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Abstract

Verifiable random functions (Micali et al., FOCS’99) allow a key-pair holder to verifiably
evaluate a pseudorandom function under that particular key pair. These primitives enable fair
and verifiable pseudorandom lotteries, essential in proof-of-stake blockchains such as Algorand
and Cardano, and are being used to secure billions of dollars of capital. As a result, there is
an ongoing IRTF effort to standardize VRFs, with a proposed ECVRF based on elliptic-curve
cryptography appearing as the most promising candidate.

In this work, towards understanding the general security of VRFs and in particular the
ECVRF construction, we provide an ideal functionality in the Universal Composability (UC)
framework (Canetti, FOCS’01) that captures VRF security, and show that ECVRF UC-realizes
this functionality.

We further show how the range of a VRF can generically be extended in a modular fashion
based on the above functionality. This observation is particularly useful for protocols such
as Ouroboros since it allows to reduce the number of VRF evaluations (per slot) and VRF
verifications (per block) from two to one at the price of additional (but much faster) hash-function
evaluations.

Finally, we study batch verification in the context of VRFs. We provide a UC-functionality
capturing a VRF with batch-verification capability, and propose modifications to ECVRF that
allow for this feature. We again prove that our proposal UC-realizes the desired functionality.
We provide a performance analysis showing that verification can yield a factor-two speedup for
batches with 1024 proofs, at the cost of increasing the proof size from 80 to 128 bytes.

1 Introduction

A Verifiable Random Function (VRF, [MRV99]) is a pseudo-random function whose correct evaluation
can be verified. It can be seen as a hash function that is keyed by a public-private key pair: the
private key is necessary to evaluate the function and produce a proof of a correct evaluation, while
the public key can be used to verify such proofs. VRFs were originally considered as tools for
mitigation of offline dictionary attacks on hash-based data structures; more recently they have found
applications in the design of verifiable lotteries. In particular, VRFs are fundamental primitives
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to several proof-of-stake ledger consensus protocols, such as those underlying the blockchains
Algorand [GHM™17] and Cardano [DGKR18]. They allow for a pseudo-random selection of block
leaders in the setting with adaptive corruption, an important security feature of these protocols.

There is an ongoing effort to standardize this primitive via an IRTF draft [GRPV22] that describes
the desirable properties of VRFs and proposes (as of August '22) two concrete constructions. One of
these constructions is based on RSA, while the other one relies on elliptic-curve cryptography (ECC);
this latter construction is referred to as ECVRF. A clear advantage of ECVREF over the RSA-based
alternative is the considerable improvement in key sizes it provides (for the same security level).
Indeed, both Algorand and Cardano employ ECVRF, as do most of the existing implementations
listed in the draft.

One of the VRF security properties articulated in the IRTF draft is that of random-oracle-
like unpredictability. Roughly speaking, it requires that if the VRF input has sufficient entropy
(i.e., cannot be predicted), then the output is indistinguishable from uniformly random. As the
draft observes, this property is essential for the security of the leader-election mechanisms in PoS
blockchains. The property is not formally defined in the draft, though a definition in the form
of an ideal functionality in the Universal Composability (UC) framework [Can01, [Can20] is given
in [DGKRI18]. The IRTF draft states that this strong notion is “believed” to be satisfied by the
ECVRF construction; however, to the best of our knowledge, no formal proof of this claim exists to
date. This state of affairs is clearly unsatisfactory: UC security is a desirable notion of security as
it guarantees that the proven security provisions (in the sense of realizing an ideal functionality)
are retained, by virtue of the composition theorem, when employing the scheme in higher-level
applications. This is especially relevant for VRFs as a low-level primitive used in many protocols,
including those mentioned above.

Returning to the ECVRF construction, another important benefit it provides is structural:
it is essentially a Fiat-Shamir transformed [ES87] X-protocol [CDS94] and therefore—at least in
principle—suitable for batch verification. The idea for batch verification first appears in foundational
work by Naccache et al. [NMVRO5] and consists of verifying a batch of linear equations by verifying
a random linear combination of these. Bernstein et al. [BDL™12| exploited this technique with the
state-of-the-art algorithms in multi-scalar multiplication, achieving a factor-two improvement in
signature verification using batches of 64 signatures. Such an improvement in verification times
is of direct relevance for blockchains, as the routine task of joining the protocol—which requires
synchronizing with the current ledger—involves verification of many blocks and their VRF proofs.
Indeed, typical synchronization conventions demand verification of the entire existing blockchain.
We note in passing that the possibility of batch verifications for Schnorr signatures [Sch91] (derived
from another type of X-protocol) is a significant competitive advantage over ECDSA, and was one
of the reasons for Bitcoin [Nak08] to switch to that type of signature [WNR20]. The possibility of
batch verification for ECVRF has already appeared in the IRTF draft mailing list [Rey21]. However,
a concrete proposal for the design, along with a formal security notion and a corresponding security
proof, has not been given.

Our Contributions. In this work we close the above gaps and have the following results:

1. We propose a cleaner formalization of the VRF functionality in the UC framework, building
on the original proposal from [DGKRI18] (later revised in [BGK™ 18| to remove some issues in
the original formulation).

2. We show a generic and modular way to extend the range of an arbitrary VRF using the above
UC formalization. As a case study, we show in precisely how range extensions can
be used in Ouroboros [DGKRI18, BGK™ 18| to reduce the number of invocations of the VRF.



3. We show that ECVRF UC-realizes this functionality in the random-oracle model (ROM). The
proof of this claim is surprisingly involved, requiring a rather complex simulation. We point out
that this is the first comprehensive UC proof for this type of VRF construction and further shows
that the simulation can be done in a responsive manner [CEK" 16|, a desirable property that
simplifies the analysis of higher-level protocols using the VRF functionality (e.g., [BGK™18]).
In particular, the simulation strategy described in [DGKRI1S] is not applicable (cf. related
work below) and [DGKR18] does not provide a proof for the revised functionality.

4. We introduce a UC formalization for a VRF providing batch verification via a natural extension
of the above VRF functionality.

5. We define a concrete instantiation of batch verification for the ECVRF construction and prove
that it UC-realizes the above ideal functionality of a VRF with batch verification. Despite our
focus on VRFs, we believe that our formalization would naturally carry over to other widely
used Fiat-Shamir transformed -protocols, such as Schnorr signatures or Ed25519.

6. To evaluate the efficiency improvements of the batch-compatible version, we compare the
efficiency of the current draft version versus the batch-compatible primitive presented in
this work. Roughly speaking, we observe that the batch compatible primitive can achieve a
factor-two efficiency gain with batches of size 1024 in exchange for a trade-off with respect to
its size, growing from 80 bytes to 128 bytes.

Related Work. The VRF notion was introduced by Micali et al. [MRV99]. A stronger notion
of VRF with security in the natural setting with malicious key generation was presented as a UC
functionality by David et al. [DGKRIS8]. A particular instantiation, based on 2HashDH [JKK14],
was claimed to satisfy this stronger notion, but the provided simulation argument only holds for
a revised version of the functionality which is first described in [BGKT18|. Jarecki et al. [JKK14]
provide a UC functionality of a slightly different notion, which is that of a Verifiable Oblivious
Pseudo Random Function where two parties need to input some secret information in order to
compute the random output.

The first systematic treatment of batch verification for modular exponentiation was presented by
Bellare et al. [BGRIS]|, and adapted to digital signatures by Camenisch et al. [CHP12]. The batch
verification technique that we adopt was initially developed by Naccache et al. [NMVR95], and used
by Bernstein et al. [BDL'12] and Wuille et al. [WNR20]. Exploiting the batching technique in the
context of VRFs was informally discussed in the IRTF group and mailing list [Rey21, IGRPV22].

Organization. The UC formalization of VRFs is presented in The modular range
extension and the proof appear in and 5] respectively. The Ouroboros case study is
given in [Section 6. We recall the ECVRF construction in and give our specification
for batch verifications in and showcase the performance improvement of our proposal.
Finally, is devoted to the security proofs regarding ECVRF: In we show the
UC security of ECVRF and in we provide the UC formalization of batch verifications
and prove the security of our batch verification technique for ECVRF.

2 Preliminaries

UC security. We give a very brief overview of the UC security framework necessary to understand
the rest of this work. For details we refer to [Can20]. In this framework a protocol execution (the



so-called “real-world process”) is represented by a group of interactive Turing machine instances
(ITIs) running a protocol 7, forming a protocol session. The environment Z orchestrates the inputs
and receives the outputs of these machines. Additionally, an adversary is part of the execution
and can corrupt parties and thereby take control of them (we assume throughout this work the
standard UC adaptive corruption model defined in [Can20]). To capture security guarantees, UC
defines a corresponding ideal process which is formulated w.r.t. an ideal functionality /. In the ideal
process, the environment Z interacts with the ideal-world adversary (called simulator) S and with
functionality F (or more precisely, with protocol machines that simply relay all inputs and outputs
to and from F, respectively). A protocol m UC-realizes F if for any (efficient) adversary there exists
an (efficient) simulator S such that for any (efficient) environment Z the real and ideal processes
are indistinguishable. This means that the real protocol achieves the desired specification F.

VRF syntax. We denote by x the security parameter. The domain of the VRF is denoted by X
and its finite range is denoted by ) and typically represented by Y = {0, 1}4rf(%) where fyre(.) is a
function of the security parameter. For notational simplicity we often drop the explicit dependence
on K.

Definition 2.1 (VRF Syntax). A verifiable random function (VRF) consists of a triple of PPT
algorithms VRF := (Gen, Eval, Vfy):

o The probabilistic algorithm (sk,vk) <— Gen(1%) takes as input the security parameter x in
unary encoding and outputs a key pair, where sk is the secret key and vk is the (public)
verification key.

o The probabilistic algorithm (Y, ) <= Eval(sk, X) takes as input a secret key sk and X € X
and outputs a function value Y € ) and a proof 7.

o The (possibly probabilistic but usually deterministic) algorithm b < Vfy(vk, X, Y, 7) takes as
input a verification key vk, input value X € X, output value Y € ), as well as a proof 7, and
returns a bit b. (If X € X or Y € Y, we assume that b is 0 by default.)

In the context of Ouroboros [DGKR18, BGK™18]], we need that the VRF algorithms implement
an ideal object that we call the VRF functionality. For security this means intuitively that all
outputs generated by the VRF algorithms are indistinguishable from outputs of a truly random
function—even to an attacker who could potentially craft its own private VRF key. We assume in
the following some familiarity with the UC framework |Can20].

3 UC Security of Verifiable Random Functions

Modeling VRFs as a UC protocol. Any verifiable random function VRF can be cast as a simple
protocol myrg in the UC framework [Can20] as follows: Each party Uj; in session sid acts as follows: on
its first input of the form (KeyGen, sid), run (sk, vk) <— VRF.Gen(1%), output (VerificationKey, sid, vk)
and internally store sk; any further key generation requests are ignored. On input (EvalProve, sid, m)
for an input m € X (and if a key has been generated before) evaluate (Y, 7) <— VRF.Eval(sk, m)
and output (Evaluated, sid, Y, 7). (If no key has been generated yet, evaluation queries are ignored.)
On input (Verify, sid, m,y, m,v’), the party evaluates b «+— VRF.Vfy(v',m,y,7) and finally returns
(Verified, sid, v',m,y, m,b).



—[ Ideal Functionality F %"

The functionality interacts with parties denoted by P = {Uy,...,Ujp|} as well as the adversary/sim-
ulator S. It maintains tables T'[-,-] that are initially empty (denoted by symbol 1). The tables are
initialized on-the-fly. The functionality maintains a set Spi to keep track of registered keys, and Sevar to
keep track of all known VRF evaluations.

o Key Generation. Upon receiving a message (KeyGen,sid) from U; s.t. (Ui,-) € Spr,
hand (KeyGen,sid,U;) to S (ignore the request if (U;,-) € Spi).  Upon receiving
(VerificationKey, sid, U;, v) from S:

1. If U; is corrupted, ignore the request.

2. If (Ui,-) & Spr and V(-,v') € Spp @ v # v/, set Spr < Spr U {(U;,v)} and return
(VerificationKey, sid, v) to U;.

3. Else, ignore the request.
e Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from S, do the following:
if V(-,v") € Spi 1 v # 0/, set Sp < Spr U{(S,v)}. Return the activation to S.

o VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid, m) from U; with m € X,
verify that some (U;,v) € Sy, is recorded. If such an entry is not stored or m ¢ X, then ignore
the request. Else, send (EvalProve, sid, U;, m) to S and upon receiving (EvalProve, sid, U;, m, )
from S, do the following:

1. Ignore the request if the proof is not unique, i.e., if IT[';m'] = (y',5’) such that 7 €
S'A((V #v)V(m #m)).

2. If T[v,m] = L, assign y & {0, 1} and set T[v,m] + {y, {7 }}.

3. If T[v,m] = (y,5) # L, set T[v,m] < {y,SU{r}}.

4. Set Seval < Seval U {(v,m,y)} and output (Evaluated, sid, m,y, ) to U;.

e Malicious VRF Evaluation. Upon receiving a message (Eval, sid,v,m), m € X, from S (if
m & X the request is ignored), do the following:

Case 1: 3(U;,v) € Spr where U; is not corrupted: if T[v,m] = (y,S) for S # @, return
(Evaluated, sid, y) to S. Otherwise, ignore the request.

Case 2: (S,v) € Sy or 3(U;,v) € Spi, U; corrupted: if T[v, m] = L, first choose y & {0, 1} v
and set T'[v,m] < (y,0). Return (Evaluated, sid,y) to S.
Else: Ignore the request.
o Verification. Upon receiving a message (Verify, sid,m,y,m,v') from any ITI M, send
(Verify, sid, m, y, 7,0, Seva1) to S. Upon receiving (Verified, sid, m,y, 7, v’, ¢) from S do:
Case 1: v/ = v for some (-,v) € Spy s.t. T'(v,m) = (y,S) for some set S.

1. If m € S, then set f < 1.

2. Else, if ¢ =1 and VT'[0,m] = (v, S") : # ¢ S, then set T[v,m] = (y,SU{x}) and
f+ 1

3. Else, set f < 0.

Else: Set f «+ 0.

Provide the output (Verified, sid,v', m,y, 7, f) to the caller M.

o Adversarial Leakage [New compared to [DGKR18, BGKT'18]]. On input
(PastEvaluations, sid) from S, return Seya) to S.

Figure 1: The VRF functionality.
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Ideal Functionality ]:\)/(éEFVRF. In we present the functionality ff,—",ZFVRF that captures the
desired properties of a VRF. The functionality provides interfaces for key generation, evaluation
and verification, as well as separate adversarial interfaces for malicious key generation, evaluation,
and leakage. The function table corresponding to each public key is a truly random function (and
thus also guarantees a unique association of the key-value pair to output Y) even for adversarially
generated keys. Furthermore, no incorrect association can be ever verified and every completed
honest evaluation can be later verified correctly.

