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A B S T R A C T   

The productivity of even-aged forest stands varies from one year to the next as a function of canopy size and its 
interaction with the effective radiation used for photosynthesis. To characterize this relation, ecologists use leaf 
area index (LAI), a metric that serves as an indicator of the photosynthetic capacity on a given site. In this 
research, we proposed a model describing leaf area index dynamics in loblolly pine plantations growing in the 
southeastern United States. The model implements a delayed differential equation using periodic coefficients that 
enforce the seasonality in resource availability. The equation was further expanded to accommodate climatic 
variables to evaluate their contribution in reducing the observed variability. The proposed model uses envi
ronmental modifiers to account for the changes in resource availability and to adjust the carrying capacity in 
forest stands. From a range of tested variables, we found monthly maximum temperature and monthly excess 
water to be the most influential on leaf area index dynamics. With the addition of environmental modifiers and a 
local carrying capacity parameter, root mean square error was reduced to 0.3802 units LAI (m2/m2) from a base 
model RMSE of 0.4427 units LAI (m2/m2). The results indicate that the delay component has a small 41-day 
effect in the model, which is contrary to our initial hypothesis that stored within-tree carbohydrates can be 
used for further seasons to build foliage.   

1. Introduction 

Variability in forest productivity has largely been attributed to the 
changes in radiation interception (Monteith, 1972; Grier and Running, 
1977; Jarvis and Leverenz, 1983; Vose and Allen, 1988; Leverenz and 
Hinckley, 1990). Substantiating the variability in radiation interception 
is a multifaceted issue; with potential changes being driven by the 
environment (Vose et al., 1994; Dougherty et al., 1995), phenology 
(Vose et al., 1994), stand composition (Pretzsch, 2014), crown struc
ture/architecture (Leverenz and Hinckley, 1990, 1994, 1998, 2003, 
2004, 2010, 2012), species (Chmura and Tjoelker, 2008), genotype 
(Jayawickrama et al., 1998; Chmura and Tjoelker, 2008), or silvicultural 
practices (Vose and Allen, 1988; Zhang et al., 1997; Will et al., 2005; 
Chmura and Tjoelker, 2008; Campoe et al., 2013). While other factors, 

such as light use efficiency and available photosynthetically active ra
diation, are necessary components in determining a forest’s productivity 
(Martin and Jokela, 2004; Reich, 2012), leaf area index (LAI) is a pop
ular surrogate for radiation interception due to its ecological signifi
cance as the representation of the surface where energy, carbon dioxide, 
and oxygen are exchanged between the environment (Grier and 
Running, 1977; Vose et al., 1994; Dougherty et al., 1995) and its ability 
to be estimated using readily available remotely sensed data (Badhwar 
and MacDonald, 1986; Spanner et al., 1990; Chen and Cihlar, 1996; 
Flores et al., 2006; Peduzzi et al., 2012; Savoy and Mackay, 2015; Blinn 
et al., 2019). LAI, defined as the single-sided sum of the leaf surface area 
per unit ground area (m2/m2), has been used as key driver in process 
based models to assist in determining energy fluxes, most successfully 
with physiological responses to climate (e.g. Running et al. (1989); 
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Landsberg and Waring (1997); Sampson et al. (1997)). 

1.1. Drivers of foliage display in loblolly pine 

The concentration of leaf area in a canopy is a function of stand 
structure, nutrient availability, annual phenology, and environmental 
trends (Vose et al., 1994; Dougherty et al., 1995). These climate and soil 
variables are not only influencing the current year’s leaf biomass, but 
they also have an effect on the following year’s cohort due to the 
carryover of soluble carbohydrates that remain in the tree (Dougherty 
et al., 1995). The phenology of loblolly pine (Pinus taeda L.) needles is an 
environmentally driven process that represents a flux of nutrients within 

a given tree and corresponds to changes in growth rates on an intra- 
annual seasonal basis (Dougherty et al., 1995; Jayawickrama et al., 
1998; Albaugh et al., 2012). The phenological process relies on genetics, 
temperature, photoperiod, water availability, and nutrient availability 
to stimulate the hormones that spur physiological changes (Dougherty 
et al., 1994; Forrest and Miller-Rushing, 2010; Bahuguna and Jagadish, 
2015; Quesada et al., 2017). The annual phenological trend of loblolly 
pine needles has been characterized as a system in three stages: 1) a 
period of rapid needle accretion, followed by 2) a reduction in growth in 
which the needles reach their final length, and 3) a period of needle 
abscission (Sampson et al., 2003). Needle elongation follows the onset of 
bud break and shoot elongation, which can be temporally related to 
thermal units (Teskey et al., 1987; Russell et al., 1989; Dougherty et al., 
1994). Multiple flushes of foliage occur throughout the growing seasons 
for loblolly pine, with later flushes attaining similar elongation rates but 
not overall lengths as the first flushes (Dougherty et al., 1994). Nutri
tional status has been shown to affect needle elongation rates and 
overall needle length (Zhang et al., 1997). The overall lifetime of needles 
is a function of the environment, nutrition status, and genetics (Vose and 
Allen, 1988; Gholz et al., 1991; Hennessey et al., 1992; Dougherty et al., 
1994; Zhang et al., 1997). Fertilized stands have been shown to retain 
foliage longer as compared to unfertilized stands (Zhang et al., 1997). 
Needle abscission introduces a higher degree of variability into the 
system as compared to accretion and has been shown to be affected by 
site nutritional and water status, stand density, and environmental 
variables (Vose and Allen, 1988; Hennessey et al., 1992). Longer 
growing seasons, a function of the number of frost-free days observed, 
provide more time for suitable growing conditions but may increase the 

Fig. 1. Site locations for the Plantation Management Research Cooperative’s Coastal Plain Culture Density (CPCD) and South Atlantic Gulf Slopes (SAGS) in
stallations used in analysis. 

