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The productivity of even-aged forest stands varies from one year to the next as a function of canopy size and its
interaction with the effective radiation used for photosynthesis. To characterize this relation, ecologists use leaf
area index (LAI), a metric that serves as an indicator of the photosynthetic capacity on a given site. In this
research, we proposed a model describing leaf area index dynamics in loblolly pine plantations growing in the
southeastern United States. The model implements a delayed differential equation using periodic coefficients that
enforce the seasonality in resource availability. The equation was further expanded to accommodate climatic
variables to evaluate their contribution in reducing the observed variability. The proposed model uses envi-
ronmental modifiers to account for the changes in resource availability and to adjust the carrying capacity in
forest stands. From a range of tested variables, we found monthly maximum temperature and monthly excess
water to be the most influential on leaf area index dynamics. With the addition of environmental modifiers and a
local carrying capacity parameter, root mean square error was reduced to 0.3802 units LAI (m?/m?) from a base
model RMSE of 0.4427 units LAI (mz/mz). The results indicate that the delay component has a small 41-day
effect in the model, which is contrary to our initial hypothesis that stored within-tree carbohydrates can be
used for further seasons to build foliage.

1. Introduction such as light use efficiency and available photosynthetically active ra-
diation, are necessary components in determining a forest’s productivity
(Martin and Jokela, 2004; Reich, 2012), leaf area index (LAI) is a pop-

ular surrogate for radiation interception due to its ecological signifi-

Variability in forest productivity has largely been attributed to the
changes in radiation interception (Monteith, 1972; Grier and Running,

1977; Jarvis and Leverenz, 1983; Vose and Allen, 1988; Leverenz and
Hinckley, 1990). Substantiating the variability in radiation interception
is a multifaceted issue; with potential changes being driven by the
environment (Vose et al., 1994; Dougherty et al., 1995), phenology
(Vose et al., 1994), stand composition (Pretzsch, 2014), crown struc-
ture/architecture (Leverenz and Hinckley, 1990, 1994, 1998, 2003,
2004, 2010, 2012), species (Chmura and Tjoelker, 2008), genotype
(Jayawickrama et al., 1998; Chmura and Tjoelker, 2008), or silvicultural
practices (Vose and Allen, 1988; Zhang et al., 1997; Will et al., 2005;
Chmura and Tjoelker, 2008; Campoe et al., 2013). While other factors,
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cance as the representation of the surface where energy, carbon dioxide,
and oxygen are exchanged between the environment (Grier and
Running, 1977; Vose et al., 1994; Dougherty et al., 1995) and its ability
to be estimated using readily available remotely sensed data (Badhwar
and MacDonald, 1986; Spanner et al., 1990; Chen and Cihlar, 1996;
Flores et al., 2006; Peduzzi et al., 2012; Savoy and Mackay, 2015; Blinn
etal., 2019). LAI, defined as the single-sided sum of the leaf surface area
per unit ground area (m?/m?), has been used as key driver in process
based models to assist in determining energy fluxes, most successfully
with physiological responses to climate (e.g. Running et al. (1989);
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Fig. 1. Site locations for the Plantation Management Research Cooperative’s Coastal Plain Culture Density (CPCD) and South Atlantic Gulf Slopes (SAGS) in-

stallations used in analysis.

Table 1

Global parameter estimates and standard errors for the base leaf area index
model (Eq. 4) fitted to 24 plots across the southeastern United States. Root mean
square error (RMSE) was calculated across all observations.

Parameter  Estimate Standard Model Environmental
Error Form Variables

r 1.0750 0.0014
T 0.0002 0.0012

Ly 4.7760 0.0016
A 3.1199 0.0036 Base N/A
® 6.2933 0.0012
H —1.8875 0.0016
h 0.0961 0.0004

RMSE 0.4427
AIC 12496.7

Landsberg and Waring (1997); Sampson et al. (1997)).

1.1. Drivers of foliage display in loblolly pine

The concentration of leaf area in a canopy is a function of stand
structure, nutrient availability, annual phenology, and environmental
trends (Vose et al., 1994; Dougherty et al., 1995). These climate and soil
variables are not only influencing the current year’s leaf biomass, but
they also have an effect on the following year’s cohort due to the
carryover of soluble carbohydrates that remain in the tree (Dougherty
et al., 1995). The phenology of loblolly pine (Pinus taeda L.) needles is an
environmentally driven process that represents a flux of nutrients within

