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Remote sensing offers many advantages to supplement traditional, ground-based forest measurements, such as
limiting time in the field and fast spatial coverage. Data from airborne laser scanning (lidar) have provided
accurate estimates of forest height, where, and when available. However, lidar is expensive to collect, and wall-
to-wall coverage in the United States is lacking. Recent studies have investigated whether point clouds derived
from digital aerial photogrammetry (DAP) can supplement lidar data for estimating forest height due to DAP’s
lower costs and more frequent acquisitions. We estimated forest heights using point clouds derived from the
National Agricultural Imagery Program (NAIP) DAP program in the United States to create a predicted height
map for managed loblolly pine stands. For 534 plots in Virginia and North Carolina, with stand age ranging from
1 year to 42 years old, field-collected canopy heights were regressed against the 90th percentile of heights
derived from NAIP point clouds. Model performance was good, with an R? of 0.93 and an RMSE of 1.44 m.
However, heights in recent heavily thinned stands were consistently underestimated, likely due to between-row
shadowing leading to a poor photogrammetric solution. The model was applied to non-thinned evergreen areas
in Virginia, North Carolina, and Tennessee to produce a multi-state 5 m x 5 m canopy height map. NAIP-derived
point clouds are a viable means of predicting canopy height in southern pine stands that have not been thinned
recently.

1. Introduction processing capabilities, and limited availability. Digital aerial photo-

grammetry (DAP) has been found to be comparable to lidar in forest

Advancements in remote sensing have grown significantly over the
past few decades, allowing for new and revolutionary ways to measure
forest height. Maintaining an accurate forest height model is essential
for forest management (Green et al., 2020; Neesset, 2002; Navarro et al.,
2020; Schultz, 1999). Light detection and ranging (lidar) has been
widely used for height mapping over the past 2-3 decades; however,
several impediments to the use of lidar data exist, including high costs,

* Corresponding author.

height estimation when utilizing a precise digital elevation model
(DEM) obtained from lidar point clouds (Bohlin et al., 2012; Goodbody
et al., 2019; Lebarl et al., 2010; Strunk et al., 2020; White et al., 2015;
Zimmermann and Hoffmann, 2017).

Forest height is better predicted in a homogenous stand of trees than
in natural stands with varying species and age classes when using remote
sensing data (Gopalakrishnan et al., 2019; Rahlf et al., 2017). Managed
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Table 1
Location and description of the field plots.
Training Area Coordinates Geographic Region Plot Size #Plots ' #Thinned Measurement Age Citation
(ha) Plots™" (years)

ABSF* 3725'21"N Virginia Piedmont 0.013 - 140 27 8-22 Green et al., 2020
7840'46"W 0.02

CUSF* 3732/53"N Virginia Piedmont 0.013 - 84 56 12-42 Green et al., 2020
7815'12"W 0.02

PESF* 3710'12"N Virginia Piedmont 0.013 - 34 17 15-28 Green et al., 2020
7817'34"W 0.02

Patrick County*  3638'35"N Virginia Piedmont/ Blue 0.05-0.15 144 0 9 Albaugh et al., 2017; Albaugh
809'17"W Ridge et al., 2018

Bladen County 3449'50"N North Carolina Coastal 0.05-0.15 108 0 9 Albaugh et al., 2017; Albaugh
7835'19"W Plain et al.,, 2018

Jones County 350'29"N North Carolina Coastal 0.1 12 0 1 Grover et al., 2020
7722/52"W Plain

Brunswick 349'45"N North Carolina Coastal 0.1 12 0 1 Grover et al., 2020

County 7815'52"W Plain
* Total number of plots. "' Total number of thinned plots. *Lidar data available.
[ State Boundaries [1Jones County

771 Loblolly Pine Natural Range

[ Cumberland County
M Prince Edward County

[ Brunswick County

[C] Appomattox/Buckingham Counties Il Bladen County

M Patrick County

M Evergreen (NLCD 42)

450 Kilometers
1 1 1 J

Fig. 1. Virginia and North Carolina training studies and the extent of statewide modeling across Virginia, North Carolina, and Tennessee with landcover class code
42 (evergreen forest) from National Landcover Dataset (NLCD) 2016. The ‘Loblolly Pine Natural Range’ in this figure is the geographic range of loblolly pine for
which our calibration model is most applicable (Little 1971). The counties identified are the locations of the training data plots.

