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We thank the opportunity offered by editors for this dis-
cussion and the discussants for their insightful comments and
thoughtful contributions. We also want to congratulate Kallus
(2020) for his inspiring work in improving the efficiency of
policy learning by retargeting. Motivated from the discussion
in Dukes and Vansteelandt (2020), we first point out interest-
ing connections and distinctions between our work and Kallus
(2020) in Section 1. In particular, the assumptions and sources
of variation for consideration in these two articles lead to
different research problems with different scopes and focuses.
In Section 2, following the discussions in Li, Li, and Luedtke
(2020); Liang and Zhao (2020), we also consider the efficient
policy evaluation problem when we have some data from the
testing distribution available at the training stage. We show that
under the assumption that the sample sizes from training and
testing are growing in the same order, efficient value function
estimates can deliver competitive performance. We further show
some connections of these estimates with existing literature.
However, when the growth of testing sample size available for
training is in a slower order, efficient value function estimates
may not perform well anymore. In contrast, the requirement
of the testing sample size for DRITR is not as strong as that of
efficient policy evaluation using the combined data. Finally, we
highlight the general applicability and usefulness of DRITR in
Section 3.

1. Efficiency and Robustness

The discussion in Dukes and Vansteelandt (2020) highlighted
the importance of leveraging relevant data when inferring which
treatment to assign. In particular, the covariate weight functions
considered in DRITR and retargeted policy learning can imply
different ways of utilizing relevant data during training, and
different target populations during testing. In this section, we
further clarify the differences and connections between DRITR
and retargeted policy learning.

DRITR and retargeted policy learning can be distinct from
each other in terms of the following two main perspectives:

(I) The assumptions used in these two articles are different. If
the true conditional treatment effect (CTE) function C(x)

CONTACT Yufeng Liu yfliu@email.unc.edu Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina
Center for Genome Science, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599.
∗Co-first authors for the article.

induces a globally optimal ITR x �→ sign[C(x)] that
belongs to the class D, then policy learning over D is
not sensitive to covariate reweighting/retargeting, as were
discussed in Mo, Qi, and Liu (2020, Remark 1) and Kallus
(2020, Lemma 2.1). In particular, Kallus (2020) referred
this case as D being correctly specified, and focused on this
case to obtain the efficient covariate weighting function.
In contrast, Mo, Qi, and Liu (2020) studied the learning
problem over a restricted ITR class D that is misspecified
for the globally optimal ITR, and optimized the worst-case
reweighted value function as a robust objective;

(II) The sources of variation considered in these two articles are
also different. The optimality criteria for an efficient covari-
ate weight function in Kallus (2020) focuses on reducing
the conditional-on-covariate variance of the weighted out-
come, that is, the variance explained by (A, Y)|X as in their
Equation (6). In contrast, Mo, Qi, and Liu (2020) consid-
ered the robust criteria due to covariate variations. In the
formulation of DRITR, the effect of (A, Y)|X is absorbed
into the CTE function C(X) = E[Y(1) − Y(−1)|X] as a
conditional mean function in X. The DR-value function in
Mo, Qi, and Liu (2020, eq. (4)) robustifies the underlying
covariate distribution for evaluation of C(X).

Two distinct assumptions on the ITR class mentioned above
can explain different goals of these two. When assuming a
correctly specified ITR class, Kallus (2020) can leverage the
retargeting invariance property for efficiency improvement. In
contrast, when allowing the misspecified ITR class, Mo, Qi, and
Liu (2020) focused on the worst case of covariate changes to
carry out the robust policy optimization for generalizability. The
phenomenon that different model assumptions result in differ-
ent goals can be remotely analogous to semiparametric infer-
ence (Robins, Rotnitzky, and van der Laan 2000). Specifically,
when nuisance models are correct, the semiparametric efficient
estimate can be obtained. When either one of but not both nui-
sance models are correct, a doubly robust estimate remains con-
sistent. However, even for semiparametric inference, the goals of
efficiency and robustness may not coexist for a specific estimate.
For example, a generic construction of multiply robust estimate
for factorized likelihood models is generally not semiparametric

© 2021 American Statistical Association
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efficient under any model assumptions (Molina et al. 2017). It
depends on the main focuses of applications to choose either a
semiparametric efficient estimate or a multiply robust estimate.
Analogously, the use of retargeted policy learning or DRITR also
depends on the goal for efficiency or robustness, subject to the
practitioners’ optimistic or pessimistic beliefs on the working
class of ITRs to learn from. In particular, DRITR is robust to
potential covariate changes under the misspecified ITR class
assumption.

The distinctions on source of variation mentioned in (II)
characterize two different types of research questions. When
questions are related to the variations of (A, Y)|X, such as lim-
ited overlap and heteroscedasticity, retargeting weights in Kallus
(2020) can provide an optimal way to control conditional-
on-covariate variances (Crump et al. 2006, 2009). However,
such optimal weights cannot control the variances of covari-
ates themselves. Therefore, retargeted policy learning may gen-
erally work well for the case that conditional-on-covariate
variances are the estimation bottleneck, while covariate vari-
ations can be ignored. Such an example can be found in
Athey and Wager (2020, sec. 4). Besides ignoring variances
from covariates, the violation of retargeting invariance, that
is, misspecifying the ITR class, can also contribute biases due
to reweighting. Kallus (2020, sec. 5.2) also pointed out that
the levels of ITR class misspecification and covariate changes
need to be assumed mild when applying retargeting policy
learning.

In contrast to the scope of retargeted policy learning, DRITR
has an explicit focus on covariate changes. This was motivated
from the fact that the challenges of generalizing causal esti-
mands are mainly due to covariate changes, and reweighting
can correctly target the testing population of interest (Stuart
et al. 2011). Without prior information on the testing population
at the training stage, DRITR took the worst-case reweighting
scheme to guarantee robust performance. A similar strategy
was also leveraged by Zhao et al. (2019). However, given that
reweighting in this case mainly aims for covariate-change cor-
rection, DRITR is not intended for handling variations from
treatments and outcomes. Therefore, our formulation utilizes
a nonparametric estimate of the CTE function to remove the
variations from treatments and outcomes.