Table 1 
Global parameter estimates and standard errors for the base leaf area index 
model (Eq. 4) fitted to 24 plots across the southeastern United States. Root mean 
square error (RMSE) was calculated across all observations.  

Parameter Estimate Standard 
Error 

Model 
Form 

Environmental 
Variables 

r 1.0750 0.0014 

Base N/A 

τ 0.0002 0.0012 
Lmx 4.7760 0.0016 
A 3.1199 0.0036 
ω 6.2933 0.0012 
μ 1.8875 0.0016 
h 0.0961 0.0004 

RMSE 0.4427    
AIC 12496.7     
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respiration losses due to higher temperatures (Teskey et al., 1987). 
Environmental regulation of leaf area has been reported to be influenced 
by temperature, water availability, and site available nutrients (Waring 
et al., 1978; Vose and Allen, 1988; Hennessey et al., 1992; Dougherty 
et al., 1995; Zhang et al., 1997; Savoy and Mackay, 2015). Under
standing the environmental drivers of loblolly pine foliage provides a 
necessary understanding of the factors that promote or limit growth 
within and between years, and contribute to the variability observed in 
radiation interception. 

1.2. Existing models for leaf area display 

Leaf area display has been incorporated into processed based and 
empirical models to simulate the ecophysiological processes that govern 
forest stand growth (Bossel and Schäfer, 1989; McMurtrie and Lands
berg, 1992; Bossel, 1996; Landsberg and Waring, 1997; Sampson and 
Ceulemans, 1999; Battaglia et al., 2004; Sampson et al., 2006; Montes, 
2012). Process based models, such as TREEDYN, BIOMASS, SECRETS, 3- 
PG, and CABALA, use the mathematical (functional) relationships be
tween input state variables and parameterized ecophysiological equa
tions to simulate the mechanistic behavior of the forest system in a 

Fig. 2. Standardized residuals for the base model.  

Fig. 3. Observations vs predictions for base model. The abrupt termination of predicted leaf area index values is due to the model reaching the estimated car
rying capacity. 
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hierarchical fashion, including interaction and feedback relationships 
(Bossel and Schäfer, 1989; McMurtrie and Landsberg, 1992; Bossel, 
1996; Landsberg and Waring, 1997; Sampson and Ceulemans, 1999; 
Battaglia et al., 2004; Sampson et al., 2006; Montes, 2012; Burkhart and 
and Tomé, 2012). Using estimates of leaf area, these models simulate 
nutritional, water, and carbon fluxes and their interactions with mete
orological and site conditions to provide stand growth estimates 
(McMurtrie and Landsberg, 1992; Landsberg and Waring, 1997; Samp
son and Ceulemans, 1999; Sampson et al., 2006). Additional de
velopments in the processed based models provided the ability to model 
silvicultural input effects on stand productivity (Battaglia et al., 2004). 

Nevertheless, these models provide a complete overview of carbon 
capture using a single leaf approach, however, simpler but biologically 
meaningful models are needed to inform production models for inten
sively managed forest plantations. Differential equations have been used 
to model growth, among many other things, as a rate of change of one 
variable in relation to another, primarily time (Fulford et al., 1997). 
These equations provide a mechanistic hypothesis for how systems 
interact and their parameterization can provide biological interpreta
tion, which is paramount to understanding the complex dynamics that 
factor into tree growth (Zeide, 1993; Garcia, 2001). 

The objective of this research was to prove the differential equation 
modeling framework to model the phenological development and trends 
of LAI in loblolly pine stands in the southeastern United States. To ac
count for the observed variability in LAI development we expanded the 
framework to include productivity modifiers based on temperature and 

precipitation variables. We hypothesize that environmental variables 
have a direct effect on LAI dynamics in loblolly pine plantations and that 
the carry over effect from stored carbohydrates explains the current LAI 
state. 

2. Materials and Methods 

2.1. Model Formulation 

An initial model to explain leaf area increase between years was 
formulated as a logistic function expressed in its differential form: 

dL
dt

= rL
(

1 
L

Lmx

)

, (1)  

with L the stand leaf area index, r the rate of increase in leaf area over 
time (t) and Lmx a theoretical maximum leaf area attainable on a given 
site. The equation presents a simple negative feedback relation between 
L and Lmx. As L approaches Lmx it is expected to see more competition for 
site resources among leaves, so the instantaneous LAI growth will tend 
to 0 (note: r is the proportional growth rate, which is constant). 
Throughout the year Lmx is expected to vary given resources that become 
more or less available (e.g. temperature, rainfall, and nutrients like ni
trogen, phosphorus, potassium and boron). The effect was accounted for 
by adding a seasonal trend via a trigonometric function to the denom
inator of the L/Lmx term: 

Fig. 4. Results for the base model compared to the smoothed trend and observations. Root mean square error for this observed plot was 0.3398.  

