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A B S T R A C T   

Remote sensing offers many advantages to supplement traditional, ground-based forest measurements, such as 
limiting time in the field and fast spatial coverage. Data from airborne laser scanning (lidar) have provided 
accurate estimates of forest height, where, and when available. However, lidar is expensive to collect, and wall- 
to-wall coverage in the United States is lacking. Recent studies have investigated whether point clouds derived 
from digital aerial photogrammetry (DAP) can supplement lidar data for estimating forest height due to DAP’s 
lower costs and more frequent acquisitions. We estimated forest heights using point clouds derived from the 
National Agricultural Imagery Program (NAIP) DAP program in the United States to create a predicted height 
map for managed loblolly pine stands. For 534 plots in Virginia and North Carolina, with stand age ranging from 
1 year to 42 years old, field-collected canopy heights were regressed against the 90th percentile of heights 
derived from NAIP point clouds. Model performance was good, with an R2 of 0.93 and an RMSE of 1.44 m. 
However, heights in recent heavily thinned stands were consistently underestimated, likely due to between-row 
shadowing leading to a poor photogrammetric solution. The model was applied to non-thinned evergreen areas 
in Virginia, North Carolina, and Tennessee to produce a multi-state 5 m × 5 m canopy height map. NAIP-derived 
point clouds are a viable means of predicting canopy height in southern pine stands that have not been thinned 
recently.   

1. Introduction 

Advancements in remote sensing have grown significantly over the 
past few decades, allowing for new and revolutionary ways to measure 
forest height. Maintaining an accurate forest height model is essential 
for forest management (Green et al., 2020; Næsset, 2002; Navarro et al., 
2020; Schultz, 1999). Light detection and ranging (lidar) has been 
widely used for height mapping over the past 2–3 decades; however, 
several impediments to the use of lidar data exist, including high costs, 

processing capabilities, and limited availability. Digital aerial photo
grammetry (DAP) has been found to be comparable to lidar in forest 
height estimation when utilizing a precise digital elevation model 
(DEM) obtained from lidar point clouds (Bohlin et al., 2012; Goodbody 
et al., 2019; Lebarl et al., 2010; Strunk et al., 2020; White et al., 2015; 
Zimmermann and Hoffmann, 2017). 

Forest height is better predicted in a homogenous stand of trees than 
in natural stands with varying species and age classes when using remote 
sensing data (Gopalakrishnan et al., 2019; Rahlf et al., 2017). Managed 
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stands also provide an excellent foundation for studies utilizing an area- 
based approach (ABA) to process the remote sensing data, which relies 
on the relationship between field measurements and remote sensing 
predictor(s). This relationship is more difficult to establish in natural 
stands (Gobakken et al., 2015; Green et al., 2020; Kwong & Fung, 2020; 
Rahlf et al., 2017). Previous studies have shown that the correlation 
between field measurements and DAP in an ABA is comparable to the 
accuracy of lidar (Gobakken et al., 2015; Goodbody et al., 2019; Moe 
et al., 2020; White et al., 2015). Other studies have investigated and 
demonstrated the utility of DAP to collect forest attributes at a reason
able accuracy, including height (e.g. Moe et al., 2020; Næsset, 2002; 
Zagalikis et al., 2005), volume (e.g. Green et al., 2020; Shen et al., 2019; 
Nurminen et al., 2013), stand density (Gobakken, et al., 2015), basal 
area (e.g. Bohlin et al., 2012; Noordermeer et al., 2019; White et al., 
2015), site index (Gopalakrishnan et al., 2019; Noordermeer et al., 
2021), and tree detection (Noordermeer et al., 2019; Strunk et al., 2020; 
Thiel & Schmullius, 2016). 

In the United States the National Agriculture Imagery Program 
(NAIP) regularly collects high-resolution aerial imagery for the United 
States Department of Agriculture’s (USDA) Farm Service Agency (FSA) 
(Davis, 2011). For a given state, NAIP was acquired every-five years 
from 2003 to 2009 and is now acquired every-three years during the 

Table 1 
Location and description of the field plots.  