a given tree and corresponds to changes in growth rates on an intra-
annual seasonal basis (Dougherty et al., 1995; Jayawickrama et al.,
1998; Albaugh et al., 2012). The phenological process relies on genetics,
temperature, photoperiod, water availability, and nutrient availability
to stimulate the hormones that spur physiological changes (Dougherty
et al., 1994; Forrest and Miller-Rushing, 2010; Bahuguna and Jagadish,
2015; Quesada et al., 2017). The annual phenological trend of loblolly
pine needles has been characterized as a system in three stages: 1) a
period of rapid needle accretion, followed by 2) a reduction in growth in
which the needles reach their final length, and 3) a period of needle
abscission (Sampson et al., 2003). Needle elongation follows the onset of
bud break and shoot elongation, which can be temporally related to
thermal units (Teskey et al., 1987; Russell et al., 1989; Dougherty et al.,
1994). Multiple flushes of foliage occur throughout the growing seasons
for loblolly pine, with later flushes attaining similar elongation rates but
not overall lengths as the first flushes (Dougherty et al., 1994). Nutri-
tional status has been shown to affect needle elongation rates and
overall needle length (Zhang et al., 1997). The overall lifetime of needles
is a function of the environment, nutrition status, and genetics (Vose and
Allen, 1988; Gholz et al., 1991; Hennessey et al., 1992; Dougherty et al.,
1994; Zhang et al., 1997). Fertilized stands have been shown to retain
foliage longer as compared to unfertilized stands (Zhang et al., 1997).
Needle abscission introduces a higher degree of variability into the
system as compared to accretion and has been shown to be affected by
site nutritional and water status, stand density, and environmental
variables (Vose and Allen, 1988; Hennessey et al., 1992). Longer
growing seasons, a function of the number of frost-free days observed,
provide more time for suitable growing conditions but may increase the
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Fig. 2. Standardized residuals for the base model.
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Fig. 3. Observations vs predictions for base model. The abrupt termination of predicted leaf area index values is due to the model reaching the estimated car-

rying capacity.

respiration losses due to higher temperatures (Teskey et al., 1987).
Environmental regulation of leaf area has been reported to be influenced
by temperature, water availability, and site available nutrients (Waring
et al., 1978; Vose and Allen, 1988; Hennessey et al., 1992; Dougherty
et al.,, 1995; Zhang et al.,, 1997; Savoy and Mackay, 2015). Under-
standing the environmental drivers of loblolly pine foliage provides a
necessary understanding of the factors that promote or limit growth
within and between years, and contribute to the variability observed in
radiation interception.

1.2. Existing models for leaf area display

Leaf area display has been incorporated into processed based and
empirical models to simulate the ecophysiological processes that govern
forest stand growth (Bossel and Schafer, 1989; McMurtrie and Lands-
berg, 1992; Bossel, 1996; Landsberg and Waring, 1997; Sampson and
Ceulemans, 1999; Battaglia et al., 2004; Sampson et al., 2006; Montes,
2012). Process based models, such as TREEDYN, BIOMASS, SECRETS, 3-
PG, and CABALA, use the mathematical (functional) relationships be-
tween input state variables and parameterized ecophysiological equa-
tions to simulate the mechanistic behavior of the forest system in a
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Fig. 4. Results for the base model compared to the smoothed trend and observations. Root mean square error for this observed plot was 0.3398.
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Fig. 5. Standardized residuals for the model parameterized in Table 2 using monthly maximum temperature (°C) in beta form as a modifier.

hierarchical fashion, including interaction and feedback relationships
(Bossel and Schafer, 1989; McMurtrie and Landsberg, 1992; Bossel,
1996; Landsberg and Waring, 1997; Sampson and Ceulemans, 1999;
Battaglia et al., 2004; Sampson et al., 2006; Montes, 2012; Burkhart and
and Tomé, 2012). Using estimates of leaf area, these models simulate
nutritional, water, and carbon fluxes and their interactions with mete-
orological and site conditions to provide stand growth estimates
(McMurtrie and Landsberg, 1992; Landsberg and Waring, 1997; Samp-
son and Ceulemans, 1999; Sampson et al., 2006). Additional de-
velopments in the processed based models provided the ability to model
silvicultural input effects on stand productivity (Battaglia et al., 2004).

Nevertheless, these models provide a complete overview of carbon
capture using a single leaf approach, however, simpler but biologically
meaningful models are needed to inform production models for inten-
sively managed forest plantations. Differential equations have been used
to model growth, among many other things, as a rate of change of one
variable in relation to another, primarily time (Fulford et al., 1997).
These equations provide a mechanistic hypothesis for how systems
interact and their parameterization can provide biological interpreta-
tion, which is paramount to understanding the complex dynamics that
factor into tree growth (Zeide, 1993; Garcia, 2001).

The objective of this research was to prove the differential equation
modeling framework to model the phenological development and trends
of LAI in loblolly pine stands in the southeastern United States. To ac-
count for the observed variability in LAI development we expanded the
framework to include productivity modifiers based on temperature and

precipitation variables. We hypothesize that environmental variables
have a direct effect on LAI dynamics in loblolly pine plantations and that
the carry over effect from stored carbohydrates explains the current LAI
state.

2. Materials and Methods
2.1. Model Formulation

An initial model to explain leaf area increase between years was
formulated as a logistic function expressed in its differential form:

dL L
—=rL(1— , 1
dt ! < L,,,X)’ M

with L the stand leaf area index, r the rate of increase in leaf area over
time (t) and Ly, a theoretical maximum leaf area attainable on a given
site. The equation presents a simple negative feedback relation between
L and L. As L approaches Ly, it is expected to see more competition for
site resources among leaves, so the instantaneous LAI growth will tend
to 0 (note: r is the proportional growth rate, which is constant).
Throughout the year L, is expected to vary given resources that become
more or less available (e.g. temperature, rainfall, and nutrients like ni-
trogen, phosphorus, potassium and boron). The effect was accounted for
by adding a seasonal trend via a trigonometric function to the denom-
inator of the L/Ly, term:
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Fig. 6. Observations vs. predictions for the model parameterized in Table 2 using monthly maximum temperature (°C) in beta form as a modifier.