Fig. 5. Standardized residuals for the model parameterized in Table 2 using monthly maximum temperature (◦C) in beta form as a modifier.  
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dL
dt

= rL
(

1 
L

Lmx + Asin(ωt + μ)

)

, (2)  

with A an amplitude term, ω the period and μ the phase of a seasonal 
function (Gopalsamy et al., 1990). With this formulation, Lmx serves as 
the vertical shift in the periodic function: 

So far, this model assumes that production of new foliage will be 
solely determined by the existence of foliage in the current season. We 

expanded this relation to include a delay effect, to reflect the impact of 
previous year photosynthetic capacity in the production of current 
year’s foliage, leading to the following formulation using a delayed 
differential equation (DDE): 

dL
dt

= rLt

(

1 
Ltτ

Lmx + Asin(ωt + μ)

)

, (3)  

where Lt is current leaf area index, Ltτ is the leaf area index from pre
vious state τ units ago. It is expected to see tree mortality on a given 
stand that will affect the amount of foliage present. This effect was 
added at the end of the base equation: 

dL
dt

= r Lt

(

1 
Ltτ

Lmx + A sin(ωt + μ)

)

 hLt, (4)  

with h a parameter to reflect the proportion expected L of mortality on a 
given site resulting from trees exhibiting competition. The final 
component, mortality, provides an accounting of additional biomass 
mortality that occurs independently of the seasonal leaf component. 

2.1.1. Inclusion of Environmental Variables 
Extendibility of the DDE to relate to environmental conditions that 

govern growth can be implemented by establishing the model parame
ters as functions of environmental variables (Kramer, 1994; Powers 
et al., 2003). It has been well established that environmental variables, 
such as temperature and water, are important drivers of loblolly pine 
productivity and regulate the annual phenological processes that 
determine the annual growth (Dougherty et al., 1994; Albaugh et al., 
2012). To incorporate these environmental variables as growth regula
tors into the system, several model forms were evaluated for the 

Fig. 6. Observations vs. predictions for the model parameterized in Table 2 using monthly maximum temperature (◦C) in beta form as a modifier.  

Table 2 
Global parameter estimates and standard errors for the base leaf area index 
model (Eq. 4) with monthly maximum temperature (◦C) as a beta modifier fitted 
to 24 plots across the southeastern United States. Root mean square error 
(RMSE) was calculated across all observations.  

Parameter Estimate Standard 
Error 

Model 
Form 

Environmental Variables 

r 1.1109 0.0006 

Base N/A 

τ 0.1148 0.0004 
Lmx 4.5565 0.0010 
A 3.0997 0.0005 
ω 6.2948 0.0012 
μ 1.8663 0.0009 
h 0.0885 0.0006 

μ2 5.7533 0.0009 

Beta 
Monthly Maximum 

Temperature 

Tb 1.4255 0.0005 
α 1.4832 0.0006 
Tc 36.7020 0.0006 
β 0.3782 0.0011 

RMSE 0.4299    
AIC 11891.71     
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individual components, including the beta equation (Eq. 5), the logistic 
equation (Eq. 6), the double logistic equation (Eq. 7), the Arrenhius 
equation (Eq. 8), the Heaviside equation (Eq. 9) simple linear equation 
(Eq. 10). 

f (env(t)) = exp(μ) (env(t)  Tb)
α
(Tc  env(t))β (5)  

f (env(t)) = α
(

1
1 + exp(b (env(t)  m))

)

(6)  

f (env(t)) = α
(

1
(1 + exp(b (env(t)  m)))(1 + exp(d (env(t)  n))

)

(7)  

f (env(t)) = α

⎛

⎜
⎝

exp( b
env(t))

1 + cexp( d
env(t))

⎞

⎟
⎠ (8)  

f (env(t)) = α(env(t)  Tb)H(env(t)  Tb)

where H(env(t)  Tb) =

{
1 if env(t)⩾ Tb

0 if env(t) < Tb

(9)  

f (env(t)) = β0 + β1 env(t) (10)  

The selected model form for the environmental modifier was incorpo
rated into the base equation in a multiplicative fashion: 

dL
dt

= f
(

env
(

t
))(

r Lt

(

1 
Ltτ

Lmx + A sin(ωt + μ)

)

 h Lt

)

(11) 

To select the best model that represents the environmental effect on 
LAI growth dynamics, we used different statistics and criterion that 
measure the agreement between the model prediction and the training 
data. 

2.2. Data 

Data for this analysis came from a time series of satellite reflectance 
values extracted from two long-term spacing studies installed and 
maintained by the Plantation Management Research Cooperative 
(PMRC). The Coastal Plain Culture Density (CPCD) and South Atlantic 
Gulf Slopes (SAGS) studies were installed between 1995 and 1996, and 
between 1996 and 1997 respectively. The SAGS study comprised 23 
sites throughout the Piedmont/Upper Coastal Plain physiographic re
gion across five southeastern states (Zhao et al., 2010). The CPCD study 
consisted of seventeen installations throughout the lower coastal plain 
of Florida, Georgia, and South Carolina (Zhao et al., 2011). 

2.2.1. Plot layout 
The design of each study corresponds to a split-plot design that study 

the effects of two cultural regimes (main plot) across a range of planting 
densities (subplot) (Zhao et al., 2011). The cultural regimes for the 
either study included two levels of silviculture: 1) operational, consist
ing of bedding and banded chemical site preparation, herbaceous weed 
control after the first growing season, and fertilization at planting, 

Fig. 7. Results for the model parameterized in Table 2 using monthly maximum temperature (◦C) in beta form as a modifier compared to the smoothed trend and 
observations. Root mean square error for this plot was 0.3171. 