Training Area Coordinates Geographic Region Plot Size 
(ha) 

#Plots+ #Thinned 
Plotsþþ

Measurement Age 
(years) 

Citation 

ABSF* 37̊25′21′′N 
78̊40′46′′W 

Virginia Piedmont 0.013 – 
0.02 

140  27 8–22 Green et al., 2020 

CUSF* 37̊32′53′′N 
78̊15′12′′W 

Virginia Piedmont 0.013 – 
0.02 

84  56 12–42 Green et al., 2020 

PESF* 37̊10′12′′N 
78̊17′34′′W 

Virginia Piedmont 0.013 – 
0.02 

34  17 15–28 Green et al., 2020 

Patrick County* 36̊38′35′′N 
80̊9′17′′W 

Virginia Piedmont/ Blue 
Ridge 

0.05 – 0.15 144  0 9 Albaugh et al., 2017; Albaugh 
et al., 2018 

Bladen County 34̊49′50′′N 
78̊35′19′′W 

North Carolina Coastal 
Plain 

0.05 – 0.15 108  0 9 Albaugh et al., 2017; Albaugh 
et al., 2018 

Jones County 35̊0′29′′N 
77̊22′52′′W 

North Carolina Coastal 
Plain 

0.1 12  0 1 Grover et al., 2020 

Brunswick 
County 

34̊9′45′′N 
78̊15′52′′W 

North Carolina Coastal 
Plain 

0.1 12  0 1 Grover et al., 2020  

+ Total number of plots. ++Total number of thinned plots. *Lidar data available. 

Fig. 1. Virginia and North Carolina training studies and the extent of statewide modeling across Virginia, North Carolina, and Tennessee with landcover class code 
42 (evergreen forest) from National Landcover Dataset (NLCD) 2016. The ‘Loblolly Pine Natural Range’ in this figure is the geographic range of loblolly pine for 
which our calibration model is most applicable (Little 1971). The counties identified are the locations of the training data plots. 

Table 2 
Lidar collection specifications for the four Virginia training regions.   

ABSF and CUSF PESF Patrick Co. 

Flight 
Campaign 
name 

Chesapeake Bay Sandy South Central 

Collection 
dates 

November 15, 
2015 – March 30, 
2016 

March 24, 2014 – 
April 21, 2014 

April 14, 2017 – May 
24, 2018 

Sensor Riegl 68oi Leica ALS60 or 
Leica ALS 70 

Riegl LMS-Q1560 or 
Riegl VQ-1560i or 
Riegl VQ-780i 

Scan angle 
(degrees) 

60 Unreported 58.52 or 60 

Point density 
(pulse/m2) 

2.3 2.5 5.2 

Nominal pulse 
spacing (m) 

0.66 0.7 2.0 or 1.0 

Flight line 
overlap 

55 % 30 % (ALS60) or 
20 % (ALS70) 

15 % or 55 % 

Pulse rate 
(kHz) 

200 154.3 (ALS60) or 
301.6 (ALS70) 

687 or 300 

ABSF - Appomattox-Buckingham State Forest, CUSF – Cumberland State Forest, 
PESF – Prince Edward State Forest. 
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growing season. NAIP imagery is collected using overlapping transects 
which are used to produce complete stereo-images for the entire country 
(Strunk et al., 2019; Strunk et al., 2020). The images are all acquired 
within one growing season for a state, covering an extensive area in a 
relatively short timeframe, so there is minimal change between images 
(Strunk et al., 2019 & 2020). In addition, NAIP photos can generate 3D 
point clouds of the surface of the canopy that are comparable to lidar 3D 
point clouds of the upper canopy. 

However, some studies have shown that NAIP imagery and point 
clouds can be significantly impacted by acquisition parameters 
including sun position, terrain, and shadow (Schroeder et al., in review; 
Prior et al., 2022). NAIP also cannot penetrate the forest canopy and 
only produces a digital surface model (DSM) of the stand. A solution to 
this shortcoming is the use of lidar-derived DEMs, which are considered 
the “best available data products” by Goodbody et al., (2019), with the 
NAIP point clouds to calculate a normalized canopy height model 
(Michez et al., 2020; Mielcarek et al., 2020; White et al., 2015; Navarro 
et al., 2020; Bohlin et al., 2012). After using a high-quality DEM (≤1 m 
ground sampling distance), R2′s (coefficient of determination: 
1

sum squared regression (SSR)
total sum squares (SST) ) between lidar and DAP have been reported as 

high as of 0.9 (Michez et al., 2020; Mielcarek et al., 2020). Lidar-based 
DEMs are widely available from the USGS site and since there is the 
assumption that topography is not significantly different over time, the 
DEM does not need to be coincident with the flight. 