Table 2

Global parameter estimates and standard errors for the base leaf area index
model (Eq. 4) with monthly maximum temperature (°C) as a beta modifier fitted
to 24 plots across the southeastern United States. Root mean square error
(RMSE) was calculated across all observations.

Parameter Estimate Standard Model Environmental Variables
Error Form
r 1.1109 0.0006
T 0.1148 0.0004
Ly 4.5565 0.0010
A 3.0997 0.0005 Base N/A
0] 6.2948 0.0012
" —1.8663 0.0009
h 0.0885 0.0006
o —5.7533 0.0009
Ty 1.4255 0.0005 .
a 1.4832 0.0006 Beta MO;Z}:IY i\:[:zﬁ“m
T, 36.7020 0.0006 P
p 0.3782 0.0011
RMSE 0.4299
AIC 11891.71
dL L
R [ e —— ©)
dt L. +Asin(wt + )

with A an amplitude term, w the period and y the phase of a seasonal
function (Gopalsamy et al., 1990). With this formulation, L, serves as
the vertical shift in the periodic function:

So far, this model assumes that production of new foliage will be
solely determined by the existence of foliage in the current season. We

expanded this relation to include a delay effect, to reflect the impact of
previous year photosynthetic capacity in the production of current
year’s foliage, leading to the following formulation using a delayed
differential equation (DDE):

dL L 1 Ll*f
“@_, o S
dt ! Ly + Asin(wt +p) )’

3
where L, is current leaf area index, L, is the leaf area index from pre-
vious state 7 units ago. It is expected to see tree mortality on a given
stand that will affect the amount of foliage present. This effect was
added at the end of the base equation:

dL LI*T
—=rL|l -
dt L, +Asin(wt + pu)

) —hL, 4
with h a parameter to reflect the proportion expected L of mortality on a
given site resulting from trees exhibiting competition. The final
component, mortality, provides an accounting of additional biomass
mortality that occurs independently of the seasonal leaf component.

2.1.1. Inclusion of Environmental Variables

Extendibility of the DDE to relate to environmental conditions that
govern growth can be implemented by establishing the model parame-
ters as functions of environmental variables (Kramer, 1994; Powers
et al., 2003). It has been well established that environmental variables,
such as temperature and water, are important drivers of loblolly pine
productivity and regulate the annual phenological processes that
determine the annual growth (Dougherty et al., 1994; Albaugh et al.,
2012). To incorporate these environmental variables as growth regula-
tors into the system, several model forms were evaluated for the
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Fig. 7. Results for the model parameterized in Table 2 using monthly maximum temperature (°C) in beta form as a modifier compared to the smoothed trend and

observations. Root mean square error for this plot was 0.3171.
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Fig. 8. Results for the maximum monthly temperature model lag history trend.
The x-axis shows the current state L(t) and its relationship with the historical
state on the y-axis defined by 7, which was found to be 0.1148. State units are
LAI m?/m?

individual components, including the beta equation (Eq. 5), the logistic
equation (Eq. 6), the double logistic equation (Eq. 7), the Arrenhius
equation (Eq. 8), the Heaviside equation (Eq. 9) simple linear equation
(Eq. 10).

f(env(1)) = exp(u) (env(t) — T,)* (T. — env(t))ﬁ 5)

1
flemv(t)) = 0‘(1 + exp(—b (env(r) — m))) °

flenv(r)) =

1
“((1 T exp(—b (em(t) — m)))(1 T exp(d (em(7) — n))) @

[ ewit
1 + cexp(=4)

env(t)

flenv(n)) = ®)

f(env(t)) = alenv(r) — T,,) H(env(t) — T})
lifenv(t)> T, 9

where H(env(t) — T,) =
(em(t) = Ts) {Oifenv(t) < T,

Flem(t)) = By + By emv() (10)

The selected model form for the environmental modifier was incorpo-
rated into the base equation in a multiplicative fashion:

dL Lie
E:f(env(t)) (rL,(l —m) —hL,) (11

To select the best model that represents the environmental effect on
LAI growth dynamics, we used different statistics and criterion that
measure the agreement between the model prediction and the training
data.

2.2. Data

Data for this analysis came from a time series of satellite reflectance
values extracted from two long-term spacing studies installed and
maintained by the Plantation Management Research Cooperative
(PMRC). The Coastal Plain Culture Density (CPCD) and South Atlantic
Gulf Slopes (SAGS) studies were installed between 1995 and 1996, and
between 1996 and 1997 respectively. The SAGS study comprised 23
sites throughout the Piedmont/Upper Coastal Plain physiographic re-
gion across five southeastern states (Zhao et al., 2010). The CPCD study
consisted of seventeen installations throughout the lower coastal plain
of Florida, Georgia, and South Carolina (Zhao et al., 2011).