Fig. 8. Results for the maximum monthly temperature model lag history trend. 
The x-axis shows the current state L(t) and its relationship with the historical 
state on the y-axis defined by τ, which was found to be 0.1148. State units are 
LAI m2/m2. 
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before the 8th growing season, and before the 12th growing season and 
2) intensive, consisting of bedding and broadcast chemical site prepa
ration, tip moth control, complete vegetation control, and multiple 
fertilization treatments throughout the first twelve growing seasons 
(Zhao et al., 2011). The planting densities ranged from 741 to 4448 trees 
per hectare on study plots sized from 0.12 to 0.23 hectares to accom
modate the minimum number of measurement trees. Further details for 
the CPCD study can be seen in (Harrison and Kane, 2008). For further 
details on the SAGS experimental design and treatments, see (Zhao et al., 
2008). A total of 24 sites, 11 from the CPCD study and 13 from the SAGS 
study were selected for analysis (Fig. 1). Only plots under the intensive 
treatment were selected to remove potential sources of variability 
associated from differing treatment responses. 

2.2.2. Satellite data 
Due to the range of subplot size in the CPCD and SAGS studies, 

subplots from the 741 trees per hectare planting density (3.66 m x 3.66 
m spacing) receiving intensive treatments were selected to maximize the 
subplot size (0.23 hectares) to increase the geographic footprint for 
remotely sensed data acquisition. All available surface reflectance 
scenes from the Landsat 5 TM and Landsat 7 ETM + sensors were pre- 
processed and extracted using the Google Earth Engine platform from 
time of establishment to end of year 2019, masked for clouds, and 
exported as individual band values averaged for the subplot (Gorelick 

et al., 2017). Data were further filtered based upon cloud quality attri
butes, pixel quality attributes, and radiometric saturation. Using near- 
infrared (band 4) and short-wave infrared (band 5) bands, the normal
ized difference moisture index (NDMI) was calculated. Estimates of LAI 
were produced from an empirical model using the NDMI values (Kinane 
et al., 2021). The number of available scene observations per study plot 
ranged from 334 to 1005 from plot establishment to December 31, 2019. 
Additionally, erroneous and outlying observations within the first five 
years of development were removed to reduce the amount of noise 
observed in the time series. The time series of individual plots were 
shortened to remove any observations that included post-thinning or 
increased mortality to insects. To provide increased temporal consis
tency and determine the underlying LAI development trend and sea
sonality, a thin plate spline (TPS) from the fields package was used to 
smooth the observed data (Savoy and Mackay, 2015; Nychka et al., 
2017). LAI time series for each plot were fitted using the TPS function 
with the cost function set to 1.2. Using the fitted TPS model, a new time 
series for each plot was created on a 0.05 year time step for the age range 
observed at each plot. 

2.2.3. Environmental data 
Environmental variables for the individual study sites were inter

polated using the data from the University of East Anglia’s Climate 
Research Unit (CRU) (Harris et al., 2020). Using CRU’s TS v. 4.04 

Fig. 9. Evaluation of the parameterized monthly maximum temperature beta modifier.  

Fig. 10. Results for the model parameterized in Table 3 using monthly maximum temperature (◦C) in beta form and monthly excess water in double logistic form as 
modifiers compared to the smoothed trend and observations. Root mean square error for this plot was 0.3096. 
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NetCDF product, monthly values at the individual study plots were ac
quired from establishment to December 2019. These variables include 
precipitation, monthly mean temperature, monthly maximum temper
ature, monthly minimum temperature, and vapor pressure (Harris et al., 
2020). Water storage capacity for the first 1.5 meters of soil was esti
mated at the individual site using data from SSURGO spatial data base 
(Soil Survey Staff, 2017). Additional indices, including water deficit, 
water deficit index, excess water, and excess water index were calcu
lated from the CRU environmental variables in association with water 
storage capacity at the individual study plots. Water deficit for the site is 

calculated by subtracting the monthly precipitation from the monthly 
estimated potential evapotranspiration. Conversion of water deficit to 
water deficit index incorporates subtracting out the water storage ca
pacity and summing the water deficits (Ojeda et al., 2018). Excess water 
and its index are calculated in similar fashion by subtracting the 
monthly potential evapotranspiration from the monthly precipitation. 

2.3. Model Parameterization 

The DDE model proposed was parameterized using maximum like

Fig. 11. Observations vs. predictions for the model parameterized in Table 3 using monthly maximum temperature (◦C) in logistic form and monthly excess water 
(mm) in double logistic form as modifiers. 

Fig. 12. Results for the model parameterized in Table 3 using monthly maximum temperature (◦C) in beta form and monthly excess water in double logistic form as 
modifiers compared to the smoothed trend and observations. 
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lihood estimation. To account for differences between the individual 
plots, parameterization included global variables for the base model and 
modifier components and local variables for initial starting values at the 

individual plot level. The model relied on 33 parameters: eight for the 
LAI equation, one for the standard deviation for the maximum likelihood 
procedure, and 24 local variables describing the starting points for each 
time series. Using the environmental modifiers to calculate a produc
tivity adjustment factor for the base model, the relationship was 

Fig. 13. Results for the maximum monthly temperature and excess water 
interaction model lag history trend. The x-axis shows the current state L(t) and 
its relationship with the historical state on the y-axis defined by τ, which was 
found to be 0.1148. State units are LAI m2/m2. 

Fig. 14. Evaluation of the parameterized modifiers for A) monthly maximum temperature (◦C) in beta form and B) monthly excess water (mm) double logistic form 
across the ranges of observed values for the individual variable. 

Table 3 
Global parameter estimates and standard errors for the base leaf area index 
model (Eq. 4) fitted to 24 plots across the southeastern United States with the 
monthly maximum temperature (◦C) included as a beta function and monthly 
excess water (mm) included as a double logistic function. Root mean square 
error (RMSE) was calculated across all observations.  