Table 2
Lidar collection specifications for the four Virginia training regions.
ABSF and CUSF PESF Patrick Co.
Flight Chesapeake Bay Sandy South Central
Campaign
name
Collection November 15, March 24,2014 - April 14, 2017 - May
dates 2015 — March 30, April 21, 2014 24, 2018
2016
Sensor Riegl 68oi Leica ALS60 or Riegl LMS-Q1560 or
Leica ALS 70 Riegl VQ-1560i or
Riegl VQ-780i
Scan angle 60 Unreported 58.52 or 60
(degrees)
Point density 2.3 2.5 5.2
(pulse/m?)
Nominal pulse 0.66 0.7 2.00r1.0
spacing (m)
Flight line 55 % 30 % (ALS60) or 15 % or 55 %
overlap 20 % (ALS70)
Pulse rate 200 154.3 (ALS60) or 687 or 300
(kHz) 301.6 (ALS70)

ABSF - Appomattox-Buckingham State Forest, CUSF — Cumberland State Forest,
PESF — Prince Edward State Forest.

stands also provide an excellent foundation for studies utilizing an area-
based approach (ABA) to process the remote sensing data, which relies
on the relationship between field measurements and remote sensing
predictor(s). This relationship is more difficult to establish in natural
stands (Gobakken et al., 2015; Green et al., 2020; Kwong & Fung, 2020;
Rahlf et al., 2017). Previous studies have shown that the correlation
between field measurements and DAP in an ABA is comparable to the
accuracy of lidar (Gobakken et al., 2015; Goodbody et al., 2019; Moe
et al.,, 2020; White et al., 2015). Other studies have investigated and
demonstrated the utility of DAP to collect forest attributes at a reason-
able accuracy, including height (e.g. Moe et al., 2020; Nasset, 2002;
Zagalikis et al., 2005), volume (e.g. Green et al., 2020; Shen et al., 2019;
Nurminen et al., 2013), stand density (Gobakken, et al., 2015), basal
area (e.g. Bohlin et al., 2012; Noordermeer et al., 2019; White et al.,
2015), site index (Gopalakrishnan et al., 2019; Noordermeer et al.,
2021), and tree detection (Noordermeer et al., 2019; Strunk et al., 2020;
Thiel & Schmullius, 2016).

In the United States the National Agriculture Imagery Program
(NAIP) regularly collects high-resolution aerial imagery for the United
States Department of Agriculture’s (USDA) Farm Service Agency (FSA)
(Davis, 2011). For a given state, NAIP was acquired every-five years
from 2003 to 2009 and is now acquired every-three years during the
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Fig. 2. A sample of flagged NAIP points that were visually assessed as having recent harvests or thinning in Appomattox-Buckingham and Cumberland state forests
where the black points represent five of the six points that were flagged, and the white points represent the points that were not flagged. The red outline is the extent
of the stand. Fig. 2b depicts a zoom-in of one of the black points (point A) and Fig. 2c depicts a zoom-in of one of the white points (point B). It is important to note the
shadowed, dark ground making up most of point A compared to mostly light green colored vegetation at point B. The sixth flagged point was in a single plot in CUSF.
Coordinates are in projection GRS80 UTM 18 N. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

growing season. NAIP imagery is collected using overlapping transects
which are used to produce complete stereo-images for the entire country
(Strunk et al., 2019; Strunk et al., 2020). The images are all acquired
within one growing season for a state, covering an extensive area in a
relatively short timeframe, so there is minimal change between images
(Strunk et al., 2019 & 2020). In addition, NAIP photos can generate 3D
point clouds of the surface of the canopy that are comparable to lidar 3D
point clouds of the upper canopy.