2.2.1. Plot layout

The design of each study corresponds to a split-plot design that study
the effects of two cultural regimes (main plot) across a range of planting
densities (subplot) (Zhao et al., 2011). The cultural regimes for the
either study included two levels of silviculture: 1) operational, consist-
ing of bedding and banded chemical site preparation, herbaceous weed
control after the first growing season, and fertilization at planting,
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Fig. 10. Results for the model parameterized in Table 3 using monthly maximum temperature (°C) in beta form and monthly excess water in double logistic form as
modifiers compared to the smoothed trend and observations. Root mean square error for this plot was 0.3096.

before the 8th growing season, and before the 12th growing season and
2) intensive, consisting of bedding and broadcast chemical site prepa-
ration, tip moth control, complete vegetation control, and multiple
fertilization treatments throughout the first twelve growing seasons
(Zhao et al., 2011). The planting densities ranged from 741 to 4448 trees
per hectare on study plots sized from 0.12 to 0.23 hectares to accom-
modate the minimum number of measurement trees. Further details for
the CPCD study can be seen in (Harrison and Kane, 2008). For further
details on the SAGS experimental design and treatments, see (Zhao et al.,
2008). A total of 24 sites, 11 from the CPCD study and 13 from the SAGS
study were selected for analysis (Fig. 1). Only plots under the intensive
treatment were selected to remove potential sources of variability
associated from differing treatment responses.

2.2.2. Satellite data

Due to the range of subplot size in the CPCD and SAGS studies,
subplots from the 741 trees per hectare planting density (3.66 m x 3.66
m spacing) receiving intensive treatments were selected to maximize the
subplot size (0.23 hectares) to increase the geographic footprint for
remotely sensed data acquisition. All available surface reflectance
scenes from the Landsat 5 TM and Landsat 7 ETM + sensors were pre-
processed and extracted using the Google Earth Engine platform from
time of establishment to end of year 2019, masked for clouds, and
exported as individual band values averaged for the subplot (Gorelick

et al., 2017). Data were further filtered based upon cloud quality attri-
butes, pixel quality attributes, and radiometric saturation. Using near-
infrared (band 4) and short-wave infrared (band 5) bands, the normal-
ized difference moisture index (NDMI) was calculated. Estimates of LAI
were produced from an empirical model using the NDMI values (Kinane
et al., 2021). The number of available scene observations per study plot
ranged from 334 to 1005 from plot establishment to December 31, 2019.
Additionally, erroneous and outlying observations within the first five
years of development were removed to reduce the amount of noise
observed in the time series. The time series of individual plots were
shortened to remove any observations that included post-thinning or
increased mortality to insects. To provide increased temporal consis-
tency and determine the underlying LAI development trend and sea-
sonality, a thin plate spline (TPS) from the ffelds package was used to
smooth the observed data (Savoy and Mackay, 2015; Nychka et al.,
2017). LAI time series for each plot were fitted using the TPS function
with the cost function set to 1.2. Using the fitted TPS model, a new time
series for each plot was created on a 0.05 year time step for the age range
observed at each plot.

2.2.3. Environmental data

Environmental variables for the individual study sites were inter-
polated using the data from the University of East Anglia’s Climate
Research Unit (CRU) (Harris et al., 2020). Using CRU’s TS v. 4.04
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Fig. 12. Results for the model parameterized in Table 3 using monthly maximum temperature (°C) in beta form and monthly excess water in double logistic form as

modifiers compared to the smoothed trend and observations.

NetCDF product, monthly values at the individual study plots were ac-
quired from establishment to December 2019. These variables include
precipitation, monthly mean temperature, monthly maximum temper-
ature, monthly minimum temperature, and vapor pressure (Harris et al.,
2020). Water storage capacity for the first 1.5 meters of soil was esti-
mated at the individual site using data from SSURGO spatial data base
(Soil Survey Staff, 2017). Additional indices, including water deficit,
water deficit index, excess water, and excess water index were calcu-
lated from the CRU environmental variables in association with water
storage capacity at the individual study plots. Water deficit for the site is

calculated by subtracting the monthly precipitation from the monthly
estimated potential evapotranspiration. Conversion of water deficit to
water deficit index incorporates subtracting out the water storage ca-
pacity and summing the water deficits (Ojeda et al., 2018). Excess water
and its index are calculated in similar fashion by subtracting the
monthly potential evapotranspiration from the monthly precipitation.

2.3. Model Parameterization

The DDE model proposed was parameterized using maximum like-
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5 individual plot level. The model relied on 33 parameters: eight for the
LAI equation, one for the standard deviation for the maximum likelihood
procedure, and 24 local variables describing the starting points for each
time series. Using the environmental modifiers to calculate a produc-
44 tivity adjustment factor for the base model, the relationship was
Table 3
3 Global parameter estimates and standard errors for the base leaf area index
= model (Eq. 4) fitted to 24 plots across the southeastern United States with the
| monthly maximum temperature (°C) included as a beta function and monthly
i excess water (mm) included as a double logistic function. Root mean square
2] error (RMSE) was calculated across all observations.
Parameter Estimate SE Model Form Environmental Variable
1.1175 0.0060
7 0.1148 0.0011
11 Loy 4.5535 0.0073
A 3.1052 0.0004 Base N/A
o) 6.2973 0.0061
H" —1.8661 0.0457
h 0.08848 0.0024
00 1 2 3 4 5 o —5.5757 0.0876
Ty 1.4248 0.1920 .
L(t) a 15219 0.0185 Beta M°¥$y :f:t’z;'e‘“m
T 37.01863 0.2095 P
Fig. 13. Results for the maximum monthly temperature and excess water Y] 0.3799 0.0045
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i 2/m? ’ ’ Doubl
found to be 0.1148. State units are LAl m“/m*~. s 0.0072 0.0004 LOOI;sﬁeC Monthly Excess Water
T ~0.0005  0.00004 &
lihood estimation. To account for differences between the individual Te 320.0497  0.0359
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Fig. 16. Results for the model parameterized in Table 4 using monthly maximum temperature (°C) in beta form, monthly excess water in double logistic form as
modifiers and a local LAI carrying capacity parameter compared to the smoothed trend and observations. Root mean square error for this plot was 0.3096.

