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ABSTRACT
Budget constraints become an important consideration in modern predictive modeling due to the high
cost of collecting certain predictors. This motivates us to develop cost-constrained predictive modeling
methods. In this article, we study a new high-dimensional cost-constrained linear regression problem, that
is, we aim to find the cost-constrained regression model with the smallest expected prediction error among
all models satisfying a budget constraint. The nonconvex budget constraint makes this problem NP-hard.
In order to estimate the regression coefficient vector of the cost-constrained regression model, we propose
a new discrete first-order continuous optimization method. In particular, our method delivers a series of
estimates of the regression coefficient vector by solving a sequence of 0-1 knapsack problems. Theoretically,
we prove that the series of the estimates generated by our iterative algorithm converge to a first-order
stationary point, which can be a globally optimal solution under some conditions. Furthermore, we study
some extensions of our method that can be used for general statistical learning problems and problems
with groups of variables. Numerical studies using simulated datasets and a real dataset from a diabetes
study indicate that our proposed method can solve problems of fairly high dimensions with promising
performance.
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1. Introduction

High-dimensional predictive modeling plays a fundamental role
in modern statistical machine learning. In order to obtain a
good model to fit high-dimensional data, many popular meth-
ods use penalized regression techniques. The corresponding
optimization problem is to minimize an objective function with
the form of a loss function plus a convex or nonconvex penalty
function (Frank and Friedman 1993; Tibshirani 1996; Fan and
Li 2001; Zou and Hastie 2005; Zou 2006; Zhang 2010). Most
existing penalized regression methods sought to improve the
accuracy of estimation and prediction but often failed to account
for the costs on data collection. However, in some predictive
modeling applications, especially in health care, it is essential
to account for the costs associated with data collection. Note
that the notion of cost here can be general. It includes both the
actual monetary cost and some nonmonetary costs such as time,
patient discomfort in medical procedures, and privacy impacts
of data collection (Kachuee et al. 2019; Krishnapuram, Yu, and
Rao 2011; Pattuk et al. 2015).

As an example, in the treatment of diabetes mellitus, it is
important to predict the patients’ treatment responses (e.g., the
change in HbA1c) before assigning treatments so that doctors
can select the treatment with the largest potential outcome for
each patient. According to a randomized, double-blind, parallel-
group comparison phase III study of diabetes (Charbonnel et al.
2005), twenty biomarkers for the prediction of diabetes patients’
treatment responses and their costs are shown in Table 1. These
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twenty biomarkers are divided into 10 groups naturally accord-
ing to the data collection process. The acquisition of some
biomarkers incurs higher costs than others. For example, the
values of HDL, LDL, Total cholesterol, and Triglycerides are
generated together by a blood test. The price of the blood test
is about $200, which is much more expensive than the measure-
ment of blood pressure. As it can be expensive and inconvenient
to let patients measure all these 20 biomarkers to predict their
response, the traditional regression approach incorporating all
biomarkers are infeasible in some situations. It is of practical
importance to develop flexible predictive models that can help
doctors predict the patients’ treatment responses as accurately
as possible while controlling the diagnostic cost. As a second
example, in the diagnosis of kidney stones, medical imaging
techniques such as computed tomography (CT), ultrasonog-
raphy, kidney ureter bladder (KUB) plain film radiography,
and magnetic resonance imaging (MRI) are widely used. The
comparison of different imaging modalities for kidney stones
is shown in Brisbane, Bailey, and Sorensen (2016). All imaging
techniques have advantages and disadvantages. Some modalities
such as MRI are much more expensive than the KUB. Besides
the diagnostic accuracy, doctors generally prescribe the imaging
modality for kidney stones based on a number of factors includ-
ing monetary costs, patient body habitus, and tolerance of ion-
izing radiation. Cost-constrained predictive modeling methods
are needed to help doctors make the decision. Besides, the above
two applications in health care, as shown in Clark et al. (2019),
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Table 1. Biomarkers and their costs in a diabetes study.

Predictor Cost Predictor Cost
HDL

$200

Creatinine $50
LDL Fasting blood glucose $20

Total cholesterol HbA1c at baseline $30
Triglycerides ALT

$100
Fasting insulin $50 AST

Age

$20

GGT
$100

Weight C-peptide
BMI Diastolic blood pressure

$10Waist Systolic blood pressure
Duration of diabetes $5 Pulse

cost-constrained predictive modeling methods are useful for the
problem of optimally placing sensors under a cost constraint
that arises naturally in the design of industrial and commercial
products, as well as in scientific experiments.

In the literature, there are a few predictive modeling methods
accounting for the cost of collecting variables. For the linear
regression problem, Yue (2010) suggested adding the cost of
obtaining variables to the least-squares loss function. A branch
and bound algorithm is used to search for a model which
minimizes the total loss. For the binary classification problem,
Fouskakis and Draper (2008) compared several stochastic
optimization methods such as simulated annealing (Kirkpatrick
et al. 1983), genetic algorithm (Holland 1992), and Tabu
search (Glover 1977, 1986, 1989) to heuristically find subsets
of variables that maximize a utility function which trades
prediction accuracy against data collection cost. Fouskakis,
Ntzoufras, and Draper (2009) proposed a Bayesian approach
that accounts for the cost of variables via prior model weights,
which leads to a generalized cost-adjusted version of the
Bayesian Information Criterion. They used the reversible-jump
Markov chain Monte Carlo (RJMCMC) method to search the
predictive model. Although these existing methods deliver good
performance for the problem with a small number of variables
(e.g., p < 100 as shown in their simulation studies), they require
expensive computation to search the optimal model when there
are a lot of variables (e.g., p = 1000). In addition, they seek
the variable subset by minimizing an objective function which
trades prediction accuracy against the data collection cost. This
is a soft approach of handling a hard budget constraint that
demands the total cost of collecting the variables to not exceed a
given budget. For many modern predictive modeling problems
such as the prediction of disease risk using medical images, we
need to choose variables from a large variable set. In addition,
hard budget constraints become more and more common due
to the high cost of collecting data using new techniques. It is
important to develop new and efficient high-dimensional cost-
constrained predictive modeling methods.

