design new loss functions and penalty
terms to encourage competitive performance and computa-
tional efficiency. Second, we design a novel optimization algo-
rithm to solve the underlying convex minimization problem.
This algorithm has several distinct features compared to existing
proximal gradient methods: (1) It can handle nonsmooth loss
terms using a smoothing technique as in Nesterov (2005) in a
homotopy fashion; (2) It allows us to use inexact computation
of the proximal operator of the penalty term; (3) As far as we
know, it has the best known convergence rate guarantee among
homotopy smoothing first-order methods. We would like to
point out that the proposed LSC technique covers the problem
that Ma and Huang (2016) discussed as a special case. They
focused on the case when the subpopulations can be merely
determined by a varying intercept term of a linear model.

The remainder of the article is organized as follows. In Sec-
tion 2, we introduce the proposed method. In Section 3, we
present the proposed accelerated proximal gradient algorithm
to solve the optimization problem and show its convergence
rate properties. Simulated examples and data applications are
presented in Section 4 to demonstrate the performance of the
proposed method under finite samples. Some discussions are
provided in Section 5. More technical details including statisti-
cal learning theory and proofs of theorems, together with addi-
tional numerical results, are left in the supplementary materials.

2. Methodology

We use {(xi, yi), i = 1, . . . , n} to represent our training data,
where xi is a p-dimensional covariate vector with its response
yi. We consider the model as follows:

yi = f (xi; β i) + εi, (1)

where xi always contains an intercept term as its first element,
β i is the coefficient vector of the ith observation xi, and εi is
the noise term that has mean zero and a bounded variance. We
further assume that xi, and εi are mutually independent of each
other. To describe the heterogeneity of covariate effects, we allow
β i to take different values for different indices i. Our goal is
to estimate and cluster these β i’s, and let the clustering results
help to provide subpopulation identification. For model (1), we
assume that the value of β i is determined by its underlying sub-
population. In other words, if we denote a partition of {1, . . . , n}
with S = (S1, . . . ,SK), where K represents the number of
subpopulations and is usually unknown in practice, then the
values of β i from the same latent subpopulation ∈ Sm are



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 45

supposed to be identical. In this article, we concentrate on linear
models, that is, f (xi; β i) = xT

i β i. When the linear assumption
is too strong, one can extend the function to be nonlinear such
as using basis expansions with f (xi; β i) =∑m

j=1 β ijgj(xi), where
g1, . . . , gm are basis functions.

To estimate and cluster these β i’s, we consider the following
optimization problem:

min
β i∈Rp

⎧⎨
⎩φn(β i; λn) =

n∑
i=1

[
�(yi, xT

i β i) + λn
∑
i<j

wij‖β i − β j‖1
]⎫⎬
⎭ , (2)

where � represents a preselected loss function to measure the
goodness of fit. For the loss term, we consider two popular
representatives in regression: the check loss (Koenker 2005) that
is used in quantile regression and the quadratic loss that is used
in the least squares estimation. Note that one can easily change
the loss to solve classification problems. As to the penalty term,
the adaptive pairwise fusion penalty is used to adjust for the
potential bias created by the �1-penalty. In practice, we find that
wij = min{Bw,

ιm{i,j}
||β̃ i−β̃ j||1

} can be a good option, where ιm{i,j} indi-

cates whether the observation j is among i’s m-nearest neighbors
defined by the Euclidean distance, and β̃ is an estimate of β =
(βT

1 , . . . , βT
n )T which can be initialized by the local regression

coefficients. The upper bound Bw is added in case some pairs
of (β̃ i, β̃ j) have values too close to each other. Considering the
numerous terms of the fusion penalty (O(n2)), the m-nearest
neighbors strategy can save tremendous computational time
when solving (2) while maintaining competitive performance.

Note that we can view our model (2) as an exact penalty
formulation of the constrained problem of minimizing the loss
subject to equality constraints β i = β j, where the product
λnwij can be considered as penalty parameters. From the theory
of exact penalty methods, the parameters wij are expected to
update at each iteration of the algorithm until they go beyond
a given threshold defined by the �∞-norm of the corresponding
optimal Lagrange multiplier associated with the constraint β i =
β j (see, e.g., Nocedal and Wright 2006, chap. 17).

In practice, one may find some prior evidence to show that
certain components of xi have homogeneous effects on the
outcome yi, that is, coefficients remain constant for all. In this
case, we recommend imposing the penalty only on the hetero-
geneous part. Suppose that the collected observation includes
(xi, zi, yi), where zi is a q dimensional covariate vector known
to have homogeneous effect. We rewrite the model (1) into
yi = f (xi; β i) + h(zi; γ ) + εi, where γ is the same for all,
and h is a measurable function that can have a parametric or
nonparametric form. Similar to the form of f , we restrict our
discussion for linear functions with h(zi; γ ) = zT

i γ . In this
scenario, the optimization problem in (2) becomes

min
β i,γ

{
φn(β i, γ ; λn) =

n∑
i=1

[
�(yi, xT

i β i + zT
i γ )

+ λn
∑
i<j

wij‖β i − β j‖1
]}

. (3)

Moving redundant components from xi to zi can be crucial in
saving computational time especially when the dimension of the

covariates is large. Here, we suggest a “forward screening” idea
that can help distinguish zi from xi when no prior knowledge
can be obtained. We start with a parsimonious model in which
xi only contains an intercept term. Then, we move a variable
from zi to xi that boosts the model performance the most.
This process is repeated until no further improvement can be
obtained by moving more variables to xi. More illustrations of
this idea are left in data applications of Section 4. In the following
sections, we concentrate on the model (3).