Clearly there is potential for DAP to predict pine or other forest 
heights in Europe and western North America. However, this potential 
has not been widely explored in the managed pine forests of the 
southeastern United States. There is a need to explore this potential for 
managed southern pines, which span a large geographic region 
(863,778 km2), since they are a vital economic resource for the world 
and there is growing importance for forest companies to evaluate carbon 
stocks for certification and for the carbon market (Janowiak et al., 
2017). We had two primary objectives, as follows: (1) to develop a 
model that accurately predicts the top-of-canopy height of managed 
loblolly pine plantations from NAIP photogrammetric point clouds, and 
(2) to use the resulting model to create a pine canopy height map for all 
of Virginia, North Carolina, and Tennessee. 

Fig. 2. A sample of flagged NAIP points that were visually assessed as having recent harvests or thinning in Appomattox-Buckingham and Cumberland state forests 
where the black points represent five of the six points that were flagged, and the white points represent the points that were not flagged. The red outline is the extent 
of the stand. Fig. 2b depicts a zoom-in of one of the black points (point A) and Fig. 2c depicts a zoom-in of one of the white points (point B). It is important to note the 
shadowed, dark ground making up most of point A compared to mostly light green colored vegetation at point B. The sixth flagged point was in a single plot in CUSF. 
Coordinates are in projection GRS80 UTM 18 N. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Materials and methods 

2.1. Study area and field measurements 

The overall study area includes thinned and non-thinned evergreen 
forests of Virginia, North Carolina, and Tennessee, based on the National 
Land Cover Dataset. For this study, stands that have had rows removed 
and the bare ground is visible between the rows that remain are 
considered thinned. Areas where no thinning has been done or the tree 
crowns have covered back up the ground below are considered non- 
thinned. Field measured loblolly pine (Pinus taeda L.) heights collected 
on 534 plots across seven regions in North Carolina and Virginia were 
used for model calibration. All these regions are in humid temperate 
climates with USDA plant hardiness zones from 6b to 8a (USDA Agri
culture Research Service 2012). The study area ranges from coastal to 
mountainous, representing both the natural range and non-native areas 
in which loblolly pine is commonly planted (Table 1). 

The seven training studies are distributed over Virginia and North 
Carolina with three in Virginia state forests, one at the Reynolds 
Homestead in southwest Virginia, and three in North Carolina (Fig. 1). 
The three Virginia state forests are Appomattox-Buckingham (ABSF), 

Cumberland (CUSF), and Prince Edward (PESF), all of which are in the 
Piedmont physiographic region. These three state forests are managed 
by the Virginia Department of Forestry and maintain numerous actively 
managed loblolly pine stands. Plots at ABSF, CUSF, and PRSF were 
established with a Trimble Geo 7x GPS and were measured in 
2018–2019 as part of a study conducted by the Forest Modeling 
Research Cooperative (FMRC; Green et al., 2020). The data for Patrick, 
Bladen, Jones, and Brunswick counties were collected as part of other 
research studies in 2019 (Albaugh et al., 2018; Grover et al., 2020). The 
stands in Patrick County, VA and Bladen County, NC were planted in 
2009. The remaining two training studies were in Jones and Brunswick 
counties in North Carolina and were planted in 2017. These two studies 
were each comprised of two plots that were broken into six subplots with 
12 plot measurements each. Since the training studies in Jones and 
Brunswick counties were planted in 2017 and measured in 2018, the 
trees were short and relatively homogeneous in height. A hypsometer 
was used to measure tree heights on the older plots and a height pole was 
used for the young plots. The mean dominant height for each plot was 
used as the field height for this study. 

Forest Inventory and Analysis (FIA) data was used to compare the 
state-wide model height values to height values collected in the field by 
the USDA Forest Service. The FIA data repository includes information 
on forest area and location, species, size, tree health, tree growth, har
vests, and many other forest characteristics (USDA Forest Service, 
2020). Each year, a fixed-area plot design is used to measure a sample of 
the over 400,000 permanent plots across the United States (Burkhart 
et al., 2019). These measurements are recorded across both public and 
private lands that are classified as forestland use or non-forestland use. 