However, some studies have shown that NAIP imagery and point
clouds can be significantly impacted by acquisition parameters
including sun position, terrain, and shadow (Schroeder et al., in review;
Prior et al., 2022). NAIP also cannot penetrate the forest canopy and
only produces a digital surface model (DSM) of the stand. A solution to
this shortcoming is the use of lidar-derived DEMs, which are considered
the “best available data products” by Goodbody et al., (2019), with the
NAIP point clouds to calculate a normalized canopy height model
(Michez et al., 2020; Mielcarek et al., 2020; White et al., 2015; Navarro
et al., 2020; Bohlin et al., 2012). After using a high-quality DEM (<1 m

ground sampling distance), R¥s (coefficient of determination:

1 _sum squared regression (SSR)
total sum squares (SST)

) between lidar and DAP have been reported as

high as of 0.9 (Michez et al., 2020; Mielcarek et al., 2020). Lidar-based
DEMs are widely available from the USGS site and since there is the
assumption that topography is not significantly different over time, the
DEM does not need to be coincident with the flight.

Clearly there is potential for DAP to predict pine or other forest
heights in Europe and western North America. However, this potential
has not been widely explored in the managed pine forests of the
southeastern United States. There is a need to explore this potential for
managed southern pines, which span a large geographic region
(863,778 km?), since they are a vital economic resource for the world
and there is growing importance for forest companies to evaluate carbon
stocks for certification and for the carbon market (Janowiak et al.,
2017). We had two primary objectives, as follows: (1) to develop a
model that accurately predicts the top-of-canopy height of managed
loblolly pine plantations from NAIP photogrammetric point clouds, and
(2) to use the resulting model to create a pine canopy height map for all
of Virginia, North Carolina, and Tennessee.
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Fig. 3. Model of the lidar 90th percentile of height versus the field measured height. The 1:1 line is represented in black. The years noted in the legend are the years

the lidar data were acquired. Field measurements were from 2018 to 2019.

Table 3

Summary statistics of the data in the lidar and field plots.
Data Min (m) Max (m) Median (m) Mean (m) Count
Field 5.8 26.6 13.0 14.3 402
Lidar 3.9 27.2 11.4 12.2 402

2. Materials and methods
2.1. Study area and field measurements

The overall study area includes thinned and non-thinned evergreen
forests of Virginia, North Carolina, and Tennessee, based on the National
Land Cover Dataset. For this study, stands that have had rows removed
and the bare ground is visible between the rows that remain are
considered thinned. Areas where no thinning has been done or the tree
crowns have covered back up the ground below are considered non-
thinned. Field measured loblolly pine (Pinus taeda L.) heights collected
on 534 plots across seven regions in North Carolina and Virginia were
used for model calibration. All these regions are in humid temperate
climates with USDA plant hardiness zones from 6b to 8a (USDA Agri-
culture Research Service 2012). The study area ranges from coastal to
mountainous, representing both the natural range and non-native areas
in which loblolly pine is commonly planted (Table 1).

The seven training studies are distributed over Virginia and North
Carolina with three in Virginia state forests, one at the Reynolds
Homestead in southwest Virginia, and three in North Carolina (Fig. 1).
The three Virginia state forests are Appomattox-Buckingham (ABSF),

Cumberland (CUSF), and Prince Edward (PESF), all of which are in the
Piedmont physiographic region. These three state forests are managed
by the Virginia Department of Forestry and maintain numerous actively
managed loblolly pine stands. Plots at ABSF, CUSF, and PRSF were
established with a Trimble Geo 7x GPS and were measured in
2018-2019 as part of a study conducted by the Forest Modeling
Research Cooperative (FMRC; Green et al., 2020). The data for Patrick,
Bladen, Jones, and Brunswick counties were collected as part of other
research studies in 2019 (Albaugh et al., 2018; Grover et al., 2020). The
stands in Patrick County, VA and Bladen County, NC were planted in
2009. The remaining two training studies were in Jones and Brunswick
counties in North Carolina and were planted in 2017. These two studies
were each comprised of two plots that were broken into six subplots with
12 plot measurements each. Since the training studies in Jones and
Brunswick counties were planted in 2017 and measured in 2018, the
trees were short and relatively homogeneous in height. A hypsometer
was used to measure tree heights on the older plots and a height pole was
used for the young plots. The mean dominant height for each plot was
used as the field height for this study.