One potential research question is whether robust reweight-
ing in DRITR can also handle the limited overlap and het-
eroscedasticity problems considered in retargeted policy learn-
ing. Unfortunately, we suspect that robust reweighting and effi-
cient retargeting may have opposite effects. In particular, we
notice that the optimal retargeting weight function from Kallus
(2020) is inverse-proportionate to

∑
a

σ 2(x,a)
πA(a|x)

, where πA(a|x) is
the propensity score function. In contrast, for robust reweight-
ing, Qi et al. (2019) studied a modified version of DRITR

that focused on the dual formulation. Although they did not
explicitly link to the robust reweighting, the resulting robust
weight function in Qi et al. (2019) is increasing in the variance
function σ 2(x, a) := E(Y|X = x, A = a). Consequently, the
robust weight function may not be compatible with the retarget-
ing weight function. This suggests that DRITR and retargeted
policy learning may need to be utilized in different scenarios.
It may be interesting to study a combined version of retargeted
policy learning and DRITR that can enjoy both efficiency and
robustness.

To conclude this section, we make a comparison between
DRITR and retargeted policy learning in Table 1.

2. Efficient Policy Evaluation Under Specific Covariate
Changes

DRITR aims for performance guarantee in presence of general
covariate changes. It assumes no access to any information from
the testing distribution at the training stage. When a small set
of calibrating data is available from the testing distribution,
such information is only used for choosing a DR-constant to
determine the final DRITR. However, the problem of combining
the training and calibrating data during training as discussed
in Li, Li, and Luedtke (2020) and Liang and Zhao (2020) is
also worthwhile to study. In this section, we focus on efficient
policy evaluation with training and calibrating data from a
specific testing distribution. It should be highlighted that the
true covariate density ratio of testing with respect to training is
not readily available, and can only be inferred from the observed
training and calibrating data.

Consider two possible types of pooled datasetsO(1) = {Oi =
(Xi, Ai, Yi, Si)}n

i=1 and O(2) = {Oi = (Xi, SiAi, SiYi, Si)}n
i=1,

where Si = 1 indicates that Oi|(Si = 1) ∼ Ptrain, and the
ith data point belongs to the training data; Si = 0 indicates
that Oi|(Si = 0) ∼ Ptest, and the ith data point belongs to
the calibrating data. For the Type-1 dataset O(1), we observe
covariates, treatment assignments and outcomes in both train-
ing and calibrating data. For the Type-2 dataset O(2), treatment
assignments and outcomes {(Ai, Yi) : Si = 0} in calibrating data
are missing. Let Yi(1) and Yi(−1) be the potential outcomes,
and denote Yi(d) := ∑

a∈{1,−1} Yi(a)1[d(Xi) = a]. For a
fixed ITR d : X → {1, −1}, the goal for policy evaluation is
to estimate the following values of d under the specific testing
distribution:

θ := Vtest(d) = Etest[Yi(d)];
θ1 := V1,test(d) = Etest[Yi(d) − Yi(−d)]. (1)

To identify the potential outcomes from observed outcomes, we
make the following assumptions (Rubin 1974).

Table 1. Comparison of DRITR (Mo, Qi, and Liu 2020) and Retargeted policy learning (Kallus 2020).

DRITR Retargeted policy learning

Assumption {x �→ sign[C(x)]} � D {x �→ sign[C(x)]} ⊆ D
Source of variation Covariate X Conditional-on-covariate (A, Y)|X
Weight dependency CTE function C(x); underlying ITR d(x) Propensity score function πA(a|x); variance function σ 2(x, a)

Optimality Maximizing worst-case value Minimizing conditional-on-covariate variance
Main applications Covariate changes Limited overlap and heteroscedasticity
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Assumption 1 (Consistency). Yi = Yi(Ai) = ∑
a∈{1,−1}

Yi(a)1(Ai = a).

Assumption 2 (Exchangeability over treatment). For x ∈ X , s ∈
{1, 0} and a ∈ {1, −1}, we have Yi(a) ⊥⊥ Ai|(Xi = x, Si = s).

Assumption 3 (Positivity of treatment probability). For x ∈ X ,
s ∈ {1, 0} and a ∈ {1, −1}, we have πA(a|x, s) := P(Ai = a|Xi =
x, Si = s) ≥ τ > 0.

Notice that the policy evaluation problem can be cast as a
parameter estimation problem. The key challenge here is that
the estimand θ or θ1 is evaluated under the target population
Ptest that can be different from the distribution of the observed
data O(1) or O(2). To identify θ and θ1 from the pooled data
O(1) or O(2), we consider the following mean exchangeability
assumption used in Pearl and Bareinboim (2014) to transport
information from Ptrain to Ptest.

Assumption 4 (Mean exchangeability over selection). For x ∈ X ,
a ∈ {1, −1} and s ∈ {1, 0}, we have E[Yi(a)|Xi = x, Si = s] =
E[Yi(a)|Xi = x] := Q(x, a).

Assumption 4 implies thatE[Yi(1)−Yi(−1)|Xi, Si] = E[Yi(1)−
Yi(−1)|Xi] = Q(Xi, 1) − Q(Xi, −1) := C(Xi), which was
the required condition in Mo, Qi, and Liu (2020, Remark 2).
Covariate changes in Mo, Qi, and Liu (2020, Assumption 1) is
sufficient for Assumption 4. To identify θ and θ1 from the train-
ing and pooled data, we further consider the strong ignorability
assumption on the conditional-on-covariate selection probabil-
ity function.

Assumption 5 (Positivity of selection probability). For x ∈ X and
s ∈ {1, 0}, we have πS(s|x) := P(Si = s|Xi = x) ≥ δ > 0.

Assumption 5 also implies the positivity of the marginal selec-
tion probability: ρS := P(Si = 1) ≥ δ, and 1 − ρS = P(Si =
0) ≥ δ. Under Assumption 5, we can express Etest(·) = E(·|S =
0) under Etrain(·) = E(·|S = 1) by reweighting, which is given
in the following Lemma 1.