1:1 Line

Fig. 3. Model of the lidar 90th percentile of height versus the field measured height. The 1:1 line is represented in black. The years noted in the legend are the years 
the lidar data were acquired. Field measurements were from 2018 to 2019. 

Table 3 
Summary statistics of the data in the lidar and field plots.  

Data Min (m) Max (m) Median (m) Mean (m) Count 

Field  5.8  26.6  13.0  14.3 402 
Lidar  3.9  27.2  11.4  12.2 402  

Table 4 
Summary statistics of height for the data in the training regions and the FIA data.  

Data Min (m) Max (m) Median (m) Mean (m) Standard deviation (m) Coefficient of Variation (%) Count 

Field  1.0  26.6  11.9  13.0  4.6  35.1 528 
NAIP  1.0  24.4  11.9  12.2  4.0  32.3 528 
FIA data for VA, NC, and TN  1.52  54.0  15.2  15.6  6.2  39.9 533  
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2.2. Remote sensing data 

2.2.1. NAIP imagery and point clouds 
The United States Department of Agriculture Farm Service Agency 

Aerial Photography Field Office (USDA FSA APFO) NAIP program 
collected NAIP imagery in 2018 for all three states (USDA-FPAC-BC- 
APFO Aerial Photography Field Office, 2019). The acquisition parame
ters are all publicly available online (e.g., OCM Partners, 2021). There 

were multiple sensors used in this acquisition: serial numbers 10510, 
10515, 10522, 10530, 10,552 from Leica ADS-100 with Flight and 
Sensor Control Management System (FCMS) firmware: v4.54. There was 
30 % side lap of the flight lines, allowing for 0.4 m sampling distance 
resolution, and image acquisition used +/- 6 m to ground specification. 
The Leica XPro SGM Module was used to create point clouds (.laz 
format) generated from the ADS 100 imagery,. This is a post-processing 
software designed for ortho production from overlapping stereo 

1:1 Line
Model (1)

Fig. 4. Model of the NAIP 90th percentile of 
height versus the mean dominant field height, 
where the yellow points represent plots that were 
not recently thinned, and the green points 
represent plots that had experienced a recent 
thinning. The 1:1 line is shown in black, and the 
fitted model (1) is shown by the dashed red line. 
(For interpretation of the references to colour in 
this figure legend, the reader is referred to the 
web version of this article.). (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 5. Standardized Residuals by Field measured height, by plot.  
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imagery, in which point cloud production is an intermediate step. Im
agery for each flight line was 20,000-pixels in width. Autocorrelation 
algorithms were then used to identify image tie points and then 
mosaiced into one image. Four band images, with blue (435–495 nm), 
green (525–585 nm), red (619–651 nm), and near infrared (808–882 
nm) spectral bands, were collected and compiled to create point clouds. 

2.2.2. Lidar and DEM 
Lidar data were used in this study for (1) DEMs with fine spatial-scale 

accuracy, needed for normalizing the NAIP point clouds to height above 
ground, and (2) to estimate 2018 tree heights. Lidar point clouds and 
associated 1-m DEMs were acquired from publicly available data from 
the United States Geological Survey (USGS) 3D Elevation Program, 
which does not cover all the state of Virginia but was in our regions of 
interest (e.g., USGS 3DEP; USGS, 2021). Since the terrain is unlikely to 
significantly change over the timespan of interest, older DEMs were used 
for the plots that did not have recent lidar acquisitions. Patrick County 

was part of a 2018 lidar campaign, ABSF and CUSF were part of a 2015 
lidar campaign, and PESF was from a 2014 campaign (Table 2, (USDA- 
FPAC-BC-APFO; Green et al., 2020; US Geological, 2019)). However, for 
the three stands in North Carolina, there were no lidar data available 
within five years of the field measurements so lidar analysis was only 
done for the Virginia stands and NAIP analysis was done for both North 
Carolina and Virginia. Lidar data was accessed form the USGS National 
Map (USGS, 2017a, 2017b). The DEM for North Carolina was from 3DEP 
data that was collected in 2013. 