In this article, to address the above challenge, we first study
a new high-dimensional cost-constrained regression problem,
that is, we aim to find the cost-constrained regression model
that satisfies the budget constraint and has the best prediction
accuracy. This problem generalizes the best subset selection
problem where the costs of all variables are assumed to be equal.
The nonconvex budget constraint makes this problem NP-hard.
For the high-dimensional cost-constrained regression problem
considered in this article, the parameter vector of interest is the

regression coefficient vector in the cost-constrained regression
model. This parameter vector of interest can be different from
the parameters in the underlying data-generating linear model
when the underlying true model does not satisfy the budget
constraint. As shown in Section 2.2, it can happen that none of
the selected variables in the cost-constrained regression model is
used in the underlying true linear model. Therefore, we cannot
implement a simple two-step strategy that uses the existing
penalized regression techniques to select the variables first and
then searches for the cost-constrained regression model among
those selected variables. In order to estimate the regression coef-
ficients in the cost-constrained regression model directly, we
propose a new discrete extension of the first-order continuous
optimization methods (Nesterov 2013). Our proposed method
delivers a convergent series of estimates of the parameter of
interest by solving a sequence of 0-1 knapsack problems. The-
oretically, we show that the series of the estimates of the param-
eter of interest generated by our iterative algorithm converge to
a first-order stationary point, which can be a globally optimal
solution when some conditions are satisfied. There are many
extensions of our proposed cost-constrained regression method.
It can be extended to statistical learning problems using loss
functions with a Lipschitz continuous gradient, for example, the
cost-constrained logistic regression problem. We can also adjust
the proposed cost-constrained regression method for problems
with groups of variables, or combine it with regularization tech-
niques to reduce overfitting. Our numerical studies indicate that
our algorithm can solve the high-dimensional problems effi-
ciently with good estimation, prediction, and model selection
performance. Both theoretical and numerical studies demon-
strate the effectiveness of our proposed method.

The rest of this article is organized as follows. In Section 2,
we introduce the high-dimensional cost-constrained regression
problem. In Section 3, we introduce our new method. In
Section 4, we show the extensions of our proposed high-
dimensional cost-constrained regression method. In Section 5,
we show some theoretical results about our iterative algorithm.
In Sections 6 and 7, we demonstrate the effectiveness of our
method using simulated datasets and a real dataset from a
diabetes study. We conclude this article in Section 8. All proofs
and the comparison of the computational time of different
methods are shown in the supplementary materials for this
article that are available online.

2. High-Dimensional Cost-Constrained Regression

In this section, we introduce the high-dimensional cost-
constrained regression problem. More general cost-constrained
predictive modeling problems will be discussed in Section 4.

We use the following notations throughout this article. The
complement of a set S is denoted by Sc. For a vector V and a
set S, we use VS to denote the subvector {Vj : j ∈ S}, and
||V||2 to denote the �2 norm of the vector. For two vectors
X and Y , we use 〈X, Y〉 to denote the inner product. For a matrix
M and sets S1 and S2, we use MS1S2 to denote the submatrix of
M with the row indices in the set S1 and the column indices
in the set S2. For a symmetric matrix A, we use λmax(A) to
denote the largest eigenvalue of the matrix. We use I(β) to
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denote the indicator function which equals to 1 if β �= 0
and 0 otherwise. The gradient of a function g(β) is denoted by
�g(β). For a vector X = (x1, x2, . . . , xp), we use (X)+ to denote
(max{x1, 0}, max{x2, 0}, . . . , max{xp, 0}). Given an arbitrary set
S ⊆ R

p and a function g : R
p → R, the arg min over the

subset S is defined by arg min
β∈S

g(β) := {β|β ∈ S and g(β) ≤
g(γ ) for any γ ∈ S}.

2.1. High-Dimensional Cost-Constrained Regression
Problem

Suppose that our data are generated from the following linear
model:

y = x1β
0
1 + x2β

0
2 + · · · + xpβ

0
p + ε, (1)

where y is a continuous response variable, β0
1 , β0

2 , . . . , β0
p are p

true unknown parameters, (x1, x2, . . . , xp)T is a p-dimensional
predictor vector following a multivariate distribution with mean
0p×1 and a positive-definite covariance matrix �, and ε is the
random error with mean 0 and variance σ 2. We assume that the
random predictor vector (x1, x2, . . . , xp) and the random error
ε are independent. Suppose we have n iid samples generated
from the model (1). Denote Y = (y1, y2, . . . , yn)T , β0 =
(β0

1 , β0
2 , . . . , β0

p )T , and the n × p design matrix by X where the
ith row of X is (Xi1, Xi2, . . . , Xip). Then, in matrix notation, we
have

Y = Xβ0 + ξ , (2)

where ξ = (ε1, ε2, . . . , εn)T is a vector of n iid realizations of the
random variable ε.

We consider the high-dimensional regime (p 	 n) and
assume that the p-dimensional regression coefficient vector β0

is sparse. Denote S = {j : β0
j �= 0}, and Sc = {j : β0

j = 0}.
Without loss of generality, suppose that there are monetary costs
on collecting variables. For each sample, we need to spend cj
dollars on collecting the value of the jth predictor xj, where
j = 1, 2, . . . , p. If we do not consider the costs on data collection,
then we can use any penalized regression technique to learn a
linear model, which can be used in the future to predict the value
of the response variable y given specific values of the predictors
x1, x2, . . . , xp. However, for some applications such as medical
diagnosis problems, we need to consider the costs on data
collection and our budget on collecting values of x1, x2, . . . , xp
(e.g., different medical tests) is C dollars. If the budget limit C
is small, then we may not have enough money to collect the
values of all predictors used in the linear models learned by
penalized regression methods. Therefore, due to the budget con-
straint, linear models learned by traditional penalized regression
techniques can be infeasible for the prediction of y. We can only
consider feasible linear models satisfying the budget constraint∑p

j=1 cjI(βj) ≤ C, where β is the regression coefficient vector
of the linear model and

∑p
j=1 cjI(βj) is the cost of the model.

It is important to develop new methods to find the optimal
feasible linear model that has the smallest expected prediction
error among all feasible models. This optimal feasible model is
called the cost-constrained regression model in this article.

Assume that the future observation (y∗, x∗1, . . . , x∗p) is also
generated from model (1). We can show that the regression
coefficient vector of the cost-constrained regression model is

β∗ ∈ arg min
β

E[(y∗ −
p∑

j=1
x∗jβj)

2] subject to
p∑

j=1
cjI(βj) ≤ C,

which is also a global minimizer of the following problem:

min
β

(β − β0)T�(β − β0) subject to
p∑

j=1
cjI(βj) ≤ C. (3)

Note that there may be multiple global minimizers of the prob-
lem (3) due to the budget constraint. In that case, we use β∗
to denote one of those global minimizers. Given the training
data {Y , X}, it is natural to estimate β∗ by solving the following
sample-average approximation (SAA) problem:

min
β

1
2n

||Y − Xβ||22 subject to
p∑

j=1
cjI(βj) ≤ C. (4)

The above problem is called the high-dimensional cost-
constrained regression problem in this article. It can be viewed
as a generalized best subset selection problem (the case with
c1 = c2 = · · · = cp). Note that the constraint

∑p
j=1 cjI(βj) ≤ C

makes this problem (4) NP-hard. Indeed, even for the special
case such as the best subset selection problem, as shown in
Bertsimas et al. (2016), in order to find the global solution,
most state-of-the-art algorithms as implemented in the popular
statistical packages do not scale to problems with more than 30
variables.