Parameter Estimate SE Model Form Environmental Variable 

r 1.1175 0.0060 

Base N/A 

τ 0.1148 0.0011 
Lmx 4.5535 0.0073 
A 3.1052 0.0004 
ω 6.2973 0.0061 
μ 1.8661 0.0457 
h 0.08848 0.0024 

μ2 5.5757 0.0876 

Beta 
Monthly Maximum 

Temperature 

Tb 1.4248 0.1920 
α 1.5219 0.0185 
Tc 37.01863 0.2095 
β 0.3799 0.0045 

α 1.5082 0.0007 

Double 
Logistic Monthly Excess Water 

β 0.0067 0.0004 
δ 0.0072 0.0004 
Tb 0.0005 0.00004 
Tc 320.0497 0.0359 

RMSE 0.4257    
AIC 11684.19     
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assumed to be interactive, so the base model and environmental models 
were formulated in a multiplicative fashion. The dede function in the 
deSolve package was used to solve the DDE model and the conjugate 
gradient (CG) method was used as the optimization method to maximize 
the log likelihood of the functions as implemented in the optimx package 
(Soetaert et al., 2010; Nash and Varadhan, 2011). Starting values for the 
local parameters were defined by the first observations of LAI at the 
individual plot level. For the models using local Lmx values, starting 
values were the global Lmx parameterized in the model fitting procedure. 
Global parameters starting values were selected through a trial-and- 
error approach to define the model form and starting values for the 
environmental modifiers were selected based on the response between 
the environment and loblolly pine reported in the literature (Albaugh 
et al., 2004; Teskey et al., 1987; Nedlo et al., 2009). Addition of the 
environmental variables and their subsequent model form were evalu
ated on reductions of root mean square error (RMSE) and Akaike’s In
formation Criterion (AIC) to account for the additional parameters for 
the given model. Evaluations for parameter uncertainty estimates 
required the fixing of local variables to allow for the final standard error 
calculations. To evaluate model robustness, k-fold (k = 9) cross vali
dation was used. The 24 plots were randomly assigned to one of nine 
groups. For each of the nine groups, the plots in the group were withheld 
from the training data set, the model was fit on the training data set and 

then evaluated on the withheld group. The process was repeated for 
each group. 

3. Results 

3.1. Base Model Parameterization 

Parameterization of the base model (Eq. 4) resulted in an overall root 
mean square error (RMSE) for the 24 sites of 0.4427 and an AIC of 
12496.7 (Table 1). Estimated standard errors for the individual 
parameter estimates indicate little variability with the exception of the 
Lmx parameter. At the individual plot level, RMSE ranged from 0.2594 to 
0.6158 LAI m2/m2. Inspection of the residuals showed little evidence of 
heteroscedacity (Fig. 2) and comparison of the observations to pre
dictions showed an adequate 1:1 relationship (Fig. 3). Model predictions 
show a defined upper limit at approximately 3.72 m2/m2, where the 
base model limits the overall LAI production (Fig. 3). This limitation is a 
result of how Eq. 4 is structured. Annual seasonality was adequately 
captured by the trigonometric portion of the base model, with peak LAI 
occurring in September/October every year (Fig. 4). The τ estimate 
indicated little importance of the prior state, with a value of 0.0002 
(Table 1). Without a considerable lag effect, the relationship between 
the current and prior state maintained linearity. The Lmx parameter 

Fig. 15. Resulting interaction modifier between the monthly maximum temperature beta modifier and the monthly excess water double logistic modifier across the 
ranges of observed values for the 24 study plot across the southeastern United States. Contour lines show the resulting modifier value to be imposed on the LAI model. 

Fig. 16. Results for the model parameterized in Table 4 using monthly maximum temperature (◦C) in beta form, monthly excess water in double logistic form as 
modifiers and a local LAI carrying capacity parameter compared to the smoothed trend and observations. Root mean square error for this plot was 0.3096. 
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showed an overall estimated carrying capacity for LAI at 4.7760 m2/m2, 
subject to the model formulated constraints and imposed seasonality. 
Systematic patterns were observed in the residuals as LAI increased, an 
artefact of the model reaching a global steady state with no outside 
forces imposing individuality at the plot level (Fig. 2). The base level 
model was inadequate in capturing the seasonality and trend of LAI in 
the formative years of stand development, common to all observed plots 
(Fig. 4). While the underlying development trend was captured with the 
inclusion of the local initial value at the individual plot level, the base 
model provided a gross simplification of the system. The amplitude of 

seasonality in the parameterized model showed large variations as 
compared to amplitude of seasonality in the observed plots and their 
subsequent smoothed spline time series. (Figs. 5 and 6). 

3.2. Inclusion of Environmental Variables 

Temperature was found to be the most influential on improving the 
LAI, with monthly maximum temperature having the greatest effect. The 
logistic, double logistic, and beta model forms proved to be the most 
flexible in parameterizing for inclusion of the environmental variables. 

Fig. 17. Observations vs. predictions for the model parameterized in Table 4 using monthly maximum temperature (◦C) in logistic form, monthly excess water (mm) 
in double logistic form as modifiers and a local LAI carrying capacity parameter. 