Forest Inventory and Analysis (FIA) data was used to compare the
state-wide model height values to height values collected in the field by
the USDA Forest Service. The FIA data repository includes information
on forest area and location, species, size, tree health, tree growth, har-
vests, and many other forest characteristics (USDA Forest Service,
2020). Each year, a fixed-area plot design is used to measure a sample of
the over 400,000 permanent plots across the United States (Burkhart
et al., 2019). These measurements are recorded across both public and
private lands that are classified as forestland use or non-forestland use.

Table 4

Summary statistics of height for the data in the training regions and the FIA data.
Data Min (m) Max (m) Median (m) Mean (m) Standard deviation (m) Coefficient of Variation (%) Count
Field 1.0 26.6 11.9 13.0 4.6 35.1 528
NAIP 1.0 24.4 11.9 12.2 4.0 32.3 528
FIA data for VA, NC, and TN 1.52 54.0 15.2 15.6 6.2 39.9 533
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Fig. 4. Model of the NAIP 90th percentile of
height versus the mean dominant field height,
where the yellow points represent plots that were
not recently thinned, and the green points
represent plots that had experienced a recent
thinning. The 1:1 line is shown in black, and the
fitted model (1) is shown by the dashed red line.
(For interpretation of the references to colour in
this figure legend, the reader is referred to the
web version of this article.). (For interpretation of
the references to colour in this figure legend, the

Plot Type reader is referred to the web version of this
article.)
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Fig. 5. Standardized Residuals by Field measured height, by plot.

2.2. Remote sensing data

2.2.1. NAIP imagery and point clouds

The United States Department of Agriculture Farm Service Agency
Aerial Photography Field Office (USDA FSA APFO) NAIP program
collected NAIP imagery in 2018 for all three states (USDA-FPAC-BC-
APFO Aerial Photography Field Office, 2019). The acquisition parame-
ters are all publicly available online (e.g., OCM Partners, 2021). There

were multiple sensors used in this acquisition: serial numbers 10510,
10515, 10522, 10530, 10,552 from Leica ADS-100 with Flight and
Sensor Control Management System (FCMS) firmware: v4.54. There was
30 % side lap of the flight lines, allowing for 0.4 m sampling distance
resolution, and image acquisition used +/- 6 m to ground specification.
The Leica XPro SGM Module was used to create point clouds (.laz
format) generated from the ADS 100 imagery,. This is a post-processing
software designed for ortho production from overlapping stereo
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Fig. 6. Canopy height models (CHM) after running the normalized heights through the PHP model, where (a) non-thinned stand in Appomattox-Buckingham state
forest and (b) recently thinned stand in Appomattox-Buckingham state forest. The boxes represent zoom-ins of the boxed areas that are shown in Fig. 8. X and Y axis

are coordinates in projection GRS80 UTM 18 N.

imagery, in which point cloud production is an intermediate step. Im-
agery for each flight line was 20,000-pixels in width. Autocorrelation
algorithms were then used to identify image tie points and then
mosaiced into one image. Four band images, with blue (435-495 nm),
green (525-585 nm), red (619-651 nm), and near infrared (808-882
nm) spectral bands, were collected and compiled to create point clouds.

2.2.2. Lidar and DEM

Lidar data were used in this study for (1) DEMs with fine spatial-scale
accuracy, needed for normalizing the NAIP point clouds to height above
ground, and (2) to estimate 2018 tree heights. Lidar point clouds and
associated 1-m DEMs were acquired from publicly available data from
the United States Geological Survey (USGS) 3D Elevation Program,
which does not cover all the state of Virginia but was in our regions of
interest (e.g., USGS 3DEP; USGS, 2021). Since the terrain is unlikely to
significantly change over the timespan of interest, older DEMs were used
for the plots that did not have recent lidar acquisitions. Patrick County

was part of a 2018 lidar campaign, ABSF and CUSF were part of a 2015
lidar campaign, and PESF was from a 2014 campaign (Table 2, (USDA-
FPAC-BC-APFO; Green et al., 2020; US Geological, 2019)). However, for
the three stands in North Carolina, there were no lidar data available
within five years of the field measurements so lidar analysis was only
done for the Virginia stands and NAIP analysis was done for both North
Carolina and Virginia. Lidar data was accessed form the USGS National
Map (USGS, 2017a, 2017b). The DEM for North Carolina was from 3DEP
data that was collected in 2013.