Lemma 1. Consider the data (X, S) ∈ X × {1, 0} satisfying
P(S = s|X) ≥ δ > 0 for s ∈ {1, 0}. Then for any g : X → R
such that E[|g(X)|] < +∞, we have

E[g(X)|S = 0] = E[w(X)g(X)|S = 1],
where

w(X) = P(S = 1)P(S = 0|X)

P(S = 0)P(S = 1|X)
.

In particular, w(X) ≥ 0 and E[w(X)|S = 1] = 1.

Lemma 1 can be regarded as a parallel version of the weighted
representation in Mo, Qi, and Liu (2020, Assumption 1), and
further suggests the form of the theoretical weighting function
w(x) = ρS

1−ρS
πS(0|x)
πS(1|x)

for x ∈ X .

2.1. Semiparametric Inference

To consider estimates for θ and θ1, we first study the semi-
parametric inference properties for θ and θ1 based on two

types of data O(1) and O(2), respectively. In Proposition 1, we
establish the identification of θ and θ1 from the observed data.
Then we derive the efficient influence functions for θ and θ1
in Theorem 1, which is consistent with results from Rudolph
and van der Laan (2017), Dahabreh et al. (2019), and Uehara,
Kato, and Yasui (2020). For x ∈ X , we denote Q(x, d) :=∑

a∈{1,−1} Q(x, a)1[d(x) = a].

Proposition 1. Consider the observed data O(1) and O(2), and
the parameters θ and θ1 in (1). Under Assumptions 1–5, we
have:
(I)

θ = E
{
1(Si = 0)

1 − ρS
Q(Xi, d)

}

= E
{
[w(Xi)1(Si = 1) + 1(Si = 0)]Q(Xi, d)

}
(on O(1))

= E
{

w(Xi)1(Si = 1)

ρS
Q(Xi, d)

}
(on O(2)).

The expressions for θ1 can be obtained by replacing
Q(Xi, d) by C(Xi)d(Xi);

(II) For x ∈ X ,

Q(Xi, d) = E
{(

1(Si = 1)

πA(Ai|Xi, 1)
+ 1(Si = 0)

πA(Ai|Xi, 0)

)
1[d(Xi) = Ai]Yi

∣∣∣∣Xi

}
(on O(1))

= E
{

1
πA(Ai|Xi, 1)

1[d(Xi) = Ai]Yi

∣∣∣∣Xi, Si = 1
}

(on O(2)).

The expressions for θ1 can be obtained by replacing
1[d(Xi) = Ai] by d(Xi)Ai.

Theorem 1 (Efficient influence functions). Consider the observed
data O(1) and O(2), and the parameters θ and θ1 in (1). Under
Assumptions 1–5 and some regularity conditions, the corre-
sponding semiparametric efficient influence functions (EIFs) are:

EIF(1)(θ) =
(

w(X)1(S=1)
πA(A|X,1)

+ 1(S=0)
πA(A|X,0)

)
× 1[d(X) = A][Y − Q(X, A)]
+ 1(S=0)

1−ρS
[Q(X, d) − θ ];

EIF(2)(θ) = w(X)1(S=1)
ρSπA(A|X,1)

× 1[d(X) = A][Y − Q(X, A)]
+ 1(S=0)

1−ρS
[Q(X, d) − θ ]; EIF(1)(θ1)

=
(

w(X)1(S=1)
πA(A|X,1)

+ 1(S=0)
πA(A|X,0)

)
× d(X)A[Y − Q(X, A)]
+ 1(S=0)

1−ρS
[C(X)d(X) − θ1];

EIF(2)(θ1) = w(X)1(S=1)
ρSπA(A|X,1)

× d(X)A[Y − Q(X, A)]
+ 1(S=0)

1−ρS
[C(X)d(X) − θ1].

Here, EIF(k) represents the EIF based on O(k) for k = 1, 2.
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Theorem 1 can be connected to existing literature. Rudolph
and van der Laan (2017, sec. 4) obtained the EIF for θ1 on
the Type-2 data O(2). Dahabreh et al. (2019, Appendix D) first
obtained the EIF for θ based on the Type-2 data O(2). Then
they further argued that if Assumption 2 is relaxed to that
Yi(a) ⊥⊥ Ai|(Xi = x, Si = 1) holds on the training data
only, then the observed treatment assignments and outcomes
{(Ai, Yi) : Si = 0} from the calibrating data cannot be used. In
that case, the EIFs based on O(1) and O(2) are the same. Uehara,
Kato, and Yasui (2020, Theorem 11) obtained the EIF for θ on
the Type-2 data O(2) using a stratified sampling formulation for
Oi|(Si = 1) and Oi|(Si = 0), and treating w(Xi) as a general
density ratio function of covariates. Finally, we would like to
point out that Kallus (2020, Lemma 5.1) considered the EIF for
a fixed weight function, while the weight function w(x) as in
Lemma 1 is model-endogenous in the sense that it corresponds
to the conditional-on-covariate selection odds or the covariate
density ratio in the semiparametric model. The EIF in Kallus
(2020, Lemma 5.1) assumes that w(x) is known or the associated
nuisance function πS(s|x, a) is known, while the EIFs from
our Theorem 1 account for additional variances contributed by
estimating w(x).