assumed to be interactive, so the base model and environmental models
were formulated in a multiplicative fashion. The dede function in the
deSolve package was used to solve the DDE model and the conjugate
gradient (CG) method was used as the optimization method to maximize
the log likelihood of the functions as implemented in the optimx package
(Soetaert et al., 2010; Nash and Varadhan, 2011). Starting values for the
local parameters were defined by the first observations of LAI at the
individual plot level. For the models using local L, values, starting
values were the global L, parameterized in the model fitting procedure.
Global parameters starting values were selected through a trial-and-
error approach to define the model form and starting values for the
environmental modifiers were selected based on the response between
the environment and loblolly pine reported in the literature (Albaugh
et al., 2004; Teskey et al., 1987; Nedlo et al., 2009). Addition of the
environmental variables and their subsequent model form were evalu-
ated on reductions of root mean square error (RMSE) and Akaike’s In-
formation Criterion (AIC) to account for the additional parameters for
the given model. Evaluations for parameter uncertainty estimates
required the fixing of local variables to allow for the final standard error
calculations. To evaluate model robustness, k-fold (k = 9) cross vali-
dation was used. The 24 plots were randomly assigned to one of nine
groups. For each of the nine groups, the plots in the group were withheld
from the training data set, the model was fit on the training data set and

then evaluated on the withheld group. The process was repeated for
each group.

3. Results
3.1. Base Model Parameterization

Parameterization of the base model (Eq. 4) resulted in an overall root
mean square error (RMSE) for the 24 sites of 0.4427 and an AIC of
12496.7 (Table 1). Estimated standard errors for the individual
parameter estimates indicate little variability with the exception of the
Ly parameter. At the individual plot level, RMSE ranged from 0.2594 to
0.6158 LAI m%/m?. Inspection of the residuals showed little evidence of
heteroscedacity (Fig. 2) and comparison of the observations to pre-
dictions showed an adequate 1:1 relationship (Fig. 3). Model predictions
show a defined upper limit at approximately 3.72 m?/m?2, where the
base model limits the overall LAI production (Fig. 3). This limitation is a
result of how Eq. 4 is structured. Annual seasonality was adequately
captured by the trigonometric portion of the base model, with peak LAI
occurring in September/October every year (Fig. 4). The 7 estimate
indicated little importance of the prior state, with a value of 0.0002
(Table 1). Without a considerable lag effect, the relationship between
the current and prior state maintained linearity. The L, parameter
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Fig. 17. Observations vs. predictions for the model parameterized in Table 4 using monthly maximum temperature (°C) in logistic form, monthly excess water (mm)
in double logistic form as modifiers and a local LAI carrying capacity parameter.
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Fig. 18. Results for the model parameterized in Table 4 using monthly maximum temperature (°C) in beta form and monthly excess water in double logistic form as
modifiers and a local LAI carrying capacity parameter compared to the smoothed trend and observations.

showed an overall estimated carrying capacity for LAI at 4.7760 m?/m?, seasonality in the parameterized model showed large variations as
subject to the model formulated constraints and imposed seasonality. compared to amplitude of seasonality in the observed plots and their
Systematic patterns were observed in the residuals as LAI increased, an subsequent smoothed spline time series. (Figs. 5 and 6).

artefact of the model reaching a global steady state with no outside
forces imposing individuality at the plot level (Fig. 2). The base level

model was inadequate in capturing the seasonality and trend of LAI in 3.2. Inclusion of Environmental Variables
the formative years of stand development, common to all observed plots ) ) ) )
(Fig. 4). While the underlying development trend was captured with the Temperature was found to be the most influential on improving the

inclusion of the local initial value at the individual plot level, the base LAL with monthly maximum temperature having the greatest effect. The

model provided a gross simplification of the system. The amplitude of logistic, double logistic, and beta model forms proved to be the most
flexible in parameterizing for inclusion of the environmental variables.
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Fig. 19. Results for the maximum monthly temperature and excess water
interaction model with local LAI carrying capacity parameter lag history trend.
The x-axis shows the current state L(t) and its relationship with the historical
state on the y-axis defined by 7, which was found to be 0.1143. State units are
LAI m%*/m?