2.3. Data analyses

All analyses were completed with R software (R Development Core
Team, 2010). For this study the following packages were used: sf, rgdal,
raster, elevatr, ggplot2, lidR, devtools, rlas, stats, metrics, base (see
Appendix A). The following functions were used from the packages:
lasclip, normalize_height, function, cloud_metrics, lmodel2, cor, rmse,
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Fig. 7. Number of DAP points per 5 m x 5 m cells, where (a) non-thinned stand in Appomattox-Buckingham state forest and (b) recently thinned stand in
Appomattox-Buckingham state forest. The boxes represent zoom-ins of the boxed areas that are shown in Fig. 8. X and Y axis are coordinates in projection GRS80

UTM 18 N.

summary, grid_metrics (see Appendix B).

2.4. DAP canopy height processing

Data analysis began by clipping the NAIP and lidar point clouds and
the DEM to the extent of the plots in all three state forests (lasclip). The
data were normalized by subtracting the DEM from both the NAIP and
lidar point clouds to create a point cloud of heights above the ground
(normalize_height) for each plot in the training area.

When comparing various percentiles to find the best fitting model,
the 50th, 75th, 85th, 90th, and 95th percentiles were evaluated. These
percentiles were chosen because of their common use as height metrics
in literature and because they were tested with the state forests data in a
preliminary trial of this study (Li et al. 2016; Maimaitijiang et al., 2019

& 2020). Due to having the highest R? value of the tested percentiles, the
90th percentile was used to train the model to predict the canopy height,
which follows the results of previous studies (Nasset & Bjerknes, 2001).
After the data were clipped and normalized, the 90th percentile of
height for each training plot was calculated to ensure that the top of the
canopy was represented (cloud_metrics).

After the lidar data were plotted, it was clear that the data could not
serve as a direct comparison in this study due to the time between the
acquisition date and the field measurement date (Table 2), but the data
did help to highlight the issues associated with NAIP when measuring
thinned stands. Lidar data for the four stands for which it was available
were still analyzed, but only for general comparison with the NAIP data
and its accuracy in estimating height. The lidar data were not used in the
model analysis.
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Fig. 8. A zoomed-in comparison of the effects of shadow on height estimation of recently thinned stands in Appomattox-Buckingham state forest, where (a) heavy
shadowed and (c) non-heavy shadowed are the canopy height models (CHMs) and (b)heavy shadowed and (d) non-heavy shadowed are the NAIP imagery used to
create the photogrammetric point cloud. The heavily shadowed imagery produces an underestimated CHM.

The 534 mean dominant field heights and respective NAIP 90th
percentile heights were then used in a reduced major axis (RMA) (also
known as standard major axis (SMA)) regression to develop a model to
predict field height from NAIP height using the linear model (Imodel2
and summary) functions in R. RMA was selected for this study because it
is assumed that there is error in the NAIP data as well as in the field
measured data. The following model was fit (Equation (1)) after several
models of differing percentile values were assessed and compared using
RZ, adjusted R2, predicted residual error sum of squares (PRESS), and
RMSE.

Predicted height of the canopy (m) = m*(NAIP 90th percentile of
height) + b,

Where m (or the slope) is the proportional difference between the
NAIP and field measured heights, and b (or the intercept) is the height
difference between NAIP and ground measured heights (m). To deter-
mine if the canopy heights measured on the 534 field plots were
representative of pine canopy heights across the broader three state
study area, tree data collected by the U.S. Forest Service, FIA program
data were used to develop histograms for comparison with the data
collected in this study. This helped to ensure that the training data
captured the full range of loblolly pine heights across its natural range
for the age span of this study.

Thomas et al., (2019) found poor correlation between measured and
NAIP data from recently thinned stands. Consequently, we examined our
data for outliers where the NAIP estimate was greater than one standard
deviation from the field measured height. Six plots met this criterion,
and all were dropped form the dataset after examining the NAIP imagery
(Fig. 2).