Suppose w(x), πA(a|x, s) and Q(x, a) are known as oracle.
Recall that C(x) = Q(x, 1) − Q(x, −1). Denote ns := #{i :
Si = s} for s ∈ {1, 0}. Then we have n = n1 + n0 and
n1/n → ρS as n → ∞. Theorem 1 can imply the following
oracle semiparametric efficient estimates of θ and θ1 based on
O(1) and O(2), respectively:

θ̂
(1)

eff = 1
n1

∑
i:Si=1

n1
n

w(Xi)
1[d(Xi) = Ai]
πA(Ai|Xi, 1)

[Yi − Q(Xi, Ai)]

(:= φ(1)
n1 )

+ 1
n0

∑
i:Si=0

{
n0
n
1[d(Xi) = Ai]
πA(Ai|Xi, 0)

[Yi − Q(Xi, Ai)]

+ Q(Xi, d)

}

(:= ψ(1)
n0 + θ);

θ̂
(2)

eff = 1
n1

∑
i:Si=1

w(Xi)
1[d(Xi) = Ai]
πA(A|X, 1)

[Yi − Q(Xi, Ai)]

(:= φ(2)
n1 )

+ 1
n0

∑
i:Si=0

Q(Xi, d)

(:= ψ(2)
n0 + θ);

θ̂
(1)

1,eff = 1
n1

∑
i:Si=1

n1
n

w(Xi)
d(Xi)Ai

πA(Ai|Xi, 1)
[Yi − Q(Xi, Ai)]

(:= φ
(1)
1,n1)

+ 1
n0

∑
i:Si=0

{
n0
n
1[d(Xi) = Ai]
πA(Ai|Xi, 0)

[Yi − Q(Xi, Ai)]

+ C(Xi)d(Xi)

}

(:= ψ
(1)
1,n0 + θ1);

θ̂
(2)

1,eff = 1
n1

∑
i:Si=1

w(Xi)
d(Xi)Ai

πA(Ai|Xi, 1)
[Yi − Q(Xi, Ai)]

(:= φ
(2)
1,n1)

+ 1
n0

∑
i:Si=0

C(Xi)d(Xi)

(:= ψ
(2)
1,n0 + θ1). (2)

Here, we use n1/n and n0/n to replace ρS and 1 − ρS, respec-
tively. The asymptotic variances of the oracle semiparametric
estimates in (2) are the smallest among all regular and asymp-
totic linear (RAL) estimates (Tsiatis 2007), which we estab-
lish in the following Theorem 2. For x ∈ X , s ∈ {1, 0}
and a ∈ {1, −1}, we denote σ 2(x, s, a) := var[Yi(a)|Xi =
x, Si = s], σ 2(x, s, d) := ∑

a∈{1,−1} σ 2(x, s, a)1[d(xi) = a]
and πA(d|x, s) := ∑

a∈{1,−1} πA(a|x, s). To obtain asymptotic
results for all these estimates, we make the following integrabil-
ity assumption.

Assumption 6 (Squared integrability). Assume that

E[Q(Xi, 1)2], E[Q(Xi, −1)2] < +∞;

sup
x∈X ,s∈{1,0},a∈{1,−1}

σ 2(x, s, a) < +∞.

Theorem 2 (Semiparametric efficiency). Consider the observed
data O(1) and O(2), the parameters θ and θ1 in (1), and the
corresponding oracle efficient estimates in (2). Under Assump-
tions 1–6, we have

√n1φ
(1)
n1

n1→∞�⇒ Z(1)
1 ; √n0ψ

(1)
n0

n0→∞�⇒ Z(1)
0 ;

Z(1)
1 ∼ N (0, ν(1)

eff ); Z(1)
0 ∼ N (0, ζ (1)

eff ); Z(1)
1 ⊥⊥ Z(1)

0 ;

√n1φ
(2)
n1

n1→∞�⇒ Z(2)
1 ; √n0ψ

(2)
n0

n0→∞�⇒ Z(2)
0 ;

Z(2)
1 ∼ N (0, ν(2)

eff ); Z(2)
0 ∼ N (0, ζ (2)

eff ); Z(2)
1 ⊥⊥ Z(2)

0 ;

√n1φ
(1)
1,n1

n1→∞�⇒ Z(1)
11 ; √n0ψ

(1)
1,n0

n0→∞�⇒ Z(1)
10 ;

Z(1)
11 ∼ N (0, ν(1)

1,eff ); Z(1)
10 ∼ N (0, ζ (1)

1,eff ); Z(1)
11 ⊥⊥ Z(1)

10 ;

√n1φ
(2)
1,n1

n1→∞�⇒ Z(2)
11 ; √n0ψ

(2)
1,n0

n0→∞�⇒ Z(2)
10 ;

Z(2)
11 ∼ N (0, ν(2)

1,eff ); Z(2)
10 ∼ N (0, ζ (2)

1,eff ); Z(2)
11 ⊥⊥ Z(2)

10 ,
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where

ν
(1)

eff = ρ2
SE

{
w(Xi)

2 σ 2(Xi, 1, d)

πA(d|Xi, 1)

∣∣∣∣Si = 1
}

;

ζ
(1)

eff = (1 − ρS)
2E

{
σ 2(Xi, 0, d)

πA(d|Xi, 0)

∣∣∣∣Si = 0
}

+var[Q(Xi, d)|Si = 0];

ν
(2)

eff = E

{
w(Xi)

2 σ 2(Xi, 1, d)

πA(d|Xi, 1)

∣∣∣∣Si = 1
}

;

ζ
(2)

eff = var[Q(Xi, d)|Si = 0];

ν
(1)

1,eff = ρ2
SE

⎧⎨
⎩w(Xi)

2
∑

a∈{1,−1}

σ 2(Xi, 1, a)

πA(a|Xi, 1)

∣∣∣∣∣∣Si = 1

⎫⎬
⎭ ;

ζ
(1)

1,eff = (1 − ρS)
2E

⎧⎨
⎩

∑
a∈{1,−1}

σ 2(Xi, 0, a)

πA(a|Xi, 0)

∣∣∣∣∣∣Si = 0

⎫⎬
⎭

+var[C(Xi)d(Xi)|Si = 0];

ν
(2)

1,eff = E

⎧⎨
⎩w(Xi)

2
∑

a∈{1,−1}

σ 2(Xi, 1, a)

πA(a|Xi, 1)

∣∣∣∣∣∣Si = 1

⎫⎬
⎭ ;

ζ
(2)

1,eff = var[C(Xi)d(Xi)|Si = 0].