The functionality is based on [DGKRI1S, BGKT18|, but contains several modifications. First,
verification is now more in line with typical UC formulations for (signature) verification, where the
adversary is given some limited influence (in prior versions, the adversary had to inject proofs in
between verification request and response to accomplish the same thing). Second, the uniqueness
notion for proofs has been correctly adjusted to catch the corner case that schemes might choose to
de-randomize the prover (akin signatures) which is a crucial point later when we look at ECVRF.
The remaining changes are merely syntactical compared to [Mﬂ If myre UC realizes this
functionality, then this means that the triple of algorithms VRF is essentially computationally
indistinguishable from this functionality and therefore can be considered correct and secure.

Definition 3.1 (UC security of a VRF). A verifiable random function VRF with input domain X
and range ) = {0, 1}/ is called UC-secure if myre UC-realizes f\jvéeFVRF specified in

Random oracles in UC. When working in the random-oracle model, the UC protocol above
is changed as follows: whenever VRF prescribes a call to a particular hash function to hash some
value z, this is replaced by a call of the form (EVAL, sid, z) to an instance of a so-called random
oracle functionality, which internally implements an ideal random function {0,1}* — )’ and returns
the corresponding function value back to the caller. This functionality is specified in We
will often use the notation H(z) in the specifications to refer to a general hash function with the
understanding that this call will be treated as a random oracle call in the security proof.

Y
‘FRO

The functionality is parameterized by the finite output domain Y. It maintains a (dynamically updatable)
function table 7T~ (initially 7 = (). For simplicity we write T'[z] to denote the function value assigned to
x in the table T (if defined) and use the expression T'[x] =L to denote that no pair of the form (z,-) is
in T.

o Upon receiving (EVAL, sid, z) from some party U, (or from the adversary), do the following:

1. If T[z] = L sample a value y uniformly at random from ), set T'[x] < y and add (z, T[x])
to T.

2. Return (EVAL, sid, z, T[z]) to the caller.

Figure 2: The random-oracle functionality idealizing a hash function {0,1}* — ).



4 Generic VRF Range Extension in the ROM

4.1 Specification

Let H: {0,1}* — Y denote a general hash function. Let VRF be a verifiable random function with
input-value domain X and output domain ).

We construct a VRF VRF with input-value domain X and output domain Y¢ for a fixed
constant ¢ > 0. In the following, we let CONST;,¢ = 1,...,c be ¢ fixed and pairwise different
constants (of fixed length) and || denotes concatenation of bitstrings. The algorithms are defined
as follows:

Key Generation: Key generation remains unchanged: \7I\?/F.Gen(1"‘) := VRF.Gen(1").
Evaluation: The algorithm VRF.Eval(sk, X) for X € X is defined as follows:

1. Run (Y, 7) < VRF.Eval(sk, X).
2. Compute Y; < H(CONST; || Y).
3. Return the pair ((Y7,...,Ye), (7, Y)).

Verification: The algorithm V\R/F.ny(vk, X,Y, ) is defined as follows, where X € X and Y € Y
1. Parse m = (7, Y’) where Y’ € Y (return 0 in case of parsing error).

2. Return b := VRF.Vfy(vk, X, Y, 7') A ( /C\ Y; = H(CONST; || Y’)).
=1

Rationale of the construction. Before we cast the above construction in the provable security
parlance of Ouroboros [DGKR18, BGK 18|, we provide here a non-technical justification of the above
construction. Assume that the underlying VRF provides all guarantees we informally demanded
above, then our construction enjoys basically the same properties: the correctness properties follows
from the correctness properties of the underlying VRF and the fact that H is a public function.

For security, we observe three properties for Y;: (1) it is unpredictable to anyone not knowing
the secret key, (2) it cannot be manipulated even by the owner of the secret key, and (3) it is
unpredictable to the owner of the secret key without evaluating the VRF. In particular note
that Y; can only be determined by someone who knows the value Y’ (since in the ROM, H is a
random function), and Y’ can only be computed by someone having the secret key and otherwise
is unpredictable thanks to the security of the underlying VRF. Furthermore, since H is a public
function, Y; is determined fully by Y’ (and the constant CONST;).

5 Security Analysis of the Range-Extension Construction

The required level of security of a VRF in the setting of Ouroboros is UC security. UC security
is a strong notion and this strength is the main reason why the above construction needs a more
formal security argument. In the following, we assume some familiarity with the security arguments
in [DGKR18, BGK™18].

5.1 Range Extension as a Modular UC Protocol

The construction VRF can be cast as a modular UC protocol m-==, where we assume that the

VRF’
protocol has access to the hybrid functionality f\i(F’fFVRF idealizing the underlying scheme VRF with

range {0, 1}/ (and also access to the random oracle fgo to idealize H):
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Each party U; in session sid acts as follows: on input (KeyGen, sid), relay this input to f\)/(Rf:VRF

and when receiving the answer (VerificationKey, sid, vk) return this answer as output. On input
(EvalProve, sid, m) relay this input to ]:\“;(RKFVRF and when receiving the answer (Evaluated, sid, Y, ),
query, for i € [1,¢|, the random oracle ]-?{O with input (EVAL, sid, (CONST; ||Y)). Let Y; be
the obtained answers. Then output the return value (Evaluated,sid, (Y1,...,Y:), (7, Y)). Fi-
nally, on input (Verify, sid, m,y,r,v'), parse 7 = (7/,Y") and y = (Y1,...,Y.) € {0,1}¢0rF If
the format is wrong, return (Verified, sid, v', m,y, 7,0). Otherwise, query (Verify, sid, m,Y”’, n’,v")
to F\),(Rf;VRF and let the returned decision bit be b. Then query the ]:PJ{Ov for i € [1,c], via
(&
(EVAL, sid, (CONST; || Y')) and denote the RO outputs by y;. Then compute b’ < b A ( ANYi= yl)
i=1
and return (Verified, sid,v',m,y, 7, b).

5.2 The UC Realization Statement

The formal theorem of our range extension can be stated in very simple terms:

Theorem 5.1. Protocol TURE UC-realizes f\iﬁ{ée"”.

Proof. We first describe the simulator S for the so-called dummy real-world adversary that is
under the control of the environment Z|'| The simulator interacts with functionality ]:\“/“/RCF VRE and
simulates towards the environment a transcript that is indistinguishable from a protocol run of

Utyrr where the environment interacts with parties running algorithms as specified in TI'VRF and
additionally has access to the adversarial interface of the assumed (hybrid) functionality .7-"V LR and

]:X LVRF

the random-oracle functionality }—RO' The simulator internally emulates an execution of Fygg

and emulates the random oracle by maintaining a function table H[z| (initially empty).

X,c ZVRF

Reaction on requests from F g We first define the simulation upon the different outputs

of F\)/(R(,::ZVRF (provoked as reactlons of inputs by honest parties).

On (KeyGen, sid, U;): Then obtain a new verification key from the emulated instance J\g¢ XLy, ; that

is, ask the environment to provide a new key vk; and return (VerificationKey, sid, UZ7 vkz)

e eVRF
fVRF

On (EvalProve, sid, U;, m): The simulator obtains the output (y,7) on input m from its simulated
instance }"XCEVRF, this means it first obtains a proof m from the environment and then
sampling a new value y € {0, l}f,RF at random provided m has not been asked before. Then,
the simulator defines 7’ := (7, y) and returns (EvalProve, sid, m, ") to f\i(RCFEVRF. The simulator

stores internally (PROG,,m,y) to prepare for programming the RO.

On (Verify, sid, m,y, 7, v', Seval): The simulator first checks for new entries (PROG, 7, m,y) added in
previous activations. For each of these entries, it parses the set Seya1 of all previously evaluated
VRF values to obtain (v;,m, (y1,...,y.)) where (y1,...,9.) € ({0, 1}V/)¢ and assigns for
each of these new entries the random-oracle value H[(CONST; ||y)] < y;, j = 1,...,n if the
locations z; = (CONST; || y) have not been programmed already. If such an assignment is not
possible because the location (CONST; || y) have already been programmed with different values
y; respectively, then abort the simulation. We call this event SIMFAIL.

'We point out that a UC proof w.r.t. this adversary implies security against any adversary.



Next, the simulator parses y as (y1,...,y.) and m as pair (7’,y’) and verifies the combi-
nation (m,y’,7’,v") using the internally emulated functionality .F\)/(Rf;VRF. Part of this is
sending (Verify, sid, m,y’, m,v', S ;) to the environment (for the set S/ ., maintained by the
internally emulated functionality), and when the environment returns the verification result
(Verified, sid, m,y’, 7', v’,b') to this query, S provides this input to its internally emulated
instance. It then checks that y; = H [(CONST' || )] for all i = 1...c. If all checks are fulfilled
S sends the reply (Verified, sid, m,y, m,v',b) to .FX v 1f any check fails, it sends the reply

(Verified, sid, m,y, 7, v',0) to f\i(Rf:ZVRF.

Interaction with environment (adversarial interface). =~ Whenever invoked with an input
from the environment, the simulator first checks for new entries (PROG, 7, m,y) added in previous
activations. It thus first obtains the set via query Sevar (PastEvaluations, sid) to Fyg X CZVRF For each
of the entries (PROG, i, m,y), it parses the set Seya of all previously evaluated VRF values to obtain
(v,m, (y1,--,9e)) for (y1,...,9c) € ({0, 1}%F)¢ and assigns H[(CONST; ||y)] « y;, j = 1,...,n, if
the locations x; = (CONST; || y) have not been programmed already. If such an assignment is not
possible because the location (CONST; || y) have already been programmed with different values y;
respectively, then abort the simulation. We call this event SIMFAIL.

Whenever the environment asks for an RO-evaluation for a new value x, then S samples a value
y € {0, 1}*V&F at random and assigns H|[z] < y. If a function value for x is already defined, then
return H|zx].

Whenever activated by (KeyGen, sid,v) from the environment, S provides this as input to the

X MVRF on input (KeyGen, sid,v) and returns whatever is

internally emulated instance and invokes JFyg
returned by the functionality.
Whenever activated with (Eval, sid,v, m) from Z (malicious evaluation of the underlying VRF

functionality), S emulates this input on the internally emulated functionality ]-"X EVRF. When

a simulated value y is obtained, then S invokes }"XMVRF with (Eval, sid,v,m) to receive the

function values (yi,...,¥y.) it sampled for m (and w.r.t. v) and S programs the RO by setting
H[CONST; || y] + y; for i = 1,..., c unless the locations have already been written to with different
values. As above, if such an assignment cannot be made because the location (CONST; || y) have
already been programmed with different values y; respectively, then abort the simulation (event
SIMFAIL). Finally, return to Z with output (Evaluated, sid, y).

When activated with input (PastEvaluations, sid) or with verification requests or verification
results towards the internally emulated functionality Fygp X Lo , then provide the received input to

the emulated instance of Fy, ’KVRF and return to the env1r0nment whatever the emulated instance
outputs.
Finally, whenever a party is corrupted, S corrupts the corresponding party in ]:X ¢lRF and

marks it as corrupted in its internally emulated instance of Fy3 ¢ EVRF

Analysis of the simulation. We observe that the simulation only fails in case it has to abort.
The probability of event SIMFAIL corresponds to the probability that a location = (CONST; || y)
of the random oracle has been evaluated before the simulator could program it correctly with the
value y; chosen by the ideal functionality. This probability is, however, negligible since upon each
new evaluation of an honest party, the value y simulated by S is chosen uniformly at random. The
probability of a collision with any previously queried value 2’ = (CONST; || ¢') is negligible. As long as

the simulator does not abort, it exactly mimics TyRe: it internally simulates the underlying hybrid

VRF functionality and ensures that whenever a proof 7 is defined to be a valid proof (w.r.t. F, X, ZVRF)



f_‘ StakingProcedure(. .. )

The following staking procedure is executed by party p. We highlight the usage of the VRF functionality and how the
block is created.

Send (EvalProve, sid, n; || s1 || NONCE) to Fygrr, denote the response from Fyrr by (Evaluated, sid, y,, 7).

Send (EvalProve, sid, n; || s1 || TEST) to Fyrr, denote the response from Fygrr by (Evaluated, sid, y7, mr).

[ e i i a

| Send (EvalProve, sid, 7; || s1) to ]—'\“};"g[\/RF; obtain response (Evaluated, sid, (y,, yr), 7)., (S1)

L e e e e e e e e e e e e e e e e e e = J

if yr < T;p then
Create new valid content for the block st (for details see [BGKT18]). > Local ops, party does not lose activation.
ittt ettt ettt i Rl
1 Set crt = (Up,yr,7), p= (yp,[@ ) and h < H(head(Cioc)).1 (52)
L e e e e e e e e e e e e e e e = )
Send (USign, sid, Up, (h, st, s, crt, p),sl) to Fkes; obtain (Signature, sid, (h, st, s1,crt, p),sl, o). > This call
returns immediately and the party does not lose activation.

Set B < (h, st,sl,crt, p,o) and update Cioc < Cioc || B-
Send (MULTICAST, sid, Cjoc) t0 -Fllngc and proceed from here upon next activation.
else

end if

Figure 3: Staking procedure (excerpt).

for output value y on input m (for some party resp. verification key), then (7, y) is a valid proof for
m for the vector (y1,...,y.) that f\féf:'ZVRF samples for that same party resp. verification key. This
establishes the claim. O

Remark. Note that the simulator is responsive. This shows that the VRF functionality can be used
in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be
answered immediatelyﬂ This is a useful modeling property and we refer to [CEK™16, BGK™18]| for
the relevant details, as they are outside the scope of this paper.

6 Case Study: Usage of the Range-Extension Construction in
Ouroboros

The purpose of this section is twofold: first, we show how to define formally the staking procedure
of Ouroboros using the extended VRF functionality and we have to argue about the security. Next,
we apply the composition theorem and show how the construction offers room for optimizations.
The two most important places where VRF evaluation and verification happens are the staking

procedure, cf. [Figure 3 (for full details, we refer to the original papers), and the procedure to verify
chains, cf. [Figure 4] respectively. In each case, we show how the introduction of f\),(éf:VRF affects the

code. We depict in [gray boxes the original code which is no longer needed and is deleted. The

[@qsﬁhpgiilgcpgqs] show the effective changes and additions to the code. Note that the input domain of

the VRF is X = {0,1}* in this section.

Security. The reader might have noticed that we have proven the statement with a slightly
different (weaker) VRF functionality than what is used in [DGKRI18, BGK™18|. The reason is

2That is, without activating any other machine for any other purpose than providing the answer back to Fyg.
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~ IsvalidChain(...)

Instructions to parse a chain and a first bunch of syntactical validity checks (see [BGKT 18| for details).

for each block B in C from epoch ep with epoch randomness 7ep do
Parse B as (h,st,sl,crt, p,0).

Parse crt as (Up,yr, nr) for some p'.

L i
1 Parse crt as (U, ,yr, ) for some p’. 1
4

» (V1)

Parse p as (yp, mp)-

r-o- T TS T TSt T T T T i
i Parse p as VRF output y,.
e J

(V2)
Send (Verify, sid, nep || s1 || TEST, y1, 7T, v;’,rf) to Fyrr; obtain response (Verified, sid, nep || s1 || TEST, y7, 77, b1).