2z

Maximum monthly temperature in the beta form showed the greatest
increase in model performance when included as a modifier to the base
LAI model. RMSE decreased to 0.4299 and AIC decreased to 11891.71.
Addition of the environmental modifier increased 7 to 0.1148, or
approximately 41 days, indication of past state dependency and a
delayed reaction in physiological response to temperature (Table 2).
Base level carrying capacity (Ln.) decreased from 4.7760 to 4.5565
while the rate parameter (r) showed a slight increase from 1.0750 to
1.1109, a result of the modifier imposing changes to the base level
productivity at the individual sites (Table 2). Across the individual plots,
inclusion of the temperature modifier produced a range of 0.2616 to
0.5846 RMSEs, indicating adverse effects on some plots and benefits to
others. Comparisons between the trend and the model showed an in-
crease in the model’s ability to react to environmental conditions,
capturing some of the changes in the observed points and smooth trend
(Fig. 7). The resulting parameterized beta monthly maximum temper-
ature modifier showed an asymmetrical modifier across the range of
observed monthly maximum temperatures, displaying a slow modifier
rate increase from the lower bound (=10°C) to a peak of approximately
30°C, and a sharp decline in modifier value following the peak as tem-
perature increased to beyond 35°C (Fig. 9). Increase of the r parameter
provided a relatively stable limit cycle relating the current and past
states as LAI developed and reached its upper asymptote (Fig. 8). Cycles
around a central point, ~ 3.1 LAI m?/m? showed slight temperature
induced deviations but an overall stable process.

Evaluation of additional modifiers and their interactions with the
beta monthly maximum temperature modifier focused primarily on
water relations variables to reduce the collinearity between monthly
maximum temperature and the other temperature variables under
consideration. Examination of the water relations variables and their
interactions with the monthly maximum temperature modifier found
that monthly excess water in the double logistic model form to be the
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Fig. 20. Evaluation of the parameterized modifiers for A) monthly maximum temperature (°C) in beta form and B) monthly excess water (mm) double logistic form
across the ranges of observed values for the individual variable for the model fitted with a local LAI carrying capacity parameter.
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Fig. 21. Resulting interaction modifier between the monthly maximum temperature beta modifier and the monthly excess water double logistic modifier across the
ranges of observed values for the 24 study plot across the southeastern United States fitted with a local LAI carrying capacity parameter. Contour lines show the

resulting modifier value to be imposed on the LAI model.

Table 4

Global parameter estimates and standard errors for the leaf area index model
(Eq. 4) fitted to 24 plots across the southeastern United States with the envi-
ronmental variables included as a beta and double logistic function, and a local
carrying capacity parameter (Lyy). Root mean square error (RMSE) was calcu-
lated across all observations.

of LAIL The updated parameter values for the base model and beta
monthly maximum temperature modifier showed slight changes as
compared to the temperature - modifier only model, and a slight overall
decrease in RMSE to 0.4257 and AIC to 11684.19. The newly parame-
terized monthly maximum temperature modifier displayed a similar
trend as the previous model (Fig. 14, Table 3). The excess water modi-
fier, formulated as a double logistic model, displayed a symmetrical

Parameter _ Estimate SE Model Form _ Environmental Variable shape centered about approximately 175 mm of excess water (Fig. 14).
r 1.1968 0.0181 As excess water increased from 0 mm to the peak, the modifier increased
T 0.1143 0.0080 from a baseline of approximately 0.70 to approximately 0.9. Following
A 2.6254 0.0237 . . .
» 62877 0.0009 Base N/A the peak, the modifier value began to decline to approximately 0.75 as
Py _17420 00062 the excess water value reached the end of its natural range of 350 mm
h 0.0647 0.0041 observed in the data. When the two environmental modifiers’
Ho —6.0359 0.0324
Ty 1.4592 0.0093 .
a 15984  0.0081 Beta Monthly Maximum Table 5
Temperature
T 44.69 0.0197 Root mean square error (RMSE) results from the k-fold (k = 9) cross validations
’ 0.3419 0.0103 performed on the four models. Base indicates base model, Env1 indicates the
a 1.5984 0.0081 inclusion of monthly maximum temperature as a beta function, Env2 indicates
p 0.0063 0.0004 monthly excess water as a double logistic function, and Local L, indicates the
Double N R X
6 0.0071 0.0006 Logistic Monthly Excess Water use of a local leaf area index carrying capacity parameter.
Ty -0.0004 0.00004
T, 276.3619 0.0166 Model Training Validation
Min Max Avg Min Max Avg
RMSE 0.3802
AIC 9383.04 Base 0.4270  0.4544  0.4422  0.3161 0.5508  0.4367
Base + Envl 0.4056 0.4489 0.4285 0.2885 0.5210 0.4283
Base + Envl + 0.4082 0.4419 0.4265 0.3209 0.5801 0.4319
most influential for improving the model fit. Inclusion of excess water as Env2
i o . . . Base + Envl + 0.3658  0.3886 0.3796 0.3237  0.4709  0.3819
an additional modifier had modest improvements in model fit as Fnv2 + Local
compared to monthly maximum temperature’s effect on the base model, Lo
with the largest decrease of RMSE at the individual plot being 0.03 units
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Fig. 22. Comparison between the fitted local L, LAI carrying capacity parameter and estimated site index (base age = 25) for the 24 sites.
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interactions were calculated, a defined area of increased productivity
above the baseline model (modifier > 1) was observed at the peaks of
temperature and excess water (Fig. 15). A large area within the inter-
action plot indicates that a wide range of conditions can satisfy the
conditions necessary for peak LAI growth. (see Figs. 16-21).