2.2. The Difference Between β∗and β0

In this article, since we aim to find the cost-constrained
regression model, the parameter of interest is β∗ rather than
the parameter vector β0 in the true linear model (1). If∑p

j=1 cjI(β0
j ) = ∑

j∈S cj ≤ C, we know that β0 is a feasible
solution to (3) and therefore β∗ = β0. However, as showing in
the following analysis, β∗and β0 can be different if

∑
j∈S cj > C.

Consider the case where the true important variables {xj : j ∈
S} and the unimportant variables {xj : j ∈ Sc} are uncorrelated,
that is �SSc = 0, we can show that the problem (3) is equivalent
to the following problem

min
β

(βS − β0
S )T�SS(βS − β0

S ) + βT
Sc�ScScβSc

subject to
∑
j∈S

cjI(βj) +
∑
j∈Sc

cjI(βj) ≤ C.

Since βT
Sc�ScScβSc ≥ 0 for any β , it implies β∗

Sc = 0 and

β∗
S ∈ arg min

β
(βS − β0

S )T�SS(βS − β0
S )

subject to
∑
j∈S

cjI(βj) ≤ C.

If
∑

j∈S cj > C, we have β∗
S �= β0

S and {j : β∗
j �= 0} ⊂ {j : β0

j �=
0}. In this case, using the training data (Y , X), we can implement
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a two-step strategy that uses the penalized regression techniques
(Tibshirani 1996; Fan and Li 2001; Zou and Hastie 2005; Zou
2006; Zhang 2010) to select a small number of variables first, and
then search the cost-constrained regression model considering
only those selected variables. Since many penalized regression
techniques such as LASSO are model selection consistent (Zhao
and Yu 2006), this two-step strategy could save a lot of compu-
tational time and deliver good performance for the estimation
of the parameter of interest. However, in many cases, as shown
in the following toy example, the selected variables in the cost-
constrained regression model satisfying the budget constraint
may not be in the important variable set S.
Toy example. Let p = 3 and β0 = (t0, t0, 0)T , where t0 >

0. Assume that the diagonal and off-diagonal elements of the
covariance matrix � are 1 and ρ, respectively. Furthermore,
assume that the costs of the variables and the budget C satisfy
0 < c1, c2, c3 ≤ C, c1 + c2 > C, c1 + c3 > C, and c2 + c3 > C.
If ρ ∈ (−1/2, −1/3), we can check that β∗ = (0, 0, 2ρt0)

T .
Therefore, we have {j : β0

j �= 0} = {1, 2}, {j : β∗
j �= 0} = {3},

and {j : β0
j �= 0} ∩ {j : β∗

j �= 0} is an empty set.

3. Motivation and Methodology

In this section, we first provide the motivation of our method
using the orthogonal design case in Section 3.1. Then, we intro-
duce our proposed method for the general high-dimensional
cost-constrained regression problem (4) in Section 3.2. The
extensions of our proposed method to some other statistical
learning problems and problems with groups of variables will
be discussed in Section 4.

3.1. Orthogonal Design Case

For motivation, we first assume that n > p and XTX = nIn. We
can show that

1
2n

||Y − Xβ||22 = 1
2n

||Y − Xβ̂||22 + 1
2n

||Xβ − Xβ̂||22
= 1

2n
||Y − Xβ̂||22 + 1

2
||β − β̂||22,

where β̂ = XT Y
n is the least-square estimate of the true regres-

sion coefficient β0. Therefore, in this case, problem (4) is equiv-
alent to the following optimization problem

min
β

||β − β̂||22 subject to
p∑

j=1
cjI(βj) ≤ C. (5)

As shown in the following Theorem 1, problem (5) is equivalent
to a 0-1 knapsack problem.

Theorem 1. If β̂ is an optimal solution to the following problem:

min
β

||β − a||22 subject to
p∑

j=1
cjI(βj) ≤ C, (6)

then β̂ = a ◦ Ẑ where ◦ denotes the entrywise product of two
vectors, and Ẑ = (ẑ1, ẑ2, . . . , ẑp) is the solution to the following

0-1 knapsack problem:

max
z1,z2,...,zp

p∑
j=1

a2
j zj subject to

p∑
j=1

cjzj ≤ C, and

z1, z2, . . . , zp ∈ {0, 1}. (7)

The 0-1 knapsack problem is a famous problem in combi-
natorial optimization, and has been extensively studied (see,
e.g., chapter 8 in the book of Paschos (2013) and the references
therein) in the operations research community. It is the problem
of choosing a subset of p items such that the corresponding
profit sum is maximized without having the weight sum to
exceed a prespecified capacity C. Although this problem is NP-
hard, algorithmic advances and hardware improvements enable
us to solve it efficiently. For example, dynamic programming
(Bellman 1966) is a popular algorithm to exactly solve the 0-1
knapsack problem. Theoretically, it is a pseudo-polynomial time
algorithm and the complexity is O(pC). Numerically, as shown
in Martello, Pisinger, and Toth (1999), the hybrid algorithm
combining dynamic programming and the branch-and-bound
approach (Nauss 1976) is able to solve many test datasets, with
up to 10,000 variables, in less than 0.2 s.

In this article, we choose the dynamic programming algo-
rithm to solve the 0-1 knapsack problem. Consider problem (7)
as an example. Denote D[j, w] be the maximum value that can
be attained with weight less than or equal to w using items up to
j. We can define D[j, w] recursively as follows:

• D[0, w] = 0;
• D[j, w] = D[j − 1, w] if cj > w;
• D[j, w] = max(D[j − 1, w], D[j − 1, w − cj] + a2

j ) if cj ≤ w.

The solution can then be found by calculating D[p, C]. Through-
out this article, we assume that the costs c1, c2, . . . , cp and the
budget C are nonnegative integers. If they are not integers, we
can use a scaling method that multiplies the noninteger costs
and the budget by the same factor so that all costs and the budget
are integers.

For the orthogonal design case, as shown in Theorem 1, we
can solve the SAA problem (4) by solving its corresponding 0-1
knapsack problem. This theoretical result is important for us to
design the algorithm for the general case in Section 3.2 where
the predictors are correlated.

3.2. General Case

To solve the general high-dimensional cost-constrained regres-
sion problem (4), similar to the method for the best subset
selection problem (Bertsimas et al. 2016), we use projected gra-
dient descent methods for the first-order convex optimization
problems (Nesterov 2013). Denote

g(β) = 1
2n

||Y − Xβ||22 and

�g(β) = ∂g(β)

∂β
= − 1

n
XT(Y − Xβ).
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For any α, β ∈ R
p, and L ≥ � = λmax(

XT X
n ), we can check that

||�g(α) − �g(β)||2 = || 1
n

XTX(α − β)||2

≤ λmax(
XTX

n
)||α − β||2 ≤ L||α − β||2.