Send (Verify, sid, nep || s1 || NONCE, y,, 7y, v;}"f) to Fyrr; obtain response (Verified, sid, nep || s1 || NONCE, y,, 7p, b2).

| Send (Verify, sid, nep || s1, (y7, yp), T, v;’ff) to f\j\/R‘I?'ZVRF; obtain (Verified, sid, v;,rf, Nep |1 S1, (Y7, Yp), m,b). | (V3)

1 Set badvrf < (b =0Vyr > T;‘]P’,C). | (V4)
p |
-

Further instructions to verify a block (see [BGK™ 18] for details).

end for

Figure 4: Chain validation (excerpt).

that the range extension does not work for the stronger functionality presented there. However,
the VRF functionality that we put forth here is sufficient to prove the security of Ouroboros by a
straightforward inspection of the staking procedureE]

Consider First, we observe that thanks to the range extension, we can simply deal
with one VRF invocation. The protocol needs two verifiable random values: first the value yr to
determine slot leadership, second the value y, which contributes to the epoch randomness of the
future epoch. We obtain both these values in one go from f\/’/‘/R’%E\/RF‘ The functionality, however,
has a weakness: it allows the adversary to learn the output values (yr,y,), but only after the call
returned to the party with value (Evaluated, sid, (y,,yr), 7). In other words, the adversary is only
able to learn the output values (yr,y,) from functionality .F\i(R’,QF'ZVRF (via input (PastEvaluations, sid)
or via a subsequent verification query) only once the party loses or gives up its activation token. The
original formulation of Fyrr in [DGKR18, BGK'18] guaranteed that Jyrg never by itself would
leak this. But now we see that this change is immaterial to the security of Ouroboros: the party,
once the values (yr,y,) are obtained, it never loses the activation until it multicasts the block on

the last depicted instruction in [Figure 3. At this point, however, the function values are revealed to

3Note that any VRF that realizes the stronger functionality also realizes the weaker one presented here. Therefore,
any previously deployed VRF can be used as the basis of our range-extension construction.
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the adversary “for free”, as we multicast the values over the Internet. Since there is no additional
security concern regarding verification, we conclude that the introduction of f\jvéf;VRF is sound.

Implementation and Optimization. After showing security, we now can invoke the UC
composition theorem by which we can securely replace the modular invocation of f\féi[v” by the
construction based on VRF and H. We now showcase what this means for the protocol and how one

can apply optimizations at several places. Consider again (and the lines S1 and S2) as

well as (and lines V1 to V4).

S1: This line is implemented by evaluating (y,7) < VRF.Eval(sk,,n; || s1) and then defines
yr < H(TEST||y) and y, <— H(NONCE|| y).

S2: In this line, we can apply an optimization: we can set crt = (Up, (y, 7)) and set p = € (empty
string). The reason is that whenever the protocol needs the verifiable values yr and y,, they
can be computed on-the-fly based on the knowledge of (y, ), i.e., the output VRF.Eval(.).
Thus, storing (y,7) in a block is sufficient. This also means that computing y, above is
actually not needed in the staking procedure.

V1,V2: Here, we can apply an optimization and in view of the above parse c¢rt = (U, (y, 7)) and
recompute the values yr < H(TEST || y) and y, < H(NONCE || y).

vrf

V3: This line can be implemented by just computing b := VRF.Vfy(v;}, njep [| 81, y, 7). Since we
recomputed the values y7 and y, above in V1,V2, b = 1 directly implies the validity of yr

and y, for input 7ep || s1 and w.r.t. verification key v;,’,rf.

V4: This line is implemented using the recomputed value of yp.

As a final remark note that when computing the epoch randomness at an epoch boundary
based on a sequence of valid blocks, then the contribution of a block B < (h, st, s1,crt, p,o) to the
epoch randomness must be recomputed based on crt = (U, (y, 7)) analogously to above, i.e., by
computing y, < H(NONCE || y).

In summary, this shows that we have reduced the number of VRF evaluations (per slot) and
VRF verifications (per block) from two to one, as well as reducing the number of VRF proofs needed
to be stored, at the price of an additional hash function evaluation in each case.

7 The ECVRF Standard

This section recalls the elliptic-curve based schemes described in the IRTF draft [GRPV22] and
focuses on the cipher suites suite_s € {0203, 0204} for the sake of concreteness.

7.1 Notation

We denote by E(F,) the finite abelian group based on an elliptic curve over a finite prime-order
field F,, (note that we simplify the notation and drop the explicit dependency on [, and security
parameter ). Most importantly, we assume the order of the group E to be of the form cf - ¢ for
some small cofactor cf and large prime number ¢, and that the (hence) unique subgroup G of order
q is generated by a known base point B, i.e., G = (B) (q is represented by & 2k bits) in which the
computational Diffie-Hellman (CDH) problem is believed to be hard. Group operations are written
in additive notation, scalar multiplication for points P € E is denoted by m* P = P+ --- 4+ P, and
—_———

m
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Gen(1%): Compute(m =T'||...): Precondition: T' € Eﬂ

1. Return Hash(suite_s||DS3|| (cf «T") ||DSp),

1. sk & {0,1)2".
where cf is the co-factor (for curve25519,

2. (sko, sk1) < Expand_key(sk). cf =8).
3. x + Compute_scalar(sky). Viy(vk, X, Y, m):
4. vk <+ x * B. 1. If vk € E or cf x vk = O, return 0[]
5. Return (sk,vk). 2. Parse (I',c,s) + 7. If T' ¢ E return 0. Inter-
pret the x bits of ¢ and the 2k bits of s as
Eval(sk, X):

little-endian integers. If s > ¢, return 0.

L. 7« Prove(sk, X). 3. H < Encode_to_curve(E2C; || X).

2. Y + Compute(n). A U« sxB—cxuk.

3. Return (Y, ). 5. V< s*H—cxT.

Prove(sk, X): 6. ¢ « Hash_pts(vk, H,I,U,V).

. . s
1. Derive vk, x from sk as in Gen(1%). 7.1 ¢ = ¢ return b = (Y — Compute(r));
2. H + Encode_to_curve(E2C, || X). otherwise return 0.
“Otherwise an implementation could return some ERR ¢
3. 'e—axxH. Y. For the analysis this is not needed as the protocol ensures
) the precondition and the adversary is free to invoke the
4.k« Nonce_generatlon(sk‘, H) hash-function at will.

*This check excludes low-order elements, i.e., P € E,

5. ¢ < Hash_pts(vk, H,T',k* B,k* H). ord(P) < q.
6. s« (k+c-x) mod q.

7.1+ (I, ¢s).

8. Return .

Figure 5: Description of ECVRF, where B denotes the generator of the subgroup G of E. Note that
the salt value E2C, leaves room for more general use cases. We consider the case E2C; = vk in the
analysis of the standard and its extensions.
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the neutral element by O = 0% P. We use a &S to denote that a is selected uniformly at random
from a set S. When working with binary arrays, a € {0,1}*, we denote by a[X..Y] the slice of a
from position X till position Y — 1. Moreover, we denote by al..X] and a[X..] the slice from position
0 till X — 1 and from X till the end, respectively. As usual, the operator || denotes concatenation
of strings; thus, for A =0]||1 we have A[..1] =0 and A[l..] = 1.

The standard makes use of helper functions, all of which are defined and introduced in [GRPV22].
For sake of simplicity we only state the specification of the security-relevant helper functions. As
domain separators we use values between 0 and 5 in hexadecimal representation. In particular, we
use DS; < 0z0i for ¢ € [0,5]. The standard also uses encode_to_curve_salt to denote the salt
used for the Encode_to_curve function, which we denote by E2C,. Note that all EC-ciphersuites
define the salt as the prover’s public key which is the case we consider and analyze in this work.

Hash: This is a concrete hash function which will be modeled as a general hash function, respectively
a random oracle, H : {0,1}* — {0,1}**®)_ in the analysis. Conveniently, we choose £(x) = 4.

Encode_to_curve: This is a particular hash function (specified by the cipher suite) that takes an
arbitrary string S € {0,1}* as input, and hashes it to a point in the prime order group G.
Specific details of this function can be found in [GRPV22]. This function will be modeled as
a separate random oracle Heo. : {0,1}* — G in the security proof.

Expand_key: This function takes as input a secret seed sk € {0, 1}2*, and returns a pair (sko, sk1) €
{0,1}2% x {0,1}2%. The specification prescribes that the seed is hashed hg + Hash(sk), and
that the pair (hg[..2k], hsk[2k..]) is returned. The function can thus be modeled as a very
simple, random key-derivation function KDF : {0,1}2% — {0, 1}*F based on the random oracle
directly as KDF(sk) := H(sk).

Compute_scalar: A helper function used to derive the secret exponent from a (random) bitstring
s € {0,1}?*. The output domain of this function is a set S C [|G|] of size 22*~¢, for some
small constant ¢, and Compute_scalar(X) is the uniform distribution on S, where X is the
random variable with the uniform distribution over 2« bistrings.

Nonce_generation: A function that derives a nonce k € Z, from a pair (sk, H) € {0,1}** x E.
Internally, the algorithm first extends the secret key into a pair of random strings (sko, sk1) =
Expand_key(sk). It then appends to sk; the given input, H, in binary form and computes
k < Hash(sk; || H) (that is, interpreting the bitstring as an integer) and returns £ mod ¢. As
we elaborate later, the distribution of the function RFGRY“*(H) := H(sky || H) mod ¢ derived
from a random oracle (again interpreting the output as an integer) has negligible statistical
distance to the distribution obtained from choosing a function uniformly at random from the
set of all functions F': E — Z,.

Hash_pts: A function that takes as input five EC points, A; € E for i € {1,...,5}, and hashes
them (together with some padding), into an integer of x bits in little-endian representation.
In more detail, the points are interpreted in binary form and hashed into a binary array
r < Hash(suite_s||DS2 || A1 || A2 || A3 || A4 || A5 || DSp) (where the “wrapping” constants are
domain separators, see below). Finally, the string r[..x] is returned. This is the helper function
to instantiate the Fiat-Shamir heuristic, which computes a challenge in a sigma protocol by
hashing the transcript. In the security proof, this will thus be treated as the random-oracle
evaluation H(suite_s|| DSy || A1 || A2 || A3 || A4 || As || DSo)]..x]. The associated challenge space
is thus the set C := {0, 1}" interpreted as integers.
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To give a concrete example, the deployed VRF construction in Cardano is instantiated with x = 128
and elliptic curve edwards25519 which has cofactor 8. The prime order ¢ is represented by 32 octets,
or more precisely 253 bits, and the hash function is SHA512 : {0,1}* — {0,1}°!2. Conveniently, we
choose ¢(k) = 4k. The function Hash_pts defines the associated challenge space, thus being the
set C := {0, 1}" interpreted as integers. For the function Compute_scalar(sky), the string is first
pruned: the lowest three bits of the first octet are cleared, the highest bit of the last octet is cleared,
and the second highest bit of the last octet is set. This buffer is interpreted as a little-endian integer,
forming the secret scalar x, which results in an output domain containing 22°! different elements.

7.2 The VRF Algorithms

The formal definition of a VRF in denotes by Eval the function that computes the output
of the VRF evaluation together with its proof. In this section the two actions are treated separately
to follow the approach taken by the standard, and we define the functions Prove and Compute to
represent the proof generation and the output computation, respectively. The algorithms from the

standard are given in [Figure 5

8 ECVRF,.: Batch Verification for ECVRF

In the interest of performance, we now study the possibility of batch-verifying the proofs generated
by ECVRF. To this end, we introduce slight modifications that allow for an efficient batch-verification
algorithm. Next, we prove that batch-verification does not affect the security properties of individual
proofs.

We divide the exposition of the changes in two steps. First, in we present the changes
on the protocol (involving the prover and the verifier) to make the scheme batch-compatible. Second,
in we describe the specific computation performed by the verifier to batch several proof
verifications.

The approach we use was first mentioned in the mailing group of the IRTF draft [Rey21].
However, as far as we know, no formal description or analysis of the technique was given so far.

Intuition. The operations performed in steps {4 and [5| of Vfy appear as good candidates for
batching across several proofs. Namely, instead of sequential scalar multiplications, one could
perform a single multiscalar multiplication for all proofs that are being verified. This batching
technique was already introduced by Naccache [NMVR95], and later used by Bernstein [BDL™12]
for signature verification batching. However, this trick can only be exploited if steps [4| and |5 are
equality checks rather than computations. In ECVRF, the verifier has no knowledge of points U and
V', and has to compute them first. We hence modify the scheme so that the prover includes points
U and V in the transcript and the verifier can simply check for equality.

8.1 Making the Scheme Batch-Compatible

As discussed, in order to allow batch verification, steps [4 and [5| need to be equality checks. This
requires a change in step [7] of Prove and changes in steps and [7] of Vfy. Moreover, the
challenge computation needs to be moved from step @ to the position in between steps |3 and 4| (we
call it step 3.5). The modifications result in scheme ECVRFy., summarized in
Intuitively, this change has no implications on the security of the scheme, as it is common for
(Fiat-Shamir-transformed) ¥-protocols to send the commitment of the randomness (sometimes
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Prove(sk, X) remains unchanged except for step |7, which changes as follows:
7. Let m < (I, (k« B), (kx H), s).

Compute(m) remains unchanged.

Vfy(vk, X, Y, ) changes as follows:

1. Remains unchanged. 3. Remains unchanged.

2. Parse 7 as tuple (I, U, V, s). If 3.5. ¢ < Hash_pts(vk, H,I',U, V).
{I,U,V} € E, return 0. Inter-
pret the 2k bits of s as a little-

endian integer. If s > ¢, re- 5. If V #s* H—cxT, return 0.
turn 0.

4. If U # s * B — ¢ * vk, return 0.

6. [Moved to step 3.5]

7. Return b := (Y = Compute(r)).

Figure 6: Description of modifications in ECVRF,. compared to ECVRF.

called the announcement) instead of the challengdﬂ The choice of sending the challenge instead of
the two announcements in ECVRF is simply to optimize communication complexity and efficiency.

8.2 Batch-Verification

To see how the changes described above allow for batch verification, first observe how steps [4 and
in ECVRFy. can be combined into a single check: if they validate, then so does the equation

O=rx(sxB—cxvk—-U)+lx(sxH—-cxI'=V)

where 7, [ are scalars chosen by the verifier. The reverse is also true with overwhelming probability
if r and [ are taken uniformly at random from a set of sufficient size (in particular, we choose the
set C for convenience).
More generally, to verify n different ECVRF,. proofs, the verifier needs to check whether the
equality relations
U; = s; x B—c; x vk;,
V;:SZ’*HZ‘—CZ‘*FZ'

hold for each of the proofs. This can be merged into a single equality check
O=rix(si*xB—cixvk;—U)+1li*(sixHi—c; 1Ty — V)
for each ¢ € [1,n] and, moreover, into a single verification
0= Z (ri* (si* B—cixvk;i —U;)+ 1% (s;« Hi —c; x Ty — V)
i€[1,n]

across all proofs, where r; and [; are random scalars. By using the state of the art multi-scalar
multiplication algorithms, leveraging this trick provides significant running time improvements, as

discussed in [Section 8.3.