2.3. Data analyses 

All analyses were completed with R software (R Development Core 
Team, 2010). For this study the following packages were used: sf, rgdal, 
raster, elevatr, ggplot2, lidR, devtools, rlas, stats, metrics, base (see 
Appendix A). The following functions were used from the packages: 
lasclip, normalize_height, function, cloud_metrics, lmodel2, cor, rmse, 

Fig. 6. Canopy height models (CHM) after running the normalized heights through the PHP model, where (a) non-thinned stand in Appomattox-Buckingham state 
forest and (b) recently thinned stand in Appomattox-Buckingham state forest. The boxes represent zoom-ins of the boxed areas that are shown in Fig. 8. X and Y axis 
are coordinates in projection GRS80 UTM 18 N. 
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summary, grid_metrics (see Appendix B). 

2.4. DAP canopy height processing 

Data analysis began by clipping the NAIP and lidar point clouds and 
the DEM to the extent of the plots in all three state forests (lasclip). The 
data were normalized by subtracting the DEM from both the NAIP and 
lidar point clouds to create a point cloud of heights above the ground 
(normalize_height) for each plot in the training area. 

When comparing various percentiles to find the best fitting model, 
the 50th, 75th, 85th, 90th, and 95th percentiles were evaluated. These 
percentiles were chosen because of their common use as height metrics 
in literature and because they were tested with the state forests data in a 
preliminary trial of this study (Li et al. 2016; Maimaitijiang et al., 2019 

& 2020). Due to having the highest R2 value of the tested percentiles, the 
90th percentile was used to train the model to predict the canopy height, 
which follows the results of previous studies (Næsset & Bjerknes, 2001). 
After the data were clipped and normalized, the 90th percentile of 
height for each training plot was calculated to ensure that the top of the 
canopy was represented (cloud_metrics). 

After the lidar data were plotted, it was clear that the data could not 
serve as a direct comparison in this study due to the time between the 
acquisition date and the field measurement date (Table 2), but the data 
did help to highlight the issues associated with NAIP when measuring 
thinned stands. Lidar data for the four stands for which it was available 
were still analyzed, but only for general comparison with the NAIP data 
and its accuracy in estimating height. The lidar data were not used in the 
model analysis. 

Fig. 7. Number of DAP points per 5 m × 5 m cells, where (a) non-thinned stand in Appomattox-Buckingham state forest and (b) recently thinned stand in 
Appomattox-Buckingham state forest. The boxes represent zoom-ins of the boxed areas that are shown in Fig. 8. X and Y axis are coordinates in projection GRS80 
UTM 18 N. 
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The 534 mean dominant field heights and respective NAIP 90th 
percentile heights were then used in a reduced major axis (RMA) (also 
known as standard major axis (SMA)) regression to develop a model to 
predict field height from NAIP height using the linear model (lmodel2 
and summary) functions in R. RMA was selected for this study because it 
is assumed that there is error in the NAIP data as well as in the field 
measured data. The following model was fit (Equation (1)) after several 
models of differing percentile values were assessed and compared using 
R2, adjusted R2, predicted residual error sum of squares (PRESS), and 
RMSE. 

Predicted height of the canopy (m) = m*(NAIP 90th percentile of 
height) + b, 

Where m (or the slope) is the proportional difference between the 
NAIP and field measured heights, and b (or the intercept) is the height 
difference between NAIP and ground measured heights (m). To deter
mine if the canopy heights measured on the 534 field plots were 
representative of pine canopy heights across the broader three state 
study area, tree data collected by the U.S. Forest Service, FIA program 
data were used to develop histograms for comparison with the data 
collected in this study. This helped to ensure that the training data 
captured the full range of loblolly pine heights across its natural range 
for the age span of this study. 

Thomas et al., (2019) found poor correlation between measured and 
NAIP data from recently thinned stands. Consequently, we examined our 
data for outliers where the NAIP estimate was greater than one standard 
deviation from the field measured height. Six plots met this criterion, 
and all were dropped form the dataset after examining the NAIP imagery 
(Fig. 2). 

2.5. Canopy height mapping 

2.5.1. Appomattox-Buckingham state forests 
The model was initially applied to two sites in the ABSF, one without 

thinning and one with a recently thinned area with some of the identi
fied outliers (Fig. 2). These two sites were used to test the mapping 
approach and to ensure spatial coherence of the height prediction model 
across the landscape. The stands were measured on a 5 m × 5 m grid to 
demonstrate the application of the height prediction model (Table 4: 
grid_metrics) so that at least one NAIP point (or portion thereof) would 
be in a typical grid cell. Following the previous steps for normalization, 
the 90th percentile of height for the NAIP points in each grid cell was 
calculated and then incorporated into the height prediction model to 
calculate the predicted 90th percentile of height of the grid cell. 