As a special case of LSC, Ma and Huang (2016) focused
on when the subpopulations can be determined by a subject-
specific intercept. They suggested using a concave fusion penalty
in the objective function and applied the alternating direc-
tion method of multipliers (ADMM) algorithm to solve the
optimization problem. However, this method is not suitable to
solve our problem. To apply ADMM to (3) that has a com-
plex regularization term, one needs to introduce many inter-
mediate variables, which significantly increases the problem
size and becomes extremely inefficient. In addition, ADMM
requires a complicated strategy to tune the penalty parame-
ter of the augmented Lagrangian to obtain good performance,
which can be very difficult with complex regularization. In
practice, it can be observed from Section 4 that ADMM
takes longer to compute and produces suboptimal prediction
accuracy.

Our proposed method and algorithm enjoy several advan-
tages. First, our method has significant computational benefits
because the problem we solve is convex, and also our proposed
algorithm does not need to generate the p · n2 additional inter-
mediate parameters as ADMM does. This feature allows our
algorithm to scale up to relatively high dimensional problems
compared to ADMM. In addition, our method has a theoret-
ical convergence rate guarantee on the original model (3) as
opposed to a guarantee on the constrained reformulation for
the ADMM. Second, the quadratic loss suggested by Ma and
Huang (2016) can be a suboptimal choice due to its sensitivity
to the outliers. This can be partly attributed to the fact that
the least square estimators have the breakdown point to be
zero (Huber 2004; Zhao, Yu, and Liu 2018). That indicates, if
a subject from the first subpopulation is wrongly assigned to
the second subpopulation, it can highly impact the coefficient
estimates of the second subpopulation when the quadratic loss
is applied. We compare the results of the quadratic loss and
check loss, and find the latter one can significantly improve the
model performance. Third, it is not desirable to penalize all
pairs of (β i, β j) equally. In the ideal case, we hope that large
weights can be assigned to the pairs from the same subpop-
ulation, while zero weights are used for those from different
subpopulations.

The proposed method can also be used to predict the sub-
populations and response of a new observation. One can treat
the identified outcome labels in the training datasets as the
estimated underlying outcome, and fit it using the predictor
information with a standard classification model. Some popular
choices include discriminant analysis, k-nearest neighbors and
random forests. The fitted classification model can be used to
make predictions on which subpopulations the new observa-
tions should be assigned to. Then, one can plug in the corre-
sponding estimated β i and γ to predict the response yi.
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3. Algorithms

In this section, we design a novel accelerated proximal gra-
dient algorithm to solve the proposed optimization problem
efficiently, inspired by the fast iterative shrinkage-thresholding
algorithm (FISTA, Beck and Teboulle 2009). To further increase
the speed of convergence, we integrate a restarting strategy
at each iteration, which includes inexact calculation of the
proximal operator. Note that FISTA can only work for smooth
objective functions. For the nonsmooth check loss, we propose
approximating it with a smooth adaptive surrogate function that
guarantees the best known convergence rate.

3.1. Model Reformulation

For simplicity, we concatenate the parameters β i and γ of model
(3) into one vector ζ

�= (βT , γ T)T where βT = (βT
1 , . . . , βT

n ).
Then, we rewrite the loss and penalty term as

fn(ζ ) =
n∑

i=1
�(yi, xT

i β i + zT
i γ ) and

Jn(ζ ) = λn‖Dwβ‖1

≡ λn

n∑
i=1

n∑
j=1

wij

p∑
k=0

|βik − βjk|, (4)

where Dw is the weight matrix. In this way, the optimization
problem (3) can be expressed in the following compact form:

min
ζ∈Rnp+q

{
φn(ζ ) = fn(ζ ) + Jn(ζ )

}
. (5)

We focus on two loss functions: a quadratic loss �2(r) = 1
2 r2 and

a check loss �τ (r) = τ rI(r ≥ 0)−(1−τ)rI(r < 0) = (τ−0.5)r+
0.5|r|. When � is the quadratic loss, fn has Lipschitz gradient,
that is, there exists Lfn ≥ 0 such that ‖∇fn(ζ ) − ∇fn(ζ̂ )‖ ≤
Lfn‖ζ −ζ̂‖ for all ζ , ζ̂ . When � is the check loss, (5) is still convex
but fully nonsmooth (i.e., both fn and Jn are nonsmooth).

3.2. Algorithmic Design and Convergence Properties

We develop the algorithm based on Beck and Teboulle (2009)
and Nesterov (2013), while the following steps are new. First,
we design a proximal operator (see the Definition) for the
penalty Jn using an adaptive fast projected gradient method
with a warm-start. Second, we incorporate the algorithm with
a restart procedure recently studied in Fercoq and Qu (2016) to
accelerate the performance of the algorithm. Third, for the check
loss function, we apply smoothing techniques to approximate it
with a surrogate function depending on a parameter which can
be adaptively updated in the algorithm. Last, we design a new
variant of the adaptive method proposed in Tran-Dinh (2017)
to solve (5) that has a convergence rate guarantee without any
parameter tuning strategy.

The computational cost of the algorithm consists of two
parts. First, we need to evaluate the gradient vector of fn or its
smoothed approximation, and evaluate the Lipschitz constant
of this gradient mapping. Second, we compute the proximal

operator of Jn which is defined as

proxsJn(ζ ) := arg min
ζ̂

{
Jn(ζ̂ ) + 1

2s‖ζ̂ − ζ‖2
2

}
, (6)

for any ζ and s > 0. The main steps of the proposed algorithm
for solving (5) are presented in Algorithm 1.

Algorithm 1 Adaptive fast proximal gradient algorithm (APG)
1. Choose an arbitrarily initial point ζ 0 ∈ R

(n+1)d and desired
tolerances ε > 0 and ε0 ≥ 0.

2. Evaluate Lf := λmax(X̃TX̃); Set τ0 = 1, and ζ̂
0 := ζ 0.

3. If the check loss is used, then input η1 (e.g., η1 = 1
n ).

4. For t = 0, 1, . . . , tmax, perform:

Step 1: Set Lfn := Lf for the quadratic loss, and Lfn := Lf
ηt+1

for the check loss. Then compute the step-size αt = 1
Lfn

.
Step 2: Compute approximately ζ (t+1) ≈
proxαt Jn

(
ζ̂

(t) − αt∇fn(ζ̂
(t)

)
)

up to the accuracy εt

as defined in (7).
Step 3: If stopping-criterion is satisfied, terminate
the algorithm.
Step 4: If fn is the quadratic loss, update τt+1 :=
1
2

(
1 +√1 + 4τ 2

t

)
. If fn is the check loss, update τt+1 as

the positive solution of τ 3 − τ 2 − τ 2
t τ − τ 2

t = 0.
Step 5: Update the accelerated step ζ̂

(t+1) := ζ (t+1) +
τk−1
τk+1

(
ζ (t+1) − ζ (t)).