Fig. 18. Results for the model parameterized in Table 4 using monthly maximum temperature (◦C) in beta form and monthly excess water in double logistic form as 
modifiers and a local LAI carrying capacity parameter compared to the smoothed trend and observations. 
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Maximum monthly temperature in the beta form showed the greatest 
increase in model performance when included as a modifier to the base 
LAI model. RMSE decreased to 0.4299 and AIC decreased to 11891.71. 
Addition of the environmental modifier increased τ to 0.1148, or 
approximately 41 days, indication of past state dependency and a 
delayed reaction in physiological response to temperature (Table 2). 
Base level carrying capacity (Lmx) decreased from 4.7760 to 4.5565 
while the rate parameter (r) showed a slight increase from 1.0750 to 
1.1109, a result of the modifier imposing changes to the base level 
productivity at the individual sites (Table 2). Across the individual plots, 
inclusion of the temperature modifier produced a range of 0.2616 to 
0.5846 RMSEs, indicating adverse effects on some plots and benefits to 
others. Comparisons between the trend and the model showed an in
crease in the model’s ability to react to environmental conditions, 
capturing some of the changes in the observed points and smooth trend 
(Fig. 7). The resulting parameterized beta monthly maximum temper
ature modifier showed an asymmetrical modifier across the range of 
observed monthly maximum temperatures, displaying a slow modifier 
rate increase from the lower bound (≈10◦C) to a peak of approximately 
30◦C, and a sharp decline in modifier value following the peak as tem
perature increased to beyond 35◦C (Fig. 9). Increase of the τ parameter 
provided a relatively stable limit cycle relating the current and past 
states as LAI developed and reached its upper asymptote (Fig. 8). Cycles 
around a central point, ≈ 3.1 LAI m2/m2 showed slight temperature 
induced deviations but an overall stable process. 

Evaluation of additional modifiers and their interactions with the 
beta monthly maximum temperature modifier focused primarily on 
water relations variables to reduce the collinearity between monthly 
maximum temperature and the other temperature variables under 
consideration. Examination of the water relations variables and their 
interactions with the monthly maximum temperature modifier found 
that monthly excess water in the double logistic model form to be the 

Fig. 19. Results for the maximum monthly temperature and excess water 
interaction model with local LAI carrying capacity parameter lag history trend. 
The x-axis shows the current state L(t) and its relationship with the historical 
state on the y-axis defined by τ, which was found to be 0.1143. State units are 
LAI m2/m2. 

Fig. 20. Evaluation of the parameterized modifiers for A) monthly maximum temperature (◦C) in beta form and B) monthly excess water (mm) double logistic form 
across the ranges of observed values for the individual variable for the model fitted with a local LAI carrying capacity parameter. 
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most influential for improving the model fit. Inclusion of excess water as 
an additional modifier had modest improvements in model fit as 
compared to monthly maximum temperature’s effect on the base model, 
with the largest decrease of RMSE at the individual plot being 0.03 units 

of LAI. The updated parameter values for the base model and beta 
monthly maximum temperature modifier showed slight changes as 
compared to the temperature - modifier only model, and a slight overall 
decrease in RMSE to 0.4257 and AIC to 11684.19. The newly parame
terized monthly maximum temperature modifier displayed a similar 
trend as the previous model (Fig. 14, Table 3). The excess water modi
fier, formulated as a double logistic model, displayed a symmetrical 
shape centered about approximately 175 mm of excess water (Fig. 14). 
As excess water increased from 0 mm to the peak, the modifier increased 
from a baseline of approximately 0.70 to approximately 0.9. Following 
the peak, the modifier value began to decline to approximately 0.75 as 
the excess water value reached the end of its natural range of 350 mm 
observed in the data. When the two environmental modifiers’ 

Fig. 21. Resulting interaction modifier between the monthly maximum temperature beta modifier and the monthly excess water double logistic modifier across the 
ranges of observed values for the 24 study plot across the southeastern United States fitted with a local LAI carrying capacity parameter. Contour lines show the 
resulting modifier value to be imposed on the LAI model. 

Table 4 
Global parameter estimates and standard errors for the leaf area index model 
(Eq. 4) fitted to 24 plots across the southeastern United States with the envi
ronmental variables included as a beta and double logistic function, and a local 
carrying capacity parameter (Lmx). Root mean square error (RMSE) was calcu
lated across all observations.  

Parameter Estimate SE Model Form Environmental Variable 

r 1.1968 0.0181 

Base N/A 

τ 0.1143 0.0080 
A 2.6254 0.0237 
ω 6.2877 0.0009 
μ 1.7420 0.0062 
h 0.0647 0.0041 

μ2 6.0359 0.0324 

Beta 
Monthly Maximum 

Temperature 

Tb 1.4592 0.0093 
α 1.5984 0.0081 
Tc 44.69 0.0197 
β 0.3419 0.0103 

α 1.5984 0.0081 

Double 
Logistic Monthly Excess Water 

β 0.0063 0.0004 
δ 0.0071 0.0006 
Tb -0.0004 0.00004 
Tc 276.3619 0.0166 

RMSE 0.3802    
AIC 9383.04     

Fig. 22. Comparison between the fitted local Lmx LAI carrying capacity parameter and estimated site index (base age  = 25) for the 24 sites.  

Table 5 
Root mean square error (RMSE) results from the k-fold (k = 9) cross validations 
performed on the four models. Base indicates base model, Env1 indicates the 
inclusion of monthly maximum temperature as a beta function, Env2 indicates 
monthly excess water as a double logistic function, and Local Lmx indicates the 
use of a local leaf area index carrying capacity parameter.  

Model Training Validation  
Min Max Avg Min Max Avg 

Base 0.4270 0.4544 0.4422 0.3161 0.5508 0.4367 
Base  + Env1 0.4056 0.4489 0.4285 0.2885 0.5210 0.4283 
Base  + Env1  +

Env2 
0.4082 0.4419 0.4265 0.3209 0.5801 0.4319 

Base  + Env1  +
Env2  + Local 
Lmx 

0.3658 0.3886 0.3796 0.3237 0.4709 0.3819  
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interactions were calculated, a defined area of increased productivity 
above the baseline model (modifier > 1) was observed at the peaks of 
temperature and excess water (Fig. 15). A large area within the inter
action plot indicates that a wide range of conditions can satisfy the 
conditions necessary for peak LAI growth. (see Figs. 16–21). 