2.5. Canopy height mapping

2.5.1. Appomattox-Buckingham state forests

The model was initially applied to two sites in the ABSF, one without
thinning and one with a recently thinned area with some of the identi-
fied outliers (Fig. 2). These two sites were used to test the mapping
approach and to ensure spatial coherence of the height prediction model
across the landscape. The stands were measured on a 5m x 5 m grid to
demonstrate the application of the height prediction model (Table 4:
grid_metrics) so that at least one NAIP point (or portion thereof) would
be in a typical grid cell. Following the previous steps for normalization,
the 90th percentile of height for the NAIP points in each grid cell was
calculated and then incorporated into the height prediction model to
calculate the predicted 90th percentile of height of the grid cell.

2.5.2. Multistate

After analyzing the canopy height maps for ABSF, the resulting
calibration model was applied to all areas likely to contain pines in
Virginia, North Carolina, and Tennessee (shown in green, Fig. 1).
Because of the large number of point clouds involved, each point cloud’s
90th percentile of height was converted into a rasterona 5 m x 5 m grid
metric. The calibration model was applied to the area of each raster that
fell within the NLCD evergreen forest class shapefile. Once this process
was completed a map was produced with predicted height values for all
evergreen forests across the three states.
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Fig. 9. Histograms of measured tree heights where (a) is the most recent dis-
tribution of loblolly tree heights measured on Forest Inventory and Analysis
plots in VA, NC, and TN, and (b) is the distribution of the 90th percentile of
evergreen tree heights calculated in the 3-state-wide canopy height model using
the pine height prediction model on a 5 m x 5 m grid (1).

3. Results
3.1. Lidar

The lidar data in this study were inadequate for direct comparison to
measured forest height due to the difference in the time of acquisition. In
Fig. 3 the lidar measured height falls much lower than the field height
(almost a four-year height difference). However, there is still a clear
linear relationship between the lidar measured heights and the field
measured heights. The minimum (min), mean, and median for the lidar
measurements are all lower than the field measurements, as expected,
but the maximum (max) lidar is slightly larger than the field max
(Table 3).

3.2. Naip canopy height processing

The field data was well correlated (R2 of 0.83) with the NAIP 90th
percentile of height values (Fig. 4). The NAIP 90th percentile is strongly
related to field-measured tree heights in non-thinned areas, however,
the NAIP 90th percentile often underestimates the height of trees in
thinned stands.

The model created for the NAIP point cloud demonstrated a strong
correlation with field heights, however, there is a large bias for the plots
where there has been a recent thinning and the NAIP 90th percentile of
height is much less than the mean dominant field height. The intercept
and coefficient values for the dataset produced the fitted model (1) used
in Fig. 4. The fitted model, shown in red, is as follows:
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TopofCanopyPineHeightPrediction(PHP)(m) = 0.81 + 0.88X, €D)

Where X is the NAIP 90th percentile of height. The 95 % confidence
interval for the coefficient of X is 0.86 — 0.90, and the 95 % confidence
interval for the intercept is 0.55 — 1.07. Fig. 5 shows the distribution of
residuals after applying the PHP model to the training dataset. The PHP
model has a correlation coefficient of 0.96, an R? of 0.92, and an RMSE
of 0.81.

The residual versus fitted plot for the NAIP 90th percentile predicted
heights of the training data show a left-to-right increasing trend of the
residuals at the 1 to 2 m heights and at the 10 to 15 m heights (Fig. 5).
However, the bias of the thinned plots being underestimated is very
apparent here. The data are also not well distributed across the range of
heights as seen by the separation of the residual points from 3 to 7 m and
by the un-equal distribution of the thinned and non-thinned points from
7 to 25 m.

The predicted canopy height models, created by the PHP model, are
shown in Fig. 6a and 6b for one of the three non-thinned stands and for
the thinned stand, respectively. The point density per grid cell for these
stands is shown in Fig. 7a and 7b, respectively, demonstrating what
appears to be an equal distribution and count of DAP points across the
two stands. Fig. 8a — 8d demonstrate the variation in the canopy height
model accuracy across the thinned stands where some thinned rows
have weak height estimation (Fig. 8a & 8b), and others have a more
accurate height estimation (Fig. 8c & 8d).