Step 6: If fn is the check loss, then update ηt+2 :=(
τt+1

τt+1+1

)
ηt+1.

Step 7: Perform a restarting step if needed, and update εt+1.

5. End of the main loop.

In summary, when fn is a quadratic loss, we have fn(ζ ) =
1
2‖X̃ζ − y‖2

2 where X̃ = diag(xT
1 , xT

2 , . . . , xT
n , zT). Then, its

gradient ∇fn(ζ ) = X̃T(X̃ζ − y), which is Lipschitz contin-
uous with its Lipschitz constant as Lfn = λmax(X̃TX̃), where
λmax(X̃TX̃) denotes the maximum eigenvalue of X̃TX̃. When fn
is a nonsmooth check loss, we approximate it by a smooth fn(·; η)

with more details described in Section 3.2.2. Then, the next step
is to compute the proximal operator proxg , which is presented
in Section 3.2.3.

Next we discuss the convergence guarantee of Algorithm 1.
Let ζ ∗ be an optimal solution of (5) with its optimal value
φn(ζ ∗), that is, we have φn(ζ ) ≥ φn(ζ ∗) for any ζ . Define that
ζ (t) is an approximate solution to (5) with an accuracy ε ≥ 0, if
φn(ζ (t)) − φn(ζ ∗) ≤ ε. In (5), we are not able to compute the
proximal operator of Jn exactly, but rather approximate it with a
given accuracy εt > 0. In particular, we define

Qn(ζ ; ζ̂ (t)
) := fn(ζ̂

(t)
) + ∇fn(ζ̂

(t)
)T(ζ − ζ̂

(t)
)

+ Lf

2
‖ζ − ζ̂

(t)‖2 + Jn(ζ ),

and ζ
(t+1)∗ := proxαt Jn

(
ζ̂

(t) − αt∇fn(ζ̂
(t)

)
)

. Then by defini-

tion, Qn(·; ζ̂ (t)
) is the corresponding objective function of the
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proximal operator problem at Step 2 of Algorithm 1. One can
show that ‖ζ (t+1) − ζ

(t+1)∗ ‖ ≡ ∥∥ζ (t+1) − proxαt Jn

(
ζ̂

(t) −
αt∇fn(ζ̂

(t)
)
)∥∥ ≤ √

2αtεt , as long as the following condition
holds:

0 ≤ Qn(ζ
(t+1); ζ̂ (t)

) − Qn(ζ
(t+1)∗ ; ζ̂ (t)

) ≤ εt . (7)

Now we provide a general convergence result for Algo-
rithm 1. For the two particular losses, we present the theorems
separately in the subsections below. Their technical proofs can
be found in the supplementary materials.

3.2.1. Convergence for a Quadratic Loss
If � is a quadratic loss, then the following theorem provides a
convergence rate guarantee of Algorithm 1.

Theorem 3.1. Let fn be a quadratic loss, and let {ζ (t)} be a
sequence generated by Algorithm 1 where proxγ jn is computed
approximately with the accuracy εt ≥ 0 as defined in (7). Then,
we have

φn(ζ
(t)) − φn(ζ

∗) ≤ 2λmax(X̃TX̃)

(t + 1)2

(
‖ζ (0) − ζ ∗‖ + Rt

)2
, (8)

where Rt =
√

2√
Lf

(
2
∑t−1

j=0(j + 1)
√

εj +
√∑t−1

j=0(j + 1)2εj
)

.
Consequently, for any accuracy ε > 0 and positive constant
c ≥ 1, if the inner accuracy at t, εt , is chosen to be c

(t+1)5 , then
the maximum iteration number of (5) to achieve ζ (t) does not

exceed tmax =
⌊√

2λmax(X̃T X̃)√
ε

‖ζ (0) − ζ ∗‖ + 10
√

2c√
ε

⌋
. Here, 
.�

denotes the floor function.

3.2.2. Smoothing Technique for the Check Loss
The check loss ρτ (r) = τ rI(r ≥ 0) − (1 − τ)rI(r < 0) =
(τ − 0.5)r + 0.5|r| is convex but nonsmooth. We consider
approximating it using a smooth convex function ρτ (·; η) that
has a smoothness parameter η > 0. For any fixed value of η > 0,
the smooth function ρτ (·; η) needs to satisfy the following basic
properties. First, ρτ (·; η) is smooth and convex. Its gradient
∇rρτ (·; η), with respect to r, is Lipschitz continuous with the
Lipschitz constant Lρ depending on η. Second, ρτ (·; η) approx-
imates ρτ (·) well. In other words, there exists a constant Dρ ,
independent of η, such that ρτ (r; η) ≤ ρτ (r) ≤ ρτ (r; η) + ηDρ

for all r. There are several choices for ρτ (·), such as the following
two:

• Huber loss: ρτ (r; η) =
{

1
2η

r2 if |r| ≤ η

|r| − η
2 otherwise

with Lρ = 1
η

and Dρ = 1
2 .

• Logit-type loss: ρτ (r; η) = (
τ − 1

2
)

r + η
2 ln

(
er/η + e−r/η)

with Lρ = 1
η

and Dρ = ln(2).

We now introduce the following properties of ρτ (·; η) with
the proof placed in the supplementary materials.