Moreover, for {αn} such that αn/
√n1 → γ1 and αn/

√n0 → γ0
as n → ∞, we have

αn(θ̂
(1)

eff − θ)= (γ1 + O(1)) × √
n1φ

(1)
n1 + (γ0 + O(1))

×√
n0ψ

(1)
n0

n1,n0→∞�⇒ γ1Z(1)
1 + γ0Z(1)

0 ;

αn(θ̂
(2)

eff − θ)= (γ1 + O(1)) × √
n1φ

(2)
n1 + (γ0 + O(1))

×√
n0ψ

(2)
n0

n1,n0→∞�⇒ γ1Z(2)
1 + γ0Z(2)

0 ;

αn(θ̂
(1)

1,eff − θ1) = (γ1 + O(1)) × √
n1φ

(1)
1,n1 + (γ0 + O(1))

×√
n0ψ

(1)
1,n0

n1,n0→∞�⇒ γ1Z(1)
11 + γ0Z(1)

10 ;

αn(θ̂
(1)

1,eff − θ1) = (γ1 + O(1)) × √
n1φ

(2)
1,n1 + (γ0 + O(1))

×√
n0ψ

(2)
1,n0

n1,n0→∞�⇒ γ1Z(2)
11 + γ0Z(2)

10 .

In particular, for αn = √
n (resp. √n1 or √n0), the corre-

sponding
√

n (resp. √n1 or √n0) asymptotic variances achieve
the semiparametric

√
n-(resp. √n1- or √n0-)variance lower

bounds for θ and θ1 on O(1) and O(2), respectively.

We notice that the efficient estimates (2) can depend on
the unknown nuisance functions w(x), πA(a|x, s), and Q(x, a).
Implementable efficient estimates of θ and θ1 are the plug-in
versions with the corresponding sample-dependent nuisance
function estimates. Uehara, Kato, and Yasui (2020) took the fol-
lowing cross-fitting strategy (Chernozhukov et al. 2018) when
plugging in the nuisance function estimates: the pooled data are
stratified into {i : Si = 1} and {i : Si = 0}, and the sample
points within each stratum are randomly divided into K bags.
For k ∈ {1, 2, . . . , K}, we obtain out-of-bag estimates of the
nuisance functions from the pooled dataset that rules out the kth

bag of data points. When constructing the cross-fitting estimates
(2) of θ and θ1, if the ith data point belongs to the kth bag, then
it utilizes the out-of-kth-bag nuisance function estimates. Using
the cross-fitting strategy, we can follow Uehara, Kato, and Yasui
(2020, Theorem 2) and establish

√
n-equivalences for plug-in

efficient estimates. In Theorem 3, we only consider the cross-
fitting estimates for θ , and the same argument can be applied
to θ1.

Theorem 3 (
√

n-Equivalence). Consider the observed data O(1)

and O(2) and the parameter θ in (1). Denote �(1)(η) :=
θ̂

(1)

eff − θ and �(2)(η) = θ̂
(2)

eff − θ from (2) with η =(
w(x), πA(a|x, s), Q(x, a)

)
as the nuisance functions. For k ∈

{1, 2, . . . , K}, let η̂cross := {(ŵ(k), π̂ (k)
A , Q̂(k))}K

k=1 be the
out-of-bag nuisance function estimates, and �(1)(̂ηcross) and
�(2)(̂ηcross) be the corresponding cross-fitting versions. Define

α(2)
n := max

a∈{1,−1} max
1≤k≤K

∥∥∥∥∥ ŵ(k)(·)
π̂

(k)
A (a|·, 1)

− w(·)
πA(a|·, 1)

∥∥∥∥∥
L2(P)

;

α(1)
n := α(2)

n + max
1≤k≤K

∥∥∥π̂
(k)
A (1|·, 0) − πA(1|·, 0)

∥∥∥
L2(P)

;

βn := max
a∈{1,−1} max

1≤k≤K

∥∥∥Q̂(k)(·, a) − Q(·, a)

∥∥∥
L2(P)

,

where ‖ · ‖L2(P) is the L2(P)-norm with respect to the covariate
vector X. Then under Assumptions 1–6 and that α

(1)
n , α(2)

n , βn =
OP(1), we have

√
n[�(1)(̂ηcross) − �(1)(η)] = OP(

√
nα(1)

n βn);√
n[�(2)(̂ηcross) − �(2)(η)] = OP(

√
nα(2)

n βn).

Remark 1. Notice that in Theorem 3, by the fact that
πA(a|x, s) ≥ τ , we further have

α(2)
n ≤ constant × max

1≤k≤K

∥∥∥ŵ(k) − w
∥∥∥

L2(P)

+ constant × max
1≤k≤K

∥∥∥π̂
(k)
A (1|·, 1) − πA(1|·, 1)

∥∥∥
L2(P)

.

Then a dominating rate of α
(2)
n can be chosen as the slower one

of ŵ(·) and π̂A(1|·, 1).

One important implication of the remainder terms in Theo-
rem 3 is that α

(1)
n , α

(2)
n and βn can be in slower orders than the

usual requirement OP(n−1/2) for negligibility. For example, if
α

(1)
n = OP(n−1/4) and βn = OP(n−1/4), then the plug-in effect

for �(1)(̂ηcross) is negligible.
Finally, we notice that the

√
n-asymptotic results in Theo-

rem 2 rely on the implication from Assumption 5 that n1/n →
ρS ≥ δ and n0/n → 1 − ρS ≥ δ as n → ∞, so that both n1 and
n0 grow linearly in n. When the calibrating sample size n0 is of
a smaller order in the training sample size n1, the leading order
terms for the estimates in (2) are of order √n0. We establish the
corresponding asymptotic results in the following Corollary 1
that are different from those in Theorem 2.

Corollary 1 (Semiparametric efficiency with small calibrating
data). Consider the observed data O(1) and O(2), the param-
eters θ and θ1 in (1), and the corresponding oracle efficient
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estimates in (2). Suppose n0/n1 → 0 as n1, n0 → ∞. Then
under Assumptions 1–4, 6 and that supx∈X w(x) < +∞, we
have

√n0(θ̂
(2)

eff − θ)
D−→

n0→∞ N (0, var[Q(Xi, d)|Si = 0]);
√n0(θ̂

(2)

eff − θ)
D−→

n0→∞ N (0, var[Q(Xi, d)|Si = 0]);

√n0(θ̂
(1)

1,eff − θ1)
D−→

n0→∞ N (0, var[C(Xi)d(Xi)|Si = 0]);
√n0(θ̂

(2)

1,eff − θ1)
D−→

n0→∞ N (0, var[C(Xi)d(Xi)|Si = 0]),

which attain the corresponding semiparametric √n0-
asymptotic variance lower bounds for θ and θ1, respectively.