3.3. Addition of Local Carrying Capacity 

To test the effect of a local carrying capacity parameter compared 
with a global parameter, the final model was refitted with the addition of 
a local Lmx parameter for each individual plot and dropping the global 
Lmx, increasing the number of parameters by 23. RMSE across all ob
servations decreased to 0.3802 accompanied by a decrease in AIC to 
9383.04 (Table 4. Values for Lmx ranged from 3.59 to 4.40, which had a 
weak positive relationship with estimated site index (Fig. 22). As 
compared to the base model, the largest decrease in RMSE due to the 
local Lmx parameter was a 0.29 reduction. 

Model validation through k-fold (k = 9) cross validation showed 
overall support for the proposed models (Table 5). Improvement was 
made with the inclusion of environmental variables as compared to the 
base model, while the addition of a second environmental variable 
showed minimal declines in RMSE in training and validation data sets 
(Table 5). Inclusion of the local parameter Lmx showed a considerable 
decline in RMSE for both the training and validation data sets, indicating 
the importance of local features on LAI growth and development and its 
overall interaction with environmental variables. 

4. Discussion 

Dependency of the future state based on the current and prior states, 
denoted by τ, showed varying conditions based on whether additional 
information, such as temperature, was provided in terms of a produc
tivity modifier. In the base model, τ proved to be quite small, an indi
cation that, as modeled, LAI followed the development and seasonal 
trend defined by the periodic and rate parameters and didn’t require 
further information from prior states. It has been shown that at suffi
ciently small τ, the Hutchinson model is equivalent to the traditional 
logistic, providing a simplified model (Gopalsamy, 1992). As additional 
variability in the modeled system was introduced by the environmental 
modifiers, a dependence on those prior states proved influential, indi
cating that the state at time tτ is necessary in determining the future 
state. These larger lags produce a feedback loop, which can be visualized 
in Figs. 8 and 13, where oscillations about the equilibrium point of the 
solution for the individual parameterized equations occurs as t increases 
and the population (LAI) reaches steady state (Gopalsamy, 1992). 
Fluctuations in the oscillations about the equilibrium point indicate the 
influence of the environment, but overall LAI shows to be a relatively 
stable variable, or one that is able to return to its equilibrium (May, 
1973). 

Differences in the observed equilibrium point in the two models 
incorporating environmental effects and their individual parameterized 
Lmx values shows a defined difference, with the equilibrium point far 
below the Lmx. This difference is likely due to the fluctuations in Lmx, 
which is representative of the carrying capacity but now defined as the 
vertical shift in our periodic coefficient, a representation of the changing 
resource availability and additionally influenced by the environmental 
variables, which has been reported to be the case in other population 
studies (May, 1973; Roff, 1974). Stability and persistence of a given 
population has been shown to have direct correlations with the het
erogeneity of the population’s environment, with the probability of 
persistence decreasing with increased environmental variability (Levins, 
1969; Roff, 1974). 

While the base model overall has adequate fit and conceptually 
represents LAI growth, the steady state reached does not provide an 
accurate understanding of the observed LAI dynamics, as once net 
growth for a period is zero, we see no changes to the dynamics, which is 

unlikely in any ecosystem. The mechanisms proposed to model LAI 
development were not able to fully capture the observed dynamics, 
especially in the early stages prior to reaching steady state (Figs. 4, 7, 
and 10). Large changes between years in the seasonality, peak, and 
minima observed were oversimplified by the proposed model form, with 
poor representation of those early stand dynamics. From the remote 
sensing and LAI estimation standpoint, this portion of the individual 
time series proved difficult to provide a smooth seasonal trend due to a 
large number of erratic and outlying estimates from the Landsat 5 and 7 
ETM + imagery. Potential sources of this variability may be from pixel 
level saturation of neighboring plots, large amounts of competing 
vegetation present in the stand prior to treatment, among others. 
(Figs. 11 and 12). 

Monthly maximum temperature provided the greatest increase in 
model performance for capturing the dynamics of loblolly pine LAI. 
Similar to the results presented in (Savoy and Mackay, 2015), many of 
the sites evaluated in this study were highly influenced by the temper
ature modifier. Increased temperatures at the cellular level have been 
reported to provide increases in photosynthesis and respiration, leading 
to greater increase of carbon assimilation rates (Way and Oren, 2010). 
More specifically, Way and Oren (2010) found that evergreens increased 
leaf mass, among other allometric changes, when temperatures were 
increased. This change may be driven by greater leaf elongation rates 
from increases in division and expansion at the cellular level (Ryan, 
2010). 

DDEs are a common way of modeling biological systems that tend to 
rely on pasts states due to delays in development, such as sexual 
maturity, energy fluxes, overlapping populations, or predator/prey dy
namics (Hutchinson, 1948; Wright, 1955; Nisbet and Gurney, 1976; 
Gopalsamy et al., 1990; Gopalsamy, 1992; Gallegos et al., 2008; Ghil 
et al., 2008; Keane et al., 2017). The common theme for use of DDEs is 
the understanding that feedback mechanisms that occur in nature 
typically come with some delay. In our case of modeling loblolly pine 
LAI, DDEs provide the ability to model the effect of prior and current leaf 
area states on future states, an important feature since loblolly pine 
canopies feature delays in physiological and phenological processes. 
Furthermore, historical trends provide influence on current canopy dy
namics due to foliage in loblolly pines typically last for two years, 
providing up to two concurrent age classes of needles occupying the 
canopy at any given time, and a cause of great variability observed in 
canopies (Dougherty et al., 1995; Sampson et al., 2003). An effective 
DDE provides a glimpse into the dynamics of a given population, which 
in this case is leaf area, and can provide a cause and effect analysis into 
the factors determining growth (Kuang, 1993). 