Lemma 3.1. We consider fn(ζ ; η)
�= ∑n

i=1 ρτ (yi(xT
i β i +

zT
i γ ); η) as a smooth version of the check loss in (4) using either

the Huber loss or the logistic loss. Then, this function is convex

and differentiable with its gradient ∇ζ fn(·; η) as Lipschitz con-
tinuous, with the Lipschitz constant Lfn = λmax(X̃T X̃)

η
. Moreover,

we have

fn(ζ ; η) ≤ fn(ζ ) ≤ fn(ζ ; η) + nηDρ , (9)

for any ζ ∈ R
(n+1)p and η > 0.

The lemma shows that fn(ζ ; η) → fn(ζ ) as η → 0+. In this
way, we approximate the problem of (5) by

min
ζ∈Rnp+q

{
φn(ζ ; η) = fn(ζ ; η) + Jn(ζ )

}
. (10)

Our goal is to compute an ε-approximation solution ζ (t) to
the true solution ζ ∗ of (5) such that φn(ζ (t)) − φn(ζ ∗) ≤ ε.
To fulfill the goal, we propose the idea of applying the fast
proximal gradient method to solve (10) approximately, with a
homotopy scheme to decrease the smoothness parameter ηt at
each iteration t such that ηt → 0+. The step-size parameter is
updated by using the unique positive solution τt+1 of the cubic
equation c3(τ ) = τ 3 − τ 2 − τ 2tτ − τ 2t = 0.

The following theorem indicates that if ζ (t) generated by
Algorithm 1 is an approximate solution of (10), then it is also an
approximate solution of the original problem (5). The detailed
proof is left in the supplementary materials.

Theorem 3.2. Let {ζ (t)} be a sequence generated by Algorithm 1,
where proxsJn is computed approximately as (7) with the accu-
racy εt := c

(t+1)4 for some positive constant c ≥ 1. Then
we have

φn(ζ
(t+1)) − φn(ζ

∗) ≤ 1
(t + 1)

( Lf

2η1
‖ζ (0) − ζ ∗‖2 (11)

+ 2nη1Dρ + 1.9
√

cLf√
η1

‖ζ (0) − ζ ∗‖ + 35c
2η1

+ �t

)
,

where Lf := λmax(X̃TX̃), �t = 0 for the Huber loss, and �t =
Dρ(1+4η1 ln(t+1))

2 for the logistic loss. Hence, for any accuracy
ε > 0, the maximum number of iterations for an approximate
solution of (5) does not exceed tmax = O

(
1+�ε

ε

)
, where �ε = 0

for the Huber loss, and �ε = ln
( 1

ε

)
for the logistic loss.

Remark 1. The worst-case convergence bounds in Theorems 3.1
and 3.2 depend on λmax(X̃TX̃). If this eigenvalue is large, then
it affects the complexity bound tmax of our methods. To speed
up the actual performance, we suggest to perform a linesearch
routine as the linesearch variant in the supplementary materials.
Another possibility is to apply a preconditioning technique
to X̃TX̃ to reduce its leading eigenvalue before solving the
problem.

3.2.3. Evaluating the Proximal Operator for the Penalty
We now describe how to approximately evaluate the proximal
operator of Jn under the condition (7). We convert the problem
(6) into its dual problem which is defined as

proxsJn(u) = u − sDT
wν∗(u), where (12)

ν∗(u) := arg min‖ν‖∞≤1

{ s
2
‖DT

wν‖2 − νTDwu
}

,
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and Dw is defined in (4). To approximate ν∗(u), we apply an
accelerated projected gradient algorithm that can be presented
in a few lines as follows:

3.2.3.1. Accelerated Projected Gradient Scheme to Approxi-
mate proxsJn(u). Given u, s > 0 and an initial point ν(0).
Compute LDw := λmax(DwDT

w). Set ν̄(0) = ν̂(0) := ν(0), δ0 := 1
and �0 := 0. At each iteration j ≥ 0, we update

1. ν(j+1) := πB∞
(
ν̂(j) − 1

LDw
Dw(DT

wν̂(j) − s−1u)
)

;

2. ν̂(j+1) := ν(j+1) + δj−1
δj+1

(ν(j+1) − ν(j)) where δj+1 := 1
2 (1 +√

1 + 4δ2
j );

3. ν̄j+1 := (1 − ωj)ν̄j + ωjν(j+1), where �j+1 := �j + δj+1, and
ωj := δj+1

�j+1
.

Here, πB∞(v) = max{min{v, 1}, −1} is the projection of v onto
the �∞-unit ball B∞ := {v | ‖v‖∞ ≤ 1}. This algorithm is
terminated after a prespecified number of iterations, jmax. The
output of this routine is ζ (t+1) := ζ̂

(t)−αt∇fn(ζ̂
(t)

)−αtDT
wν̄jmax ,

which approximates ζ
(t+1)∗ = proxαt Jn

(
ζ̂

(t) − αt∇fn(ζ̂
(t)

)
)
.

Next we analyze the computational effort to achieve
the approximation point ζ (t+1) as in (7). By adapting the
results from Tran-Dinh (2017), we have Qn(ζ (t+1); ζ̂ (t)) −
Qn(ζ

(t+1)∗ ; ζ̂ (t)) ≤ 2LD‖ν(0)−ν∗
t ‖2

(j+1)2 , where ν∗
t := ν∗(ζ̂ (t) −

αt∇fn(ζ̂
(t)

)) and the function ν∗
t (·) is defined in (12). To achieve

an εt-approximate solution ζ (t+1) of ζ
(t+1)∗ at the tth iteration,

we requires 2LDw ‖ν(0)−ν∗
t ‖2

(j+1)2 ≤ εt . Hence, the maximum number
of iterations jmax is

jmax(t) :=
⌊√

2λmax(DwDT
w)√

εt
‖ν(0) − ν∗

t ‖
⌋

.

By exploiting a warm-start strategy with the previous approxi-
mate point ν(t−1) for ν(0), we find that the distance ‖ν(0) − ν∗

t ‖
becomes smaller. In this way, we recommend fixing jmax as a
small number, such as 50, to achieve an approximate ζ (t+1) in
the implementation.

