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ABSTRACT
Recent development in the data-driven decision science has seen great advances in individualized decision
making. Given data with individual covariates, treatment assignments and outcomes, policy makers best
individualized treatment rule (ITR) that maximizes the expected outcome, known as the value function.
Many existing methods assume that the training and testing distributions are the same. However, the
estimated optimal ITR may have poor generalizability when the training and testing distributions are not
identical. In this article, we consider the problem of finding an optimal ITR from a restricted ITR class where
there are some unknown covariate changes between the training and testing distributions. We propose a
novel distributionally robust ITR (DR-ITR) framework that maximizes the worst-case value function across
the values under a set of underlying distributions that are “close” to the training distribution. The resulting
DR-ITR can guarantee the performance among all such distributions reasonably well. We further propose
a calibrating procedure that tunes the DR-ITR adaptively to a small amount of calibration data from a
target population. In this way, the calibrated DR-ITR can be shown to enjoy better generalizability than the
standard ITR based on our numerical studies. Supplementary materials for this article are available online.
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1. Introduction

Data-driven individualized decision making problems are com-
monly seen in practice and have been studied intensively in
the literature. In disease management, the physician may decide
whether to introduce or switch a therapy for a patient based on
his/her characteristics to achieve a better clinical outcome (Bert-
simas et al. 2017). In public policy making, a policy that allocates
the resource based on the characteristics of the targets can
improve the overall resource allocation efficiency (Kube, Das,
and Fowler 2019). In a context-based recommender system, the
use of the contextual information such as time, location and
social connection can increase the effectiveness of the recom-
mendation process (Aggarwal 2016). One common goal of these
problems is to find the optimal individualized treatment rule
(ITR) mapping from the individual characteristics or contextual
information to the treatment assignment, that maximizes the
expected outcome, known as the value function (Manski 2004;
Qian and Murphy 2011).

One approach for estimating an optimal ITR is to first esti-
mate the conditional mean outcome, known as the Q-function,
given the individual characteristics and the treatment assign-
ment, and then induce the ITR that prescribes the treatment by
maximizing the estimated Q-function (Qian and Murphy 2011).
In the binary treatment case, such an approach can be reformu-
lated as estimating the conditional treatment effect (CTE) as the
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difference of the conditional mean outcomes under two can-
didate treatments (Chen et al. 2017; Zhao, Small, and Ertefaie
2017; Qi et al. 2020). Another approach is to directly estimate
the value function using the inverse-probability weighted esti-
mator (IPWE), and then search for the ITR that maximizes the
corresponding value function (Zhao et al. 2012; Kitagawa and
Tetenov 2018; Liu et al. 2018; Zhang et al. 2019). Since there
are potential model misspecification issues of these approaches,
the augmented IPWE (AIPWE) of the value function combines
the estimates of the Q-function and the treatment propensity
score. AIPWE is doubly robust in the sense that the consistency
of the value function estimate is guaranteed as long as either
the Q-function model or the propensity score model is correctly
specified (Dudík, Langford, and Li 2011; Zhang, Tsiatis, Laber, et
al. 2012; Athey and Wager 2017; Zhao, Laber, et al. 2019). While
the doubly robust property can protect against the violation of
the model assumptions, one key assumption behind is that the
training and testing distributions should be identical.

When the training and testing distributions are different, an
estimated optimal ITR may not generalize well on the testing
data (Zhao, Zeng, et al. 2019). Similar phenomenon for causal
inference in randomized controlled trials (RCTs) has also been
pointed out by Muller (2014) and Gatsonis and Morton (2017).
Specifically, due to the inclusion and exclusion criteria of an
RCT, the training sample can be unrepresentative of the testing
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population we are interested in. Therefore, the correspond-
ing casual evidence may not be broadly applicable or relevant
for the real-world practice. In causal inference literature, it is
common to regard the training data as a selected sample from
the pooled population of training and testing. The selection
bias can be adjusted by reweighing or stratifying the training
data according to the relationship between training and testing
(O’Muircheartaigh and Hedges 2014; Buchanan et al. 2018).
However, it requires strong assumptions on completely mea-
suring the selection confounders and correctly specifying the
selection model, and thus can only work well on a prespecified
testing population. There are many other practical scenarios
where the difference between the training and testing distribu-
tions is unknown. One example is that the training data can be
confounded by some unidentified effects such as batch effects,
which may cause potential covariate shifts (Luo et al. 2010).
Another possibility is that the testing distribution may evolve
over time (Hand 2006). There is also a widely studied sce-
nario that multiple datasets are aggregated to perform combined
analysis (Alyass, Turcotte, and Meyre 2015; Shi et al. 2018; Li,
Cai, and Li 2020). Aggregating data from various sources can
benefit from sharing common information, transferring knowl-
edge from different but related samples, and maintaining certain
privacy. However, due to the heterogeneity among data sources,
standard approaches of finding pooled optimal ITRs may not
generalize well on all these sources. One way of handling the
heterogeneity is to formulate it as a problem of distributional
changes, where we train on the mixture of subpopulations while
testing on one of the subpopulations (Duchi, Hashimoto, and
Namkoong 2019). In all these applications, an optimal ITR that
is robust to unattended distributional differences is of great
interest.

Despite a vast literature in ITR, much less work has been done
on the problem when the training and testing distributions are
different. Imai and Ratkovic (2013) and Johansson et al. (2018)
estimated the CTE function by reweighing the training loss to
ensure the estimators generalizable on a prespecified testing
distribution. Zhao, Zeng, et al. (2019) aimed to find an ITR
that optimizes the worst-case quality assessment among all test-
ing covariate distributions satisfying some moment conditions.
However, since their method only requires some moment condi-
tions, the uncertainty set of the testing distributions can be very
large. Recent developments in the distributionally robust opti-
mization (DRO) literature provide the opportunities to quantify
the difference between the training and testing distributions
more precisely (Ben-Tal et al. 2013; Duchi and Namkoong 2018;
Rahimian and Mehrotra 2019). Motivated by the DRO litera-
ture, we develop a new robust optimal ITR framework in this
article.

In this article, we consider the problem of finding an optimal
ITR from a restricted ITR class, where there are some unknown
covariate changes between the training and testing distributions.
We propose to use the distributionally robust ITR (DR-ITR) that
maximizes the defined worst-case value function among value
functions under a set of underlying distributions. More specif-
ically, value functions are evaluated under all testing covariate
distributions that are “close” to the training distribution, and the
worst-case situation takes a minimal one. Our distributionally
robust ITR framework is different from the existing doubly

robust ITR framework that uses an AIPWE. In particular, an
AIPWE robustifies the model specification assumptions, while
our DR-ITR robustifies the underlying distributions. The DR-
ITR aims to guarantee reasonable performance across all testing
distributions in an uncertainty set around the training distri-
bution by optimizing the worst-case scenarios. In particular,
we parameterize the amount of “closeness” by the distributional
robustness-constant (DR-constant), where the smallest possible
DR-constant corresponds to the standard ITR that maximizes
the value function under the training distribution. To ensure the
performance of the DR-ITR on a specific testing distribution,
we fit a class of DR-ITRs for a spectrum of DR-constants at the
training stage, and calibrate the DR-constant based on a small
amount of the calibrating data from the testing distribution. In
this way, the correctly calibrated DR-constant ensures that the
DR-ITR performs at least as well as, often much better than,
the standard ITR. Using our illustrative example, we show that
the standard ITR can have very poor values on many testing
distributions, while our calibrated DR-ITRs still maintain rela-
tively good performance. In particular, our proposed calibrating
procedures can tune DR-constants based on the small calibrat-
ing sample. To solve the worst-case optimization problem, we
make use of the difference-of-convex (DC) relaxation of the
nonsmooth indicator, and propose two algorithms to solve the
related nonconvex optimization problems. We also provide the
finite sample regret bound for the proposed DR-ITR.

The rest of this article is organized as follows. In Section 2,
we discuss an illustrative example that the optimality of an ITR
can be sensitive to the underlying distribution, and introduce
the DR-ITR that can generalize well across all testing distri-
butions considered in this example. Then we propose the DR-
ITR framework and the corresponding learning problem. In
Section 3, we justify the theoretical guarantees of the finite
sample approximations for the learning problem. In Section 4,
we evaluate the generalizability of our proposed DR-ITR on
two simulation studies: the problem of covariate shifts and
the problem of mixture of multiple subgroups. We apply our
proposed DR-ITR on the AIDS clinical dataset ACTG 175 and
evaluate its generalizability on the subgroup of female patients
in Section 5. Some related discussions and extensions are given
in Section 6. The implementation details, technical proofs, and
some additional numerical results are all given in the supple-
mentary materials.

2. Methodology

In this section, we introduce the value maximization framework
in the current literature, and discuss its limitation when the
training and testing distributions are different. Then we propose
the DR-value function that optimizes the worse-case value func-
tion across all distributions within an uncertainty set around the
training distribution.