“As a matter of fact, ed25519 [BDL"12] is also a sigma protocol and encodes the announcement instead of the
challenge in the non-interactive variant of this sigma-protocol.
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Invalid batches. Note that if batch verification fails, one would need to break down the batch to
determine which proof is invalid. However, in several practical cases (most notably, when validating
the state of a blockchain), the verifier is primarily interested in whether the whole batch is valid
(so that the respective part of the chain can be adopted); if the batch verification fails this has
protocol-level consequences (e.g., disconnecting from the peer providing the invalid batch) that
obviate the need for individual identification of the failed verification.

Pseudorandom coefficients. We describe how the coefficients I;, r; can be securely computed in
a deterministic manner, a feature that is favorable from a practical perspective. Similarly to the
well-known Fiat-Shamir heuristic for ¥-protocols, it is essential that the values cannot be known
to the prover when defining the proof string. To this end, we propose to compute the scalars by
hashing the contents of the proof itself, the value of H for the corresponding public key, and an
index.

Concretely, for a batch proof of proofs 71, ..., m,, one computes, for i € [1,n]:
1. @ « H; || m, 3. h; < Hash(suite_s||DS4|| St ||| DSo),
2. Sp 7|7 ... |7, 4. l; < hy[..x], and r; < hi[k..2 - K].

The values I; and r; are treated as little-endian integers and are thus picked from the domain C
as the challenge defined earlier. As before, the security analysis can treat the invocation as an
evaluation of a random oracle obtained using domain separation on Hash (where we follow the usual
format).

Summary and specification. In summary, batch verification of a sequence of tuples T; =
(vk;, X;,Y;,mi), i =1,...,n, encompasses the following steps:

1. Perform the basic consistency check for each T;, 1 = 1,...,n:

o Verify that vk; € E and then that cf x vk; # O.

o Parse and verify m; as tuple (I';,U;, V;, s;) € E® x Z, (cf. @, Step 2. of Vfy(.)).
o Compute H; < Encode_to_curve(E2C; || X;).

o Compute ¢; < Hash_pts(vk;, H;,T';,U;, V;).

2. If any of the above check fails then return 0.
3. Compute Sy < 7} || 74 || ... || 7}, and perform the batch verification:

o For all i € [n] evaluate:
— Set 7} < H; || m; for all ¢ € [n],
— Let Sp <@ || ... || 7,
— h; < Hash(suite_s||DSy || St ||¢||DSo),
— l; < hi[..x], and
— T < h,‘[/ﬁ..? . H],
and interpret [;, r; as little-endian integers.

o Evaluate

by (Oz Z(ri*(si*B—ci*vki—Ui)—l—li*(si*Hi—ci*I’i—Vi)))

1€[n]
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4. Evaluate by < (Vi € [n] : Y; = Compute(m;)).

5. Output b1 A b.

8.3 Performance Evaluation

In this section we evaluate the performance of the ECVRF-EDWARDS25519-SHA512-TAT ciphersuite
as defined in the standard [GRPV22| against the batch-compatible variant proposed in this paper.
Essentially, these are ECVRF and ECVRFy., respectively, over the curve edwards25519 with SHA512
as a hashing algorithm. We implement a Rust prototype of version 10 of the draft which we
provide open source [QA22]. We use the curve25519-dalek [LdV22] rust implementation for the
curve arithmetic operations, which implements multiscalar multiplication with Strauss’ [BS64] and
Pippenger’s [BDLO12] algorithms, and optimize the choice depending on the size of the batch. We
ran all experiments in MacOS on a commodity laptop using a single core of an Intel i7 processor
running at 2,7 GHz. For the batch-compatible version we implement both a deterministic verification
(using the hashing techniques as described in as well as a random verification where
the scalars r;,l; are sampled uniformly at random from Zyi2s. We benchmark the proving and
verification times for each, using batches of size 2! for I € {1,...,10}. In the standard version, the
size of a VRF proof consists of a (32-byte) elliptic curve point, a 16-byte scalar, and a 32-byte scalar.
In the batch compatible version, rather than sending the challenge we send the two announcements,
which results in three elliptic curve points and a 32-byte scalar. Therefore the modifications increase
proof size from 80 to 128 bytes.

This results in a considerable improvement in verification timelFigure 7] shows that proving time
is unaffected, and there is no difference between the normal ECVRF and ECVRF,. (as expected).
In we show the verification time per proof for different sized batches. We interpret the
times of batch verification as a ratio with respect to ECVRF. Using deterministic batching, the
verification time per proof is reduced to 0.71 with batches of 64 and to 0.56 with batches of 1024
signatures. With random coefficients, batching times get a bit better given that we no longer need
to compute hashes for scalars I; and r;. The verification time per proof can be reduced to 0.6 with
batches of 64 signatures, and up to 0.47 with batches of 1024.

9 Security Analysis of ECVRF,. and Batch Verifications

We first analyze the security of the standard without batch verifications in the next section and
prove the security including batch verifications afterwards.

9.1 Security Analysis of ECVRF.

We first recall some preliminaries about zero-knowledge proofs of knowledge for a generic class of
protocols.

9.1.1 On X-Protocols for Group Homomorphisms

We recall here a general class of zero-knowledge proofs of knowledge, namely the three-round protocols
that prove the knowledge of a preimage of a (presumably one-way) group homomorphism [Maul5].
Consider two groups (H, o) and (T, ) together with a homomorphism f : H — T, i.e.,

f(xoy) = f(x)* f(y).
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Batch Compatible (BC) version, and the Nor- mal version (N), deterministic batch verifica-

mal (N) one. tion (Det-BC) and non-deterministic batch

verification (Ran-BC).

Let Ry be the relation defined by (z,z) € Ry 1<+ f(x) = z. Consider the following three-round
protocol between prover P and verifier V' for the language Lg, := {2 |3z : (z,7) € Ry}. That is,
the common input is the proof instance z € T (and the relation Ry), where the prover is supposed
to know a value x € H s.t. f(z) = z.

1. P— V: P samples k & H and sends ¢ := f(k) to V.
2. V. — P: V picks at random an integer ¢ € C C N and sends it to P.

3. P —V: P computes s := ko z® and sends s to V. V accepts the protocol run if and only if
the equality

f(s) =t*2z°
holds.

The security of this protocol follows from the following lemma:

Lemma 9.1 ([Maulb]). Let Ry a relation as described above relative to a group homomorphism
J :H — T. The above protocol is a X-Protocol for the language Ly, if there are two publicly known
values £ € 7, and u € H s.t.

1. Ve,d €C,c#: ged(c—,0) =1, and
2. Vz € Ly, f(u) = 2.
Proof Sketch. We give an outline of the proof of [Maul5]. We need to prove three properties:

o Completeness: The property that on input z and private input « with (2,2) € Ry, then an
honest execution always accepts. This is clearly satisfied.
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e Special soundness: From any z and any pair of accepting conversations for z denoted
(t,c,s), (t,c,s") with ¢ # ¢, one can efficiently compute x such that (z,z) € Ry. The
protocol satisfies this. The solution is

b

“los),

x:=uo(s " os

and a and b are computed using the Extended Euclidean algorithm (EEA) as solutions to the
equation fa + (¢’ — ¢)b = 1 over the integers. Note that f(s'"!os) = 2¢~¢ and

f(l‘) = f(ua o (s/—l ° S)b) _ f(u)a * f(S/—l o S)b _ Z£a+(c—c/)b —

e Special honest-verifier zero-knowledge: the property that there is an efficient simulator S such
that on input z € Ly, and a random challenge ¢ € C, it generates an accepting conversation
(t,c, s) with the same probability distribution as generated by a conversation between honest
prover P and honest verifier V' on common input z and private input z (s.t. f(x) = z) for P.
This is achieved by the above protocol: given a challenge ¢ and the statement z, the simulator
selects s € H at random, computes t := f(s) x z~¢ and outputs (¢, c, ).

This concludes the proof sketch. O

The lemma implies that the protocol is a proof-of-knowledge with knowledge error 1/|C|. For
our analysis, we only need the implication that if we have a statement 2 ¢ Lg,, then the probability
that a malicious prover convinces the verifier is at most 1/|C|, as in this case, no extractor can exist.
We implicitly assume that any run is rejected if the values do not belong to the expected domain.

On domain checks of the proof instance. The above protocol assumes that the values are
indeed in the domain of interest as in particular the existence of values u € H and ¢ € Z
could depend on the group order of T (such as the one discussed below). We need to relax the
relation a bit if domain checks on the instance z € T are omitted This is especially relevant if T is
a subgroup of some larger group T’ s.t. the protocol could be run on input z € T\ T by a dishonest
party while the verifier does not perform a domain check for z € T (but only for z € T’).

Corollary 9.2. Consider the ¥-Protocol as in[Lemma 9.1 in the above setting, where an honest
prover aborts on instances z € T'\ T and otherwise executes the protocol. The protocol is a zero-
knowledge proof of knowledge for relation Ry as above on instances z € T, and additionally, it
provides special soundness on instances z € T\ T for the relation (z,x) € Ry > f(x) = 2° if we
can fir uw € H and ¢ € Z as above such that

1. Ve,d €C,c#: ged(c—d,0) e, and
2. f(u) =2~

Proof. We find the greatest common divisor of £ and ¢/ —c and let it equal g. We further obtain values
a,bs.t. la+ (' —c)b = g by the EEA. By the same reasoning as above, & := u® o (s'~! 0 5)" satisfies
f(x) = 29. Now, we assume that e = d - g for some d, thus z := #% and f(z) = f(&)? = 2°. O

If for each instance z € T/ we can identify such an exponent e, the protocol can be assumed to
be sound for any z in the sense that the probability of passing a protocol run on an instance z such
that z¢ has no preimage under the homomorphism, is at most 1/|C|.

"Note that the expected security guarantees indeed become weaker: consider a cyclic group (g) of order 2¢ with
g > 2 and let T = (h := g*) be a subgroup together with the homomorphism f(x) = h” (which is the instantiation to
obtain the typical Schnorr DL-proof). A malicious prover might choose the instance z = h* x g? and with probability
1/2 the challenge c is even in which case the correct answer is s := k + cx as f(s) equals f(k) x 2°. Still z is not a
power of h (z has order 2¢) and thus no = can exist such that (z,z) € Ry.
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Non-interactive YX-Protocols. A standard result about 3-protocols is that they can be made non-
interactive (via the Fiat-Shamir transform) in the random-oracle model while preserving soundness
and zero-knowledge. Consider the proof w.r.t. a given instance z. A prover P can, instead of sending
the first message to the verifier, evaluate H(¢) to obtain a random challenge ¢ and conclude the
proof by generating the string s as above. The proof string can be represented by (z,t,s). A verifier
can thus verify the proof by calling the oracle on input ¢ to obtain the challenge ¢ and verify as in
the protocol above.

Soundness is preserved since talking to the verifier is equivalent to talking to the random oracle.
As long as the number of random-oracle queries is limited and the challenge space is larger, soundness
is broken with only negligible probability.

Zero-knowledge is preserved since the interaction with the verifier is completely removed and
replaced by the random oracle that has the behavior of an honest verifier in Step 2. Note that
in the random-oracle model, the simulator is allowed to program the RO outputs as long as the
outputs have the same uniform distribution. Simulation thus works by choosing a challenge ¢ at
random, simulate the protocol conversation as above on input z to obtain (¢, ¢, s) and define the
oracle’s output on input ¢ to be ¢. The proof string is the tuple (z,t,s). Note that this strategy
works as long as the position on a random input ¢ is programmable, which only fails with negligible
probability if |H]| is large.

The above arguments can be generalized to settings where the instance is not fixed (but for
example derived by some context protocol). The above mentioned mapping between (interactive)
protocol runs (with an honest verifier) and evaluations of the random oracle is retained when
the random oracle is invoked as H(auz || t), where aux contains sufficient information to identify
the “protocol run” in the above reasoning (which binds the oracle output to a context such as
the instance, the relation etc.). This is of particular importance when proving the security in a
composable framework.

9.1.2 Instantiation for ECVRFy.

We recall that in ECVRFy,. we deal with a prime-order subgroup G of order ¢ of an elliptic curve
of order cf - q. Let By and By be two generators of this subgroup. Essentially, the X-protocol of
interest is an equality proof of discrete logarithm, i.e., given two values z1 and zo prove knowledge of
x such that x * By = 21 A x x By = 2. To instantiate the above generic scheme, we let H := (Z,, +)
and define (T, @) := (G, +) x (G, +) as the direct product of G, where the binary operation @ on T
is defined component-wise. The homomorphism is given by

BBy 1 Zqg = T; v (z% B,z % By),

as obviously, ((x+y)*Bi1, (x+y)*xBs) = (v*B1+y*B1, % Bo+yxBy) = (xx By, 2% Bo)®(yxB1,y*Ba).
The relation Rp, B, C T x Z, is formally defined by

((21,22),33) GRB1,BQ > xx By =21 ANxx By = 29. (1)

Since G is of prime order g, we can satisfy the conditions of [Lemma 9.1 by letting u = 0 and £ = ¢,
and defining the challenge space to be a large subset C C [0,...,q — 1].

We therefore conclude that the embedded non-interactive zero-knowledge proof of knowledge
in ECVRFy has (in the random-oracle model) simulatable executions, and with only negligible
probability can a valid proof for a wrong statement be generated.

As for the above mentioned domain checks, we conclude that the embedded protocol, without

having the verifier check that z € T, we fall into the realm of [Corollary 9.2 (where instances (z1, z2)
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are checked to merely belong to E x E). Therefore, since the elliptic curve group E satisfies |[E| = cf-¢
(with cf = 8 in the concrete case of curve25519) we can pick ¢ = cf - ¢ and thus obtain the guarantees
from |Corollary 9.2|for the choice e = cf, that is for the relation RCB{ gy CEXE (and B, H generators

of subgroup G), defined by

(21,22)ER%{H:<—>$*B:cf*21Ax*H:cf*22. (2)

The canonical epimorphism. Viewed from a different angle, [Corollary 9.2]is a general statement
that says that the verification equations of a particular run of the protocol can be interpreted in a
different but related way (that might depend on the order of the particular instance) for which it
constitutes a proof of knowledge. For finite elliptic curve groups as above, we can see that any run
of the protocol can be interpreted in group G: Consider the map P + cf * P which is the canonical
epimorphism ¢.f : E — G and the corresponding map P + ker(¢ct) — ¢er(P) which identifies the
isomorphism establishing E/ ker(¢.t) = G by the fundamental theorem on homomorphisms. From
this we can deduce by Lagrange’s Theorem that |E| = |G| - |ker(¢er)|. Since the choice of the
representatives is immaterial one can think of each coset P + ker(¢.f) to be represented by a point
P € G (and the kernel consists of the low-order points, i.e., elements of order strictly less than q).