Notice that the √n0-asymptotic variances from Corollary 1
are the same as 1

n0

∑
i:Si=0 Q(Xi, d) and 1

n0

∑
i:Si=0 C(Xi)d(Xi),

respectively, so that all efficiency augmentation terms in (2) are
negligible with respect to the √n0-order. Moreover, any esti-
mate Q̂(x, a) of Q(x, a) that satisfies ‖Q̂(·, a) − Q(·, a)‖L2(P) =
OP(n−1/2

0 ) for a ∈ {1, −1} will not affect these √n0-asymptotic
results. Since we have assumed that n0/n1 → 0, it can be
relatively easier than Theorem 3 to obtain an estimate Q̂ of order
OP(n−1/2

0 ) based on the training data.

2.2. Estimating Weights

In Section 2.1, we obtain the efficient estimates for θ and θ1
on two types of pooled data O(1) and O(2) as in (2). We also
establish the asymptotic properties in Theorems 2 and 3 for the
oracle and cross-fitting efficient estimates, respectively. In this
section, we discuss different methods from literature for esti-
mating training sample weights {w(Xi) : Si = 1} or the nuisance
function x �→ w(x). In particular, augmented inverse probability
of sampling weight (AIPSW) and density ratio estimation are
related to the discussions in Li, Li, and Luedtke (2020) and Liang
and Zhao (2020), respectively.

2.2.1. Augmented Inverse Probability of Sampling Weight
(AIPSW)

Let π̂S(1|x) be an estimate of πS(1|x). Define the estimated
weights at training data points {i : Si = 1} as

ŵ(Xi) := n1π̂S(0|Xi)

n0π̂S(1|Xi)
; ∀i : Si = 1.

Then the AIPSW estimates (Stuart et al. 2011; Buchanan et al.
2018) are defined as in (2) with the AIPSWs {ŵ(Xi) : Si = 1}
that are obtained from the estimated conditional-on-covariate
sampling probability function π̂S(s|x). We further denote the
AIPSW estimates as θ̂

(1)
AIPSW, θ̂

(2)
AIPSW, θ̂

(1)
1,AIPSW, and θ̂

(2)
1,AIPSW,

respectively. Notice that the AIPSW estimates have one-to-
one correspondence to the estimators proposed in Li, Li, and
Luedtke (2020, sec. 3.2): θ̂ (1)

AIPSW = V̂∗
eff (d), θ̂ (2)

AIPSW = V̂∗
onlyX(d),

θ̂
(1)
1,AIPSW = R̂∗

eff (d), and θ̂
(2)
1,AIPSW = R̂∗

onlyX(d).
In practice, π̂S(s|x) can be estimated by logistic regression of

Si on Xi. Consider the simulation setup in Li, Li, and Luedtke
(2020): Xi|(Si = 1) ∼ Np(0, Ip) and Xi|(Si = 0) ∼
Np(μ, Ip) for some μ ∈ Rp. For s ∈ {1, 0}, denote f (x|s)

as the density of Xi|(Si = s). The theoretical weight function
in this case is w(x) = fX(x|0)

fX(x|1)
= exp(‖μ‖2

2/2 − μᵀx). The

corresponding log-odds of Si|(Xi = x) is: log
(

πS(1|x)
πS(0|x)

)
=

log
(

ρS
1−ρS

)
− log[w(x)] = log

(
ρS

1−ρS

)
− ‖μ‖2

2/2 + μᵀx. In this
case, logistic regression can correctly specify Si|Xi. Therefore,
the corresponding AIPSW estimates can enjoy semiparametric
efficiency, which was illustrated in the numerical studies of Li,
Li, and Luedtke (2020, sec. 3.3).

2.2.2. Density Ratio Estimation
Instead of estimating πS(s|x) first to obtain w(x) = ρS

1−ρS
πS(0|x)
πS(1|x)

,
we can directly consider w(x) as the covariate density ratio
function P(Xi=x|Si=0)

P(Xi=x|Si=1)
. Uehara, Kato, and Yasui (2020) proposed

to estimate the covariate density ratio for {Xi : Si = 1} using
the kernel-based unconstrained least-squares importance fitting
(KuLSIF) (Kanamori, Suzuki, and Sugiyama 2012), which was
also discussed in Liang and Zhao (2020). Specifically, let G be a
generic function class, and consider the following least-squared
problem:

min
g∈G

1
2
E

{
[g(Xi) − w(Xi)]2

∣∣∣Si = 1
}

= min
g∈G

{
1
2
E[g(Xi)

2|Si = 1] − E[g(Xi)|Si = 0]
}

+ 1
2
E[w(Xi)

2|Si = 1].
The empirical version of the above least-squared problem is as
follows:

min
g∈G

⎧⎨
⎩ 1

2n1

∑
i:Si=1

g(Xi)
2 − 1

n0

∑
i:Si=0

g(Xi) + λ

2
‖g‖2

G

⎫⎬
⎭ , (3)

where (λ/2)‖g‖2
G is a functional penalty on G. Let K be a

positive semidefinite kernel function on X and G = HK be
the corresponding reproducing kernel Hilbert space (RKHS).
Define K11 := [K(Xi, Xj) : Si = Sj = 1] and K01 :=
[K(Xi, Xj) : Si = 0, Sj = 1]. The solution to (3) can be repre-
sented as gα(·) = ∑

i:Si=1 αiK(Xi, ·)+[1/(λn0)] ∑
i:Si=0 K(Xi, ·)

(Kanamori, Suzuki, and Sugiyama 2012, Theorem 1), and the
dual optimization problem for α = (αi : Si = 1)ᵀ ∈ Rn1 is

min
α∈Rn1

{
1
2
αᵀ

(
1

n1
K11 + λIn1

)
α − 1

λn0n1
1ᵀ

n0 K01α

}
.