2.1. Maximizing the Value Function

Consider the training data (X, A, Y) ∼ P, where X ∈ X ⊆
Rp denotes the covariates, A ∈ A = {+1, −1} is the binary
treatment assignment, and Y ∈ Y ⊆ R is the observed outcome.
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We assume that the larger outcome is better. Let Y(+1), Y(−1)

be the potential outcomes. Consider a prespecified ITR class
D ⊆ {±1}X . For d ∈ D, denote Y(d) := Y(1)1[d(X) =
1]+Y(−1)1[d(X) = −1] as the potential outcome following the
treatment assignment prescribed by the ITR d. Then the value
function under the training distribution P is defined as

V(d) := E[Y(d)].
Denote π(a|x) := P(A = a|X = x) as the training propensity
score function for treatment assignment. If we assume (1) the
consistency of the observed outcome Y = Y(A); (2) the strict
overlap π(±1|x) ≥ τ > 0 for any x ∈ X ; and (3) the strong
ignorability (Y(+1), Y(−1)) ⊥⊥ A|X (Rubin 1974), then we can
identify V(d) in terms of the observed data (X, A, Y) by the
IPWE of E

(
1[d(X)=A]

π(A|X)
Y

)
.

Instead of targeting the value function directly, we instead
consider the CTE function as C(x) := E[Y(+1) − Y(−1)|X =
x] under the training distribution P. Note that for an ITR d and
all x ∈ X , the prescribed treatment assignment satisfies d(x) ∈
{±1}. Then we have C(x)d(x) = E[Y(d) − Y(−d)|X = x].
Based on this representation, we define another value function

V1(d) := E[C(X)d(X)] = E[Y(d) − Y(−d)]. (1)

Since Y(d) + Y(−d) ≡ Y(1) + Y(−1), it can be observed that
V1(d) = 2

[
V(d) − E[Y(+1)+Y(−1)]

2

]
= 2[V(d) − V(drand)],

where drand(x) = +1 with probability 1/2 and −1 with prob-
ability 1/2. Therefore, V1(d) can be interpreted as the value
improvement of the ITR d upon the completely random treat-
ment rule drand. In terms of the optimal ITR, the resulting rules
by optimizing the value functions V1(d) and V(d) over d are
equivalent.

By definition (1), we have V1(d) ≤ E[|C(X)|] with equality
if d(X) = sign[C(X)] almost surely. Such an ITR is the global
optimal ITR when D consists of all measurable functions from
X to {±1}. To obtain the global optimal ITR, we can estimate
C(X) from data using flexible nonparametric techniques, such
as the Bayesian additive regression tree (BART) (Hill 2011), or
the casual forest (Wager and Athey 2018). However, in general,
the global optimal ITR x 	→ sign[C(x)] can take a very com-
plicated functional form, while decision makers may want to
have a simpler ITR (Kitagawa and Tetenov 2018). Then the ITR
class D is often considered as a restricted subset of measurable
functions from X to {±1}. The following two-step procedure
can be implemented to estimate the restricted optimal ITR on
D: first we estimate the CTE function x 	→ Ĉ(x) using flexible
nonparametric techniques; and then we estimate the ITR by
solving maxd∈D En[Ĉ(X)d(X)] on the restricted ITR class D
(Zhang, Tsiatis, Davidian, et al. 2012). Here, En is the empirical
average based on the training data.

2.2. Covariate Changes

It can be observed that the value functions defined in Section 2.1
depend on the underlying distribution. Suppose we are inter-
ested in a testing distribution Ptest that may be different from
the training distribution P to some extent. Then ITRs estimated
by most existing methods may not be able to perform well on

our target population. To address this problem, we first make
the following assumption on the potential difference between
Ptest and P.

Assumption 1 (Covariate changes). For every training distribu-
tionP and testing distributionPtest considered in this article, we
assume the followings:

(I) Ptest � P;
(II) There exists w : X → R+ such that EPw(X) = 1, and

dPtest/dP = w(X).

Assumption 1(I) requires that the support of the testing dis-
tribution cannot go beyond the training distribution. Assump-
tion 1(II) is mathematically equivalent to assuming that the
differences between P and Ptest only appear in the covariate
distributions. The treatment–response relationship conditional
on covariates remains unchanged across training and test-
ing distributions. Specifically, let pX(x)pY|X(y(1), y(−1)|x) and
qX(x)qY|X(y(1), y(−1)|x) be the training and testing densities
of the data (X, Y(1), Y(−1)). Then the density ratio dPtest/dP
becomes

dPtest
dP

= qX(X)

pX(X)
× qY|X(Y(1), Y(−1)|X)

pY|X(Y(1), Y(−1)|X)
.

If qY|X(Y(1), Y(−1)|X) = pY|X(Y(1), Y(−1)|X), that is, the
conditional distributions (Y(1), Y(−1))|X are identical under
Ptest and P, then dPtest/dP = qX(X)/pX(X), which is the
weighting function w(X) in Assumption 1 (II).

The assumption of covariate changes is commonly seen in
the setting of randomized trial. Consider the training and test-
ing populations together as a pooled population with finite
subjects. For each subject i ∈ {1, 2, . . . , N}, let Si ∈ {0, 1}
be a selection random variable such that Si = 1 if i is a
training sample point, and Si = 0 if i is a testing sample
point. Let the distributions of (Xi, Yi(1), Yi(−1))|(Si = 1)

and (Xi, Yi(1), Yi(−1))|(Si = 0) be the training distribution P

and the testing distribution Ptest, respectively. Denote P̄ as the
joint distribution of (Xi, Yi(1), Yi(−1), Si). Then conditions in
Assumption 1 can correspond to the following (Hotz, Imbens,
and Mortimer 2005; Stuart et al. 2011):

• (Overlapping support) 0 < P̄(Si = 1|Xi) < 1;
• (Selection unconfoundedness) Si ⊥⊥ (Yi(1), Yi(−1))|Xi.

In particular, under this finite population setting, the overlap-
ping support condition is equivalent to that Ptest � P and P �
Ptest, and the selection unconfoundedness condition is equiva-
lent to Assumption 1(II). Such a correspondence can bring more
intuitive implications of Assumption 1 under the randomized
trial setting. Specifically, the overlapping support requires the
chances of each subject being selected into the training and
testing populations to be both positive. The selection uncon-
foundnedness requires that the selection mechanism is inde-
pendent of the potential outcomes given the covariates. Both
conditions can be satisfied by a successful trial design (Pearl
and Bareinboim 2014). The phenomenon of covariate changes
between P and Ptest can exist if P̄(Si = 1|Xi) �= P̄(Si = 0|Xi)
with a positive probability. This can be often the case if the sub-
ject needs to satisfy certain requirements before enrolling a trial.
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Figure 1. ITRs and the 95% confidence ellipsoids of the training distribution (X1, X2) ∼ N2
(
(0, 0)ᵀ , I2

)
and the testing distribution (X1, X2) ∼ N2

(
(1.47, 1.96)ᵀ , I2

)
.

The blue dashed curve is the underlying CTE boundary C(X1, X2) = X2 − (X3
1 − 2X1) = 0.

As a consequence from Assumption 1, the CTE function
C(X)=EP[Y(1)−Y(−1)|X] =Etest[Y(1)−Y(−1)|X] remains
unchanged under P and Ptest. Then it can be convenient
to consider the value functions V1(d)=EP[C(X)d(X)] and
V1,test(d)=Etest[C(X)d(X)] defined in (1). When the testing
value function V1,test(d) is of interest, maximizing the training
value function V1(d) may not be optimal. Alternatively, we
can rewrite the testing value function V1,test(d)=EP[w(X)

C(X)d(X)] where w(X)= dPtest/dP. Then based on the training
data from P, we can maximize EP[w(X)C(X)d(X)] that targets
the correct objective. It amounts to determine the weighting
function w that captures the differences between Ptest and P.

Remark 1. Notice that for any weighting function w : X → R+,
we have EP[w(X)C(X)d(X)] ≤ EP[w(X)|C(X)|] with equality
if d(X) = sign[C(X)]. That is, if D consists of all measurable
functions from X to {±1}, then the global optimal ITR is not
sensitive to any covariate changes in the testing distribution.
However, the problem of covariate changes induces a challenge
if D is a restricted ITR class.

Remark 2. Our methodology only relies on the fact that C(X)

remains unchanged under P and Ptest. Therefore, it can be pos-
sible to relax Assumption 1 to allowing distributional changes
in (Y(1), Y(−1))|X, while assuming that the CTE function
C(·) remains identical across P and Ptest. Furthermore, our
methodology can also be meaningful if the testing CTE function

can be different from training, but the optimal treatment assign-
ment remains unchanged. We will discuss this extension in
Remark 5.

2.3. An Illustrative Example

In this section, we begin with an example as in Figure 1 that
the optimality of an ITR depends on the underlying distribu-
tion. There are two underlying bivariate normal distributions of
means (0, 0)ᵀ (training) and (1.47, 1.69)ᵀ (testing), respectively.
We obtain the standard ITR by maximizing the value function
V1(d) under the training distribution over the linear ITR class.
We also obtain the DR-ITR by maximizing the DR-value func-
tion Vk

c (d) to be introduced in Section 2.4 over the linear ITR
class. Then the DR-ITR is compared with the standard ITR
through the value functions V1 under the training distribution
and V1,test under the testing distribution as in Table 1. Since
the values can be comparable only through the same value
function but not across different value functions, we further
define the criteria relative regret of an ITR as [value(LB-ITR) −
value(ITR)]/|value(LB-ITR)|, where “value” can beV1 orV1,test,
and the LB-ITR maximizes the corresponding value function
over the linear ITR class. In this sense, value(LB-ITR) is the best
achievable value among the linear ITR class for the correspond-
ing value function, and becomes the benchmark reference for
the relative regret criteria.
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Table 1. Testing values (relative regrets) comparisons of ITRs.