3.3. Finding an Initial Point

The convergence properties in Section 3.2 indicates that a good
selection of the starting values ζ̃ = (β̃ , γ̃ ) can reduce the num-
ber of iterations. Based on the assumption that each variable
in X is independent of each one in Z, we introduce an ad-hoc
method that can be easily applied to find a proper start point β̃

in practice. We split the method into two steps as follows.
First, we calculate the distance matrix of the dataset based on

(X, y∗), where y∗ is the residual of the linear regression between
y and Z. We use y∗ instead of y since the expectation of y∗ is
exactly Xβ . This conclusion holds due to the fact that a linear
regression produces unbiased coefficients estimate when the
omitted variables in Z are all independent of those included in
the model. In this way, we treat the response y∗ as a new variable
and calculate the distance matrix on (X, y∗). For our numerical
study, we choose to calculate the Manhattan distance, that is,

d(i, j) = ‖xi − xj‖1 + α‖y∗
i − y∗

j ‖1 (Borg and Groenen 2005),
with α = 1.

Second, denote β̃ = (β̃1, . . . , β̃n) and calculate each β̃ i
based on the k-nearest neighbors of the ith subject with a linear
regression model with the selected loss. The k-nearest neighbor
set for the ith subject is defined as the k observations having the
smallest distance d(i, j) to the ith subject, and whose response
being within the neighbor of yi as Oε(y∗

i ). The reason of the
second criterion is to increase the chance that those neighbors
come from the same latent groups as the ith subject does. The
selection of the neighbor ball radius depends on the variation of
the noise and xT

i β i. In our numerical examples, we vary ε from
0.5 to 6.

As a remark, we note that we need to update the weights using
current estimate of the parameters. To simplify the computation,
instead of solving the global solution of each convex problem
to update the weights, for early iterations of Algorithm 1, we
use one-iteration approximation of the true solution of the
convex problem, leading to a suboptimal solution to this convex
problem. Although the suboptimal solution may not be very
accurate, it can be used as a rough approximation to the true
solution of the convex problem using the current weights by
doing only one iteration of the whole optimization routine. This
can greatly speed up the computation. Once the weights stabi-
lize, our algorithm automatically converges to the true global
solution using the corresponding stable weights.

4. Numerical Analysis

In this section, we use numerical examples to test the per-
formance of LSC. We study the estimation accuracy, runtime,
and prediction performance using simulated and real data. For
comparisons, we also implemented the concave method by Ma
and Huang (2016) with a general heterogeneous-effect vector
xi (Concave), and its extension (Concave-2, Ma, Huang, and
Zhang 2018). We additionally include two standard methods:
linear regression with all two-way interactions and random
forests. We pick the tuning parameters by selecting λn from
{2−3, 2−2, 2−1, 20}, setting the number of neighbors as m =
10, and choosing the radius of the response neighbor ε from
{2−1, 20, 2, 22}.

4.1. Simulations

We evaluate the model using eight simulated examples with
linear outcome-predictor relationship. In particular, Examples
1-2 include two subpopulations with linear boundaries. Exam-
ple 3 is extended from the simulation in Wei and Kosorok
(2013), by adding more covariates in xi. Example 4 has a
higher dimensional zi with noises. Examples 5, 6, and 8 intro-
duce nonlinear subpopulation boundaries with noisy variables
whose coefficients are zeros. Example 7 covers the nonlinear
boundary case where the number of underlying subgroups
increases to 5.

For each example, we generate each of the xi and zi from
an independent continuous uniform U(−2, 2), and the random
noise εi from N(0, 0.1). We use a tuning dataset and choose the
λn that minimizes the tuning error. To calculate the validation
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error, we consider the estimated parameters for all detected
subpopulations from the training set. We choose the one with
the smallest mean square error as its validation prediction.

Once finding the optimal tuning parameters, we generate a
test dataset that is ten times as large as the training to assess
the prediction performance. We divide prediction into two
steps. First, we treat the clustering label of the training set
as an underlying outcome, and fit it using all the covariates
with a classifier. In the simulation studies, we choose k-nearest
neighbors for most of the cases and use kernel discriminant
analysis as an alternative when xi is high dimensional with noisy
variables. Second, for each observation from the testing set, we
use the fitted classifier to decide which cluster it belongs to, and
then plug in the corresponding estimated coefficients to make
predictions.

For the accuracy comparison, we report the averages and
standard deviations mean squared errors. In addition, we also
compare the estimated number of subpopulations K̂. For the
time comparison, we present the average run time (in seconds)
of each method for all examples. The simulations are repeated
for 50 times with the details listed below.

Example 1. Univariate linear regression with two subgroups.
Suppose the underlying true model is linear with:

yi =
{

1 − xi1 + zT
i γ + εi,

−1 + xi1 + zT
i γ + εi,

xi1 ≤ 1,
xi1 > 1,

where γ = (1, −5, 2, 1, −3, 1, 3, 2, −4)T and the random noise
εi ∼ N(0, 0.1).

Example 2. Three-dimensional xi with noisy variables in zi. The
true model is

yi =
{

1 − xi1 − 2xi2 + zT
i γ + εi,

−1 + 2xi1 − xi2 + zT
i γ + εi,

xi1 + xi2 ≤ 0,
xi1 + xi2 > 0,

where γ = (1, −5, 3, 2, 1, 0, 0, 0, 0)T and the random noise εi ∼
N(0, 0.1).

Example 3. Higher xi dimension with noisy variables. We have
xi contain 25 variables, and the subpopulation is determined by
the first five of them. The true model is

yi =
{

−4 + zT
i γ + εi,

1 + zT
i γ + εi,

1 + xi1 + xi2 − 3xi3 + 2xi4 ≤ 0,
1 + xi1 + xi2 − 3xi3 + 2xi4 > 0,

where γ = (1, −5, 3, 2, 1, 0, 0, 0, 0)T and the random noise εi ∼
N(0, 0.1).