3.3. Addition of Local Carrying Capacity

To test the effect of a local carrying capacity parameter compared
with a global parameter, the final model was refitted with the addition of
a local L, parameter for each individual plot and dropping the global
Ly, increasing the number of parameters by 23. RMSE across all ob-
servations decreased to 0.3802 accompanied by a decrease in AIC to
9383.04 (Table 4. Values for L, ranged from 3.59 to 4.40, which had a
weak positive relationship with estimated site index (Fig. 22). As
compared to the base model, the largest decrease in RMSE due to the
local L, parameter was a 0.29 reduction.

Model validation through k-fold (k = 9) cross validation showed
overall support for the proposed models (Table 5). Improvement was
made with the inclusion of environmental variables as compared to the
base model, while the addition of a second environmental variable
showed minimal declines in RMSE in training and validation data sets
(Table 5). Inclusion of the local parameter L, showed a considerable
decline in RMSE for both the training and validation data sets, indicating
the importance of local features on LAI growth and development and its
overall interaction with environmental variables.

4. Discussion

Dependency of the future state based on the current and prior states,
denoted by 7, showed varying conditions based on whether additional
information, such as temperature, was provided in terms of a produc-
tivity modifier. In the base model, 7 proved to be quite small, an indi-
cation that, as modeled, LAI followed the development and seasonal
trend defined by the periodic and rate parameters and didn’t require
further information from prior states. It has been shown that at suffi-
ciently small 7, the Hutchinson model is equivalent to the traditional
logistic, providing a simplified model (Gopalsamy, 1992). As additional
variability in the modeled system was introduced by the environmental
modifiers, a dependence on those prior states proved influential, indi-
cating that the state at time t —7 is necessary in determining the future
state. These larger lags produce a feedback loop, which can be visualized
in Figs. 8 and 13, where oscillations about the equilibrium point of the
solution for the individual parameterized equations occurs as t increases
and the population (LAI) reaches steady state (Gopalsamy, 1992).
Fluctuations in the oscillations about the equilibrium point indicate the
influence of the environment, but overall LAI shows to be a relatively
stable variable, or one that is able to return to its equilibrium (May,
1973).

Differences in the observed equilibrium point in the two models
incorporating environmental effects and their individual parameterized
L, values shows a defined difference, with the equilibrium point far
below the L. This difference is likely due to the fluctuations in Ly,
which is representative of the carrying capacity but now defined as the
vertical shift in our periodic coefficient, a representation of the changing
resource availability and additionally influenced by the environmental
variables, which has been reported to be the case in other population
studies (May, 1973; Roff, 1974). Stability and persistence of a given
population has been shown to have direct correlations with the het-
erogeneity of the population’s environment, with the probability of
persistence decreasing with increased environmental variability (Levins,
1969; Roff, 1974).

While the base model overall has adequate fit and conceptually
represents LAI growth, the steady state reached does not provide an
accurate understanding of the observed LAI dynamics, as once net
growth for a period is zero, we see no changes to the dynamics, which is

unlikely in any ecosystem. The mechanisms proposed to model LAI
development were not able to fully capture the observed dynamics,
especially in the early stages prior to reaching steady state (Figs. 4, 7,
and 10). Large changes between years in the seasonality, peak, and
minima observed were oversimplified by the proposed model form, with
poor representation of those early stand dynamics. From the remote
sensing and LAI estimation standpoint, this portion of the individual
time series proved difficult to provide a smooth seasonal trend due to a
large number of erratic and outlying estimates from the Landsat 5 and 7
ETM + imagery. Potential sources of this variability may be from pixel
level saturation of neighboring plots, large amounts of competing
vegetation present in the stand prior to treatment, among others.
(Figs. 11 and 12).

Monthly maximum temperature provided the greatest increase in
model performance for capturing the dynamics of loblolly pine LAIL
Similar to the results presented in (Savoy and Mackay, 2015), many of
the sites evaluated in this study were highly influenced by the temper-
ature modifier. Increased temperatures at the cellular level have been
reported to provide increases in photosynthesis and respiration, leading
to greater increase of carbon assimilation rates (Way and Oren, 2010).
More specifically, Way and Oren (2010) found that evergreens increased
leaf mass, among other allometric changes, when temperatures were
increased. This change may be driven by greater leaf elongation rates
from increases in division and expansion at the cellular level (Ryan,
2010).

DDEs are a common way of modeling biological systems that tend to
rely on pasts states due to delays in development, such as sexual
maturity, energy fluxes, overlapping populations, or predator/prey dy-
namics (Hutchinson, 1948; Wright, 1955; Nisbet and Gurney, 1976;
Gopalsamy et al., 1990; Gopalsamy, 1992; Gallegos et al., 2008; Ghil
et al., 2008; Keane et al., 2017). The common theme for use of DDEs is
the understanding that feedback mechanisms that occur in nature
typically come with some delay. In our case of modeling loblolly pine
LAI, DDEs provide the ability to model the effect of prior and current leaf
area states on future states, an important feature since loblolly pine
canopies feature delays in physiological and phenological processes.
Furthermore, historical trends provide influence on current canopy dy-
namics due to foliage in loblolly pines typically last for two years,
providing up to two concurrent age classes of needles occupying the
canopy at any given time, and a cause of great variability observed in
canopies (Dougherty et al., 1995; Sampson et al., 2003). An effective
DDE provides a glimpse into the dynamics of a given population, which
in this case is leaf area, and can provide a cause and effect analysis into
the factors determining growth (Kuang, 1993).