Value
ITR DR-ITR Standard ITR LB-ITR

Training V1 0.6253 (37.36%) 0.9982 (0%) 0.9982
Testing V1,test 4.8230 (9.16%) 0.2927 (94.49%) 5.3096

1DR-ITR maximizes Vk
c (d) defined in (4) with k = 2 and c = 20 over the linear ITR

class.
2Standard ITR maximizes V1(d) over the linear ITR class.
3LB-ITR maximizes V1(d) or V1,test(d) over the linear ITR class.
4Values (larger the better) can be comparable within rows but incomparable
between rows.
5Relative regret(ITR) = [value(LB-ITR) − value(ITR)]/|value(LB-ITR)| (smaller the
better).
6A size-10,000 sample is generated for fitting DR-ITR and LB-ITRs, and an indepen-
dent size-100,000 sample is generated for evaluation under V1 and V1,test.

Two facts can be concluded from Table 1: (1) the optimality
of an ITR can be different across different distributions; and
(2) maximizing the training value function may have poor
testing performance when covariate changes exist. In Table 1,
even though the standard ITR is optimal under the training
distribution, it can be far from optimal (94.49% off in terms of
relative regret) under the testing distribution. In contrast, the
DR-ITR may not enjoy high training value, but can have much
better testing performance (only 9.16% off in terms of relative
regret).

Remark 3. Figure 1 also illustrates how the covariate changes
affect the optimality of ITRs. Specifically, we can divide the
covariate domain into two types of subdomains, annotated in
blue and red, on which the DR-ITR and standard ITR have
different treatment assignments. On the blue subdomain, the
standard ITR assignment shares the same sign with the CTE
function, while the DR-ITR does not. In this case, the standard
ITR outperforms the DR-ITR with the difference of value |C(X)|
at the individual level. The case reverses on the red subdomain
on which the DR-ITR outperforms the standard ITR. The over-
all difference of values integrates the individual difference with
respect to the training or testing density.

The overall outperformance of the DR-ITR under the testing
distribution can be explained from the following three perspec-
tives: (1) the 95% confidence ellipsoid of the training domain
only covers a small area of the red subdomain, while that of the
testing domain covers a much larger area; (2) the distance of the
red subdomain from the testing centroid is much closer than its
distance from the training centroid. Then the red subdomain
concentrates higher testing density than training; and (3) the
individual value differences |C(X)|’s are generally larger on the
red subdomain intersected with the testing domain than that
intersected with the training domain. Therefore, the DR-ITR
performs much better than the standard ITR on the testing
distribution.

2.4. Maximizing the Distributionally Robust Value
(DR-Value) Function

We begin to introduce our DR-ITR that can show strong gen-
eralizability as in Figure 1. As discussed in Section 1, our goal
in this article is not to find an ITR that is generalizable on
a specific testing distribution, but rather, to find an ITR that

guarantees reasonable performance across an uncertain set of
testing distributions. We first define the kth power uncertainty
set in two equivalent ways under Assumption 1:

Pk
c (P) : = {

Q � P
∣∣ ‖dQ/dP‖Lk(P) ≤ c

}
(2)

=
{
Q � P

∣∣∣∣ w : X → R+, EPw(X) = 1,

EPw(X)k ≤ ck,
dQ
dP

= w(X)

}
. (3)

The set Pk
c (P) consists of the probability distributions Q such

that the Lk(P)-norm of the density ratio dQ/dP is bounded
above by the DR-constant c. Definition (3) highlights that the
density ratio is a weighting function w of X, and the distribution
Q in Pk

c (P) can be characterized by the weighting function w
satisfying the conditions in (3). Here the DR-constant c ≥ 1
controls the degree of the distributional robustness that mea-
sures how “close” Q is from P. In particular, c = 1 reduces the
power uncertainty set Pk

1 (P) to the singleton {P}. The power
order 1 < k ≤ +∞ parameterizes the measurement of
the distance of Q from P. In particular, the power uncertainty
set Pk

c (P) increases in c as k is fixed, and decreases in k as
c is fixed. The latter one is due to the Lyapunov’s inequality:
‖dQ/dP‖Lk(P) ≤ ‖dQ/dP‖Lk′ (P)

whenever 1 < k ≤ k′ ≤
+∞. In the supplementary materials, we will discuss the explicit
form of Pk

c (P) in the context of specific parametric families of
distributions, and how it depends on the DR-constant c and the
power k. One important conclusion from Example S.2 in the
supplementary materials for the mean-shifted p-dimensional
normal distribution is that Np(μ, Ip) ∈ Pk

c
(
Np(0p, Ip)

)
if and

only if ‖μ‖2
2 ≤ 2 log c

k−1 .
With the power uncertainty set Pk

c (P), we propose to
robustly maximize the following worst-case value function
among the values under Q ∈ Pk

c (P):

Vk
c (d) := inf

Q∈Pk
c (P)

EQ[C(X)d(X)], (4)

which we term as the DR-value function. In particular, c =
1 reduces the DR-value function Vk

1 (d) to the standard value
function V1(d) = EP[C(X)d(X)] in the definition (1).

Remark 4 (Optimality). The “optimality” of the DR-ITR is with
respect to the DR-value function Vk

c , which highlights its dif-
ference from the traditional “optimal” ITR with respect to the
standard value function V1.

In the example in Section 2.3, the standard ITR maximizes
the value function under the training distribution over the linear
ITR class, while the DR-ITR maximizes the DR-value function
Vk

c (d) of k = 2 and c = 20 over the linear ITR class. In
particular, the randomness of P comes from the training covari-
ate distribution N2(02, I2). Such a choice of Pk

c (P) contains
the mean-shifted normal distributions N2(μ, I2) for all μ ∈{
(μ1, μ2)

ᵀ : μ2
1 + μ2

2 ≤ 4 log 5
}

. In Figure 2(a), we enumerate
such mean-shifted normal distributions as the testing distri-
butions, and evaluate the relative improvement of the DR-ITR
over the standard ITR as the difference of their relative regrets.
Among all testing distributions, the relative improvements of
the DR-ITR span from −37.4% to 85.3%, suggesting that the
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Figure 2. Relative improvements of the DR-ITR over the standard ITR as the difference of relative regrets on testing distributions N2
(
μ, I2

)
of μ ∈{

(μ1, μ2)ᵀ ∈ R2 : μ2
1 + μ2

2 ≤ 4 log 5
}

(lighter the better).

potential of improvement can be large. Besides the DR-constant
c = 20, we also consider the case c = 2.71, 6.51, 10.31 in
the supplementary materials. As c increases, the range of rela-
tive improvements becomes wider. The increase in the relative
improvement upper bound is in general much larger than the
decrease in the lower bound.

Based on these observations, the DR-constant c should be
carefully chosen. On one hand, as can be seen from Figure 2(a),
the DR-ITR for a fixed DR-constant c may or may not improve
over the standard ITR on a specific testing distribution within
Pk

c (P). When the DR-constant c can be tuned adaptive to the
specific testing distribution, then the DR-ITR can perform at
least as well as the standard ITR. On the other hand, we may
not even have any prior information on c to ensure that the
power uncertainty set Pk

c (P) contains the testing distribution of
interest. Both cases ask for additional information to calibrate
the choice of c so that the DR-ITR performs well on a specific
testing distribution. Suppose we are able to obtain a small size of
calibrating sample from the testing distribution. We propose the
following training-calibrating procedure to choose c: (1) at the
training stage, we estimate DR-ITRs {̂dc}c∈C where c is the DR-
constant to compute d̂c, and C is a set of candidate DR-constants;
(2) we obtain a calibrating sample from the testing distribution,
on which we estimate the testing values of {̂dc}c∈C ; (3) we select
the ĉ that maximizes the value of d̂c among c ∈ C.

To estimate the value function under the testing distribution,
we consider the following two possible calibration scenarios:
(1) the calibrating sample is an RCT dataset (X, A, Y) from the
testing distribution; and (2) the calibrating sample only consists
of the covariates X from the testing distribution. Scenario 1
will be more ideal than Scenario 2 since we have the testing

information of both the treatment and the outcome. We can
evaluate an ITR d using the IPWE V̂ IPWE

calib (d) = Encalib{1[d(X) =
A]Y/πcalib(A|X)}, where Encalib is the empirical average over the
calibrating sample, πcalib is the corresponding propensity score
function, and πcalib is known or estimable from the calibrating
data. We call the corresponding calibrate DR-ITR as RCT-DR-
ITR. In Scenario 2, we do not have the treatment-response
information from the testing distribution. We can instead use
the value function estimate V̂CTE

calib(d) = Encalib [Ĉn(X)d(X)] to
evaluate d, where Ĉn(X) is estimated at the training stage. How-
ever, the CTE estimate Ĉn(·) may also suffer from a potential
generalizability problem on the testing distribution. Practition-
ers need to be careful of the generalizability of the CTE estimate
when performing the calibration. We call the corresponding
DR-ITR as CTE-DR-ITR.