In addition, for any η, β ∈ R
p, and L ≥ � = λmax(

XT X
n ), denote

QL(η, β) = g(β)+ L
2 ||η −β||22 +〈�g(β), η −β〉. We can check

that QL(η, β) − g(η) ≥ L−�
2 ||β − η||22 ≥ 0 and thus

g(η) ≤ QL(η, β) = g(β) + L
2
||η − β||22 + 〈�g(β), η − β〉

(8)

for all β , η with equality holding at β = η. Therefore, given a
current approximate solution β(m) to the problem (4), we can
upper bound the function g(η) by the function QL(η, β(m)), and
update the solution by

β(m+1) ∈ arg min
η

QL(η, β(m)) subject to
p∑

j=1
cjI(ηj) ≤ C,

which is also a global minimizer of the following problem:

min
η

||η − (β(m) − 1
L
�g(β(m)))||22 subject to

p∑
j=1

cjI(ηj) ≤ C.

(9)

According to Theorem 1, we can solve problem (9) efficiently
by finding the solution to its corresponding 0-1 knapsack
problem. Therefore, we propose the following high-dimensional
cost-constrained regression (HCR) method to estimate the
parameter of interest β∗.

High-Dimensional Cost-Constrained Regression (HCR)

Step 1: Choose δ > 0, L > � = λmax(
1
n XT X), and initialize β(1)

such that∑p
j=1 cjI(β

(1)
j ) ≤ C.

Step 2: For m ≥ 1, denote μ(m) = β(m) + 1
nL XT(Y − Xβ(m)),

apply dynamic
programming to find

β(m+1) = μ(m) ◦ Z(m) = (μ
(m)
1 z(m)

1 , μ(m)
2 z(m)

2 , . . . , μ(m)
p z(m)

p ),

where

Z(m) ∈ arg max
z1,z2,...,zp

p∑
j=1

(μ
(m)
j )2zj subject to

p∑
j=1

cjzj ≤ C.

Step 3: Repeat Step 2, until g(β(m)) − g(β(m+1)) ≤ δ.

In the HCR method, we need to choose the initial value β(1)

such that
∑p

j=1 cjI(β
(1)
j ) ≤ C. We can choose β(1) = 0. A

better choice can be the LASSO estimate which satisfies the
budget constraint and delivers the lowest mean cross-validated
error. Our simulation studies in Section 6 show that this choice
obtains good performance. Since the nonconvex optimization
problem (4) may have some local minimiziers, it is worthwhile

starting the algorithm with multiple different choices of β(1),
and choosing the solution with the smallest value of the objec-
tive function. To solve the 0-1 knapsack problem, we can use
the dynamic programming algorithm which is available in the
adagio R package. We can also use some other methods such
as the efficient hybrid algorithm (Martello, Pisinger, and Toth
1999). For each iteration in our algorithm, we need to calculate
μ(m) = β(m) + 1

nL XT(Y − Xβ(m)) and use the dynamic
programming to find the exact solution to the 0-1 knapsack
problem. Since the dynamic programming algorithm for the 0-1
knapsack problem costs O(pC) operations, each iteration in our
algorithm costs O(p(n + C)) operations in total.

4. Extensions

In this section, we consider several extensions of our proposed
HCR method to some general statistical learning problems (e.g.,
the cost-constrained logistic regression problem) and problems
with groups of variables.

4.1. Convex Differential Loss With Lipschitz Continuous
Gradient

Consider a general statistical learning problem where the sta-
tistical model links the predictors x1, x2, . . . , xp to the response
variable y via a linear function f = ∑p

j=1 xjβj. Let ψ(y, f ) be
the loss function used to fit the model. In this general setting,
considering the budget constraint, we are interested in finding
the cost-constrained model with f = ∑p

j=1 xjβ
∗
j , where

β∗ ∈ arg min
β

E[ψ(y,
p∑

j=1
xjβj)] subject to

p∑
j=1

cjI(βj) ≤ C.

Denote g(β) = 1
n

∑n
i=1 ψ(yi,

∑p
j=1 Xijβj). To estimate β∗, we

need to solve

min
β

g(β) subject to
p∑

j=1
cjI(βj) ≤ C. (10)

Suppose that the gradient of the convex differential loss function
ψ(y, f ) satisfies the following Lipschitz condition:

|∂ψ

∂f
(y, f1) − ∂ψ

∂f
(y, f2)| ≤ M1|f1 − f2|, (11)

for any y, f1, f2, and a positive constant M1. According to Lemma
1 in Yang and Zou (2015), if L ≥ 2M1 ·λmax(

XT X
n ), we can show

that

g(η) ≤ QL(η, β) = g(β) + L
2
||η − β||22 + 〈�g(β), η − β〉,

(12)

for all β , η with equality holding at β = η.
In addition, if

∂ψ2(y, f )
∂f 2 exists and

∂ψ2(y, f )
∂f 2 ≤ M2 for any y and f , (13)
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and L ≥ M2 · λmax(
XT X

n ), we can also show that

g(η) ≤ QL(η, β) = g(β) + L
2
||η − β||22 + 〈�g(β), η − β〉,

(14)

for all β , η with equality holding at β = η.
In Section 3, for the cost-constrained regression problem, we

choose the quadratic least-square loss ψ(y, f ) = 1
2 (y − f )2. We

can check that it satisfies the condition (13) with the constant
M2 = 1. Next, we show some other loss functions satisfying the
condition (11) or (13). We use some loss functions for the binary
classification problem as examples. For the binary classification
problem, the response variable y is a class label. We code y by
{+1, −1}.

The first example is the logistic regression loss defined by
ψ(y, f ) = log(1 + exp(−yf )). We can show that

∂ψ2(y, f )
∂f 2 = eyf

(1 + eyf )2 , and therefore
∂ψ2(y, f )

∂f 2 ≤ 1/4.

The second example is the squared hinge loss ψ(y, f ) = [(1 −
yf )+]2, where (1 − t)+ = 0 if t > 1 and 0 otherwise. As
shown in Yang and Zou (2015), we can verify that

∂ψ

∂f
(y, f ) = 0 if yf > 1 and − 2y(1 − yf ) otherwise.

|∂ψ

∂f
(y, f1) − ∂ψ

∂f
(y, f2)| ≤ 2|f1 − f2|,

and therefore condition (11) holds. For all the convex differen-
tial loss functions satisfying the condition (11) or (13), using the
same idea shown in Section 3, given a current approximate solu-
tion β(m) to the problem (10), we can upper bound the function
g(η) by the function QL(η, β(m)), and update the solution by

β(m+1) = arg min
η

||η − (β(m) − 1
L
�g(β(m)))||22

subject to
p∑

j=1
cjI(ηj) ≤ C. (15)

According to Theorem 1, we can solve problem (15) efficiently
by finding the solution to its corresponding 0-1 knapsack prob-
lem.