Large decreases observed in the time series data at individual plots
may have been caused by interaction effects of environmental stress
with disease or pests, clearly not captured in the models proposed here.
While these biotic effects can cause large variations in observed leaf
area, further modeling developments can be used to incorporate the
probability of these interactions affecting the system given environ-
mental inputs and the magnitude of their potential effects. Providing
insight on the conditions that cause fluctuations of LAI outside of the
base model, shown here with maximum temperature and excess water,
allows for a more systematic understanding of forest productivity and
provide tools for management planning to account for potential distur-
bances to the population (Gopalsamy, 1992).

Further analysis into periodic coefficients may provide additional
insight into the seasonality of growth, the effects of the environment on
the fluctuations of growth and its effects on individual model parameters
(Gopalsamy et al., 1990; Lisena, 2007). Additionally, periodic co-
efficients may provide the necessary switching of the modifier to
correctly adjust the growth given the forced seasonality of the model, i.
e., promote growth when conditions are adequate and restrict declines
in growth when the seasonality begins its annual decline. Potential
improvements in model and computation efficiency may be obtained
from implementing neural or universal ordinary differential equations
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to handle the various data on different time steps to provide a better
adapting system (Rackauckas et al., 2020). Examining the lag compo-
nent as a neutral DDE, where 7 is used to define historical derivatives as
opposed to past states may increase the ability to adequately capture the
changes imposed by environmental modifiers. Following the method-
ology used by Powers et al. (2003), we incorporated our environmental
variable modifier on the entire state rather than individual parameters.
While future work will investigate the environmental influences indi-
vidually on the parameters, earlier work has shown that in the logistic
model form, the current state will follow a weighted harmonic mean of
Ly (Levins, 1969). Further inquiries into the effect of additional delays
(n>2) and combinations of positive and negative feedback may provide
a more thorough investigation into environmental induced dynamics of
the LAI system on an annual and lifespan basis (Keane et al., 2017).

A sensitivity analysis into the size of time step selected in the splined
LAI and environmental variables used for the modeling purposes should
be undertaken to verify that the underlying system being modeled isn’t
affected by the timing and amount of observations (Powers et al., 2003).
Splining the data and providing a discrete time step between interpo-
lated observations improved the model fitting procedure by ensuring
adequate observations across the time interval. LAI observations proved
to be quite noisy and provide a suitable medium for future improve-
ments by incorporating stochastic methods to handle the erratic time
series observed. Additionally, using annual peaks and minima may
provide an alternative to capture the true amplitude of the seasonality
component.

Interpretability of the formulated model allows for our increased
understanding of the dynamics that govern forest productivity and how
they interact with resource availability, which is observed in annual
seasonal cycles and interactions with the local environment. Here we
defined the carrying capacity of our system as a periodic coefficient to
represent the changes in available resources throughout the year. When
imposed, environmental modifiers retard annual growth of the system
and we see an overall decline in the carrying capacity, which may affect
other physiological changes associated with forest growth. When
defining the carrying capacity of a forested stand, using shorter-term
phenomena that pair resource availability and consumption, such as
leaf area index, as opposed to cumulative basal area yield or stand
density index that is typically reported, may provide a better biological
representation of a dynamic system. Further investigations into the
regional effects of different environmental variables may provide more
insight into the factors limiting growth across the loblolly pine spatial
extent. Additionally, understanding the sensitivity of loblolly pine
vegetation to extreme temporal variation in biogeochemical processes
(hot moments) may improve our understanding of LAI dynamics
(McClain et al., 2003).

5. Conclusions

Overall, it was shown that a mechanistic derived model can describe
aspects of the growth and development of LAI in loblolly pine planta-
tions and provide additional insight into the seasonal and environmental
dynamics that affect the current state. We were able to provide im-
provements in a base loblolly pine LAI model by incorporating envi-
ronmental variables for 24 sites across a wide geographic range in the
southeastern United States. Monthly maximum temperature and
monthly excess water were shown to be influential in the development
and long-term trends of loblolly pine LAI in the southeastern United
States.

By using the environmental modifiers to adjust the system, we are
accounting for the changes in resource availability due to the stochastic
environment, resulting in changes to the carrying capacity. As resources
and conditions becoming limiting to the biological processes, we are
able to model the effects on how much leaf area a stand can support at
any given time. Interactions between environmental modifiers indicate
that peak LAI growth in loblolly pine plantations can occur across a

range of conditions across the southeastern United States. The results
demonstrate that for our available data, incorporating a lag effect was
influential in modeling LAI along with environmental modifiers. Peri-
odicity was imposed by the inclusion of a periodic coefficient for the L,
parameter, resulting in forced oscillations based on seasonally limited
resources, affecting overall carrying capacity and driving the modeled
patterns. Future work will aim to improve the understanding of local
conditions on the LAI carrying capacity and to provide estimates of Ly,
when data is not available.
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