Denoting the first round message of the prover by (U, V'), the projected verification equation
in step 3 of the 3-Protocol becomes (0,0) = (¢et(s * B —U — c* 21),pct(s * H =V — c* z3))
which is an equation in the prime-order group T. More generally speaking, the above equality is
satisfied when, in a run of the given X-protocol, it holds that (s * B —V — ¢ * z1) € ker(¢¢r) and
(s* H—V —cx*2z3) € ker(¢cf). By the reasoning in the proof of from any two runs (with
the same first round message) that are accepting under the mapping ¢.f, we can extract a solution
x for which (2 * ¢t (B), z * ¢t (H)) = (¢et(21), Pct(22)). Since B and H are known generators of
group G, the above identification of the associated isomorphism implies qbgfl (¢ef(B)) = B and
¢t (¢et(H)) = H and in the other case, we have ¢! (def(zi)) € P; + ker(¢.r) for representatives
P; € G. In summary, this establishes special soundness with respect to the relation

(21, 22) eRgH o kB =¢(21) N x H= ¢es(22) (3)

for the X-protocol above, where we could relax the checks performed by the verifier to (s« B —V —
cxz1) € ker(¢der) and (sx H —V —cx z9) € ker(¢cf) instead of equality checks (sx B—V —c*z1) = O
and (sx H—V —cx*x29) = O.

9.1.3 The UC Construction Statement

Recall from how any VRF can be understood as a UC protocol. We now establish the
security of the ECVRFy. protocol without the batching step, but with the (minor) modifications
introduced in We work in the random-oracle model; that is, we introduce the two general
functions H (abstracting the details of Hash) and H.s. (abstracting the details of Encode_to_curve)
which are in the model represented by two instances of the random oracle functionality, which are
}?{O, for Y = {0, 1}v%F and fg’o, respectively, so that invocations of H and H¢o. correspond to
invocations of the respective functionalities as explained in For simplicity and clarity in
the UC protocols, we continue to write H(x) (resp. Heac(z)) with the understanding that it stands
for a call to an ideal object. Note that the remaining helper functions obtain their claimed security
properties based on the assumption on H as is established in the proof.

Theorem 9.3. Let E and its prime-order subgroup G be defined as in|Section 7.1, The protocol

mecvre UC-realizes ]—"\féEFVRF, for X = {0,1}* and byrr(k) = 4k, in the random-oracle model and

under the assumption that the CDH problem is hard in G.
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We note that the theorem translates to the unmodified algorithms by converting proof strings of
the form m = (T, ¢, s) for a VRF evaluation (vk,m,y) to proof strings of the form «’ = (I, U, V, s)
which is straightforward to do as explained before.

Proof. We first describe the simulator and include in its description a variety of consistency checks.
We later argue that the simulation is identical to the real-world execution, until the point where a
consistency check fails. We then bound the associated probabilities of these bad events.

Description of the simulator. We now describe the simulator S for the construction. While
formally the simulator simulates two instances of the random-oracle functionality towards Z, we
keep the notation Heo. and H for simplicity. S maintains two tables T¢o. and T}, to store the mapping
corresponding to the ideal function implemented by the RO. We use T, to store all instances of
completed VRF evaluations and their associated proofs (mirroring what the functionality stores)
and T, to store the random base points H assigned to pairs (v,m) together with its exponent
w.r.t. base B of the group G. We further keep a table Tpisaliowed t0 store information on which
outputs of the RO yield inconsistent simulations. Finally, we have T} to store the mapping of
honest users to public keys and we store private parameters of honest parties in Tpiy

o On receiving (KeyGen, sid, U;) from F\)/(éf;VRF: Pick three random strings, s, sp,s1 € {0, 1}".

Compute the scalar = from sy as in the real world and define the public key v + = x B.
Evaluate KGENFAIL < 3¢ : Tyk[i] = (-,v) and abort if true. Otherwise, store the tuple
(sk, Ui, s, s0, 51, 2) in Tpriy and (Us,v) in Ty and provide the input (VerificationKey, sid, U;, v)

X, bVRF
to Fyrp -

o On receiving (EvalProve, sid, U;, m) from F\)/KR’f;VRF the following steps are preformed:

1. Obtain the entry (U;,v) from Tpy.
2. If for this honest party U; we have (v, m, -, w) € T, then return (EvalProve, sid, U;, m, m, 1)

to f\iﬁq’fz"RF. Otherwise, proceed to the next step.

3. Invoke Heac(v,m) (i.e., make a simulated RO call) to obtain the instance base point H
and retrieve the tuple (v,m, H, B,t) from Ty, where H :=t * B (which is guaranteed
to exist after the RO call). Define I' := ¢ x v.

4. At this point, the statement and the relation of the NIZK proof are defined: z = (v,I")
and the relation is defined by Rp g as defined in m

5. The proof string 7 is now simulated as explained in [Section 9.1.1: For the above relation,
this means we pick random s € Z, and ¢ € C, compute t = (U, V) <= (s* B —c* v, s *
H —c«T), and define 7 :=T'||U || V|| s.

6. Evaluate EVALFAIL; < (T},[suite_s||DSz||v||H||T||U ||V ||DSo] # L). If EVALFAIL,
holds, then abort the simulation, otherwise pick r <i {0,1}?* and program the RO by
Ty[suite_s||DSq||v||H||T||U ||V || DSo] - c¢|| r (where c is represented as a bitstring).

7. Evaluate EVALFAILy + 3(v',m’,-,P") € T, such that m € P' A ((v' # v) V (m’ # m)).
Abort if EVALFAIL: holds (proof is not unique).

8. If (v,m,-, ) € T, then insert (v,m,?,{m}) into T,. Otherwise retrieve the entry of the
form (v, m,y,P) and update it to (v, m,y, P U {r}).

5Looking ahead, this distinction is crucial when arguing security. The simulation is design such that except for
corruption queries, the set Thriv is not used in the simulation. In particular, if party U; is never corrupted, knowledge
of its secret key is not required for a correct simulation.
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9. Store (proof,U;, H, s, c) in Tpyiy.
10. Return (EvalProve, sid, U;, m, ) to .F\i(RLEFVRF.

o On receiving (Verify, sid, m, y’, 7,0, Seval) from f\jvégFVRF, do the following:
1. Parse 7 as four values (T, U, V,s) € E? x Zq and verify that the order of v/ is at least g. If

these conditions are not satisfied but (v',m,y’,P) € T, with = € P, then VERFAIL; + 1

X lvRF
fVRF .

2. Make a call to Heae(v',m) to obtain the base point H. Retrieve the associated exponent
t from T,,,. Invoke H(suite_s||DSy||v || H||T'||U ||V ||DSp) to derive challenge c.

3. Evaluate the truth value of the proof string: £ < (sx B =U+cxv)A(sxH =V +cx*I).
Evaluate VERFAILy < (£, = 0) A (v/,m,y/, P) € T, with m € P. Abort the simulation if
VERFAIL; holds.

4. If £, = 0 then return (Verified, sid, m,y, m,v’,0) to F\//YégFVRF.

5. At this point we have a claimed instance (v/,T), and a valid proof 7 for the claim
(W,T) € Ly~ where the relation is defined by lequation (2). Define VERFAIL3 «+

)

t (cf #v') # (cf xT'). Abort if VERFAIL3 holds.

6. If (v',m,-,-) € T,, then make an internal call to H(suite_s||DS3 || (cf * I") || DSp) to
obtain the hash y and go to the next step. Otherwise, let VERFAIL, <+ (v',m,-,-) &
T.ATp[suite_s||DSs || (cfxT) || DSo] # L, abort if the condition holds and else set y « L
and set Thisallowed <= TDisallowed U {(Cf * T, y/)}

7. Evaluate VERFAIL; < (y = ¢/) A 3(W",m”,-,P") € T, such that 7 € P" A ((v"" #
v) V (m” # m)). Abort if VERFAIL5 holds (proof is not unique).

8. If y = ¢/ then retrieve the record (v',m,y’,P) € T, (for some P), update the entry to
(v',m,y’, PU{r}) and return (Verified, sid, m,y, 7, v’,1). Otherwise the simulator returns

(Verified, sid, m,y, 7, v',0) to f\fﬁfz"RF.

and the simulation is aborted. Otherwise return (Verified, sid, m,y, m,v’,0) to

The simulation for the random oracle is done as follows:
o Invocation of Hgy. on input s € {0,1}*:

If s = (v||m) s.t. (v,m) € {P € E:ord(P)> q} x {0.1}%: If Too.[(v,m)] # L, return Tioc[(v, m)].
Otherwise, pick a random t € Z,, define H := t * B, and store (v,m, H, B,t) in T,).
Define ROCOL «+ (32,],7, 7é j,TeQC[i] = (-,-,Hi,~,-),Tegc[j] = (-,-,Hj,-,~) : Hz = Hj),
define ROIDENT <« Ji : Tyoc[i| = (-, -, Hy, -, -) Nord(H;) = 1.

Else: If T,o.[s] = L, pick H & G and set Teacls] < H. Return Tpo.[s].

o Invocation of H on input s € {0,1}*:

If s = (suite_s||DS3|| P ||DSp), P € G: Perform the following steps:

1. Ensure consistency with the functionality:
(a) If this is an internal call, the set Seya is provided by the functionality as part
of the most recent input]’| Otherwise, the set Seva is obtained via querying
(PastEvaluations, sid) to ]-"VR’,ZFVRF.

"Recall that an internal call is a call from within another part of the simulator, in this case from within a verification
simulation. Note that this distinction is crucial to achieve a responsive simulator, because such a simulator must not
activate any other machine before returning the result to a verification request.
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(b) Let the entries of T¢,, be denoted by (v;, m;, H;, B, t;).
(c) Define S := {(vi,m;, H;, B, t;) € Teap | ti * (cf * v;) = P}.
(d) Evaluate ROFAIL; < |S| > 1 and abort if ROFAIL; holds.
(e) If S =0:
i. If Tj,[s] = L, assign y to a random value in {0, 1}vRF,
ii. Otherwise, let y < T},[s].
(f) If S ={(v,m,H,t)} A(v,m,) € T,:
i. If there is an entry (v,m,y’,P) € T, for 3/ € {0, 1}V/¥, then set y < /.
ii. Otherwise, find (v,m,y’) € Seval and update the entry (v,m,?,P) in T, to
(v,m,y’,P). Set y v .
(g) If S ={(v,m,H,t)} A (v,m,-) & T,; do the following:
i. If (-,v) & Tpk, then send (KeyGen, sid, v) to }"\ijgFVRF and add (S, v) to Tpk.

ii. Set ROFAILy « 1 if (U;,v) € Ty for U; that is not corrupted. Abort if
ROFAIL; holds.

iii. At this point, send (Eval, sid, v, m) to ]:\//YFQEFVRF and obtain the result (Evaluated, sid, y'),

y < v and add (v,m,y,0) to T.
Evaluate ROFAIL3 <— T'[s] # L A T'[s] # y. Abort if ROFAIL3 holds.
If Tj[s] # L, return T} [s]. Otherwise, set T}[s] <y
Evaluate ROFAILy < (P,y) € Tbisallowed- Abort if ROFAIL4 holds.
Return y.
If s = (suite_s||DSo||v || H ||T||U ||V [|DSo), (v, H,T,U, V) € E®: IfT}[s] # L, return Tj[s].
Otherwise, pick a random challenge ¢ and an additional random string r & {0,1}3* and

assign Ty[s] < c||r (where c is represented as a bitstring).

Else: If Ty[s] = L, pick y at random from the set {0, 1}** and set T}[s] < y. Return T} [s].

A

o Upon corruption of party U;: Retrieve the record (sk, U;, s, so, s1, ) and all records of the
form (proof, U;, H, s, c) from T}y, and ensure a correct programming of the RO as follows:
1. If Tp,[s] # L then set CORRFAIL; < 1 and abort. Otherwise, set Tj[s] < so || s1.

2. If Ty[z] # L for some = = s; || 2’ then set set CORRFAILy < 1 and abort. Otherwise, for
each record (proof,U;, H, s, ¢) program the RO as follows:

(a) Compute the nonce as k < s — cx.

(b) Set Ty[s1 || H] & {n € [2* —1]|n mod q = k} (where integers are encoded as
bitstrings).

3. Mark U; as corrupted (in the functionality) and return s to the adversary.

This concludes the description of the simulator.

Analysis of the simulation. The failure conditions of the simulator play a crucial role in our
argument. Recall that the simulator performs consistency checks, and if they fail to hold, it aborts.
We first note that the checks performed by the simulator can be phrased as bad events for both
the real and the ideal executions. Recall that the real execution refers to the random experiment
where the environment Z interacts with protocol mgcyrre and the dummy adversary, and the ideal
execution refers to the random experiment, where the environment interacts with the ideal protocol
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for ]-"\/XRLEFVRF and the ideal-world adversary (aka simulator) S as defined above. We define the events

in [Figure 9 that imply a consistent simulation. We now argue by a that Z’s views in the real and
ideal executions are indistinguishable as long as none of the bad events F, of occur (we
denote by F}, the complement of F,). We analyze the different inputs that Z can provide:

Key Generations: New keys are sampled identically in the real and ideal world and all public
keys are unique until the point when bad event Fi¢ occurs. In particular, Fgg implies
KGENFAIL = 0 and the simulation is perfect.

Evaluations: During the proof generation performed by an honest party with public key v on
message m, in both worlds, the base point H is derived by an invocation of Hea.(v, m) which is
distributed identically. As long as bad events F, and F;4 do not occur, both worlds proceed
to generating a proof string. If the party has already performed a proof on input m, then
in both worlds, the exact same proof string is returned and otherwise, a new base point H
is derived in the same way. The proof string consists of four values I'; U, V, and s which

are simulated as derived in |[Lemma 9.1 (based on a random exponent k & Zq) unless the
random oracle turns out not to be programmable at location (v, H,I',U, V'), which can only
be if the location has been queried before which is exactly captured by Fgy1- The output
distribution in the real world on the other hand is generated using function RFggT“°(H), which
implies an output distribution on a fresh input H that has a statistical distance of at most
272% from the uniform distribution on Zq Both worlds output this proof string unless it is
not unique, which can only happen if bad event Fgy2 occurs. Therefore, the simulation is

indistinguishable from the real world and does not abort.

Verifications: Consider the tuple I = (v, m,y,7) submitted for verification, where 7 =T"|| ...
is a proof string which is either valid or invalid with respect to (v, m) (recall that I" and the
fixed based point B together with v, m precisely define the instance and the relation of the
NIZK). We observe that in both worlds the proof is rejected if it does not have the correct
format or the public key v has low order, as long as Fy p; does not occur. Furthermore as
long as bad event Fy g9 does not occur, all verification results are consistent, in particular no
invalid proof string 7 has ever be contained in a tuple that has been deemed valid.