Example 4. Higher zi dimension with three subgroups. Con-
sider a model that has 50 homogeneous variables zi and three
latent subpopulations as

yi =

⎧⎪⎨
⎪⎩

1 − xi1 + zT
i γ + εi,

−1 + zT
i γ + εi,

1 + xi1 + zT
i γ + εi,

xi1 + xi2 + xi3 ≤ −1,
xi1 + xi2 + xi3 > 1,

otherwise,

where γ = (1, −5, 3, 2, 1, 0T
45)

T , 0T
45 represents a 45-

dimensional zero vector and εi ∼ N(0, 0.1).

Example 5. Nonlinear subgroups boundary with noisy variables
in xi. Consider a model in which xi has 6 variables and 2 of them
construct a nonlinear subpopulation boundary:

yi =
{

1 − xi1 − 3xi2 + zT
i γ + εi,

1 + 3xi1 + xi2 + 4xi3 − xi5 + zT
i γ + εi,

x2
i1 + x2

i2 ≤ 4,
x2

i1 + x2
i2 > 4,

where γ = (1, −5, 3, 2, 1)T and the random noise εi ∼
N(0, 0.1).

Example 6. Complex subgroups boundary with noisy variables
in xi. Consider a situation that has a complex nonlinear subpop-
ulation boundary:

yi =
{

1 + 5xi1 + zT
i γ + εi,

−1 − 3xi1 + zT
i γ + εi,

x2
i1 sin xi2 + x3

i3 + log(xi4 + 5) + xi5 ≤ 5,
x2

i1 sin xi2 + x3
i3 + log(xi4 + 5) + xi5 > 5,

where γ = (1, −5, 3, 2, 1) and the random noise εi ∼ N(0, 0.1).

Example 7. Nonlinear subgroups boundaries with five sub-
groups. There are five subpopulations with yi = ∑5

k=1 I((x2
i1 +

x2
i2) ∈ (bk−1, bk]) · (k − 3)(1 + xi1 + · · · + xi5) + zT

i γ +
εi, where (b0, b1, b2, b3, b4, b5) = (−∞, 2, 3.5, 5, 7, ∞), γ =
(1, −5, 3, 2, 1)T , and εi ∼ N(0, 0.1).

Example 8. Complex subgroups boundaries with three sub-
groups and noisy variables. Consider a model having eleven xi’s
and three subpopulations:

yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + xi1 + 3xi2 + 0xi3 + 3xi4 + 2xi5 + zT
i γ + εi,

x2
i1 + exp(xi2) ≤ 2.5,

−1 + 3xi1 + xi2 − 2xi3 + 0xi4 − 2xi5 + zT
i γ + εi,

x2
i1 + exp(xi2) > 5.5,

1 − xi1 − xi2 − xi3 + 2xi4 − 0xi5 + zT
i γ + εi,

o.w.,

where γ = (1, −5, 3, 2, 1)T and the random noise εi ∼
N(0, 0.1).

The simulation results are reported in Table 1. From Table 1,
we can see that LSC with the check loss almost always produces
the best RMSE results for β̂ and γ̂ . The Concave method can
maintain relatively small errors while suffers a large variability.
The Concave-2 method by Ma, Huang, and Zhang (2018), which
aims at estimating the subgroup boundary directly, can have a
competitive estimate accuracy when the subgroup boundary is
simpler as in Examples 1–4. When the underlying subpopula-
tion structure becomes more complex, as in Examples 5 and
6, the advantage of the LSC-check becomes more clear due to
its strong stability to the noise caused by being clustered in
the wrong subpopulation. This demonstrates the advantage of
using a more robust loss as well as the adaptive fusion penalty.
When there are over two subpopulations in the setting with
even more complex boundaries as in Examples 7 and 8, none
of the methods can produce satisfactory estimation while the
LSC-check still outperforms the others. This indicates that one
should consider data cleaning or variable selection before fitting
LSC in practice when the covariates have complex relationships.
As to the estimates of the subpopulation numbers, the two LSC
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Table 1. Simulation results: The averages and standard deviations of mean squared errors with the best results in bold.

Case Concave Concave-2 LSC-quad LSC-check

β̂ γ̂ K̂ β̂ γ̂ K̂ β̂ γ̂ K̂ β̂ γ̂ K̂

1 0.261 0.034 3.04 0.214 0.010 2.02 0.195 0.011 2.1 0.185 0.010 2.17
(0.153) (0.054) (0.68) (0.052) (0.004) (0.14) (0.061) (0.008) (0.48) (0.033) (0.006) (0.37)

2 0.349 0.123 3.15 0.236 0.017 2.46 0.282 0.012 2.27 0.225 0.006 2.21
(0.116) (0.014) (0.61) (0.035) (0.005) (0.50) (0.133) (0.003) (0.52) (0.092) (0.002) (0.45)

3 0.408 0.115 2.32 0.111 0.016 1.87 0.315 0.032 2.21 0.177 0.023 2.11
(0.22) (0.04) (0.68) (0.002) (0.007) (0.42) (0.180) (0.024) (0.49) (0.122) (0.018) (0.41)

4 0.421 0.099 2.67 0.381 0.012 2.62 0.285 0.010 3.34 0.273 0.012 3.12
(0.035) (0.012) (0.89) (0.12) (0.003) (0.32) (0.041) (0.004) (0.73) (0.03) (0.007) (0.38)

5 0.434 0.254 2.32 0.359 0.076 2.61 0.332 0.009 2.14 0.285 0.006 2.1
(0.058) (0.140) (0.36) (0.104) (0.040) (0.84) (0.070) (0.001) (0.36) (0.041) (0.001) (0.27)

6 0.616 0.091 2.73 0.654 0.293 2.89 0.348 0.078 2.15 0.386 0.040 2.13
(0.161) (0.023) (0.52) (0.274) (0.189) (0.92) (0.152) (0.001) (0.22) (0.134) (0.001) (0.18)

7 2.345 0.148 6.25 2.129 0.083 6.40 1.699 0.111 6.17 1.896 0.084 6.23
(0.251) (0.011) (1.54) (0.047) (0.010) (0.89) (0.271) (0.098) (1.06) (0.157) (0.044) (0.36)

8 2.134 0.230 5.53 2.159 0.257 4.67 1.349 0.219 4.47 1.341 0.129 4.32
(0.360) (0.184) (0.82) (0.062) (0.038) (0.89) (0.236) (0.072) (0.70) (0.262) (0.032) (0.59)

NOTE: The K column provides the detected numbers of clusters. Concave is the method with the concave fusion penalty, Concave-2 refers to Ma, Huang, and Zhang (2018),
LSC-quad and LSC-check represent latent supervised clustering with the quadratic and check loss.