In practice, the budget limit C may be relatively large while
the costs c1, c2, . . . , cp are small. Then, many feasible models
may have k predictors where k can be close to or larger than the
sample size n. In this case, we can combine our HCR method
with regularization techniques to reduce overfitting. For exam-
ple, if we use the elastic net penalty (Zou and Hastie 2005), we
can estimate β∗ by solving

min
β

1
n

n∑
i=1

ψ(yi,
p∑

j=1
Xijβj) +

p∑
j=1

λ(α|βj| + 1 − α

2
β2

j )

subject to
p∑

j=1
cjI(βj) ≤ C.

To solve the above problem, similar to the method in Section 3,
we only need to develop efficient algorithms to solve the follow-
ing problem

min
β

1
2
||β − a||22 +

p∑
j=1

λ(α|βj| + 1 − α

2
β2

j )

subject to
p∑

j=1
cjI(βj) ≤ C. (16)

As shown in the following Proposition 1, in order to solve
problem (16), we also only need to solve a 0-1 knapsack prob-
lem.

Proposition 1. If β̂ is an optimal solution to the problem (16),
then β̂ = 1

1+λ(1−α)
· sign(a − αλ) ◦ (|a| − αλ)+ ◦ Ẑ, where

Ẑ = (ẑ1, ẑ2, . . . , ẑp) is the solution to the following 0-1 knapsack
problem

max
z1,z2,...,zp

p∑
j=1

a2
j − 2αλ|aj| + α2λ2

2(1 + λ(1 − α))
· 1 + sign(|aj| − αλ)

2
· zj

subject to
p∑

j=1
cjzj ≤ C, and z1, z2, . . . , zp ∈ {0, 1}.

As shown in Proposition 1, both the shrinkage and the budget
constraint can result in a sparse estimate of β∗. For our proposed
HCR method with regularization, we can use cross-validation to
choose the tuning parameters such as α and λ in the elastic net
penalty. The budget limit C is assumed to be prespecified.

4.2. Groups of Variables

In some data collection processes, variables are collected group-
by-group. As shown in the diabetes study in Section 1, biomark-
ers are collected from different lab tests. From a blood test, we
get the values of four biomarkers (HDL, LDL, Total cholesterol,
and Triglycerides) simultaneously. We need to spend $200 if
we need to collect the value of any of these four biomarkers to
predict the treatment response. In this case, the variables are
divided into different groups naturally according to the data
collection process. It is more reasonable to consider the group
costs of different lab tests rather than the separate cost of each
biomarker.

Suppose we need to spend c̃g dollars to collect the values of
all pg variables in the gth group Ag . If the loss function ψ(y, f )
is used, we are interested in finding the cost-constrained model
with f = ∑p

j=1 xjβ
∗
j and

β∗ ∈ arg min
β

E[ψ(y,
p∑

j=1
xjβj)]

subject to
G∑

g=1
c̃g[1 −

∏
j∈Ag

(1 − I(βj))] ≤ C,

where we assume that we always need to spend c̃g dollars if there
is at least one variable in the gth groupAg with a nonzero regres-
sion coefficient. Given the training data {Y , X}, we estimate β∗
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by solving the following SAA problem:

min
β

g(β) subject to
G∑

g=1
c̃g[1 −

∏
j∈Ag

(1 − I(βj))] ≤ C. (17)

Similar to our discussion in Section 4.1, if the loss function
ψ(y, f ) is convex, differentiable, and satisfies the condition (11)
or (13), given a current approximate solution β(m) to the prob-
lem (17), we can upper bound the function g(η) by the function
QL(η, β(m)), and update the solution by

β(m+1) ∈ arg min
η

||η − (β(m) − 1
L
�g(β(m)))||22

subject to
G∑

g=1
c̃g[1 −

∏
j∈Ag

(1 − I(βj))] ≤ C. (18)

The following Proposition 2 shows how to solve problem (18).

Proposition 2. If β̂ is an optimal solution to the following
problem

min
β

||β − a||22 subject to
G∑

g=1
c̃g[1 −

∏
j∈Ag

(1 − I(βj))] ≤ C,

then β̂ = a ◦ Ẑ, where Ẑ = (ẑ11p1 , ẑ21p2 , . . . , ẑg1pg )
T , 1pg is

a row vector of pg 1’s, and ẑ1, ẑ2, . . . , ẑg is the solution to the
following 0-1 knapsack problem:

max
z1,z2,...,zg

G∑
g=1

(
∑
j∈Ag

a2
j )zg subject to

G∑
g=1

c̃gzg ≤ C, and

z1, z2, . . . , zg ∈ {0, 1}.

The proof of Proposition 2 is very similar to the proof of
Theorem 1. In this case, the number of groups G is often
much smaller than the dimension p, and we can use dynamic
programming to solve the 0-1 knapsack problem efficiently. For
the problem with groups of variables, we can also combine our
HCR method with regularization techniques. We estimate β∗ by
solving

min
β

1
n

n∑
i=1

ψ(yi,
p∑

j=1
Xijβj) +

p∑
j=1

λ(α|βj| + 1 − α

2
β2

j )

subject to
G∑

g=1
c̃g[1 −

∏
j∈Ag

(1 − I(βj))] ≤ C. (19)

The following Proposition 3 can be used to solve the above
optimization problem.

Proposition 3. If β̂ is an optimal solution to the following
problem:

min
β

1
2
||β − a||22 +

p∑
j=1

λ(α|βj| + 1 − α

2
β2

j ) subject to

G∑
g=1

c̃g[1 −
∏

j∈Ag

(1 − I(βj))] ≤ C,

then β̂ = 1
1+λ(1−α)

· sign(a − αλ) ◦ (|a| − αλ)+ ◦ Ẑ, where
Ẑ = (ẑ11p1 , ẑ21p2 , . . . , ẑg1pg )

T and ẑ1, ẑ2, . . . , ẑg is the solution
to the following 0-1 knapsack problem

max
z1,z2,...,zg

G∑
g=1

⎛
⎝∑

j∈Ag

a2
j − 2αλ|aj| + α2λ2

2(1 + λ(1 − α))
· 1 + sign(|aj| − αλ)

2

⎞
⎠zg

subject to
G∑

g=1
c̃gzg ≤ C, and z1, z2, . . . , zg ∈ {0, 1}.

The proof of Proposition 3 is very similar to the proof of
Proposition 1. We omit the details of the proof.

5. Theoretical Properties

In this section, we consider the problem (10) with a general
convex differential loss function ψ(y, f ) satisfying the condition
(11) or (13), and the budget constraint

∑p
j=1 cjI(βj) ≤ C.

Denote � = 2M1λmax(
1
n XTX) if ψ(y, f ) satisfies the condition

(11), and M2λmax(
1
n XTX) if ψ(y, f ) satisfies the condition (13).

Since we choose to use the dynamic programming algorithm
to solve the 0-1 knapsack problem in the HCR algorithm, we
assume that all costs cj’s and the budget C are integers. If we
have some noninteger costs or budget, we can use the scaling
method to scale cj’s and C first and then use the dynamic
programming algorithm. We generalize some theoretical results
shown in Bertsimas et al. (2016) about the best subset selection
problem. The theoretical results of the methods for the other
extensions shown in Section 4 can be derived similarly.