We observe that in both worlds as long as Fy g3 does not occur (i.e., the environment provides
a convincing proof of a wrong statement and hence breaks soundness), the tuple I can
only successfully verify, if it encodes a valid statement, i.e., by [Corollary 9.2 we get that
in this case m correctly asserts the fact that (v,m,.) is such that there is an x such that
x+xB=cfxvANxzxH=cf«+I', where H is the unique base point associated to (v, m) (unless
F,, or F;; would occur). This in particular implies that as long as Fy s does not occur, the
function value y for (v,m,.,m) can only be H(...|| P||...) with P = cf «xT" = x * H because
there is exactly one x € Z, such that x * B = cf x v € G is fulfilled, where B is the reference
base point of G of order q. We further see that unless Fy 4 occurs, the function value
y =H(...|[cf xT'||...) has been queried after Heo.(v, m) was invoked the first time and in this
case both worlds do define H(... ||cf xT'||...) to be the output unless any of the bad events
Fror; occur during the evaluation of the random oracle. And if H(... || cf *T"||...) has never
been invoked so far, both worlds let the tuple I be deemed invalid unless Fj,.q happens (in
which case, the environment predicted a RO output correctly in the real world). Finally, the
proof string is unique in both worlds unless Fy g5 occurs. In conclusion, as long as none of the

8The skew simply comes from the fact that the cardinalities |{n € [2** — 1] |n mod ¢ = k}|, for a given k € Z,
where ¢ is a 2k-bit integer, are not identical as they might differ by at most one.
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above bad events occur, we see that both worlds (in particular the ideal world) can deem the
tuple valid if the function output y specified in I is the correct value, and there is only one
correct value for the function output for (v, m) for this tuple, which is H(... ||cf « T[] ...). In
any other case, the tuple will be rejected.

RO queries to Heo.:  Both worlds sample random elements with identical distributions, and both
worlds return the sampled values as long as F, or Fj;; do not occur.

RO queries to H: For any input other than = DSy || DS3 || P || DS, both worlds return consistent
function values, which have been sampled uniformly at random. Also, for any fresh input
x = DS4||DS3 || P || DSp, both worlds compute uniformly random values to be result of the
query (where the simulator either samples on its own or obtains a uniformly random value
from f\iﬁif;"”), but the simulator might fail to achieve consistency in which case it aborts. As
long as it does not abort, the outputs are thus identically distributed and consistent with the
entire Z. To see consistency, we argue as follows:

First, observe that if a point P (from the set of distinct points queried to the random oracle)
is associated with a key-message pair (v, m), then this is a valid association, in the sense that
valid proof strings m =I'|| ... can only exist that assert (v,I") € Lper » where cf *I' = P and

H is derived from (v,m). The assignment is unique assuming Fropi. Also the converse is
true, i.e., at most one of the distinct points P queried to the random oracle can be associated
with (v,m) as long as none of the bad events occur. Based on F,, and F;; we can assume
that H is a generator uniquely associated to (v,m) and we have b x B = ¢¢¢(v) for some
b # 0 (since we exclude low-order public keys by conditioning on Fy p1). Excluding soundness

failure, in view of from any two valid proofs # = T'|| ... and #/ = T"|| ...

asserting (v,T'), (v, ) € LR%fH, we conclude using ¢.¢(I') = p* B and ¢.¢(I") = p’ * B (for

some exponents p,p’), that H = p/bx B = p'/b* B. Since the computations p/b and p'/b
are over Zg, the uniqueness follows. Therefore, in order to get a consistent simulation, this
assignment must be computed by the simulator upon the first invocation of the random oracle
that specifies P. In which case, the random oracle is programmed with the output y that a
correctly proven VRF evaluation would result in.

This is possible except when (1) (v, m) has never been queried before and v belongs to an honest
party (as in this case, the simulator cannot obtain the random value y from the functionality),
(2) the point x has been programmed already with a value 3’ that is inconsistent with what
the f\féeFVRF outputs (which happens when the simulator could not associate P to a pair (v, m)
upon the first invocation of the form H(...|| P|]...).), and (3) if the value y has already been
rejected as the function value associated with P during a verification request. In any other
case, the output is made consistent with (v,m) , i.e., any valid proof (assuming Fy r3 does
not occur) will assert the function value y as the output associated to (v, m). The conditions
(1)-(3) are precisely captured by Fror2, Frors, and Fropa.

Corruptions of honest parties: When a party is corrupted, its secret key material is leaked,
which here is the basic seed s from which all other values are derived. We observe that all
values derived from s are explainable as long as we can program the random oracle on the
respective domains, which is precisely possible unless any of Forr1 Or Foorra OcCcCUur.

Bounding the probabilities of bad events. It now remains to bound the probability of a
failure due to a bad event being triggered, where, in view of [BR06], a failure can formally be
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Sim. Check

Corresp. Bad Event ‘

Event occurs when...

KGENFAIL

Fre

Z provides input (KeyGen, sid) to honest party U; and the resulting
(real or simulated) public key v collides with any previously queried
(v',+),v € G, to Heae.

EVALFAIL,

Fron

Z provides input (EvalProve, sid, m) to honest party U; and the resulting
(real or simulated) EC points (v, H,I',U, V) collide with a previous
tuple Ai,...,As for which H(suite_s||DS2|| A1]|| ... || As||DSo) has
been evaluated.

EVALFAIL2

Frue

Z provides input (EvalProve, sid, m) to honest party U; and the resulting
(real or simulated) proof string 7 collides with some proof string n’ for
which (Verified, sid,v’,m’,y’, 7', 1) has been output previously.

VERFAIL;

Fyr

Z issues (Verify, sid, m,y, 7,v") where 7 is a valid proof w.r.t. (v',m)
but has the wrong format or ord(v') < q.

VERFAIL,

Fyra

Z issues (Verify, sid,m,y,m,v") where 7 is an invalid proof string
(w.rt. (v',m)) for which previously either (Evaluated,sid,m,y,)
has been output to honest party associated with public key o', or
(Verified, sid,v", m, y, 7, 1) has been output by some honest party.

VERFAIL3

Fyrs

Z issues (Verify, sid,m,y,m,v") where # = T'|| ... is a valid proof
(w.r.t. (v',m)) but it holds that (v/,") ¢ Lge,  for any e|cf.

VERFAIL4

Fyra

Z issues (Verify, sid,m,y,m,v") for a wvalid proof m = T]|...
(wrt. (v',m))st. (v,T) € Lpet and ord(v') > gand H = Heac(v', m),
but there has been a previous call H(suite_s||DS3||cf *I'||DSp) that
happened before (v, m) was queried the first time to Heac(.).

VERFAIL5

Fyps

Z issues (Verify, sid,m,y,m,v") for a valid proof # = T]|...
(w.r.t. (v',;m)) for which the equation H(... ||cf*T'|| ...) = y is de-
fined and fulfilled, but which collides with some proof string 7’ for
which (Verified, sid, v”,m”,y", 7", 1) has been output previously for ei-
ther v” # v' or m” # m. (In the notation here and below, we suppress
RO domain separation for the case DSs and just write . ..” instead.)

Fpred

The random oracle is evaluated on a point P for the first time, i.e., 3" +
H(... || P|| ...), but there has been a prior input (Verify, sid, m,y’, 7, v’)
specifying 3’ and including a valid proof m# = T'|| ... (w.r.t. (v/,m))
with P =cf xT.

ROCOL

Fcol

Z provides an input (v, m) to Heze that returns a base point H that
equals to a previously generated one on input (v',m’) for either v # v’
orm#m'.

ROIDENT

F;

Z provides an input (v, m) to Heze that returns 0, the identity element.

ROFAIL,

Fror1

Z makes a call H(...|| P||...), P € G, such that there exist distinct

values Hy1 # H2 and possibly distinct values v1, va, I'1, I'2 such that

(v1,T1) € LRCBf . and (v2,I'2) € LRCBf . with ¢f * T’y = P = cf % T'5 and
247 2412

each H; has been obtained previously by a query to Hezc(vi,m;) for

some m;.

ROFAIL,

Fror2

Z makes a call H(...|| P || ...), P € G, for which there is a public key v €
G associated to an honest party U; and a message m s.t. Heac(v,m) = H,
such that (v,cf "'xP) € Lr,, , (i.e., v = 2xBAcfxzxH = P) but there
has never been any output (Evaluated, sid, m, -, -) toward U;. (Here, cf™*
refers to the multiplicative inverse of ¢f modulo prime q.)

ROFAIL3

Frors

Z makes a call H(...|| P||...), P € G, such that there is an EC point v’
that satisfies for some I, cf * T' = P, (v/,T”) € LRch " and ord(v') > q
and (v'7 ) has been queried to He2. to obtain H, but there has been
a previous call H(...|| P||...) with the same EC point P, but no such
value v’ existed at the time of the previous call.

ROFAIL4

Frora

Z makes a call H(...|| P]|...), P € G, for a new input point P which
hashes to a value y’ for which (Verified, sid, v, m, %', 7, 0) has been output
previously, where 7 = I'|| ... is a valid proof string and cf *I' = P.

CORRFAIL;

FCD’I"V‘l

Z makes a call H(s) and s equals the secret key (real or simulated) of
an honest party.

CORRFAIL2

FCD’I"V‘2

Z makes a call H(s||z) for some z, and where s equals the (real or
simulated) seed for the nonce generation function.

Figure 9: Definition of events that imply a consistent simulation.
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modeled as a “failure flag” which is set when the first bad event specified in [Figure 9 is triggered in
the execution. As argued above both worlds are indistinguishable until the point of a failure (note
that by definition, in any execution, at most one of the defined events can occur as the first bad
event triggering the failure). Therefore, we now bound this probability by bounding for each event
F,. the probability that F, occurs as a consequence of an input by the environment issued at some
point in the execution where the flag has not been set yet (that is, none of the conditions of any
bad event have been fulfilled yet, which we denote by Fj/). Note that by the above analysis, the
probability of this is identical in the real and the ideal experiments.

Event Fig: If n denotes the upper bound on the number of public keys in the system, the
probability of a collision is upper bounded by n/2%¢, where c is the loss induced by function
Compute_scalar(.). The number of public keys can be upper bounded by the sum of key
generation requests made by Z and the number of random-oracle queries made by Z to Heae.

Event Fg,i: A fresh proof string contains at least the entropy of the nonce, where for example U
is a random point in G. If ny denotes the upper bound on the RO queries, the probability of
a collision is at most ny/q per honest VRF evaluation (where nj, is a polynomial quantity and
q is an exponential quantity in the security parameter).

Event Fp,o: A proofstringm =T ||U ||V || s for (v,m) is valid if (sxB, sxH) = (U+cxv, V+cxI),
where H is by assumption the unique point associated with (v,m). Since we deal with an
honestly generated proof, the string s is uniformly distributed, and since the RO has not been
programmed before, the challenge ¢ is a random challenge.

Assume that there was any other tuple I = (v',m/,y/,.) with (v/,m’) # (v,m), for which 7
would satisfy the verification equations. We can assume the base associated to (v/,m’) to be
H' # H. To pass the associated verification equation, and assuming for simplicity that ¢’ is
fixed, we would at least need that V = s* H' — ¢/ * " which equals s *x H — ¢ * I'. Now, let
H =h=«Band H = h' « B for h # h/ by assumption. Therefore, (s-h)* B — (c-h-x)x B =
(s-h)*B—(d-h-z)xB =1V. Since V is a point in G, we thus see that the relation
s- (W' —=h)+ (c—¢)-(h-x) =0 must hold over Z,, which, based on the above, is an equation
S-a1+ C-ay =0 for two independent random variables S and C' (where the support of C is a
subset of the support of S) chosen by the honest verifier conditioned on the other bad events
not happening, and fixed a1, a2 # 0. The probability to obtain, in an honest evaluation, a
valid proof string for a particular other instance is thus at most 1/¢q. The number of instances
is upper bounded by the upper bound n.2. on the number of calls to Heo. (which is polynomial
in the security parameter). In an execution, the probability of event Fg,2 can thus be upper
bounded by m - (ne2./q) where m is an upper bound on the number of honest VRF evaluations
(which is polynomial in the security parameter).

Event Fypri: In the real world, the verification algorithm rejects a verification request if the order
of the public key is not at least q. Furthermore, the proof string is parsed as a 4 tuple and
rejected if not correct. The simulator on the other hand will never evaluate .F\jvéf:VRF on any
pair (v, m), since those are never added to the set T¢,, and consequently never added to 7.

Hence, such requests are rejected in both worlds and the probability of this event is 0.

Event Fypo: In both worlds, (v, m) maps to a unique base point H. In the ideal world, tuples
(v,m,.,m) are never accepted where 7 fulfills the conditions as stated above for event Fpys.
Second, all proof strings generated on honest evaluations are correct. In summary, if (v, m, ., 7)
does not fulfill the verification equations, then this tuple will never be successfully verified since
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verification is deterministic. This holds for both the real and ideal worlds. The probability of
failure conditioned on the other bad events not occurring is therefore 0.

Event Fyp3: By definition of the event, we have a pair (v, m), the two bases B and H, and an
accepting proof string 7 =T'||U ||V || s but (v,T’) is not in the language of the NIZK. This
is bounded by the soundness of the proof scheme: By [Section 9.1.1] we can consider every
verification request as a proof run between a potentially malicious prover and an honest
verifier. Fach such run is uniquely identified by the auxiliary information (v,I', H, B) and
the first message is the pair (U, V). The mapping to the non-interactive version, where the
honest verifier is implemented by a random oracle, is generically achieved by evaluating it
on the tuple (v,T", H, B,U, V') and since by an invalid instance passes the run
with probability at most 1/|C|, the same holds for the non-interactive version. Since the base
point B (and hence the group G) is fixed by the protocol (identified by an explicit cipher
suite), the tuple (v, H,T", U, V') suffices to preserve the reasoning from aboveﬂ By the domain
separation of this invocation, we observe that obtaining challenges does not interfere with
evaluations of the random oracle for other purposes (such as evaluating the VRF). In summary,
the probability of this bad event (conditioned on the other bad events not occurring) is upper
bounded by n,/|C|, where n, denotes an upper bound on the number of verification requests.

Event Fypy:  For this event to happen before any other bad event happens, we assume a fixed
point cf * T' for which the random oracle has been evaluated but there was no pair (v, m) and
associated point H, such that v is was detected to satisfy (v,I') € L RS - We are now given a

tuple (v/,m/,.,m) and can assume for this case that since m =T'|| ... is a valid proof, it holds
that (v/,T) € Lpe -

To bound the probability of this event, we bound the probability that for a fixed P =cf «I' =
p * B for some p € Z,, a random oracle call Heo.(v/, m') for a pair that has not been queried
before, yields a valid instance for (v/,T") and relation R%f, 17, Where all values are fixed and
H = h % B is sampled at random during the RO evaluation. Furthermore, since no other bad
event has happened, the random oracle call did not produce the identity element or a collision.
Since P is fixed before calling the random oracle, and similarly, cf x v = ¢(v') = z x B
for some z is fixed before evaluating the random oracle, we would need that h satisfies the
equation (z-h)* B = x* H = p* B in group G, i.e., h = p/x computed over Z, where we need
x # 0 or, equivalently, v € ker(¢¢), which holds since we condition on Fy g that excludes
low-order points. Therefore, the event h = p/z happens with probability at most 1/q. If ny,
denotes the upper bound on random-oracle queries to H and n.o. denotes an upper bound on
the number of random-oracle queries to Hea., we obtain that provoking the event Fy gy (while
the above bad events have not occurred) happens with probability at most nes. - (n4/q).