RCT-DR-ITR and CTE-DR-ITR are different in their use
of information for calibration. Specifically, the RCT-DR-ITR
makes use of (X, A, Y) from the testing distribution, while the
CTE-DR-ITR only makes use of X from the testing distribu-
tion, and the underlying CTE function C(X). In practice, C(X)

is estimated from training data. It requires Assumption 1 to
generalize the CTE estimate Ĉn(X) from training to testing. If
Assumption 1 holds, then CTE-DR-ITR can have better per-
formance than RCT-DR-ITR, since CTE-DR-ITR captures less
variance from calibrated data. If Assumption 1 is violated, which
will be illustrated in Section 4.2, then CTE-DR-ITR can have
poorer performance than RCT-DR-ITR, since the testing value
function estimate of CTE-DR-ITR can be biased.

In Figure 2(b), we generate a calibrating RCT sample from
Ptest of size 50. It shows that across the mean-shifted testing dis-
tributions, the relative improvements of the calibrated DR-ITRs
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range from −1.70% to 82.4%. It suggests that the small sample
size 50 is sufficient for a reasonably good calibration, with the
positive relative improvements being maintained.

Remark 5 (Extending covariate changes). Consider the case that
Assumption 1 is violated. Let Ctest be the testing CTE func-
tion that can be different from the training CTE function C.
We use the notations P and Ptest to refer to the training and
testing covariate distributions. Assume that sign[Ctest(X)] =
sign[C(X)] almost surely. Then we can still represent the value
function under the testing distribution as follows:

Etest[Ctest(X)d(X)]
= EP

{
dPtest

dP
Ctest(X)

C(X)
1[C(X) �= 0] × C(X)d(X)

}
.

The definition of the DR-value function (4) can be robust with
respect to the change of (Ptest, Ctest) from (P, C), such that
w(X) := (dPtest/dP) × [Ctest(X)/C(X)]1[C(X) �= 0] satisfies
EPw(X) = 1 and EPw(X)k ≤ ck.

Remark 6. The calibration procedure ensures that among the
DR-ITRs of various DR-constants, the best one is chosen to
maximize the testing value function. In this sense, the calibrated
DR-ITR can have potential of improving the generalizability
from training to testing. However, if the testing distribution
is very far from the training distribution, one cannot expect
that an ITR estimated by any method from the training data
can perform well on the test data, even though our proposed
method may be able to protect against such a distributional
change to some extent. Therefore, in practice, we suggest to
use our method when training and testing distributions are
relatively close.

2.5. Distributionally Robust Expectation

In this section, we first discuss the rationale of considering the
Lk-norm of the density ratio as the measurement of distribu-
tional distance. We show that the kth power uncertainty set
Pk

c (P) is equivalent to the distributional ball induced by the φ-
divergence (Pardo 2005) for some specific divergence φ. Then
we derive the dual form of the worst-case expectation over
Pk

c (P), which provides a more tractable optimization problem.

2.5.1. Equivalence to the Divergence-Based Distributional
Ball

As a generalization of the conventional likelihood-based frame-
work which corresponds to the Kullback–Leibler (KL) diver-
gence, the framework of general φ-divergence between distri-
butions has been well studied in the context of parameter esti-
mation and hypothesis testing (Pardo 2005). The φ-divergence
between two probability distributionsP andQ such thatQ � P

is defined as follows:

Dφ(Q‖P) :=
∫

φ

(
dQ
dP

)
dP = EPφ

(
dQ
dP

)
; φ ∈ �,

where � is a class of convex functions on R that satisfies the reg-
ularity conditions: φ(w) = +∞ for w < 0, φ(1) = φ′(1) = 0,
and lim

w→0+
wφ(p/w) = lim

w→+∞ φ(w)/w for p > 0. The definition

with various choices of φ’s includes the empirical likelihood
φEL(w) = − log w + w − 1, the KL divergence φKL(w) =
w log w − w + 1, and the χ2-divergence φχ2(w) = 1

2 (w − 1)2.
There is another important special case that relates to the power
uncertainty set of k = +∞. Consider the optimization indicator
for c ≥ 1: φ∞,c = 0 if u ∈ [0, c] and +∞ otherwise, for which
Dφ∞,c(Q‖P) = 0 if ‖dQ/dP‖L∞(P) ≤ c, and +∞ otherwise.
Then Dφ∞,c(Q‖P) = 0 if and only if Q ∈ P∞

c (P).
Although Dφ is not a proper metric between probability

distributions since it is asymmetric, we can still define a Dφ-
distributional ball as P

φ
ρ (P) := {Q � P : Dφ(Q‖P) ≤ ρ},

where P is the center and ρ ≥ 0 is the radius. Then for any
ρ ≥ 0, the Dφ∞,c -distributional ball P

φ∞,c
ρ (P) ≡ {Q � P :

Dφ∞,c(Q‖P) = 0}, which coincides with the power uncertainty
set P∞

c (P) defined in (2) for k = ∞. Such an equivalence can
be extended to all finite k ∈ (1, +∞) when a Cressie–Read (CR)
family (Cressie and Read 1984) of divergence functions �CR ⊆
� is taken into consideration. For k > 1, the corresponding
φk ∈ �CR is defined as

φk(w) := wk − kw + k − 1
k(k − 1)

; w ≥ 0.

Here, φk effectively measures the probability-distributional dis-
tance by the kth moment of the density ratio, since Dφk(Q‖P) =

1
k(k−1)

[EP(dQ/dP)k − 1] as long as Q is a probability dis-
tribution. Then it can be inferred that the Dφk -distributional
ball P

φk
ρ (P) is actually equivalent to the power uncertainty

set Pk
ck(ρ)(P) in (2). Here, there is a one-to-one correspon-

dence between the DR-constant c and the radius ρ of the Dφk -
distributional ball with ck(ρ) := [k(k−1)ρ+1]1/k. We conclude
the case k = +∞ and 1 < k < +∞ with the following:

P
φ∞,c
ρ (P) = P∞

c (P); Pφk
ρ (P) = Pk

ck(ρ)(P); ρ ≥ 0. (5)

2.5.2. Dual Representation
We begin with a general result on the dual representation
of the φ-divergence-based distributionally robust expectation.
We state the following lemma and refer readers to Duchi and
Namkoong (2018, Proposition 1).

Lemma 1. Fix a random variable Z onRwith distributionP. Let
φ ∈ � be a legitimate divergence function. Define the convex
conjugate of φ as

φ�(x�) := sup
x∈R

{〈x�, x〉 − φ(x)}; x� ∈ R.

Then for ρ > 0,

sup
Q∈Pφ

ρ (P)

EQZ = inf
λ≥0
η∈R

{
EP

[
λφ�

(
Z − η

λ

)]
+ λρ + η

}
. (6)

Let c ≥ 1. Lemma 1 can be directly applied to the optimiza-
tion indicator: φ∞,c(u) := 0 if u ∈ [0, c] and +∞ otherwise,
whose convex conjugate is given by φ�∞,c(u) = c max{u, 0}.
Then λ in (6) attains the infimum at λ = 0, so that

sup
Q∈P

φ∞,c
ρ (P)

EQZ = inf
η∈R

{cEP(Z − η)+ + η} . (7)
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In particular, the right-hand side of (7) is solved by the (1−1/c)-
value-at-risk VaR1−1/c in finance, or equivalently, the (1 − 1/c)-
quantile of Z under the center distribution P. The right-hand
side of (7) itself is defined as the (1 − 1/c)-conditional value-at-
risk CVaR1−1/c (Rockafellar and Uryasev 2000). Next, we apply
Lemma 1 to the kth power divergence φk to derive the dual
problem of the worst-case expectation over Pk

c (P).

Lemma 2. Let �CR be the Cressie-Read family of divergence
functions, k, k� ∈ (1, +∞) be conjugate numbers, that is, 1

k +
1
k� = 1, and φk ∈ �CR. Then we have following conclusions:

(I) The convex conjugate of φk is given by

φ�
k(z) = 1

k

{
[(k − 1)z + 1]k�

+ − 1
}

.

(II)Fix a probability measure P and a random variable Z on R.
Then for ρ ≥ 0,

sup
Q∈P

φk
ρ (P)

EQZ = inf
η∈R

{
ck(ρ)[EP(Z − η)k�

+ ]1/k� + η
}

, (8)

where ck(ρ) = [k(k − 1)ρ + 1]1/k.

Note that the right-hand side of (8) and its optimizer η are
both coherent risk measures as the higher order generalizations
of the CVaR and VaR (Krokhmal 2007).

Using the equivalence in (5), the worst-case expectation over
the power uncertainty set Pk

c (P) for k ∈ (1, ∞] and k� = k
k−1

(in particular, k = ∞ ⇔ k� = 1) unifies (7) and (8) as follows:

sup
Q∈Pk

c (P)

EQZ = inf
η∈R

{
c[EP(Z − η)k�

+ ]1/k� + η
}

; c ≥ 1. (9)

By inspecting the dual problem (9), the right-hand side is com-
putationally more tractable than the left-hand side, since instead
of optimizing over an infinite-dimensional probability measure
Q, we only need to optimize over a univariate variable η.