Let ŵ(x) be the KuLSIF estimate of the covariate weight
function. Under certain conditions, Kanamori, Suzuki, and
Sugiyama (2012, Theorem 2) showed that ‖ŵ − w‖L2(P) =
OP

(
(n1 ∧ n0)

−1/(2+γ )
)

for some γ ∈ (0, 2).
Based on the KuLSIF weights, Liang and Zhao (2020) con-

sidered θ̂1 := (1/n1)
∑

i:Si=1 ŵ(Xi)Ĉ(Xi)d(Xi). Under Assump-
tions 1–6, it requires that ‖ŵ − w‖L2(P) = OP(n−1/2) and
‖Ĉ − C‖L2(P) = OP(n−1/2) to establish the

√
n-consistency of

θ̂1. However, the KuLSIF estimate of w(x) cannot satisfy this
rate condition. Even when ‖ŵ − w‖L2(P) = OP(n−1/2) and
‖Ĉ − C‖L2(P) = OP(n−1/2) so that θ̂1 is

√
n-consistent, the

asymptotic variance of θ̂1 is generally greater than the semipara-
metric efficiency bound in Theorem 2. To achieve the efficiency
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bound, the KuLSIF density ratio estimate should be combined
with a semiparametric efficient estimate and the cross-fitting
strategy.

2.2.3. Augmented Calibration Weight (ACW)
Let G be a function class on X . Lemma 1 can also motivate
the following covariate balancing conditions among covariate
functions in G for the training sample weights {Wi : Si = 1}
(Imai and Ratkovic 2014):∑

i:Si=1
Wig(Xi)

︸ ︷︷ ︸
empirical version of E[w(Xi)g(Xi)|Si = 1]

(4)

= 1
n0

∑
i:Si=0

g(Xi)

︸ ︷︷ ︸
empirical version of E[g(Xi)|Si = 0]

; ∀g ∈ G.

Based on the balancing conditions (4), Hainmueller (2012)
proposed to solve the entropy balancing problem for calibration
weights:

min
Wi:Si=1

∑
i:Si=1

Wi log Wi,

subject to Wi ≥ 0; for all i with
Si = 1;∑

i:Si=1
Wi = 1;

∑
i:Si=1

Wig(Xi) = 1
n0

∑
i:Si=0

g(Xi); ∀g ∈ G.

(5)
Here, the objective function is the empirical Kullback–Leibler
divergence of P(·|Si = 0) with respect to P(·|Si = 1), and Wi
is the covariate density ratio at Xi. Therefore, the optimization
problem (5) seeks for the balancing weights {Ŵi : Si = 1}
that satisfies (4) and minimizes the discrepancy of the testing
covariate distribution from training. If G = {gj}m

j=1 and denote
g = (g1, g2, . . . , gm)ᵀ as an m-dimensional vector of instrumen-
tal functions, then the calibration weights can be solved by the
following dual problem:

Ŵi = exp[̂λᵀg(Xi)]∑
j:Sj=1 exp[̂λᵀg(Xj)]

; for all i with Si = 1,

where λ̂ ∈ Rm is solved by the balancing equations (4). The
dual solution can be further extended to the case when G is
an RKHS (Zhao 2019). The calibration weights from (5) can
also correspond to a parametric model for w(Xi). Specifically, if
w(x; η) = exp[ηᵀg(x)], then λ̂

P→ η, and Ŵi = w(Xi)
n1

+OP(n−1)
(Dong et al. 2020, Theorem 1). The following two cases can
imply such a parametric model:

(I) Logistic regression of Si on g(Xi) can imply such a paramet-
ric model for w(Xi);

(II) If g(Xi) is a sufficient statistic for Xi and g(Xi)|(Si =
s) ∼ Nm(μs, �) for s ∈ {1, 0}, then w(x) =
exp

{
(μ1 − μ0)

ᵀ
(

g(x) − μ1+μ0
2

)}
. Because of the addi-

tional term μ1+μ0
2 in w(x), a constant function is required

in the function class G for balancing conditions.

Finally, the ACW estimates are defined as the efficient estimates
(2) with {w(Xi) : Si = 1} as {n1Ŵi : Si = 1} from (5) (Dong
et al. 2020). One advantage of such estimates is the implicit
nonparametric function class specification for w(x).

2.3. Challenges for Efficient Policy Evaluation

To summarize, we have studied the policy evaluation problem
when a set of calibrating data from the testing distribution can
be used for training. We establish the efficient policy evaluation
results based on the EIFs and discussed the properties of effi-
cient estimates that can be related to existing literature and the
discussions in Li, Li, and Luedtke (2020) and Liang and Zhao
(2020). However, when the calibrating sample size n0 is small,
our discussion suggests the following two main challenges:

(I) Efficient policy evaluation requires a sufficiently large cali-
brating sample size for useful efficiency gain. Assumption 5
can imply that the asymptotic sampling rates n1/n →
P(Si = 1) and n0/n → P(Si = 0) are both at least δ, which
requires that both the training and calibrating sample sizes
n1 and n0 grow linearly in n. When n0 = O(n1), Corollary 1
suggests that the √n0-asymptotic efficient estimates in (2)
are equivalent to averaging the nonparametric estimates
of Q(Xi, d) or C(Xi)d(Xi) over the calibrating data. The
complicated forms in (2) may not be helpful for efficiency
improvement in this case. More importantly, the resulting
estimates can be unstable due to the limited calibrating
sample size n0;

(II) Nuisance function estimates can be hard to obtain in effi-
cient policy evaluation. Specifically, the optimality of effi-
cient estimates requires that the plug-in nuisance function
estimates ŵ(x), π̂A(a|x, s), and Q̂(x, a) are

√
n-negligible

as in Theorem 3. However, the challenge for nuisance
function estimation mainly appears in the covariate weight
function ŵ(x), since its rate of convergence is determined
by min{n1, n0}. The same difficulty can appear when esti-
mating the conditional-on-covariate selection probability
function πS(s|x) in the AIPSW estimates, where a correctly
specified parametric estimate π̂S(s|x) is in the (n1 ∧ n0)

1/2-
order. Thus, it can be difficult to estimate the nuisance
function when n0 is small.