We first show the asymptotic convergence of our proposed
method.

Theorem 2. Assume that all costs cj’s and the budget C
are integers. For any L ≥ �, the sequence g(β(m)) =
1
n

∑n
i=1 ψ(yi,

∑p
j=1 Xijβ

(m)
j ) is decreasing, converges and

satisfies g(β(m)) − g(β(m+1)) ≥ L−�
2 ||β(m+1) − β(m)||22.

Furthermore, if L > �, then β(m+1) − β(m) → 0 as m → ∞.

According to Theorem 2, given a small positive number δ in
our HCR method, our algorithm is guaranteed to converge in
finite steps. Next, we introduce the first-order stationary point
of the high-dimensional cost-constrained regression problem,
which can be considered as a near optimal solution. Then we
show that the sequence generated by our algorithm, {β(m)},
converges to a first-order stationary point.

Definition 1. Given a positive constant L ≥ �, a vector η ∈ R
p is

said to be a first-order stationary point of the high-dimensional
cost-constrained regression problem (10) if it satisfies the fol-
lowing condition:

η ∈ arg min
β

||β − (η − 1
L
�g(η))||22 subject to

p∑
j=1

cjI(βj) ≤ C.
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As shown in our following Theorem 3, a global minimizer of
the problem (10) is a first-order stationary point.

Theorem 3. Let L > �. If β̂ is a global minimizer of the problem
(10), then it is a first-order stationary point.

As the problem (10) is a nonconvex optimization problem,
it is generally difficult to find a global minimizer. According to
the above Theorem 3, a global minimizer is also a first-order sta-
tionary point. We can develop some efficient algorithms to find
a first-order stationary point which can be a global minimizer
of the problem (10).

Theorem 4. If η is a first-order stationary point and

max
j∈A

cj +
∑
j∈Ac

cj ≤ C, (20)

where A = {j : ηj = 0}, then η is a global minimizer of the
problem (10).

The condition in Theorem 4 can be used to check whether a
first-order stationary point is a global minimizer. By Theorems 3
and 4, we can view the first-order stationary point as a near opti-
mal solution of the problem (10). In the following Theorem 5,
we will show that the sequence {β(m)} generated by our method
converges to a first-order stationary point which can be a global
minimizer of the problem (10).

Theorem 5. Assume that all costs cj’s and the budget C are
integers. If L > � and

lim inf
m→∞ min{|β(m)

j | : |β(m)
j | > 0} > 0, (21)

then the sparsity pattern sequence {Z(m)} converges after finitely
many steps, that is, there exists an iteration index M∗ such that
Z(m) = Z(m+1) for all m ≥ M∗. Furthermore, the sequence
{β(m)} is bounded and converges to a first-order stationary
point.

Note that Bertsimas et al. (2016) used a condition similar
to the condition (21) for the best subset selection problem.
This condition implies that the support of β(m) stabilizes after
several iterations and our proposed HCR method behaves like
a gradient descent algorithm thereafter. Theorem 5 shows that
the sequence {β(m)} converges to a first-order stationary point,
which is only a near global minimizer. We can use the sufficient
condition (20) to check whether this first-order stationary point
is a global minimizer. Besides the case where the condition (20)
is satisfied, we can show that the sequence {β(m)} converges to a
global minimizer when some other conditions on the function
g(β), the nonconvex set F = {β :

∑p
j=1 cjI(βj) ≤ C}, and the

initial estimate β(1) are satisfied.
Let β̂ be a global minimizer of problem (10). Suppose that

the convex differentiable loss function ψ(y, f ) satisfies condi-
tion (11) or (13). We have shown that the function g(β) =
1
n

∑n
i=1 ψ(yi,

∑p
j=1 xijβj) satisfies

g(η) ≤ g(β) + L
2
||η − β||22 + 〈�g(β), η − β〉,

for all β , η and L ≥ �. Denote B = {β : ||β − β̂||2 ≤ ||β(1) −
β̂||2}, where β(1) is the initial value used in our algorithm. In
the following Theorem 6, we further assume that the function
g(β) satisfies the restricted strong convexity condition (Barber
and Ha (2018))

g(η) ≥ g(β) + α

2
||η − β||22 + 〈�g(β), η − β〉, (22)

for all β , η ∈ B, where α ∈ (0, L) is a constant. In addition, we
assume the nonconvex setF = {β :

∑p
j=1 cjI(βj) ≤ C} satisfies

max
β ,η∈F∩B

γβ(F) · ||�g(η)||2 ≤ (1 − t0) · α

2
, (23)

where t0 ∈ (0, 1) is a constant and γβ(F) is the local concavity
coefficient measuring the concavity in the feasible set F relative
to the point β (Barber and Ha (2018)). Using Theorem 3 in
Barber and Ha (2018), we can prove the following Theorem 6.

Theorem 6. Assume that all costs cj’s and the budget C are
integers. Suppose that the convex differentiable loss function
ψ(y, f ) satisfies condition (11) or (13). Furthermore, assume
that conditions (22) and (23) hold. Then, we have

||β(m+1) − β̂||22 ≤ (1 − 2αt0
L + α

)m · ||β(1) − β̂||22.

The above result indicates that the sequence {β(m)} gener-
ated by our proposed algorithm can converge linearly to the
global minimizer β̂ . If we further assume that β̂ is the unique
global minimizer of the problem (10), according to the existing
theoretical result on the consistency of SAA estimators (e.g.,
(Shapiro, Dentcheva, and Ruszczyński 2014, Theorem 5.3)), we
can show that β̂ is a consistent estimator of β∗ under some
regularity conditions. By combining the consistency of SAA
estimators and the result shown in Theorem 6, we can conclude
that ||β(m+1) −β∗||2 ≤ ||β(m+1) − β̂||2 +||β̂ −β∗||2, where the
error ||β(m+1) − β̂||2 converges to 0 as m → ∞ and the error
||β̂ − β∗||2 converges to 0 in probability as n → ∞.

6. Simulation Study

In this section, we demonstrate the effectiveness of our proposed
HCR method using some simulated examples. Since the existing
methods (Fouskakis and Draper 2008; Fouskakis, Ntzoufras,
and Draper 2009; Yue 2010) that trades prediction accuracy
against data collection cost requires expensive computation
for the high-dimensional examples used in this study, we only
compare our proposed method with the LASSO method and
two weighted LASSO methods. The first weighted LASSO
method (WLASSO1) is the adaptive LASSO regression (Zou
2006) using the costs of predictors cj’s as the weights. The second
weighted LASSO method (WLASSO2) is the adaptive LASSO
regression using cj/|β̂ initial

j |’s as the weights, where β̂ initial
j is the

ridge regression estimate which obtains the lowest mean cross-
validated error.