2.5.2. Multistate 
After analyzing the canopy height maps for ABSF, the resulting 

calibration model was applied to all areas likely to contain pines in 
Virginia, North Carolina, and Tennessee (shown in green, Fig. 1). 
Because of the large number of point clouds involved, each point cloud’s 
90th percentile of height was converted into a raster on a 5 m × 5 m grid 
metric. The calibration model was applied to the area of each raster that 
fell within the NLCD evergreen forest class shapefile. Once this process 
was completed a map was produced with predicted height values for all 
evergreen forests across the three states. 

Fig. 8. A zoomed-in comparison of the effects of shadow on height estimation of recently thinned stands in Appomattox-Buckingham state forest, where (a) heavy 
shadowed and (c) non-heavy shadowed are the canopy height models (CHMs) and (b)heavy shadowed and (d) non-heavy shadowed are the NAIP imagery used to 
create the photogrammetric point cloud. The heavily shadowed imagery produces an underestimated CHM. 
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3. Results 

3.1. Lidar 

The lidar data in this study were inadequate for direct comparison to 
measured forest height due to the difference in the time of acquisition. In 
Fig. 3 the lidar measured height falls much lower than the field height 
(almost a four-year height difference). However, there is still a clear 
linear relationship between the lidar measured heights and the field 
measured heights. The minimum (min), mean, and median for the lidar 
measurements are all lower than the field measurements, as expected, 
but the maximum (max) lidar is slightly larger than the field max 
(Table 3). 

3.2. Naip canopy height processing 

The field data was well correlated (R2 of 0.83) with the NAIP 90th 
percentile of height values (Fig. 4). The NAIP 90th percentile is strongly 
related to field-measured tree heights in non-thinned areas, however, 
the NAIP 90th percentile often underestimates the height of trees in 
thinned stands. 

The model created for the NAIP point cloud demonstrated a strong 
correlation with field heights, however, there is a large bias for the plots 
where there has been a recent thinning and the NAIP 90th percentile of 
height is much less than the mean dominant field height. The intercept 
and coefficient values for the dataset produced the fitted model (1) used 
in Fig. 4. The fitted model, shown in red, is as follows: 

TopofCanopyPineHeightPrediction(PHP)(m) = 0.81+ 0.88X, (1) 

Where X is the NAIP 90th percentile of height. The 95 % confidence 
interval for the coefficient of X is 0.86 – 0.90, and the 95 % confidence 
interval for the intercept is 0.55 – 1.07. Fig. 5 shows the distribution of 
residuals after applying the PHP model to the training dataset. The PHP 
model has a correlation coefficient of 0.96, an R2 of 0.92, and an RMSE 
of 0.81. 

The residual versus fitted plot for the NAIP 90th percentile predicted 
heights of the training data show a left-to-right increasing trend of the 
residuals at the 1 to 2 m heights and at the 10 to 15 m heights (Fig. 5). 
However, the bias of the thinned plots being underestimated is very 
apparent here. The data are also not well distributed across the range of 
heights as seen by the separation of the residual points from 3 to 7 m and 
by the un-equal distribution of the thinned and non-thinned points from 
7 to 25 m. 

The predicted canopy height models, created by the PHP model, are 
shown in Fig. 6a and 6b for one of the three non-thinned stands and for 
the thinned stand, respectively. The point density per grid cell for these 
stands is shown in Fig. 7a and 7b, respectively, demonstrating what 
appears to be an equal distribution and count of DAP points across the 
two stands. Fig. 8a – 8d demonstrate the variation in the canopy height 
model accuracy across the thinned stands where some thinned rows 
have weak height estimation (Fig. 8a & 8b), and others have a more 
accurate height estimation (Fig. 8c & 8d). 

3.3. Field, NAIP, and FIA data comparison 

The distribution of the data is similar for the Field, NAIP, and FIA 
data, but the plots used for the model did not capture the full range of 
heights compared to the range collected by the FIA. After applying the 
model to the three states, however, the resulting histogram of heights 
matches the FIA histogram very well (Fig. 9). 