Large decreases observed in the time series data at individual plots 
may have been caused by interaction effects of environmental stress 
with disease or pests, clearly not captured in the models proposed here. 
While these biotic effects can cause large variations in observed leaf 
area, further modeling developments can be used to incorporate the 
probability of these interactions affecting the system given environ
mental inputs and the magnitude of their potential effects. Providing 
insight on the conditions that cause fluctuations of LAI outside of the 
base model, shown here with maximum temperature and excess water, 
allows for a more systematic understanding of forest productivity and 
provide tools for management planning to account for potential distur
bances to the population (Gopalsamy, 1992). 

Further analysis into periodic coefficients may provide additional 
insight into the seasonality of growth, the effects of the environment on 
the fluctuations of growth and its effects on individual model parameters 
(Gopalsamy et al., 1990; Lisena, 2007). Additionally, periodic co
efficients may provide the necessary switching of the modifier to 
correctly adjust the growth given the forced seasonality of the model, i. 
e., promote growth when conditions are adequate and restrict declines 
in growth when the seasonality begins its annual decline. Potential 
improvements in model and computation efficiency may be obtained 
from implementing neural or universal ordinary differential equations 
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to handle the various data on different time steps to provide a better 
adapting system (Rackauckas et al., 2020). Examining the lag compo
nent as a neutral DDE, where τ is used to define historical derivatives as 
opposed to past states may increase the ability to adequately capture the 
changes imposed by environmental modifiers. Following the method
ology used by Powers et al. (2003), we incorporated our environmental 
variable modifier on the entire state rather than individual parameters. 
While future work will investigate the environmental influences indi
vidually on the parameters, earlier work has shown that in the logistic 
model form, the current state will follow a weighted harmonic mean of 
Lmx (Levins, 1969). Further inquiries into the effect of additional delays 
(n⩾2) and combinations of positive and negative feedback may provide 
a more thorough investigation into environmental induced dynamics of 
the LAI system on an annual and lifespan basis (Keane et al., 2017). 

A sensitivity analysis into the size of time step selected in the splined 
LAI and environmental variables used for the modeling purposes should 
be undertaken to verify that the underlying system being modeled isn’t 
affected by the timing and amount of observations (Powers et al., 2003). 
Splining the data and providing a discrete time step between interpo
lated observations improved the model fitting procedure by ensuring 
adequate observations across the time interval. LAI observations proved 
to be quite noisy and provide a suitable medium for future improve
ments by incorporating stochastic methods to handle the erratic time 
series observed. Additionally, using annual peaks and minima may 
provide an alternative to capture the true amplitude of the seasonality 
component. 

Interpretability of the formulated model allows for our increased 
understanding of the dynamics that govern forest productivity and how 
they interact with resource availability, which is observed in annual 
seasonal cycles and interactions with the local environment. Here we 
defined the carrying capacity of our system as a periodic coefficient to 
represent the changes in available resources throughout the year. When 
imposed, environmental modifiers retard annual growth of the system 
and we see an overall decline in the carrying capacity, which may affect 
other physiological changes associated with forest growth. When 
defining the carrying capacity of a forested stand, using shorter-term 
phenomena that pair resource availability and consumption, such as 
leaf area index, as opposed to cumulative basal area yield or stand 
density index that is typically reported, may provide a better biological 
representation of a dynamic system. Further investigations into the 
regional effects of different environmental variables may provide more 
insight into the factors limiting growth across the loblolly pine spatial 
extent. Additionally, understanding the sensitivity of loblolly pine 
vegetation to extreme temporal variation in biogeochemical processes 
(hot moments) may improve our understanding of LAI dynamics 
(McClain et al., 2003). 

5. Conclusions 

Overall, it was shown that a mechanistic derived model can describe 
aspects of the growth and development of LAI in loblolly pine planta
tions and provide additional insight into the seasonal and environmental 
dynamics that affect the current state. We were able to provide im
provements in a base loblolly pine LAI model by incorporating envi
ronmental variables for 24 sites across a wide geographic range in the 
southeastern United States. Monthly maximum temperature and 
monthly excess water were shown to be influential in the development 
and long-term trends of loblolly pine LAI in the southeastern United 
States. 

By using the environmental modifiers to adjust the system, we are 
accounting for the changes in resource availability due to the stochastic 
environment, resulting in changes to the carrying capacity. As resources 
and conditions becoming limiting to the biological processes, we are 
able to model the effects on how much leaf area a stand can support at 
any given time. Interactions between environmental modifiers indicate 
that peak LAI growth in loblolly pine plantations can occur across a 

range of conditions across the southeastern United States. The results 
demonstrate that for our available data, incorporating a lag effect was 
influential in modeling LAI along with environmental modifiers. Peri
odicity was imposed by the inclusion of a periodic coefficient for the Lmx 
parameter, resulting in forced oscillations based on seasonally limited 
resources, affecting overall carrying capacity and driving the modeled 
patterns. Future work will aim to improve the understanding of local 
conditions on the LAI carrying capacity and to provide estimates of Lmx 
when data is not available. 
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