To apply the duality result to the DR-ITR problem, we negate
the DR-value maximization to a risk minimization problem.
Denote the risk function under the training distribution P as
R1(d) := −V1(d) = EP{C(X)[−d(X)]}. Then for k ∈ (1, +∞]
and c ≥ 1, the DR-risk function is defined as

Rk
c (d) := sup

Q∈Pk
c (P)

EQ{C(X)[−d(X)]}.

Using the fact Z = −C(X)d(X) = C(X)1[d(X) = −1] +
[−C(X)]1[d(X) = 1], the dual representation (9) can be
expressed in the following particular form (10).

Corollary 1 (Dual representation of the DR-risk function). Let
k ∈ (1, +∞], k� = k

k−1 if k < +∞ and k� = 1 if k = +∞,
c ≥ 1. Then the DR-risk function Rk

c has the following dual
representation:

Rk
c (d) = inf

η∈R

{
c
[
E

(
[C(X) − η]k�

+1[d(X) = −1]

+[−C(X) − η]k�

+1[d(X) = 1]
)]1/k�

+ η

}
. (10)

2.6. Implementation

In this section, we introduce the implementation of DR-risk
minimization based on the empirical data. We cast the learning
problem as finding a decision function f : X → R that induces
an ITR based on its sign: d(x) = sign[f (x)]. The ITR classD can
correspond to a prespecified decision function class F . The DR-
risk function as a functional of the decision function becomes
Rk

c (f ) = sup
Q∈Pk

c (P)
EQ

{
C(X)sign[−f (X)]}. However, directly

optimizing the risk Rk
c (f ) is challenging, since the sign(·) oper-

ation is nonconvex and nonsmooth. We consider a specific
difference-of-convex (DC) relaxation of the sign operator.

We propose to relax the indicators in the dual form (10) by
the following robust smoothed ramp loss (Zhou et al. 2017):
ψ(u) := (1 − u)21(0 ≤ u ≤ 1) + [2 − (1 + u)2]1(−1 ≤
u ≤ 0) + 21(u ≤ −1). The DC representation is given by
ψ(u) = ψ+(u) − ψ−(u), where ψ+(u) = (1 − u)21(0 ≤
u ≤ 1) + (1 − 2u)1(u ≤ 0), ψ−(u) = u21(−1 ≤ u ≤ 0) +
(−1 − 2u)1(u ≤ −1). The advantages of using the symmetric
nonconvex loss can be: (1) to protect from outliers in X and
improve generalizability (Shen et al. 2003; Wu and Liu 2007),
and (2) to equally indicate f (X) < 0 and f (X) > 0. We would
like to point out that 1[f (X) < 0] + 1[f (X) > 0] ≡ 1 will be
preserved to ψ[f (X)]

2 + ψ[−f (X)]
2 ≡ 1 in this surrogate loss. Then

we define the DR-ψ-risk function as

Rk
c,ψ(f ) := inf

η∈R

{
c
[
E

(
[C(X) − η]k�

+
ψ[f (X)]

2

+[−C(X) − η]k�

+
ψ[−f (X)]

2

)]1/k�

+ η

}
. (11)

Algebraically, we can invert (11) to its primal representation
Rk

c,ψ(f ) = sup
Q∈Pk

c (P) EQ[C(X)ζψ(f )] by introducing a sign
random variable ζψ(f ) ∈ {±1} with P(ζψ(f ) = ±1|X) :=
ψ[±f (X)]

2 . That is, given the covariate X, the original deter-
ministic sign sign[−f (X)] is relaxed to the random sign ζψ(f )
with ±1 probability ψ[±f (X)]

2 . In particular, if f (X) > 0,
then sign[−f (X)] = −1 is a hard sign while ζψ(f ) is a soft
sign with P(ζψ(f ) = −1|X) = ψ[−f (X)]

2 >
ψ[f (X)]

2 =
P(ζψ(f ) = 1|X). When c = 1, the DR-risk function reduces
to the risk function under the training distribution, and the
DC relaxation here is equivalent to the relaxation in Zhou et al.
(2017).

The DR-ψ-risk function provides the learning objective
based on the empirical data. In particular, the population expec-
tation E is replaced by the empirical average En, and the CTE
function C(·) is replaced by a plug-in estimate Ĉn(·). The cor-
responding empirical objective is minimized over the decision
function f and the auxiliary variables (η, λ) jointly:

min
f ∈F ,η∈R

{
c
[
En

(
[Ĉn(X) − η]k�

+
ψ[f (X)]

2

+[−Ĉn(X) − η]k�

+
ψ[−f (X)]

2

)]1/k�

+ η

}
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= min
f ∈F ,η∈R,λ≥0

{
c

k�λk�−1 En

(
[Ĉn(X) − η]k�

+
ψ[f (X)]

2

+[−Ĉn(X) − η]k�

+
ψ[−f (X)]

2

)
+ cλ

k
+ η

}
.

The objective function is a summation of multiple products of
DC functions. For k < +∞, we consider a block successive
upper-bound minimization algorithm (Razaviyayn, Hong, and
Luo 2013) to alternatively minimize the convex upper bounds
over the decision function f and the auxiliary variables (η, λ),
respectively. For k = +∞, it requires a further probabilistic
enhancement to break ties at argmin and ensure the conver-
gence to stationarity (Qi et al. 2019; Qi, Pang, and Liu 2019).
The implementation details are given in the supplementary
materials.

3. Theoretical Properties

In this section, we justify the validity of the DC relaxation
and the empirical substitution. First of all, we introduce the
following joint stochastic objectives:


k
c (f , η, λ; C̃) := c

k�λk�−1

(
[C̃(X) − η]k�

+1[f (X) < 0]

+[−C̃(X) − η]k�

+1[f (X) > 0]
)

+ cλ
k

+ η;


k
c,ψ(f , η, λ; C̃) := c

k�λk�−1

(
[C̃(X) − η]k�

+
ψ[f (X)]

2

+[−C̃(X) − η]k�

+
ψ[−f (X)]

2

)
+ cλ

k
+ η.

Here, C̃ can be the plug-in estimate Ĉn or the underlying true
CTE C. Denote Lk

c (f , η, λ) := E
k
c (f , η, λ; C), Lk

c,ψ(f , η, λ) :=
E
k

c,ψ(f , η, λ; C). Then by Corollary 1, we have Rk
c (f ) =

infη∈R,λ≥0 Lk
c (f , η, λ), Rk

c,ψ(f ) = infη∈R,λ≥0 Lk
c,ψ(f , η, λ). In

the following proposition, we show the validity of the DC
relaxation.

Proposition 1 (Fisher consistency and excess risk). Suppose Rk
c ,

Rk
c,ψ , Lk

c and Lk
c,ψ are defined as above. Fix k ∈ (1, +∞], k� =

k
k−1 , c ≥ 1, η ∈ R, λ > 0. Then the following results hold:

(I) (Fisher consistency)

argmin
f :X→[−1,1]

Lk
c,ψ(f , η, λ) = argmin

f :X→{±1}
Lk

c (f , η, λ),

min
f :X→[−1,1]

Lk
c,ψ(f , η, λ) = min

f :X→{±1}
Lk

c (f , η, λ);

(II) (Excess risk) Denote Lk,∗
c (η, λ) := minf ∈X→{±1} Lk

c (f ,
η, λ). Then for f : X → R, we have

Lk
c (f , η, λ) − Lk,∗

c (η, λ) ≤ 2[Lk
c,ψ(f , η, λ) − Lk,∗

c (η, λ)].
Denote Rk,∗

c := infη∈R,λ≥0 Lk,∗
c (η, λ). Then for f : X →

R, we have

Lk
c (f , η, λ) − Rk,∗

c ≤ 2[Lk
c,ψ(f , η, λ) − Rk,∗

c ],
Rk

c (f ) − Rk,∗
c ≤ 2[Rk

c,ψ(f ) − Rk,∗
c ].

Suppose F is a functional class on X with norm ‖ · ‖F that
characterizes the complexity of function. Motivated by Stein-
wart and Scovel (2007, (6)), we define for γ ≥ 0 the constrained
version of the approximation error

Ak
c (γ ) := inf

f ∈F

{
Rk

c,ψ(f ) : ‖f ‖F ≤ γ
}

− Rk,∗
c .

Similarly to that in Steinwart and Scovel (2007), Ak
c (γ ) with the

appropriately chosen tuning parameter γ can trade off the learn-
ability and the approximatability of F toward the population
Bayes rule argminf :X→{±1} Rk

c (f ). Specifically, as γ increases,
the population approximation error (“bias”) Ak

c (γ ) decreases
with γ , while the empirical complexity (“variance”) increases
with γ . The trade-off will be stated more explicitly in the fol-
lowing Assumption 5.

Next, we make the following assumptions to show the
regret bound for the empirical minimization of the ψ-risk
En


k
c,ψ(f , η, λ; Ĉn). Without loss of generality, we restrict to con-

sider the functional class F as the reproducing kernel Hilbert
space (RKHS) with the Gaussian radial basis function kernels,
where ‖ · ‖F is the RKHS-norm. General results can be estab-
lished by adopting the covering number argument as in Zhao,
Laber, et al. (2019, Theorem 3.1).

Assumption 2 (Boundedness). There exists M < +∞ such that
|C(X)| ≤ M almost surely.

Assumption 3 (Diffuse property). The distribution of C(X) has
a uniformly bounded density with respect to the Lebesgue
measure.