Event Fyrs: Here we bound the probability that a proof string # = (I'||U || V|| s) is valid
for (v, m,y) but we have already previously successfully evaluated tuple (v',m/,y,m) where
H(...]| cf*T|...) = y (and where the pair (v, m’) is different from (v, m)). Since the proof is valid
and none of the other bad events are assumed to have occurred, we have (v,T'), (v/,T") € L R -

Let cf xI' = p x B for some p.

By definition of event Fy ps H(...||cf * T'||...) has been evaluated and since we can assume
that Fy ps did not occur, the above RO evaluation happened for the first time at a point in

9Recall that E2C, equals the public key. In this case, the public key v in the challenge computation is not needed
for the above argument. The reason is that we can condition on the fact that each pair (v,m) is uniquely mapped to
its base point H.
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the execution at which H' = Ha.(v',m’) as well as H = Hea.(v, m) were already evaluated.
Therefore, we directly reach a contradiction to Frop1. Therefore, the probability of this event
conditioned on none of the previous events happening, is 0.

Event F),.4: The chances that a given 3y’ equals H(...|| P||...) for some P that has never been
queried to the random oracle, is 27%%. Let m denote the number of verification queries, where
each query can be seen as identifying the query P; and the corresponding guess ;. m can be
partitioned as the sum m =mj +--- +m; where j = |{P,..., Py }|, where my, is the number
of verification requests identifying point P. The probability of predicting at least one value
correctly is thus upper bounded by Y77 _; my, - 2748 — . 27K,

Event F,.,: This is a standard collision probability on outputs of the random oracle Heo. on inputs
(v,m) where v is an EC point of order at least ¢q. Conditioned on the event that none of
the results are the identity element, if neo. denotes an upper bound on these queries, the
probability of this event can be bounded by n2,./(q — 1).

e2c

Event F;;: The probability that any of n.o. queries as above result in the sampling of the identity
element of G is bounded by ne2./q.

Event Fropi: Recall that any two distinct queries Heac(vi, m;) and Heae(vj, m;) result in random
base points H; resp. H;. In this case, we condition in particular on Fi, and F;4, which
means that if we have neo. distinct queries to the random oracle, this induces a sequence
(h1,...,hn,,.) drawn from the set Z, \ {0} without repetition. We now bound the probability
that any two positions in this sequence fulfill the relation to provoke the event.

We know that cf x v; = x; x B, cf x v; = x; * B, for some exponents z; and x;. The critical
relation is whether the sampled points H;, H;, written as h; * B and h; * B, respectively,
satisfy, for certain I'; and T'j, the equations (z; - h;) * B = ¢ (L) = P = ¢t(I'j) = (x5 - hj) * B.
This implies that x; - h; = x; - h;j over Zg, or equivalently h;/h; = x;/x;, where z;, z; are fixed
before sampling h; and h;.

Given a fixed coefficient a;; € Z,, the probability that the two values h;, h; satisfy h; = a;; - h;
is at most 1/(¢ — 2). By the union bound, the probability of provoking Fror1 conditioned on

none of the bad events happening is at most n2,./(q — 2).

Event Froro: Assume we have an environment Z that provokes event Froprs and no other bad
event and denote the probability of this event by e. This means that there is an honest party
U with public key v = x % B, and a message m s.t. H = Heac(v, m), but the party has never
evaluated the VRF on input (v,m). In particular, it has never computed the point I' = x x H.

Assume Z provides a point P in such an execution such that cf x x * H = P holds w.r.t. a key
of an honest party U. Then, we can construct an algorithm A that solves the computational
Diffie-Hellman problem in group G with probability at least €'(np, nezc, |P|, ¢), where nj, is an
upper bound on the number of random-oracle queries to H, ne. is an upper bound on the
number of random-oracle queries to Heo., P is the set of registered parties, and c is the loss
induced by function Compute_scalar(.), i.e., the constant such that the size of the support of
honestly generated public keys is 2267

A(Py, Py) works as follows: it maintains a |P| X nea. matrix M, where the ith row stores all
returned queries Heac(v;, -) for the public key associated with party U;. Furthermore, it stores
for all points P € G provided in an invocation H(...|| P|]|...), the point P’ € G s.t. cfx P' = P
in an array N of size 1 X nj,. A now first picks a random location (7, j) in M, defines v; = Py,
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and M(i,j) = P,. It then emulates the ideal world execution towards Z, injecting P; as
public key and P, as random base point P> = Hea.(P1,m;), where the tuple (P, m;, P, B,?)
is added to T¢y, since the exponent is not known. Any consistency check done by the simulator
that would involve the exponent of P, w.r.t. base point B, is set to be satisfied. A stops
the execution when either one of the following stopping conditions occur: (1) Z corrupts Uy;
(2) Z requests U; to evaluate the VRF on m; (3) Z terminates. In any case, the output is
determined by picking a random position k in array N and returning N[k].

We observe that conditioned on none of the other bad events occurring during the emulation,
the emulation provides, until the point when it stops, an identical view to Z as the ideal
execution as long as no EC point P is provided as input to the random oracle for which
(Py, Py,cf™1  P) is a Diffie-Hellman triple: Conditioned on none of the other bad events
happening, the computation of the set S defined in step 1(c) of the simulation of the random-
oracle query H(...|| P||...) is correct except until the point when the emulation fails to detect
the relation tg * cf x v = P, where ¢y is the exponent of Hea.(v,m’) to the base B. Clearly,
the emulation only fails to detect the relation w.r.t. Py if for some x we have z -cf - P, = P
and P, = x * B. That is the associated point P/ = (z-y)* B for P, =2z % B and P, =y * B
that we are looking for.

Since by definition of the event, there must be at least one entry (i, j) in matrix M such that
(vi, m) was not evaluated and party U; is not corrupted, we obtain that the success probability
of A is at least € = €/(np, - neac - |P] - 2¢), where € is the probability of event Frora happening
conditioned on none of the other bad events occurring, and where the (small and constant)
factor 27¢ is due to the probability that a random point P; is a valid public key in the correct
domain of Gen(1%).

Event Frors: The condition of this event is that a given RO evaluation H(...|| P||...) a subsequent
call to Heae(v', m') for some v’ results in a base point H' from which a valid proof instance
(v/,T") with cf * I" = P can be deduced. By definition of the event, P is fixed before any
such instance (v/,I"”) is known. Therefore, there must have been a fresh call Heo.(v', m') for
some m’, which resulted in random base point H’. Since v’ is fixed before, the exponent =z,
such that cf x v' = x x B, is fixed before the point H' is sampled. In order to deduce a valid
instance I/, the relation  x H' = P must hold. Since H and P are elements of G, we write
H' = k'« B and P = p *x B and see that the relation (z - ') * B = p * B implies that the
relation b’ = p/x must hold over Z,. Given an upper bound nj; on the RO queries to H and
an upper bound n.s. on the number of RO queries to Heo., there can be at most neo. queries
to Heoe that could result in any of the relations to hold with any of the at most P points
queried before. An upper bound on the probability of the event Frors conditioned on no
other bad event happening can be obtained by a union bound which yields nj - neae/(q¢ — 1).

Event Frors: Conditioned on Fj,..q, the probability of Frorps is 0. The reason is that if
(Verified, sid, v, m,y’,m,0) (where # = T'||...) has been output to a party, then the input
(Verify, sid, m,y’, 7, v) must have been given as input which correctly predicted H(... || cf*I'|]...)
before it was called.

Event Fp,.-1: This event only occurs if the environment correctly guesses the secret seed of an
honest party. There are at most |P| honest parties, and if nj, is an upper bound on the number
of RO evaluations to H, the probability of this event is no more than ny, - |[P| - 2727,

Event Fo,.2: This event only occurs if the environment correctly guesses the bitstring s; of an
honest party. Conditioned on Fiy,,1, the probability of this event is no more than ny, - |P|-272%.
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—[ Functionality Ggg ]

The function maintains a (dynamically updatable) list L (initially empty). The functionality manages
the set P of registered machines (identified by extended identities), i.e., a machine is added to P when
receiving input REGISTER (and removes a machine from P when receiving DE-REGISTER. The requests
give activation back to the calling machine).

o Upon receiving (ADD, sid,z) from P € P or from the adversary, set L <+ L||x output
(Updated, sid, L) to the adversary.

o Upon receiving (RETRIEVE, sid, i, j) from P € P or from the adversary, do the following: if L[] is un-
defined, return (i, 7, ) to the caller. Otherwise, return the result (Retrieved, sid, i, 7, L[4] || ... || L[j])
to the caller.

Figure 10: The global bulletin board.

It is easy to see that all these failure probabilities are negligible in the security parameter. The
theorem follows. O

Remark. Note that the simulator is responsive. This shows that the VRF functionality can be used
in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be
answered immediatelym This is a useful modeling property and we refer to [CEKT16, BGK™18]
for the relevant details, as they are outside the scope of this paper.

9.2 Security Analysis of ECVRF,. with Batch Verifications

We first describe the setting and the ideal world that idealizes the security requirements for batch
verifications.

9.2.1 The Setting

We want to capture a general setting where the protocol is asked to verify a bunch of claimed VRF
proofs originating from any source outside the system, including maliciously generated ones by the
adversary. We model this setting using a global bulletin-board functionality Gpp and describe it
in This abstraction fits not only the public blockchain setting (which can be seen as a
bulletin board), but any application that makes use of batch verifications where new proofs appear
in the system over time, potentially visible and updatable by anyone including an adversary. Each
instance of this functionality maintains a list of values. The list is append-only, but there is no
other restriction on what is appended and thus the only guarantee it offers is that if we refer to an
interval [i...j] in the list associated to session sid then, once defined, the returned list of values is
always the same. The functionality is a global setup [BCH™20] for full generality of the statement.
In particular, once proven for this setting, simpler settings (such as defining a protocol interface
taking a batch of proofs directly from a caller) follow in a straightforward manner.

9.2.2 The Ideal World

In the ideal world, we introduce a new simple command to the VRF functionality described
in [Figure 11. Upon input (BatchVerify, sid, 7, j), the functionality retrieves the corresponding list
from Gpp and if the list is non-empty, it verifies whether all claimed combinations are known

10T hat is, without activating any other machine for any other purpose than providing the answer back to Fyre.
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: : X bvrF ]
—[ Ideal Functionality FURpt |

The functionality interacts with parties denoted by P = {Uy,...,Ujp|} and the adversary/simulator S.
It maintains tables T'[-, -] that are initially empty (denoted by symbol L). The tables are initialized
on-the-fly. The functionality maintains a set Sy to keep track of registered keys, and Seval to keep track
of all known VRF evaluations. The functionality registers to the instance of Ggp with the same session
identifier sid.

+ Key Generation. As in in[Figure 1|

» Malicious Key Generation. As in[Figure 1|
« VRF Evaluation and Proof. As in[Figure 1,
¢ Malicious VRF Evaluation. As in

« Verification. As in[Figure 1|

o Batch Verification. Upon receiving a message (BatchVerify, sid,i,j) from any party, send
(RETRIEVE, sid, i, j) to Ggp to receive the list (7,7, L;.j). Then output (BatchVerify, sid, i, j) to the
adversary. Upon receiving (BatchVerified, sid, i, j, b) do the following:

1. If L;.; = 0 holds then return (BatchVerified, sid, %, j,0) to the caller.

1* If L;; = 0 holds then return (BatchVerified,sid,7,7,0) to the caller. If there
is a tuple (BatchVerified,sid,i,j,¢) stored from a previous request, then return
(BatchVerified, sid, i, j, ¢).

2. Parse each entry of L;.; as tuple (mg, yr, g, vg) for k =1...|L;,]|.

3. Evaluate the condition f < Vk € [|L;;|] : (-,v%) € Spi A T(vg, M) = (Y, S) Amy € S. If
f =1, return (BatchVerified, sid, i, j, 1) to the caller.

4. Evaluate the condition f’ < Vk € [|L;;|] : (-, v) € Spi AT (v, mi) = (yk, -). If f =1 return
(BatchVerified, sid, i, j, b) and store this tuple internally for future reference.

5. Return (BatchVerified, sid, i, j,0) and store this tuple internally for future reference.

e Adversarial Leakage. As in|Figure 1|

Figure 11: The VRF functionality with Batch Verifications. Replacing step 1 by the enhanced version
1 yields a formally stronger functionality that additionally captures the consistency requirement
achieved by schemes with deterministic verification.

are stored as valid combinations. In this case the functionality returns 1. If this is not the case,
but all pairs (v;, m;, y;) specify the correct input-output-pairs as stored by the functionality, i.e.,
T (vi,m;) = y;, then the functionality lets the adversary decide on the output value. This case
captures the fact that although the proofs strings might not be stored in the functionality (or will
never be), batch verification will never assert a wrong input-output mapping. In any other case,
the output is defined to be 0. One can further consider an enhanced version of the functionality
that includes a consistency requirement, achieved for example by protocols (like the one in the next
section) with deterministic verification. Such a functionality is formally obtained by replacing step 1

of batch verification by its enhanced version 1* in
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9.2.3 The UC Protocol
Recall from that any VRF can be formulated as a UC protocol. We now show how to

formulate (deterministic) batch verification as an extended protocol mgcyre that is identical to
mecvrr but additionally implements the following procedure outlined in [Section 8.2. To simplify
notation, we continue to write H and Heo. for general hash-function invocations and understand
that this corresponds to evaluating the random oracles .7-}3{}0 and Fg’o, respectively.

e On input (BatchVerify, sid,i,j), send (RETRIEVE, sid,?,j) to Gpp and receive the answer
(Retrieved, sid, 1, j, L;.j). If L;.; = () then return (BatchVerified, sid, 1, j,0). Otherwise, do the
following:

1. Parse every item in the list as tuple, i.e., for each k € [|L;.;|] obtain T}, = (my, Y, Tk, Vk)-
If the tuple has wrong format, return (BatchVerified, sid, i, j,0).

2. For each T} perform first the steps 1. to 3. and then step 3.5 of ECVRF.Vfy, that is:
— Verify that v € E and then that cf vk # O.
— Parse and verify 7, as tuple (I'y, Ug, Vi, sk) € E3 x Z,.
— Compute Hy, < Heac(vg, my).
— Compute ¢, < H(suite_s||DS2 || Hx || Tk || Uk || Vi || DSo)][..%].
3. If any check fails then return (BatchVerified, sid, i, j,0).
4. Perform the batch verification:
— Set ), <= Hy || 7 for all k € [|L;.;]].
— Let Sp 7 || ... ||7T\/Li;j\'
— Vk € HLZJH s hy — H(suite_s || DSy H St H k H DS()).
— Vk € [|Li;|] : lp < hgl..k].
— Vk € [|Li;|] : ri < hilk..2 - K]
— Evaluate

by + (O: Z (rk*(sk*B—ck*vk—Uk)—l—
ke[| L]

lk * (Sk *Hk — Ck *Fk - Vk))> (4)

5. Evaluate by < (Vk € [|L;;|] : y» = Compute(7y,)).
6. Define b < by A by and return (BatchVerified, sid, i, j,b) to the caller.