Both histograms show a bell like curve with a peak at around 15 m. A 
smaller peak can also be seen around the 4 m area in the FIA sample and 
around the 2 m area for the three states. Statistical summaries in Table 4 
show the distribution of the three data sources and further demonstrate 
the normalization of the datasets. FIA data for the three states is shown 
as a comparison between the state level data and our plots. 

3.4. Naip canopy height mapping 

The PHP equation (1) was applied to evergreen forests across the 
states of Virginia, North Carolina, and Tennessee, but, due to the issues 
of calculating a reliable CHM with thinned stands, it is most accurate for 
the stands that are not thinned (Fig. 10) (Ritz et al., 2022). 

4. Discussion 

In this study, NAIP was evaluated for its ability to accurately predict 
the canopy height of loblolly pine stands in seven training studies 
throughout Virginia and North Carolina. The point clouds were tested 
against the mean dominant height measurements to determine the error 
associated with this remote sensing method. The reduced major axis 
regression model (PHP) had an R2 value aligning with the results of 
Mielcarek et al., (2020) and Maimaitijiang et al., (2020). The strong 
relationship confirmed that NAIP provides accurate measurements of 
forest height, as expected from previous studies (Kim et al., 2020; Prior 
et al., 2022; Strunk et al., 2020). The PHP model was then used to 
calibrate the NAIP CHM’s, so the resulting maps were in better align
ment with field measured tree heights. The success of this approach 
verified the PHP model’s ability to capture the predicted height of a pine 
stand and create an effective canopy height model. The PHP model was 
then applied to Virginia, North Carolina, and Tennessee where DEMs 
from lidar were available. 

Fig. 9. Histograms of measured tree heights where (a) is the most recent dis
tribution of loblolly tree heights measured on Forest Inventory and Analysis 
plots in VA, NC, and TN, and (b) is the distribution of the 90th percentile of 
evergreen tree heights calculated in the 3-state-wide canopy height model using 
the pine height prediction model on a 5 m × 5 m grid (1). 
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Not only is NAIP wall-to-wall coverage, but it can be acquired for 1/3 
of the costs of lidar with routine data acquisitions (Goodbody et al., 
2019; Michez et al., 2020; White et al., 2015; Navarro et al., 2020). Lidar 
is known for being highly accurate (Strunk et al., 2020; Bohlin et al., 
2012; Masek et al., 2015; Noordermeer et al., 2021; Nelson et al., 2007). 
However, no lidar data were acquired at or near the time of field mea
surements. As such, this study could not make a direct comparison in 
height performance between DAP and lidar. The lack of recent lidar data 
further supports NAIP as a promising alternative to lidar for height 
measurements because of its consistent data collection schedules 
(Strunk et al., 2019; Strunk et al., 2020). 

Thinned stands were a challenge in this study as NAIP did not 
perform well over some of these stands, causing six points to be flagged 
as outliers. Upon further investigation, it was found that the NAIP point 
cloud 90th percentile of height in these locations was not capturing the 
true top of canopy, and in some cases missing it entirely. This issue with 
the thinned stands was further investigated and found to be present in all 
the thinned stands in the training dataset. However, none of the plots in 
these stands were flagged as outliers and that is most likely due to the 
plot centers being in areas where the NAIP point cloud calculated the 
height more accurately. This issue was also present in thinned stands 

outside of the training region. The orientation of the thin rows relative to 
the sun and time of acquisition is potentially the cause of the significant 
impact of NAIP image shadows and subsequent identification of the top 
of the crowns, but further investigation is required to determine the true 
cause of this issue. This misalignment has led to a failure of identifying 
the high frequency changes in height from the ground to the top of 
canopy as a result of the discrepancies associated between autocorre
lation and stereo-images (Gruen, 2012). 

One limitation to this study is the lack of a well vetted, region-wide 
loblolly pine map for the southeastern United States within which to 
apply the model. Although the NLCD evergreen class will contain most 
of the pines, there will also be other trees species that are not as appli
cable to the model. Another limitation of this study is that the training 
data do not capture the full range of heights for loblolly pine in the 
southeastern United States. Our field plots do not capture the maximum 
height pines can reach in the three states, with heights in the 30 – 40 m 
range according to the FIA data. Because of this limitation, maps of pine 
canopy height in the three states should include a cautionary note, 
particularly for the highly productive areas with taller pine trees. 