Assumption 4 (Convergence of the plug-in CTE). For the
CTE estimate Ĉn(X), we assume that ‖Ĉn − C‖∞ := sup

x∈X∣∣Ĉn(x) − C(x)
∣∣ P→ 0.

Assumption 5 (Approximation error rate). There exists β ∈
(0, 1] and KA < +∞ such that for all small enough γ > 0,
we have Ak

c (γ ) ≤ KAγ −β .

As a remark, we note that Assumption 2 can hold if the
difference of potential outcomes Y(1) − Y(−1) is uniformly
bounded, or X is compact and x 	→ C(x) is continuous.
Assumption 3 holds if X has a diffuse distribution, that is, X
does not contain points with positive mass; and x 	→ C(x) is
injective. Assumption 3 is the key assumption to bound λ away
from 0. This assumption will not be necessary if k = +∞ and
k� = 1. Assumption 4 can be met if X is compact and Ĉn is
a random forest estimate (Wager and Walther 2015). Following
Steinwart and Scovel (2007, Theorem 2.7), Assumption 5 can
be shown valid if the Tsybakov’s noise assumption on the pop-
ulation margin is met and the kernel bandwidth parameter is
chosen appropriately. In the following proposition, we establish
the regret bound.

Proposition 2 (Regret bound). Suppose Rk
c , Rk

c,ψ , Lk
c and Lk

c,ψ
are defined as above. Fix k ∈ (1, +∞], k� = k

k−1 , c > 1. Assume
that Assumptions 2–5 hold. Let

(̂fn, η̂n, λ̂n) ∈ argmin
f ∈F ,η∈R,λ≥0

{
En


k
c,ψ(f , η, λ; Ĉn) : ‖f ‖F ≤ γn

}
,
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with the tuning parameter γn satisfying γn = O(n− 1
2β+1 ) as

n → ∞. Then there exists constants K0 = K0(c, M) < +∞
and K1 = K1(c, M) < +∞ such that for 0 < δ < 1, with
probability at least 1 − δ, we have

Rk
c (̂fn) − Rk,∗

c ≤ Lk
c (̂fn, η̂n, λ̂n) − Rk,∗

c

≤ K0
√

log(2/δ)n− β
2β+1 + K1‖Ĉn − C‖∞.

In particular, there exists K01, K02, K11, K12 < +∞ not depend-
ing on c, M, such that

K0(c, M) =
⎧⎨⎩K01

c
(k�+1)(2k�−1)

k�−1 + 1
2

(c−1)k�+1/2 Mk�+1/2, k < +∞;
K02cM3/2, k = +∞;

K1(c, M) =
{

K11
c2k�+1

(c−1)k�−1 Mk�−1, k < +∞;
K12c, k = +∞.

In Proposition 2, it can be of theoretical interest to under-
stand how the regret bound depends on the DR-constant c and
the power order k. Specifically, as c → +∞, η approaches to
the essential supremum of [C(X) − η]k�

+
ψ[f (X)]

2 + [−C(X) −
η]k�

+
ψ[−f (X)]

2 (Krokhmal 2007, Example 2.3). Then λ vanishes
to 0 so that 1/λ tends to +∞. Since the Lipschitz constant of

k

c,ψ(f , η, λ) with respect to λ scales with 1/λk� , the universal
constants K0 and K1 grow to +∞ as well.

Another important fact is that the conjugate number k� of k
appears in the polynomial orders of c and M, respectively, in the
universal constants K0 and K1. In particular, for a large conjugate
order k�, the universal constants K0 and K1 increase with the
DR-constant c and the CTE bound M more rapidly. To achieve
a tighter finite sample regret bound, a smaller k� and hence a
larger k is preferred. Such a phenomenon complements the fact
that the power uncertainty set Pk

c (P) decreases in k. Specifically,
as the power order k increases, its conjugate order k� decreases,
and the regret bound in Proposition 2 becomes tighter. On the
contrary, the power uncertainty set Pk

c (P) gets smaller, and the
worst-case objective is less distributionally robust. Therefore,
the power order k trades off between the distributional robust-
ness in terms of the size of Pk

c (P), and the finite sample regret
bound.

4. Simulation Studies

In this section, we carry out two simulation studies to evaluate
the generalizability of the DR-ITR on the testing distributions
that are different from the training distribution. The first sim-
ulation considers the covariate shifts. The second simulation
considers the mixture of subgroups.

4.1. Covariate Shifts

In this section, we extend the motivating example in Section 2.3
to a more practical simulation setting. Consider the training
data generating process: n = 1000, p = 10, X ∼ Np(0p, Ip),
A|X ∼ Bernoulli(1/2) and Y|(X, A) = m(X)+(A−1/2)C(X)+
N (0, 1), where m(X) = 1 +∑p

j=1 Xj, C(X) = X2 − (X3
1 − 2X1).

At the training stage, we first obtain a CTE function estimate
Ĉn by fitting a casual forest (Wager and Athey 2018) on the train-
ing data. Then we obtain the out-of-bag prediction at the train-
ing covariates Ĉn(X). Next we fit the standard ITR by empirically
minimizing En

{
Ĉn(X)

(
ψ[f (X)] − 1

) }
as the ψ-relaxation of

the empirical risk function En
{

Ĉn(X)sign[−f (X)]}, over the
linear function class Fγ := {f (x) = b + βᵀx : b ∈ R, β ∈
Rp, ‖β‖2 ≤ γ }. The tuning parameter γ ≥ 0 is determined
by 10-fold cross-validation among {0.1, 0.5, 1, 2, 4}. Finally, we
fit the DR-ITRs for k = 2 and c ∈ C = {1.19, 1.38, . . . , 20}
from the function class Fγ , where γ is the same as that of the
standard ITR.

We consider the mean-shifted testing distribution X ∼
Np(μ, Ip) for various covariate centroids μ’s. To calibrate the
DR-constant c for every fixed μ, we generate a calibrating dataset
of size ncalib = 50 from the testing distribution. The following
two scenarios for the calibrating data are considered here: (1)
an RCT dataset (X, A, Y) is generated, with X ∼ Np(μ, Ip)
and (A, Y) as before; and (2) only the covariate vector X ∼
Np(μ, Ip) is generated. In Scenario 1, we use the IPWE of
the calibrating value function V̂ IPWE

calib (̂fc) := Encalib{Y1[(2A −
1)̂fc(X) > 0]/(1/2)} to evaluate the DR-constant c, while in
Scenario 2, we use the CTE-based calibrating value function
V̂CTE

calib (̂fc) := Encalib{Ĉn(X)sign[̂fc(X)]} instead. Here, the esti-
mated CTE function Ĉn is obtained from the training stage.

For comparison, we consider the following: (1) the LB-ITR
that maximizes the value function under the testing distri-
bution; (2) the 
1-penalized least-square (
1-PLS) (Qian and
Murphy 2011) of Q(X, A) = E(Y|X, A) on (1, X, A, AX) and
the corresponding estimated ITR d̂(x) ∈ argmina∈{±1} Q̂n(x, a);
(3) the standard ITR; (4) the RCT-DR-ITR for the calibrating
Scenario 1; and (5) the CTE-DR-ITR for the calibrating Scenario
2. We compare the testing values Entest[C(X)̂d(X)] based on
an independent testing dataset of size ntest = 100,000 for
every testing distribution. The testing values across different
testing distributions are not comparable. For a specific testing
distribution, the LB-ITR can be a benchmark to be compared
to, since its testing value is the best achievable in theory among
the linear ITR class. The training-calibrating-testing procedure
is replicated for 500 times. The testing values (standard errors)
for ncalib = 50 are reported in Table 2.

When the testing distribution is the same as training
(μ1, μ2) = (0, 0), the calibration procedures for the DR-ITRs
are expected to choose c = 1, which corresponds to the standard
ITR. With the finite calibrating sample, some DR-constant c
greater than 1 can be possibly chosen, leading to smaller testing
values for the DR-ITRs in Table 2. In particular, the testing value
of the CTE-DR-ITR is higher than that of the RCT-DR-ITR, and
is closer to the testing value of the standard ITR in this case. The
reason is that, the RCT-based calibrating value function estimate
V̂ IPWE

calib depends on (X, A, Y) in the calibrating data, while the
CTE-based one V̂CTE

calib depends on X only. As a consequence,
the CTE-based calibration can be more accurate than the RCT-
based one.

When (μ1, μ2) �= (0, 0), the testing distribution is differ-
ent from training, and the performance of the standard ITR
deteriorates while the DR-ITRs still maintain reasonably good
performance. The phenomenon is more evident when μ1, μ2 ∈
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Table 2. Testing values (standard errors) on the mean-shifted covariate domains (ncalib = 50).