9.2.4 The UC Construction Statement

Theorem 9.4. Under the same assumptions as the protocol WgCVRF UC-realizes

f\i(éf:va (where Gpp is a global setup), for X = {0,1}* and lyrr(k) = 4k.

Proof. Consider the simulator in the proof of and denote it Sgcyrr. We build our new
simulator ST on top of Secvrr as follows: we simulate identically to Secvrp and ensure that at any
point in time all combinations stored in Gpp are verified with the functionality to prepare for batch
verifications. We thus get the following simulator ST:
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e On receiving (KeyGen, sid, U;) from f\i(éf:"fF

whatever Sgcyrr outputs (and abort if Sgcyrp aborts).

invoke Sgcyrr on the same input and return to

X lVRF
‘FVRF+

o On receiving (EvalProve, sid, U;, m) from F, ARE invoke Secvrr on the same input and return

VRF+
to f\)/(éf:‘fF whatever Sgcyrr outputs (and abort if Sgcyrp aborts).

.. P X RE - .
o On receiving (Verify, sid, m, y’, 7,0, Seval) from F_>VFF invoke Sgcyrp on the same input and

VRF+
return to f\i(éf:"fF whatever Sgcyrp outputs (and abort if Sgcyrp aborts).

o On receiving (BatchVerify, sid, i, j) from ]:\i(FfF‘fF, retrieve the list L;;; from Gpp and perform
the batch verification steps like the protocol (i.e., emulate the steps from [Item 1| to [[tem 6|
of the batch verification) to derive the return value b and return (BatchVerified, sid, 1, j, b)
to F Y’ Define SIMFAILT if b = 1 but there exists a tuple (m/,y/, 7’ =T"|| ...,v)) but

VRF+
Compute(n’) # y'. Abort if SIMFAIL™T occurs.

o On receiving (Updated, sid, L) from Ggg, ST determines all new added tuples T} of the correct
form (m;, y;, i, vx) and calls f\féf:"f with input (Verify, sid, m;,y, 7,v"), (which in turn triggers
the simulation Secyrr on input (Verify, sid, m;, yi, 7;, Vi, Seval) as above). Finally, ST outputs

(Updated, sid, L) to the environment.

o Invocation of Heye on input s € {0,1}*: Perform the same actions as Sgcyrr (abort if
SECVRF aborts).

o Invocation of H on input s € {0, 1}*: First, perform a case distinction on the separated
domain s = (suite_s||DS4|| X ||DSp) which is simulated as follows: If Tj[s] # L, return
Ty[s]. Otherwise, pick a random challenge pair ¢ = ¢i||c2 (each ¢; represented by & bits) and

an additional random string r & {0,1}2* and assign T},[s] < c||r. For any other domain,
perform the respective actions of Sgcyrr (abort if Sgcyre aborts).

o Upon corruption of party U;: Perform the same actions as Sgcvrr (abort if Secyre aborts).

Analysis of the simulation. We first consider the same set of bad events defined in [Figure 9,
but we formally extend the events Fy p; to not only includes queries (Verify, sid, m, y, 7, v'), made
by Z, but also that a tuple of the form T'= (m,y, 7,v) is added as part of a query (ADD, sid,T")
to QBB.

We first observe that any environment Z which does not make any invocation of the form
(BatchVerify, sid, i, j) to any honest party and which has non-negligible advantage in distinguishing
the real and ideal executions, contradicts Since the only difference between the two
executions is the availability of the bulletin board Gpp, we can design an environment Z’ which
internally runs Z and emulates Ggp towards it, and whenever new updates are pushed on Ggg, Z’
lets the challenge protocol verify these updates. For all other queries, it invokes the main parties of
its challenge session. If at any point, the execution is aborted (in which case Z’ must be connected to
an ideal execution), the distinguisher outputs 0, and in any other case outputs whatever Z outputs.
Since no other entity ever writes or reads from Ggp except Z in the real world, if Z’ interacts
with mgcyrr then the view emulated towards Z is exactly the view it has when interacting with
WE_CVRF. And if Z’ interacts with ]:\),(Féf:VRF (and simulator Sgcyrp) then the view emulated towards

Z is exactly the view it has when interacting with F, X bure

Urptr (and simulator S) until the point where
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a failure event is provoked as defined in Therefore, the distinguishing advantage of Z’ is
at least the advantage of Z.

It thus suffices to analyze the real and ideal executions’ behavior on inputs (BatchVerify, sid, i, j).
By definition of ST, whenever a tuple T}, = (my, Yk, Tk, vx) is added to Ggg, this is equivalent to have

.F\i(ééFVEF verify the tuple (m,y,m,v") (and the verification is identical to the verification of ]:\i(R’,EFVRF).
X0
f »“VRF

Therefore, in the ideal execution with F{ 2" and ST, the output of any query (BatchVerify, sid, i, j)
is 1 if all tuples T3, ...,T; have been successfully verified.

For the remaining cases, we see that the simulator can decide on the value, with the restriction
that the output can only be decided to be 1, if all input-output pairs ((v;,m;),y;) are consistent
with function table of the f\féiva.

That is consider the case that we have b = 1 upon batch verification and none of the bad events
defined inoccur. The simulator has made, for each tuple Ty, = (my, yg, 7 = Tk || -, vi) a call
Heoe (v, my) (to obtain Hy) and a call H(... || cf * 't || ...) = (to obtain y;). The latter call associates
the point cf *I'y, with at most one pair (v, m’) that satisfies the relation ¢’ * (cf xv") = cf * 'y, (where
t' is such that t' « B = H'), i.e., for which (v/,T}) € ngf’H/ If such a match is found (and no bad
event occurs), the simulation has consistently programmed the random oracle H(... || cf * 'z || ...) to
match the output of the functionality on a query for (v, m’).

Therefore, the computed batch verification value b = 1 by the simulator must be accepted by
the functionality if for each Iy specified in tuple T} the pair (v',m’) that is associated to each Ty
specified in tuple T}, is exactly the pair (vg, my) listed in tuple Tj. Stated differently, and in view
of assuming that no tuple breaks the NIZK soundness individually (condition on V F3
and since the simulator verifies every proof string added to Gpp), the simulator could only fail to
simulate if the entire batch verifies, but for a tuple T}, with ¢cf(vy) = z * B for some xj # qﬂ
we have that ¢cf(T'y) # x * Hy, where Hj, (conditioned on F.,; and Fjy) is the unique generator
associated to (vg, my). This motivates the following new bad event Fpatch that rules out this case
and which implies that the simulator never aborts. Based on the above considerations as long as
none of the bad events (including Fgaten) occur, Z’s views in the real and ideal executions must be
indistinguishable.

New event Fpain. This is the event that Z provides input (BatchVerify, sid, i, j), which refers
to tuples Tj, ..., T}, upon which the computed result is (BatchVerified, sid, 7, j, 1), but at least one
of the tuples, say Ty,i < k < j, encodes correctly formatted values (mg, Yk, 7k, V), 7 = L || - .-,
such that yr = Compute(ry), but (vg,I'x) & RCBf’Hk for Hy, = Heac(vg, mg).

Bounding the probability of the new bad event. We now bound the probability of event Fgatch
to happen conditioned on none of the other bad events occurring. Due to the condition in
particular on Fy p;, event Fgaen can only be triggered on input (BatchVerify, sid, i,5), where all
tuples L;.; = T3, ...,T; in Gpp are defined and well-formed. Furthermore, we can assume that for each
T, = (mk,yk,ﬂk,vk), = Iy, H Uy, H Vi H Sk, it holds that Compute(ﬂk) = H( H cf 'y, H ) = Yk,
as otherwise, the batch verification output is fixed to 0. Likewise, all relations under [[tem 2 of the
batch verification step must hold. Furthermore, since all proof strings to Gpp are assumed to be
implicitly verified, by VF4, no tuple added to Ggp constitutes a soundness breach of the NIZK.
Thus, we investigate the probability that is satisfied despite of the existence of
a tuple T} = (mg,y;, 7, v;) with m; = (I'z, Uz, Vi, ), where (v, I';) € R%vaz;’ for which by

1 And note that at most one point P € G can be associated to (v',m’) as argued in the proof of [Theorem 9.3| based
on no bad events being triggered so far.
12This follows by Fyvri.
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assumption the equations

Ui = s * B —cj, * vy,
V];:S];*H];—C];*F,}

are not simultaneously satisfied, where Hj is the unique base associated to (vg,m;) and cj, is the
challenge associated to this proof string for this proof instance. We therefore have

r’;*(s%*B_cl}*vl}_UE)+ZE*(SIE*HI}_C]}*F]}_VE)

= Z —(Tk*(sk*B—Ck*’Uk—Uk)—i-lk*(sk*Hk—Ck*rk—vk))
kel|LijI\{k}

as an equation over the elliptic curve group E. Towards the argument, define

Q:: Z —(Tk*(Sk*B—Ck*’Uk—Uk)+lk*<8k*Hk—Ck*Fk—Vk))
ke[| Li-; N\ {E}

QY) = sp % B; Qg) = Cf K U Qgr) =Ug;
le) = sy % Hy; Qg) =cpxI'g; le) =V

which allows us to rewrite the equation as

(@~ Q) @)+ (@7 -0~ Q) =@ (5)

Similar to the Fiat-Shamir transform, we can consider the verification as the non-interactive
version of an interactive proof, where the prover presents a list L;,; of tuples and the verifier
samples the coefficients r; and [; at random from a large space C, and the probability of a
soundness failure is bounded by the probability that happens to be satisfied as
described above. In the random-oracle model, the honest verifier can be replaced by the random
oracle as described in if there is a one-to-one mapping between protocol runs
and invocations to the random oracle. We observe that given our assumptions of none other
bad event happening, for each list of tuples presented by a potentially malicious prover, the
sampling I < H(suite_s||DS4 || St || k|| DSo)[..k] and 7 «— H(suite_s||DS4 || ST || k|| DSo)[k..2K]
is performed using different inputs to the random oracle and taking different portions from the
random output for the respective coefficients for this particular set S, which establishes the mapping.
In particular, St is the ordered list specifying for each k, Hy || I'x || Ux || Vi || sx which, assuming no
collision among the random base points Hj, assigned to (vg, my), is the representation for the tuple
(mp, Yr, Tk, v) and yr = Compute(m) must hold. Therefore, different lists obtained from Gpp result
in different values for St, and by domain separation and taking independent random bits from the
RO output, independent random coefficients are derived.

Returning toit is easy to see that if either le) —Qéz) - g) € Gor QY) - ér) - ér) €
G, and recall that by assumption at least one sum does not equal the identity, the equation is
fulfilled with probability at most 1/|C| over the random choice of the coefficients.

For the general case, where ng) — gz) — ng) # O for at least one z € {l,r}, denote Q1 := gz)
and P := —(ng) + ng)). We thus have Q1 + P # O, where Q1 € Gand P Eand P ¢ G
by assumption. We observe that any [z for which I; * (Q1 + P) = @, we obtain a solution for
l;. % ¢t (Q1 + P) = ¢ct(Q), where the right-hand sides are independent of the random coefficient
and the points Q1 + P and @ are defined before sampling the random coefficient. Thus, as long
as Q1 + P ¢ ker(¢¢t), the probability to satisfy the condition is at most 1/|C|. Therefore, the
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probability of passing the check is at most 1/|C| provided that at least one of QY) — Qg") — i(f)
and le) — le) — Q:(gl) is not in the kernel of ¢.s.

The remaining case is simple based on our considerations in a tuple Tj, fixes the
entire instance of a particular proof, i.e., B, Hi, v, ', and encodes a particular run of the associated
Y.-protocol where the challenge is computed correctly based on the random oracle using the Fiat-
Shamir transform (otherwise, the entire sequence of tuples is rejected). In view of , we
see that the employed X-protocol is sound w.r.t. relation R%{ g, even for the relaxed verification

ET) — ér) — g") € ker(¢ct) A le) - le) — le) € ker(¢cf). Thus, the probability that the instance
and proof run encoded in T}, satisfies this check but (v;,T';) & ngf’ g, is at most 1/|C|. The theorem
follows by taking the union bound over all batch verifications instructed by the environment. [

10 Putting Everything Together

We analyzed the range-extension construction in without batch verification in a modular
way based on any VRF that UC-realizes F\jvé:éVRF. Nevertheless, it is easy to see that batch verification
and range extension can be done in a single step in the protocol above. All we have to do is to modify
the algorithm Compute in m-,ge Which changes the format of the tuples T'= (m,y, m,v) only in
one place, i.e., y € {0, 1}C'£VRF, where c is the fixed constant in the range-extension construction. We
denote the new protocol with the new output computation Compute’ below by ﬁECVRF:

o Compute/(m), where string 7 =T'|| ... with T € E:

1. Compute Y < H(suite_s||DS3 || (cf *I') || DSp).

2. Output
(H(suite_s||DS5||1||Y || DSp),...,H(suite_s||DSs || ¢|| Y || DSp)).

Corollary 10.1. Under the same assumptions as|Theorem 9.4}, protocol ﬁECVRF UC-realizes F\;/VF%CF&VRF,
for X ={0,1}* and lyrr(k) = 4k.

Proof Sketch. The only difference in the simulation compared to the proof of is that the
output of the VRF functionality y = (y1,...,%.) w.r.t. (v,m) must additionally be made consistent
with the value of the random oracle in the domain-separated positions (suite_s||DS4 || || Y || DSo)
fori=1,...,c, where Y is obtained by evaluating H(suite_s||DS3 || P ||DSp) and P is derived from
a valid proof string 7 =T'|| ... as P =cf * .

We recall from the proofs of [Theorem 9.3]and [Theorem 9.4] that as long as the bad events defined
in do not occur, that if a point P (from the set of points queried ot the random oracle
as above) is associated with a key-message pair (v, m) , then this is a valid associationlﬂ and that
the assignment is unique. Also the converse is proven, i.e., at most one of the points P queried to
the random oracle can be associated with (v, m) as long as none of the bad events occur. Since
the simulation is consistent, the assignment of points P to pairs (v,m) can be done upon the first
invocation of the form H(...|| P]]...).

Finally, correctly predicting the random-oracle output Y derived from point P (that is associated
to (v,m)) is a negligible probability event. Therefore, all the pairs (i,Y), i =1,...,¢, queried to

the RO are to be programmed just at the moment when Y & {0, 1}*v%F is defined for the first time
in the simulation and associated to the pair (v, m) via point P. Similar to the proof of [Theorem 5.1

131n the sense that valid proof strings can exist that prove the statement (v,T') € Lpet , where cf «I' = P and H is
B,H

derived from (v, m).
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a consistent simulation is only possible if none of these positions (i,Y") for i = 1,...,c has been
programmed before, which is an event that can be bounded by the (negligible) collision probability
of bitstrings drawn uniformly at random from {0, 1}*vRF. Therefore, if neither such collisions nor any
of the above defined bad events occur we obtain a simulator for which the real and ideal executions
are indistinguishable. The claim follows. O
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