Future work will include fine-tuning this model and creating canopy 
height models for the remaining states in the southeastern United States 

Fig. 10. The state-wide CHM using PHP equation 
(1) across the evergreen landcover, where (a) 
shows the coverage in Virginia, North Carolina, 
and Tennessee and (b) shows the coverage at a 
much smaller scale. The red star in Fig. 10(a) 
depicts the location of Fig. 10(b). (For interpre
tation of the references to colour in this figure 
legend, the reader is referred to the web version 
of this article.). (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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as well as utilizing NAIP imagery to remove non-tree areas and increase 
point cloud accuracy in thinned stands. In addition, with the repeated 
acquisition of NAIP imagery every-two to three years, there is the pos
sibility of monitoring growth of pine stands, which may be interesting to 
managers and important to study longer term changes in productivity 
due to management, disturbance, stress, and increased atmospheric 
carbon dioxide. Other applications that build on this study could include 
creating canopy height models for deciduous tree species and modeling 
stand productivity over time. 

5. Conclusion 

In this study, a pine height prediction model was created that adjusts 
NAIP derived CHM’s to better align with mean dominant tree heights of 
loblolly pine found in the southeastern United States. This study vali
dated that, for areas of non-thinned loblolly pine, NAIP point clouds can 
be used to produce reliable predictions of canopy height. In addition, we 
also demonstrate how the pine height prediction model can be used to 
adjust NAIP CHMs to map pine canopy height across large multi-state 
areas. This study also shows that NAIP holds promise for mapping 
pine canopy height in other areas of the United States’ southeastern pine 
region to create a series of canopy height models for loblolly pine 
plantations that can be updated routinely due to NAIP’s repeatable 
acquisition cycles. The performance of NAIP in this study presents a 
strong argument for its use in addition to lidar in loblolly pine plantation 
management across the southeast United States. 
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Appendix 

Appendix A Definitions of R packages used in the analysis.   

Package Description Version Citation 

sf Simple features for R 0.9–5 Pebesma, 2018 
rgdal Bindings for the ’Geospatial’ data abstraction library 1.5–10 Bivard, 2020 
raster Geographic data analysis and modeling 3.1–5 Hijmans, 2020 
elevatr Access elevations data from various APIs 0.2.0 Hollister, 2020 
ggplot2 Create elegant data visualizations using the grammar of graphics 3.3.1 Wickham, 2016 
lidR Airborne lidar data manipulation and visualization for forestry applications 3.0.4 Roussel, 2020 
devtools Tools to make developing R packages easier 2.3.1 Hester, 2020 
rlas Read and write ’las’ and ’laz’ binary file formats used for remote sensing data 1.3.6 Roussel, 2021 
stats R statistical functions 4.0.1 R Development Core Team, 2020a, 2020b 
lmodel2 Model II regression 1.7–3 Legendre, 2018 
metrics Implementation of evaluation metrics in R that are commonly used in supervised machine learning 0.1.4 Frasco, 2018 
base The R base package 4.0.1 R Development Core Team, 2020a, 2020b  

Appendix B R functions used in data analysis.  

Function Package and Description Parameters 

lasclip lidR: clip points within a given geometry from a point cloud (’LAS’ object) or a catalog (’Lascatalog’ object) No extra parameters necessary. 
normalize_height lidR: subtract digital terrain model (DTM) from point cloud to create a dataset normalized with the ground at 0 No extra parameters necessary. 
function sf: creating user-defined functions in R for repeat use. Function created for 90th percentile. function(Z) {p90 = quantile (Z, probs 

= c(0.9))} 
cloud_metrics lidR: computes a series of user-defined descriptive statistics for a dataset. The 90th percentile of height was used. No extra parameters necessary. 
lmodel2 lmodel2: Computes model II simple linear regression using ordinary least squares (OLS), major axis (MA), standard 

major axis (SMA), and ranged major axis (RMA) 
No extra parameters necessary. 

cor stats: if × and y are matrices then the covariances (or correlations) between the columns of £ and the columns of y are 
computed 

Default is Pearson correlation. 

rmse metrics: computes the root mean squared error between two numeric vectors No extra parameters necessary. 
summary base: a generic function used to produce result summaries of the results of various model fitting functions Default quantile type is all quantiles. 
grid_metrics lidR: computes a series of user-defined descriptive statistics for a dataset within each pixel of a raster (area-based 

approach) 
No extra parameters necessary.  
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