μ2

μ1
Type 0 0.734 1.469 1.958

LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.334 (0.0362) 9.27 (0.0154)

1-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)
Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)
RCT-DR-ITR 2.085 (0.00444) 2.286 (0.0114) 4.545 (0.0255) 8.371 (0.0451)

1.958

CTE-DR-ITR 2.098 (0.00348) 2.304 (0.0106) 4.551 (0.0238) 8.459 (0.0424)

LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)

1-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)
Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)
RCT-DR-ITR 1.627 (0.00688) 1.987 (0.00997) 4.484 (0.0192) 8.611 (0.0285)

1.469

CTE-DR-ITR 1.663 (0.00326) 1.997 (0.00992) 4.55 (0.0163) 8.686 (0.0269)

LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)

1-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)
Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)
RCT-DR-ITR 1.094 (0.00753) 1.651 (0.00675) 4.622 (0.0109) 9.036 (0.015)

0.734

CTE-DR-ITR 1.152 (0.00292) 1.667 (0.00588) 4.648 (0.0113) 9.06 (0.0161)

LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)

1-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)
Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)
RCT-DR-ITR 0.8374 (0.00821) 1.647 (0.00574) 4.868 (0.00797) 9.444 (0.00841)

0.000

CTE-DR-ITR 0.9206 (0.00272) 1.688 (0.00289) 4.888 (0.00698) 9.442 (0.00999)

1μ = (μ1, μ2, 0, . . . , 0)ᵀ with μ1 in column and μ2 in row is the testing covariate centroid.
2Values (larger the better) can be comparable for the same (μ1, μ2) but incomparable across different (μ1, μ2).
3LB-ITR maximizes the testing value function at (μ1, μ2) over the linear ITR class. The corresponding testing value is the best achievable among the linear ITR class.
Italic rows correspond to LBITR, which is the ITR learned using a large sample from the testing distribution. The LBITR is the ideal ITR for reference, since the methods for
comparison only rely on training data or possibly a small sample from the testing distribution. Bold entries correspond to the best testing value results (specifically, largest
testing value) among the comparing methods (not including LBITR) for the given testing distribution.

Figure 3. Relative regrets on the mean-shifted covariate domains (lighter the better).

{1.469, 1.958}. In particular at (μ1, μ2) = (1.958, 1.958), the
value of the standard ITR can be as low as 17% of the best
achievable value among the linear ITR class, while the DR-ITRs
can maintain more than 90%. In fact, such a phenomenon is gen-
eral. In Figure 3(a), we further enumerate the testing covariate
centroid μ = (μ1, μ2, 0, . . . , 0)ᵀ for μ1, μ2 ∈ [−2.448, 2.448]

and compute the relative regrets of the standard ITR and the
RCT-DR-ITR. Across all mean-shifted testing distributions, the
relative regrets of the standard ITRs can be as high as 108%, in
which case the standard ITR value is negative, and hence even
worse than the completely random treatment rule drand. On the
contrary, the relative regrets for the RCT-DR-ITR (ncalib = 50)
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Figure 4. Relative improvements of the RCT-DR-ITR over the standard ITR as the difference of their relative regrets on the mean-shifted covariate domains (ncalib = 50,
darker the better).

shown in Figure 3(b) are at most 24% across all testing centroids.
This suggests that the RCT-DR-ITR maintains relatively good
performance on all such testing distributions, while the standard
ITR fails. Figure 4 further shows that the DR-ITR provides
substantial testing value improvements over the standard ITR.
This demonstrates that the small sample size ncalib = 50 is
sufficient for calibrating the DR-ITR with significant testing
improvement.

From Table 2, it can be also observed that 
1-PLS can have
better performance than the standard ITR when training and
testing distributions are different. The reason is that, the objec-
tive of 
1-PLS does not target the value function under the
training distribution directly, but rather, the mean squared error
of the linear approximation to Q(X, A) under the training dis-
tribution. Such a linear approximation can perform well when
the testing distribution is not far from the training distribution.
However, in the case μ1, μ2 ∈ {1.469, 1.958} in the sense
that the testing distribution deviates more from the training
one, the DR-ITRs enjoy notably higher testing values than

1-PLS.

In the supplementary materials, we provide more
detailed results for other comparisons including the relative
regrets/improvements on all mean-shifted covariate domains
of all centroids, the misclassification rates on all mean-shifted
covariate domains of all centroids, the comparison with
some other methods in relative regrets and misclassification
rates, and the case of k ∈ {1.25, 1.5, 2, 3, ∞}. In particular, the
misclassification rates inform similar conclusions as the relative
regrets/improvements. If we increase the calibrating sample
size from 50 to 100, then the testing values of DR-ITRs can
be further improved. We also find that among our simulation
scenarios, the testing values of the DR-ITR are not very sensitive
to difference choices of k.

4.2. Performance on the Mixture of Subgroups

In this section, we consider a population that consists of two
subgroups, with each following a distinct CTE function. We aim
to find an ITR that can generalize well on different mixtures of
subgroups.

We modify the simulation setup in Section 4.1 as follows:
X|ξ ∼ ξNp(μ1, Ip) + (1 − ξ)Np(μ0, Ip), where ξ ∼
Bernoulli(pmix) is the unobservable mixture/subgroup indicator
with subgroup 1 probability pmix and subgroup 0 probability
1 − pmix, and the subgroup means μ1 = (−1/2, 1/2, 0, . . . , 0)ᵀ
and μ0 = −μ1. We consider the CTE function C(x; ξ) := (2ξ −
1)β0 +β1x1 +β2x2 that is linear in the covariate vector, but with
a subgroup-dependent intercept (2ξ − 1)β0, and (β0, β1, β2) :=
(−3/2, −2, 1). The unconditional CTE function is nonlinear:

C(x) := E[C(X; ξ)|X = x]

= pmixe−‖x−μ1‖2
2/2 − (1 − pmix)e−‖x−μ0‖2

2/2

pmixe−‖x−μ1‖2
2/2 + (1 − pmix)e−‖x−μ0‖2

2/2
β0

+ β1x1 + β2x2.

In particular, the unconditional CTE function C(x) depends
on the subgroup 1 probability pmix. The distributional changes
are due to the subgroup 1 probability. Specifically, the training
subgroup 1 probability is 0.75, while the testing subgroup 1
probability varies in {0.1, 0.25, 0.5, 0.75, 0.9}. Since the training
and testing CTE functions can be different, Assumption 1 can-
not be fully met. Therefore, our proposed DR-ITR can be robust
to such distributional changes only to some extent.

We consider the same training-calibrating-testing procedure
as that in Section 4.1, except that the DR-constant c ranges in
{1.18, 1.27, . . . , 10}. The testing values of the ITRs are reported
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Table 3. Testing values (standard errors) on the mixture of subgroups (ncalib = 50).

Testing subgroup 1 probability

Type 0.1 0.25 0.5 0.75 0.9

LB-ITR 1.665 (0.0067) 1.537 (0.00618) 1.444 (0.00412) 1.545 (0.00537) 1.679 (0.00585)

1-PLS 1.182 (0.00191) 1.264 (0.0014) 1.399 (0.000591) 1.537 (0.000333) 1.624 (0.000781)
Standard ITR 1.143 (0.00434) 1.232 (0.00329) 1.383 (0.0015) 1.535 (0.000543) 1.632 (0.00142)
RCT-DR-ITR 1.267 (0.0066) 1.305 (0.00423) 1.395 (0.00256) 1.52 (0.00212) 1.614 (0.00234)
CTE-DR-ITR 1.16 (0.00409) 1.247 (0.00323) 1.388 (0.00137) 1.534 (0.00055) 1.628 (0.00149)

1Testing subgroup 1 probability = 0.75 is the same as the training one.
2Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different subgroup 1 probabilities.
3LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best achievable among the linear ITR class.
Italic rows correspond to LBITR, which is the ITR learned using a large sample from the testing distribution. The LBITR is the ideal ITR for reference, since the methods for
comparison only rely on training data or possibly a small sample from the testing distribution. Bold entries correspond to the best testing value results (specifically, largest
testing value) among the comparing methods (not including LBITR) for the given testing distribution.

in Table 3. When the training and testing distributions are the
same at pmix = 0.75, all ITRs have similar testing performance.
The standard ITRs have higher testing values than the DR-
ITRs in this case. When the testing pmix becomes smaller, the
DR-ITRs show better testing performance than the standard
ITR. When the testing pmix = 0.25 or 0.1, the RCT-DR-
ITR has the highest testing values among all. Since the true
testing CTE function changes along with the testing pmix, the
corresponding estimate Ĉn based on the training data can suffer
from the generalizability problem. Therefore, the CTE-based
calibration performs slightly worse than the RCT-based calibra-
tion in this case. However, the CTE-based DR-ITR is superior
to the standard ITR, and is comparable to the 
1-PLS. More
detailed comparisons and the case ncalib = 100 are provided
in the supplementary materials.

5. Application to the ACTG 175 Trial Data

In this section, we evaluate the generalizability of our proposed
DR-ITR on a clinical trial dataset from the “AIDS clinical trial
group study 175” (Hammer et al. 1996). The goal of this study
was to compare four treatment arms among 2139 randomly
assigned subjects with human immunodeficiency virus type
1 (HIV-1), whose CD4 counts were 200–500 cells/mm3. The
four treatments are the zidovudine (ZDV) monotherapy, the
didanosine (ddI) monotherapy, the ZDV combined with ddI,
and the ZDV combined with zalcitabine (ZAL).