Table 2. Simulation runtime comparison: average runtime (in seconds) of the
selected methods for each set of the tuning parameters with the best results in bold.

Examples

# n p q K Concave Concave-2 LSC-quad LSC-check

1 300 2 9 2 18.5 15.8 11.0 12.1
2 300 3 9 2 692 91.7 71.1 107.3
3 300 24 5 2 16,954 1054.1 2364.1 2433.7
4 300 4 50 3 793.8 771.7 161.5 186.5
5 300 6 5 2 2225.1 1793.5 458.5 537.1
6 300 6 5 2 2244.5 6320.7 436.7 507.4
7 600 6 5 5 9513 7078.6 2666.6 3373.1
8 600 11 5 3 40,514.5 35,540.8 11,116.2 14,739.0

methods perform better than the Concave while all methods
tend to overestimate this number except for the case of K = 5
for Example 7.

Table 2 reports the average runtime that the selected methods
take to return the results with a given set of tuning parameters.
Latent supervised learning is faster than the concave penalty
method with ADMM when the sample size n and dimension p
are large. This is because the concave penalty method takes more
iterations before convergence, and also ADMM creates O(n2p)

intermediate parameters. Concave-2 is the fastest in Example 3
because the boundary is quite easy to be estimated directly so
that their algorithm can converge much faster. In addition, the
suggested specification of the weight vector w in LSC results in
a sparse penalty coefficient matrix. For the two LSC methods,
LSC-quad performs faster than LSC-check because the smooth
check loss decreases the convergence speed of the proposed
algorithm, as shown in the previous section.

To make predictions for the test datasets, we choose k-nearest
neighbors with k = 10 to predict the underlying label except
for Examples 3, 7, and 8 due to the noisy covariates. As an
alternative, we choose kernel discriminant analysis with the
parameters selected by the tuning sets.

We report the mean squared errors of prediction in Table 3.
From the results, LSC with the check loss enjoys the minimal
prediction error. For Examples 1 and 2, all the methods produce
satisfactory results. Linear regression with two-way interactions

Table 3. Simulation prediction accuracy: the mean squared prediction errors and
standard deviations of the selected methods with the best results in bold.

Example Concave LSC-quad LSC-check Reg-Int RF

1 0.284 0.083 0.057 0.388 0.499
(0.05) (0.004) (0.003) (0.025) (0.081)

2 1.142 0.644 0.486 2.897 1.513
(0.155) (0.093) (0.085) (0.13) (0.126)

3 10.531 6.936 3.481 3.599 9.759
(0.308) (0.202) (0.166) (0.113) (1.505)

4 2.838 0.935 0.776 1.506 7.469
(0.243) (0.105) (0.106) (0.074) (1.21)

5 12.453 10.379 9.985 30.325 46.881
(1.893) (1.778) (1.759) (1.017) (2.835)

6 14.176 11.226 10.305 122.594 24.77
(2.073) (1.295) (1.26) (12.372) (3.999)

7 14.639 12.379 9.75 20.829 16.787
(1.954) (0.91) (0.851) (0.675) (2.041)

8 32.274 21.748 16.92 67.239 42.693
(2.797) (1.495) (1.351) (1.397) (2.894)

NOTE: Reg-Int means linear regression with two-way interactions of xi ’s, and RF
represents random forests.

performs as good as LSC in Example 3 because the underlying
boundary fits the interaction assumption exactly. When the
underlying boundaries become nonlinear as for Examples 5–8,
neither linear regression with interactions nor random forests
can produce reliable prediction results. The performance of
LSC is significantly better than the concave penalty methods
in terms of the average prediction error and the variability.
Similar to the estimation accuracy results, none of these meth-
ods can produce good prediction results when the latent sub-
population structure becomes too complicate as in Examples 7
and 8.

To better illustrate how the value of λn affects the number
of detected clusters, we draw the solution paths for the cases
with both quadratic and check loss functions of Example 1
in Figure 1. The solution path is for the heterogeneous effect
coefficients with the same idea as in the dendrogram for agglom-
erative hierarchical clustering (Hastie, Tibshirani, and Friedman
2009). It is calculated by using a “bottom up” approach starting
with a small λn that does not show any clustering pattern. In
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Figure 1. Solution paths for β̂n against λn in Example 1 with selected λn shown by dashed lines.

Figure 2. Alzheimer’s disease: Mean squared prediction errors. LSC-c1−LSC-c4 present latent supervised clustering with the check loss that includes the corresponding
number of ROI in heterogeneous vector by the “forward screening” idea, LSC-q is LSC with the quadratic loss, Concave represents the method with concave fusion penalty,
Reg means linear regression with two-way interactions, and RF represents random forests.

Figure 1, the solution paths for the two loss functions look simi-
lar to each other. When λn reaches to around 1.5, the coefficient
estimates merge into two distinct values around −1 and 1, that
is, the underlying true values. As λn goes to a larger value such
as 4, the estimates eventually converge to a single point that is
close to zero.

Following a reviewer’s suggestion, we have performed addi-
tional simulation studies to investigate the performance of our
“forward screening” idea and the effect of correlations among
predictors. The results show that our proposed forward screen-
ing is effective in identifying variable roles. When the predictors
are correlated, our algorithms take more iterations to converge
as the correlation increases. This matches with our theoreti-
cal analysis. More details can be found in the supplementary
materials.