Given the challenges of efficient policy evaluation with a
limited calibrating sample size n0, DRITR can be less dependent
on n0. First of all, DRITR utilizes the training data only to
obtain the set of candidates {̂dc}c∈C , where C is a set of candi-
date DR-constants, and each d̂c enjoys certain robust perfor-
mance guarantee. Then calibrating sample is used to choose
the final DRITR. In this way, DRITR is less affected by the
size of n0 compared to the combined strategy in Section 2.
Second, the value function estimates used in evaluating candi-
date DRITRs on the calibrating dataset can still enjoy certain
properties with a small n0. In Mo, Qi, and Liu (2020, sec.
2.4), two calibration procedures were proposed, one using the
calibrating covariates only, and another one using the calibrating
covariates, treatments and outcomes. In the calibration pro-
cedure based on calibrating covariates only, the testing value
function estimate for a given ITR d is 1

n0

∑
i:Si=0 Ĉ(Xi)d(Xi),
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which is semiparametric √n0-asymptotic efficient due to Corol-
lary 1. For another calibration procedure based on calibrating
covariates, treatments and outcomes, the testing value func-
tion estimate is 1

n0

∑
i:Si=0

1[d(Xi)=Ai]
πA(Ai|Xi,1)

Yi. Although such an esti-
mate may not achieve the √n0-variance lower bound, it can
be robust if Assumption 4 is violated. Specifically, if Assump-
tion 4 is violated, the estimates (2) may not be consistent,
while 1

n0

∑
i:Si=0

1[d(Xi)=Ai]
πA(Ai|Xi,1)

Yi remains √n0-consistent. Thirdly,
we would like to point out that DRITR avoids estimating the
covariate weight function w(x). Therefore, it can bypass the
challenge of nuisance function estimation given the limited
calibrating data.

3. Applicability of DRITR

In Section 1, we distinguish DRITR from retargeted policy
learning as it focuses on covariate changes. In Section 2, we
consider the problem of covariate changes with calibrating data
from a specific testing distribution being available at the training
stage. In particular, we discuss the general challenges for efficient
policy evaluation when available information from testing is
limited, and how DRITR can avoid such challenges. As is men-
tioned at the beginning of Section 2, DRITR focused on general
covariate changes instead of a specific testing distribution. In
this section, we discuss the general applicability of DRITR.

We first emphasize that DRITR aims for protecting scientific
discoveries from the general agnostic covariate changes. This
explains why, in response to Li, Li, and Luedtke (2020), we pro-
posed to work with the least favorable case among some possible
covariate changes. In fact, the concern on potential training-
testing distributional changes can be important in modern pre-
diction methodology. Efron (2020, sec. 6) discussed their anal-
ysis on the prostate cancer microarray study. If they randomly
split data into training and testing, then the testing error of a
random forest classifier can be as low as 2%. However, if they
selected patients with the lowest ID numbers into the training
dataset, with the remaining for testing purpose, then the testing
error would be as high as 24%. We also performed similar
analysis on the ACTG175 study. In particular, we found that
when testing on the female population, several other existing
methods can have poorer performance than DRITR. Such a
violation of the identical training and testing distributions can
undermine an existing scientific finding, and researchers may
question the faithfulness of such a finding when generalizing it
to a much broader scope. On the contrary, a scientific finding
robust to all such violations can typically be closer to universal,
eternal truths and become long-lasting (Efron 2020). The same
scientific principle has also been advocated in Yu and Kumbier
(2020) and Bühlmann (2020), both of which established nice
connections of such a principle with adversarial perturbation
and distributional robustness.

DRITR can correspond to a more “forgiving” but useful
approach than precise estimation. On one hand, we agree with
Dukes and Vansteelandt (2020) that making correct “causal
predictions,” that is, estimating the CTE function correctly, can
be the most robust way of protecting from covariate changes. In
fact, we highlight in our Section 1 that general applicability of
DRITR relies on the assumption {x �→ sign[C(x)]} � D. One

example is when the true CTE function C(x) is too complicated
to be estimable, the ITR class D can be misspecified. Another
example is that the CTE function C(x) takes a complicated func-
tional form, and D is intended for a more parsimonious class of
decision rules in practice. In either of these two cases, DRITR
can be a useful methodology with tolerance on incorrect “causal
predictions.” On the other hand, given our combined data anal-
ysis in Section 2, efficient inference of parameters of interests
can have more restrictive requirements on data availability and
involve more assumptions. In contrast, the requirements for
accurate predictions, for example, predicting which treatment to
assign in our context, can typically be less stringent than draw-
ing efficient inference of parameter estimates, as was discussed
in Efron (2020, Criteria 6). These can distinguish the prediction-
driven focus and usefulness of DRITR. While an inference-
based criterion can only be applicable if all required assumptions
hold, a prediction-based criterion particularly focuses on some
measurements of testing performance and can be less restrictive.
Therefore, even though DRITR can be conservative by perform-
ing worst-case policy optimization, it can enjoy less restrictions
and more general applicability.

The last point we would like to point out is that the training
of candidate DRITRs can be performed before using calibrating
data. This can provide more privacy protection. Specifically,
DRITR can utilize the training data to obtain a class of candidate
ITR estimates {̂dc}c∈C , where C is the set of candidate DR-
constants. When estimating the optimal DRITR on a specific
testing distribution, we only use the testing information to
choose the best ITR from {̂dc}c∈C without requesting for the
complete training data. In contrast, the combined analysis in
Section 2 requires at least either {Xi, Q̂(Xi, ±1) : Si = 1} or
{Xi, Ĉ(Xi) : Si = 1} from the training data. In this case, treat-
ment effect information at the individual level would be exposed
to the testing agents. Therefore, the individualized treatment
effect information obtained from training can be kept privately
when applying DRITR, but cannot when using methods based
on combined data in Section 2.
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