The evidence found from the AIDS trial data can have some
generalizability problems. When studying women living with
HIV and women at risk for HIV infection in the USA cohort, the
Women’s Interagency HIV Study (WIHS) (Bacon et al. 2005) has
been considered to be representative. However, it was reported
in Gandhi et al. (2005) that 28–68% of the HIV positive women
in WIHS were excluded from the eligibility criteria of many
ACTG studies. In the ACTG 175 dataset, the number of female
patients is only 368 out of 2139. Thus, we suspect that the female
patients may be underrepresented in this dataset, and the ITR
based on the dataset may not generalize well on the women
subgroup. In this section, we study the generalizability of DR-
ITR when the testing dataset consists of female patients only.
Specifically, the training dataset is a subsample from ACTG 175
with original male/female proportion, while the testing dataset
is a subsample from the female patients of ACTG 175, and there

is no overlap across training and testing. We try to resemble the
ideal world that we can have independent testing data from the
female population.

We consider the outcome Y as the difference between the
early stage (at 20 ± 5 weeks from baseline) CD4 cell counts and
the CD4 counts at baseline. We focus on the treatment compar-
ison between the ZDV + ZAL (A = 1) and the ddI (A = −1),
and the corresponding patients from the dataset. In particular,
only 180 of them are women. The average treatment effects on
the male and female subgroups are −8.97 and −1.39, respec-
tively, which suggests that there is treatment effect discrepancy
between these subgroups. We sample the training data from the
ACTG 175 dataset in the ZDV + ZAL or ddI arm of sample size
1085 × 60% = 651 stratified to the gender. In particular, the
training dataset includes 180 × 60% = 108 female patients. The
remaining female data (180−108 = 72) are used for testing. We
only consider female patients in testing. We further sample 50
from the testing female data for calibration, and the remaining
(72 − 50 = 22) are the testing dataset. We also consider 12
selected baseline covariates X as was studied in Lu, Zhang, and
Zeng (2013). There are five continuous covariates: age (year),
weight (kg, coded aswtkg), CD4 count (cells/mm3) at baseline,
Karnofsky score (scale of 0–100, coded as karnof), CD8 count
(cells/mm3) at baseline. They are centered and scaled before
further analysis. In addition, there are seven binary variables:
gender (1 = male, 0 = female), homosexual activity (homo, 1 =
yes, 0 = no), race (1 = nonwhite, 0 = white), history of intra-
venous drug use (drug, 1 = yes, 0 = no), symptomatic status
(symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral
history (str2, 1 = experienced, 0 = naive), and hemophilia
(hemo, 1 = yes, 0 = no).

Before fitting ITRs, we estimate the CTE function C(X) by
the following regress-and-subtract procedure: first we fit two
separate random forests by regressing Y on X restricted on A =
1 and A = −1, respectively; then we subtract two regression
models to obtain the CTE function estimate Ĉn(X). We follow
the same implementation as in Section 4.1 to fit the standard
ITR and DR-ITRs over a constrained linear function classFγ :=
{f (x) = b + βᵀx : b ∈ R, β ∈ Rp, ‖β‖2 ≤ γ } on the training
data. The testing performance is evaluated by the IPWE of the
value function on the testing data. The training-calibrating-
testing procedure is repeated for 1500 times. The testing values
are reported in Table 4, where the value can be interpreted
as the expected CD4 count improvement from baseline at the
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Table 4. Expected CD4 count improvement (cells/mm3) from baseline at the early stage (20 ± 5 weeks) and standard errors on the ACTG-175 female patients (higher the
better).

RWL Standard ITR Best DR-ITR RCT-DR-ITR CTE-DR-ITR

10.7617 (0.8636) 10.593 (0.8627) 13.9423 (0.8378) 11.8133 (0.8357) 11.1563 (0.8514)

NOTE: Standard errors are computed based on 1500 replications. Bold entry corresponds to the best testing result with the largest testing value.

Figure 5. Expected CD4 count improvement (cells/mm3) from baseline at the early stage (20 ± 5 weeks) of the DR-ITRs of various DR-constants on the ACTG 175 female
patients (higher the better).

Table 5. Linear coefficients of the DR-ITRs fitted on the ACTG 175 dataset.

DR-constant Intercept age wtkg cd40 karnof cd80 gender homo race drugs symptom str2 hemo

1 −0.02 −0.25 0.06 −0.58 −0.06 0.53 −0.16 −0.4 0.16 0.16 0.16 0.16 0.09
4.8 −0.31 −0.23 0.12 −0.67 0.11 0.55 −0.12 −0.21 0.2 0.12 0.1 −0.06 0.09
8.6 −0.43 −0.23 0.11 −0.64 0.16 0.54 −0.11 −0.05 0.12 0.04 0.07 −0.24 0.01

12.4 −0.54 −0.22 0.1 −0.64 0.19 0.51 −0.04 0.01 0.08 0.05 0.04 −0.27 −0.02
16.2 −0.61 −0.23 0.1 −0.64 0.2 0.51 0 0.03 0.06 0.05 0.02 −0.27 −0.02
20 −0.64 −0.24 0.09 −0.63 0.22 0.5 0.01 0.03 0.05 0.07 0.01 −0.26 −0.01

1DR-constant = 1 corresponds to the standard ITR; DR-constant = 16.2 has the highest testing value in Figure 5.

early stage (20 ± 5 weeks). In addition to the calibrated DR-
ITRs, we also include the value of the best DR-ITR that enjoys
the highest testing performance among all DR-constants. For
comparison, we include the results of residual weighted learning
(RWL) (Zhou et al. 2017) with linear kernel. Both RWL and
the standard ITR share similar implementation, except that
RWL can be shown equivalently using Ĉn(X) = Q̂n(X, 1) −
Q̂n(X, −1) + 2A[Y − Q̂n(X, A)] as a plug-in CTE estimate.

The testing results show that our proposed DR-ITRs can
have better values than the standard ITR and RWL. In par-
ticular, the improvement of the best DR-ITR is substantial,
while the improvements of the calibrated ITRs are not as
strong. We plot the testing values of the DR-ITRs against the
corresponding DR-constants in Figure 5. It suggests that the
testing values generally increase with the DR-constant. In this
analysis, the calibrated DR-constants are not close to the opti-
mal DR-constant. As a result, the testing performance of the

calibrated DR-ITRs is not as good as the best DR-ITR. One
reason for this phenomenon can be that the outcome Y has
a heavy tail distribution, as was highlighted in Qi, Pang, and
Liu (2019), so that the value function estimate is highly vari-
able based on the small calibrating sample. Another reason
can be that the random forest regress-and-subtract estimate
of the CTE function does not generalize well on the testing
distribution.

On the overall dataset, we fit the DR-ITRs and report their
fitted coefficients in Table 5 for selected DR-constants. To sta-
bilize the randomness from the random forest estimate of the
CTE function, we refit the random forest 20 times and average
the corresponding DR-ITR coefficients. We find that there are
noticeable changes in the coefficients of the intercept and the
homosexual activity when the DR-constant gets large. Within
the ACTG 175 dataset (ZDV + ZAL or ddI), we find that only
six female patients have homosexual activity. Four of them are
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treated with ZDV + ZAL, and the change of their CD4 counts
are 123, 34, −11, and 158, respectively. Two of them are treated
with ddI, and the change of their CD4 counts are −41, −182.
Therefore, the ZDV + ZAL (A = +1) may have more benefits
compared to the ddI (A = −1) on these patients. This helps
to explain why the larger coefficients in homosexual activity
for the larger DR-constants can be beneficial for the female
patients.

6. Discussion

In this article, we propose a new framework for learning a
distributionally robust ITR by maximizing the worst-case value
function among values under distributions within the power
uncertainty set. We introduce two possible calibration scenarios
under which the DR-constant can be tuned adaptively to a small
amount of the calibrating data from the target population. In this
way, when the training and testing distributions are identical,
the calibrated DR-ITRs can achieve similar performance as
compared to the standard ITR. When the testing distribution
deviates from the training distribution, we show that there
are many possible scenarios that the standard ITR generalizes
poorly, while the calibrated DR-ITRs maintain relatively good
testing performance. Our simulation studies and an application
to the ACTG 175 dataset demonstrate the competitive general-
izability of our proposed DR-ITR.

The main assumption on the changes of covariates in our DR-
ITR framework is equivalent to the selection unconfoundedness
assumption in an RCT. In practice, there may exist unmea-
sured selection confounding problems for the trial data, and the
distributional changes affect both the covariates and the CTE
function. One possible extension is to consider the simultaneous
changes of the covariate distribution and the CTE function,
and leverage more general robustness measure against these
changes.

In our DR-ITR framework, we require an estimate of the
CTE function based on the flexible nonparametric techniques.
The performance of our DR-ITR can depend on the quality of
the CTE function estimate. An alternative strategy is to avoid
plugging in a CTE estimate. Instead, the dual representation
(10) can be identified from (X, A, Y) directly using a varia-
tional representation of [±C(X) − η]k�

+ (Duchi, Hashimoto,
and Namkoong 2019). This can be a possible extension of our
framework.

Another possible extension is to consider the problem of
high-dimensional covariates. Our current formulation involves
an 
2-constraint to control the model complexity. It can be
extended to obtain sparse solutions when a 
1-constraint is used
instead. Besides the high-dimensional extension, our current
theoretical results assume that C(X) is uniformly bounded.
It will be interesting to relax the assumption, such as sub-
Gaussianity. Further investigations along these lines can be
pursued.

Supplementary Materials

The implementation details, technical proofs, and some additional numer-
ical results are provided in the online supplementary materials.
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