3.3. Field, NAIP, and FIA data comparison

The distribution of the data is similar for the Field, NAIP, and FIA
data, but the plots used for the model did not capture the full range of
heights compared to the range collected by the FIA. After applying the
model to the three states, however, the resulting histogram of heights
matches the FIA histogram very well (Fig. 9).

Both histograms show a bell like curve with a peak at around 15 m. A
smaller peak can also be seen around the 4 m area in the FIA sample and
around the 2 m area for the three states. Statistical summaries in Table 4
show the distribution of the three data sources and further demonstrate
the normalization of the datasets. FIA data for the three states is shown
as a comparison between the state level data and our plots.

3.4. Naip canopy height mapping

The PHP equation (1) was applied to evergreen forests across the
states of Virginia, North Carolina, and Tennessee, but, due to the issues
of calculating a reliable CHM with thinned stands, it is most accurate for
the stands that are not thinned (Fig. 10) (Ritz et al., 2022).

4. Discussion

In this study, NAIP was evaluated for its ability to accurately predict
the canopy height of loblolly pine stands in seven training studies
throughout Virginia and North Carolina. The point clouds were tested
against the mean dominant height measurements to determine the error
associated with this remote sensing method. The reduced major axis
regression model (PHP) had an R? value aligning with the results of
Mielcarek et al., (2020) and Maimaitijiang et al., (2020). The strong
relationship confirmed that NAIP provides accurate measurements of
forest height, as expected from previous studies (Kim et al., 2020; Prior
et al., 2022; Strunk et al., 2020). The PHP model was then used to
calibrate the NAIP CHM’s, so the resulting maps were in better align-
ment with field measured tree heights. The success of this approach
verified the PHP model’s ability to capture the predicted height of a pine
stand and create an effective canopy height model. The PHP model was
then applied to Virginia, North Carolina, and Tennessee where DEMs
from lidar were available.
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Not only is NAIP wall-to-wall coverage, but it can be acquired for 1/3
of the costs of lidar with routine data acquisitions (Goodbody et al.,
2019; Michez et al., 2020; White et al., 2015; Navarro et al., 2020). Lidar
is known for being highly accurate (Strunk et al., 2020; Bohlin et al.,
2012; Masek et al., 2015; Noordermeer et al., 2021; Nelson et al., 2007).
However, no lidar data were acquired at or near the time of field mea-
surements. As such, this study could not make a direct comparison in
height performance between DAP and lidar. The lack of recent lidar data
further supports NAIP as a promising alternative to lidar for height
measurements because of its consistent data collection schedules
(Strunk et al., 2019; Strunk et al., 2020).

Thinned stands were a challenge in this study as NAIP did not
perform well over some of these stands, causing six points to be flagged
as outliers. Upon further investigation, it was found that the NAIP point
cloud 90th percentile of height in these locations was not capturing the
true top of canopy, and in some cases missing it entirely. This issue with
the thinned stands was further investigated and found to be present in all
the thinned stands in the training dataset. However, none of the plots in
these stands were flagged as outliers and that is most likely due to the
plot centers being in areas where the NAIP point cloud calculated the
height more accurately. This issue was also present in thinned stands
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Fig. 10. The state-wide CHM using PHP equation
(1) across the evergreen landcover, where (a)
shows the coverage in Virginia, North Carolina,
and Tennessee and (b) shows the coverage at a
much smaller scale. The red star in Fig. 10(a)
depicts the location of Fig. 10(b). (For interpre-
tation of the references to colour in this figure
legend, the reader is referred to the web version
of this article.). (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)

outside of the training region. The orientation of the thin rows relative to
the sun and time of acquisition is potentially the cause of the significant
impact of NAIP image shadows and subsequent identification of the top
of the crowns, but further investigation is required to determine the true
cause of this issue. This misalignment has led to a failure of identifying
the high frequency changes in height from the ground to the top of
canopy as a result of the discrepancies associated between autocorre-
lation and stereo-images (Gruen, 2012).