4.2. Real Data Applications

In this subsection, we apply the proposed method to the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
(Kueper, Speechley, and Montero-Odasso 2018) and Pima
Indian Diabetes data (Dua and Graff 2019) to evaluate its per-
formance. We use the same tuning parameter ranges as the
simulation examples. We use a 5-fold cross-validation with 50
replications for tuning and prediction. To predict the cluster
labels of observations in the validation sets, we use k-nearest
neighbors with k = 10. For both the proposed methods and
the method with the concave penalty, we follow the suggested
“forward screening” idea in Section 2 to identify xi from zi. In
particular, we start with a parsimonious model that has only
an intercept term in xi and all the covariates in zi. Then we
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Figure 3. Alzheimer’s disease: Within-cluster variation plot and scatterplots of the observed and predicted outcome for the validation set in one realization of CV.

move variables from zi to xi one at a time, by choosing the one
that boosts the validation prediction accuracy the most. The
process stops when the validation prediction is not improved.
To save time in practice, one may conduct the screening with
a fixed and reasonable tuning parameter set. We report the
mean squared prediction errors of all the methods for both
the training and validation sets as a criterion, and then briefly
describe the pattern of the detected subpopulations.

4.2.1. Alzheimer’s Disease Neuroimaging Initiative (ADNI)
The dataset records the structural magnetic resonance imaging
(MRI) of 226 normal controls, 393 patients with mild cognitive
impairment (MCI), and 186 patients with Alzheimer’s disease.
It uses a score (ranged from 0 to 150) named Alzheimer’s
Disease Assessment Scale—Cognitive Subscale (ADAS-Cog) to
assess the level of cognitive dysfunction in Alzheimer’s dis-
ease. The goal is to use 93 manually labeled regions of inter-
est (ROI) as covariates, to predict the ADAS-Cog and also
detect the three subgroups simultaneously (i.e., normal, MCI,
and AD).

We first reduce the covariate dimension to 20 by recurrent
feature elimination (Hastie, Tibshirani, and Friedman 2009),

and sort the remaining covariates using the “forward screening”
idea. The indices of the first five ROI are 42, 82, 43, 85, and
30. Fitting regression by subgroups, we find the coefficients
of these five ROIs quite different across the three subgroups.
In this way, it is reasonable to assume that the ROIs have
heterogeneous effect on ADAS. Figure 2 shows that the best
prediction accuracy is achieved when the ROI 42 and 82 are
included. The columns of LSC-quad and Concave represent LSC
results with the quadratic loss and the method with the concave
fusion penalty. Both of them perform worse than LSC-check
with larger prediction errors and variability. Reg and RF denote
linear regression with two-way interactions and random forests.
These two commonly used methods fail to achieve satisfactory
prediction results for this problem.

We are also interested in comparing the detected subgroups
with the true diagnosed label. Figure 3 presents the K-means
clustering results of the estimated β ’s, the validation perfor-
mance of linear regression and LSC with predicted subgroups
as well as true subgroup labels. One can clearly see that the K-
means suggests the correct number of clusters according to the
within group sum of squares. The detected subgroups match
well with the ground truth (around 60% accuracy) except for



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 53

Figure 4. Pima Indian Diabetes: Mean squared prediction errors. LSC-c1–LSC-c6 present latent supervised clustering with the check loss that includes the corresponding
number of variables in xi by the “forward screening” idea.

those lie around the boundary between normal and MCI, which
is proved to be difficult in the literature.

4.2.2. Pima Indian Diabetes
The Pima Indian Diabetes dataset collects 768 females at least
21 years old of Pima Indian heritage. The dataset contains 8
attributes and a class variable indicating whether tested positive
for diabetes. The 2-hr serum insulin is measured among the 8
attributes, and it is considered as a proper surrogate outcome for
the binary indicator of the underlying diabetes test. Therefore,
we fit the 2-hr serum insulin using all the other attributes except
for the diabetes test binary variable. We remove all the rows that
contains missing values. Similar to the previous example, we use
a 5-fold cross-validation and fit the selected methods using the
training sets. We also apply the “forward screening” idea and
the selection order is diabetes pedigree function (1), diastolic
blood pressure (2), body mass index (3), age (4), triceps skin fold
thickness (5), and plasma glucose concentration (6). The mean
squared prediction errors are presented in Figure 4 for all the
methods. The proposed method with the check loss and three
variables in xi achieves the best prediction performance. LSC-
c4 and LSC-c5 can have competitive mean squared errors while
the variances are slightly larger. LSC-c6 suffers overfiting with
its prediction error larger than that of LSC with the quadratic
loss. The linear regression with interactions and random forests
produce the worst prediction errors when compared with other
methods. In addition, because there is no ground truth for
the subgroup in the data, we conduct a χ2 test between the
detected subgroup labels and the underlying diagnosis variable
to roughly evaluate how important the labels are. The result
shows that the proposed methods always suggested two latent
subgroups, and the detected labels show significant relationship
with the underlying diabetes test indicator according to the χ2

test. The median of the p-values is 0.031 and this suggests that
the identified subgroup is reasonable.

5. Discussion

In this article, we propose a novel machine learning method
that aims at clustering the underlying subpopulation structure
based on the heterogeneous relationship between the outcome
and covariates. Although we mainly focus on the scenario of
the linear relationship between the outcome and covariates, the
proposed method can be a very good exploratory tool in practice
due to its weak assumptions on the underlying subpopulation
structure. We develop a very efficient algorithm with compet-
itive convergence rates to solve the optimization problem, and
also discuss the statistical consistency properties of the esti-
mators for the coefficients. In numerical studies, the proposed
method demonstrates strong performance in both subpopula-
tion detection and outcome prediction. One interesting future
direction is to extend the proposed method to other clustering
methods with various types of outcomes.

Supplementary Materials

The supplementary materials include statistical learning theory of the
proposed methods, technical proofs and discussions, and additional details
for the numerical examples.
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