The LASSO method and the two weighted LASSO methods
do not handle the budget constraint directly. For all these three
methods, in the tuning process, we use the cross-validation
method to choose the estimate in the regularization path
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which satisfies the budget constraint and obtains the lowest
mean cross-validated error. The glmnet R package (Friedman,
Hastie, and Tibshirani 2010) is used for these three methods.
For our HCR method, we choose δ = 10−4, and β(1) to be
the LASSO estimate which satisfies the budget constraint and
delivers the lowest mean cross-validated error. We choose L
to be λmax(

1
n XTX) + 0.1 for the four regression examples

(Examples 1–4) with the quadratic least-squares loss and
0.25λmax(

1
n XTX) + 0.1 for the two classification examples

(Examples 5 and 6) with the logistic regression loss. For each
experiment, we run the iterations in the HCR algorithm at most
1000 times. For each example, we repeat the experiment 100
times. For all six examples, the dimension p is 1000, the sample
size of the training dataset is 200, and the sample size of the
testing dataset is 10,000.

6.1. Examples

We study four regression examples and two classification exam-
ples. For the regression examples, the response variables are
generated from the linear model shown in Equation (1). For
the classification examples, the class labels are generated from
logistic regression models.

Example 1. The predictors (x1, x2, . . . , xp)T ∼ N(0, Ip).
The first 10 elements of β0 are generated from N(4, 1)
independently, and the other p – 10 elements of β0 are 0.
The budget C = 12 and the variance σ 2 = 0.25. For each
j ∈ {1, 2, . . . , p}, we choose cj, the cost of collecting the jth
variable, randomly from the set {1, 2, 3}, and then use those
cj’s for all the 100 experiments. In this example, β∗ is different
from β0 since the simulated costs satisfy

∑10
j=1 cj = 20 > C.

As � = Ip, we can find the true parameter of interest β∗
by solving the corresponding 0-1 knapsack problem of the
problem (3).

Example 2. In this example, we consider the case where the true
important variables (the first 10 variables) and the unimportant
variables (the other p – 10 variables) are uncorrelated. The
predictors (x1, x2, . . . , x10)

T ∼ N(0, A), where ajt = 0.2 if j �= t
and 1 otherwise. The other p – 10 predictors are generated from
N(0, B), where bjt = 0.2 if j �= t and 1 otherwise. The first 10
elements of β0 are generated from N(4, 1) independently, and
the other p – 10 elements of β0 are 0. The budget C = 12 and
the variance σ 2 = 0.25. For each j ∈ {1, 2, . . . , p}, we choose cj
randomly from the set {1, 2, 3}, and then use those cj’s for all the
100 experiments. In this case, since β∗

j = 0 for j > 10, we use
the enumeration method to find the true β∗

j for j ≤ 10. As the
simulated costs in this example satisfy

∑10
j=1 cj = 20 > C, β∗ is

different from β0.

Example 3. The predictors (x1, x2, . . . , xp)T ∼ N(0, �), where
σjt = 0.5|j−t|. The first 10 elements of β0 are generated from
N(4, 1) independently, and the other p – 10 elements of β0

are 0. The budget C = 100 and the variance σ 2 = 0.25. For
each j ∈ {1, 2, . . . , p}, we choose cj to be 10 for all the 100
experiments. Since all costs cj’s are equal, the cost-constrained
regression problem in this example is equivalent to the best

subset selection problem with the constraint
∑p

j=1 I(βj) ≤
C/cj = 10. In addition, as C is equal to the cost of collecting
all important variables, β0 is a feasible solution and therefore
the true parameter of interest β∗ is the same as β0.

Example 4. This example is the same as Example 3 except
that for each j ∈ {1, 2, . . . , p}, we choose cj randomly from
the set {1, 2, 3, . . . , 50}, and then use those cj’s for all the 100
experiments. It requires expensive computation to find the exact
true parameter of interest β∗ by solving the NP-hard problem
(3). For this example, we do not know the true parameter of
interest β∗. However, since the simulated costs satisfy

∑10
j=1 cj =

283 > C, we know that β∗ is different from β0.

Example 5. The predictors (x1, x2, . . . , xp) and β0 are generated
by the same method showing in Example 2. For the i-th
observation, the class label (+ 1 or –1) is generated by a binomial
distribution. The probability of being 1 is exp(

∑p
j=1 Xijβ

0
j )/(1+

exp(
∑p

j=1 Xijβ
0
j )). The budget C is chosen to be 30. For

each j ∈ {1, 2, . . . , p}, we choose cj randomly from the
set {1, 2, 3, . . . , 10}, and then use those cj’s for all the 100
experiments. Similar to Example 4, it requires expensive
computation to find the exact true parameter of interest β∗.
As the simulated costs in this example satisfy

∑10
j=1 cj = 45 >

C, β∗ is different from β0.

Example 6. The predictors (x1, x2, . . . , xp)T ∼ N(0, �), where
σjt = 0.5|j−t|. The other settings are the same as Example 5.

To evaluate different methods, we use five measures: (i)
estimation error: ||β̂ − β∗||2, (ii) prediction error: ||Ytest −
Xtestβ̂||22/ntest for regression examples or the misclassification
error for classification examples, (iii) false-positive rate (FPR)
|{j : β∗

j = 0 and β̂j �= 0}|/|{j : β∗
j = 0}|, (iv) false-negative

rate (FNR) |{j : β∗
j �= 0 and β̂j = 0}|/|{j : β∗

j �= 0}|, and (v)
elapsed time of the R software to calculate β̂ (the results about
the elapsed time are shown in the supplementary materials). For
Examples 4, 5, 6, since we cannot calculate the true parameter of
interest β∗, we only compare the elapsed time and the prediction
error of different methods.

6.2. Estimation and Prediction Performance

Figure 1 shows the estimation errors of HCR, LASSO, and the
weighted LASSO methods. As shown in those three bar plots,
compared with the other three methods, our proposed HCR
method has the best estimation performance for all three exam-
ples. For the third example, as β∗ = β0, penalized regression
methods generally have good performance. Both the LASSO
method and the weighted LASSO methods deliver relatively
low estimation errors. Our proposed HCR method still obtains
the lowest estimation error. One possible reason is that HCR
uses a nonconvex constraint rather than a convex penalty and
therefore has a smaller estimation bias.

The comparison of the prediction performance between
HCR and the other three methods is shown in Figure 2. Our
proposed HCR method delivers better prediction performance
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Figure 1. Estimation errors of HCR, LASSO, and the weighted LASSO methods.

Figure 2. Prediction errors of HCR, LASSO, and the weighted LASSO methods.

Figure 3. False positive rates of HCR, LASSO, and the weighted LASSO methods.

than the other three methods in all six examples. Compared
with the LASSO method, the two weighted LASSO methods
perform better in Examples 1, 2, and 4. However, they can

perform worse than the LASSO methods as shown in the bar
plots of Examples 5 and 6. For the cost-constrained linear
regression problem, how to choose effective weights in the
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weighted LASSO method considering both the costs and the
initial estimate of the true regression coefficient vector is still an
open question.