One limitation to this study is the lack of a well vetted, region-wide
loblolly pine map for the southeastern United States within which to
apply the model. Although the NLCD evergreen class will contain most
of the pines, there will also be other trees species that are not as appli-
cable to the model. Another limitation of this study is that the training
data do not capture the full range of heights for loblolly pine in the
southeastern United States. Our field plots do not capture the maximum
height pines can reach in the three states, with heights in the 30 — 40 m
range according to the FIA data. Because of this limitation, maps of pine
canopy height in the three states should include a cautionary note,
particularly for the highly productive areas with taller pine trees.

Future work will include fine-tuning this model and creating canopy
height models for the remaining states in the southeastern United States
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as well as utilizing NAIP imagery to remove non-tree areas and increase
point cloud accuracy in thinned stands. In addition, with the repeated
acquisition of NAIP imagery every-two to three years, there is the pos-
sibility of monitoring growth of pine stands, which may be interesting to
managers and important to study longer term changes in productivity
due to management, disturbance, stress, and increased atmospheric
carbon dioxide. Other applications that build on this study could include
creating canopy height models for deciduous tree species and modeling
stand productivity over time.

5. Conclusion

In this study, a pine height prediction model was created that adjusts
NAIP derived CHM’s to better align with mean dominant tree heights of
loblolly pine found in the southeastern United States. This study vali-
dated that, for areas of non-thinned loblolly pine, NAIP point clouds can
be used to produce reliable predictions of canopy height. In addition, we
also demonstrate how the pine height prediction model can be used to
adjust NAIP CHMs to map pine canopy height across large multi-state
areas. This study also shows that NAIP holds promise for mapping
pine canopy height in other areas of the United States’ southeastern pine
region to create a series of canopy height models for loblolly pine
plantations that can be updated routinely due to NAIP’s repeatable
acquisition cycles. The performance of NAIP in this study presents a
strong argument for its use in addition to lidar in loblolly pine plantation
management across the southeast United States.
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Package Description Version Citation

sf Simple features for R 0.9-5 Pebesma, 2018

rgdal Bindings for the *Geospatial’ data abstraction library 1.5-10 Bivard, 2020

raster Geographic data analysis and modeling 3.1-5 Hijmans, 2020

elevatr Access elevations data from various APIs 0.2.0 Hollister, 2020

ggplot2 Create elegant data visualizations using the grammar of graphics 3.3.1 Wickham, 2016

lidR Airborne lidar data manipulation and visualization for forestry applications 3.0.4 Roussel, 2020

devtools Tools to make developing R packages easier 2.3.1 Hester, 2020

rlas Read and write ’las’ and ’laz’ binary file formats used for remote sensing data 1.3.6 Roussel, 2021

stats R statistical functions 4.0.1 R Development Core Team, 2020a, 2020b
Imodel2 Model II regression 1.7-3 Legendre, 2018

metrics Implementation of evaluation metrics in R that are commonly used in supervised machine learning 0.1.4 Frasco, 2018

base The R base package 4.0.1 R Development Core Team, 2020a, 2020b

Appendix B R functions used in data analysis.

Function Package and Description

Parameters

lasclip
normalize_height
function

cloud_metrics
Imodel2

cor
rmse

summary
grid_metrics

lidR: clip points within a given geometry from a point cloud (LAS’ object) or a catalog ("Lascatalog’ object)
lidR: subtract digital terrain model (DTM) from point cloud to create a dataset normalized with the ground at 0
sf: creating user-defined functions in R for repeat use. Function created for 90th percentile.

lidR: computes a series of user-defined descriptive statistics for a dataset. The 90th percentile of height was used.
Imodel2: Computes model II simple linear regression using ordinary least squares (OLS), major axis (MA), standard
major axis (SMA), and ranged major axis (RMA)

stats: if x and y are matrices then the covariances (or correlations) between the columns of x and the columns of y are
computed

metrics: computes the root mean squared error between two numeric vectors

base: a generic function used to produce result summaries of the results of various model fitting functions

lidR: computes a series of user-defined descriptive statistics for a dataset within each pixel of a raster (area-based
approach)

No extra parameters necessary.

No extra parameters necessary.
function(Z) {p90 = quantile (Z, probs
=¢(0.90)}

No extra parameters necessary.

No extra parameters necessary.

Default is Pearson correlation.
No extra parameters necessary.

Default quantile type is all quantiles.
No extra parameters necessary.
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