6.3. Model Selection Performance

We compare the model selection performance using the false-
positive rate and false-negative rate in Figures 3 and 4, respec-
tively. As shown in Figures 3, the false-positive rates of all four
methods are close to 0. WLASSO1 delivers a slightly higher
false-positive rate than the other three methods in Example 1.
In terms of false negative rate, as shown in Figure 4, WLASSO2
delivers the best performance in Examples 1 and 2. For Exam-
ple 1, our proposed method delivers a lower FNR than the
LASSO and WLASSO1 methods. For Example 2, the false-
negative rate of HCR is much lower than that of the LASSO
while it is slightly higher than that of WLASSO1. For Example 3,
the true parameter of interest β∗ is the same as β0. Both the
LASSO and weighted LASSO methods are expected to have
good model selection performance. Our proposed HCR method
also obtains very good model selection performance on this
example.

Overall, our simulation studies demonstrate the effectiveness
of our proposed HCR method. Compared with the penalized
regression techniques, our proposed HCR method could deliver
a feasible model with better estimation, prediction, and model
selection performance.

7. Application to a Diabetes Study

Diabetes mellitus, or simply diabetes, is a disease character-
ized by elevated blood glucose. It is a major cause of kidney
failure, nontraumatic lower-limb amputations, blindness, heart
disease and stroke. As a result, diabetes is one of the leading
causes of death. The goal of treating diabetes patients is to
lower their blood glucose. It is important to predict patient’s
treatment responses before assigning treatments so that we can
select the treatment with the largest potential outcome for each
patient. For this prediction problem, the best linear predictor
may incorporate some biomarkers that are expensive to mea-
sure. To accurately predict treatment response while controlling
the diagnostic cost is of practical importance. Our proposed
HCR method is developed to address this important problem.

In this study, we use a dataset from a randomized, double-
blind, parallel-group comparison phase III study that com-
pares drug efficacy of gliclazide (control) versus pioglitazone
(treatment). A total of 1270 patients with Type 2 diabetes were
randomized in the phase III study with poorly controlled HbA1c
(7.5%-11%). Patients were either received pioglitazone up to 45
mg once daily or gliclazide up to 160 mg two times a day. The
primary efficacy endpoint was change in HbA1c from baseline
to the end of the study (52 weeks). More details on this study
design are shown in Charbonnel et al. (2005). In our analysis, we
include 20 biomarkers measured at baseline. We delete patients
if the value of change in HbA1c from baseline to the end of the

Figure 4. False negative rates of HCR, LASSO, and the weighted LASSO methods.

Figure 5. Prediction errors of different methods for the diabetes study. Note that the total cost of all the predictors used in the LASSO2 model selected by the 5-fold CV is
$50. This LASSO2 model is infeasible when the budget is less than $50.
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study or the value of some biomarker is missing. The biomarkers
used in our study and their costs are shown in Table 1 in
Section 1.

After the data preprocessing, our final dataset has 181
diabetes patients with one continuous response variable (the
change in HbA1c from baseline to the end of the study) and 20
predictors. Considering the group structure of the predictors
in this study, we used the HCR method (19) for the data with
groups of variables to develop cost-constrained models for a
sequence of budgets (from $0 to $200). We also used the LASSO
penalty to reduce overfitting. We compared this HCR method
with the LASSO and the Group LASSO (Yuan and Lin 2006)
methods. For LASSO and Group LASSO, in order to choose the
best tuning parameter λ, we used the cross-validation to choose
the best tuning parameter that delivered the feasible solution
(a solution that satisfies the budget constraint) with the lowest
mean cross-validated error. In order to check the prediction
performance of the linear model considering all predictors, we
also used the LASSO method ignoring the budget constraint.
We use LASSO1 and LASSO2 to denote the LASSO method
considering the budget constraint and ignoring the constraint,
respectively.

Before building cost-constrained models, we centered and
standardized both the response variable and predictors. To com-
pare the prediction errors of different methods, we used the 5-
fold cross-validation (CV). For all methods, we used another
inner 5-fold CV on the training data to choose the best tuning
parameters. Figure 5 shows the prediction errors of different
methods. The prediction errors of HCR, Group LASSO, and
LASSO1 decrease as the budget increases. These three methods
consider the budget constraint and therefore perform similarly
when the budget is very small (e.g., less than $20 in this real
data analysis). The prediction error of LASSO2 is constant as it
ignores the budget constraint. The total cost of all the predictors
used in the LASSO2 model is $50. We can expect that the
prediction performance of all methods should be similar if the
budget is more than $50. Indeed, as shown in Figure 5, when the
budget is larger than $50, the prediction errors of all methods are
close.

When the budget is less than $50, the LASSO2 model is
infeasible, and therefore it is not reasonable to compare the
prediction performance of HCR, Group LASSO, and LASSO1
with that of LASSO2. As shown in Figure 5, when the budget
is between $20 and $45, our proposed HCR method obtains
significantly lower prediction errors than the Group LASSO
and LASSO1 methods that also consider the budget constraint.
Our numerical results also indicate that the prediction error
of HCR can be even lower than that of LASSO2 in this case.
One possible reason is that when the budget C is smaller than
the cost of the best model fitted by LASSO2 and it is large
enough to allow us to use some important predictors, both the
budget constraint and the LASSO penalty play an important
role in the modeling process. In that case, our HCR method
can deliver a lower prediction error than LASSO2 by using
both the budget constraint and the LASSO penalty to guide the
modeling process. However, if C is larger than the cost of the best
model fitted by LASSO2, the budget constraint will not affect the
modeling process significantly and therefore our HCR method
will be similar to the LASSO2 method.

8. Conclusion

In this article, in order to take into account the cost of data
collection in the modeling process, we study a new high-
dimensional cost-constrained regression problem. Although
the nonconvex budget constraint makes this problem NP-
hard, we propose a new discrete extension of the first-order
continuous optimization methods to deliver a near optimal
solution. Our HCR algorithm generates a series of estimates
of the regression coefficient vector by solving a sequence of
0-1 knapsack problems that can be efficiently addressed by
many existing algorithms such as dynamic programming. Our
proposed HCR method can be extended to general statistical
learning problems and problems with groups of variables.
We can also combine our HCR method with regularization
techniques to reduce overfitting. Theoretically, we show that
the series of the estimates of the regression coefficient vector
converge to a first-order stationary point, which is a near
optimal solution. Our numerical study indicates that the
proposed HCR method is computationally tractable to solve
the nonconvex high-dimensional cost-constrained regression
problem. It delivers promising estimation, prediction, and
model selection performance.

Supplementary Materials

Supplementary file: All proofs and the comparison of the computational
time of different methods are shown in this file. (pdf)

R codes: R codes for all the simulation examples and the diabetes study.
(ZIP archive)
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