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HIGHLIGHTS

o Differences in landscape preferences identified from surveys and social media.

o Development was not preferred by visitors, but was often in photo content.

o No large differences between those who share images online and those who do not.
o Some differences in automated versus manual photograph content analysis.

ARTICLE INFO ABSTRACT
Keywords: The ubiquitous use of the internet and social media has provided social and spatial scientists with a wealth of
Machine Learning data from which inferences about landscape preferences can be gained. These data are increasingly being used as

Social media
Landscape preferences
Image content analysis
Protected area

Visitor survey

an alternative to data collected from surveys of recreationists. While the rapidly growing body of research using
social media is impressive, little work has been done to compare the image content of social media to preferences
elucidated via more traditional methods. We compare the landscape features derived through a computer vision
algorithm used to analyze social media photographs with preferences derived through a traditional on-site
intercept survey. We found that landscape features identified through the computer vision algorithm were, by
and large, significantly different compared to landscape features that park users said improved their recreational
experiences. Additionally, we did not find substantial differences in landscape preferences between visitors who
share photographs of their park visit on social media and those who do not. We suggest a diversity of data sources
and analytical methods should be used in a complementary and comparative way. Our analysis here suggests
both surveys and social media images can provide important insights about landscape preferences, but neither in
isolation is perfect.

1. Introduction Wang, Zhao, Meitner, Hu, & Xu, 2019). Parklands and open spaces that
provide opportunities for individuals to experience more natural set-

Publicly accessible parks and open spaces provide a variety of psy- tings and extensive views are preferred relative to landscapes without
chological, physiological, and social benefits to the individuals who these characteristics (Kaplan, 1995). Strategic investments in outdoor
access them for recreation. However, the ability of recreationists to recreation infrastructure, such as new trails, picnic areas, and campsites,
realize these benefits is heavily dependent upon the aesthetic charac- which maximize views of landscape features that tend to be appealing to
teristics and visual appeal of these spaces (Velarde, Fry, & Tveit, 2007; outdoor recreationists can subsequently increase not only the demand
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for that infrastructure but also the ability of visitors to obtain desired
benefits (Rosenberger, Bergerson, & Kline, 2009; Stein & Lee, 1995).

Outdoor recreation planners, land use planners, and researchers
often turn to surveys as the default method to understand the landscape
preferences of visitors (e.g., DeLucio & Mgica, 1994; Howley, 2011;
Manning, 2011; Mugica & De Lucio, 1996). Surveys are frequently
administered on-site to ascertain current users’ stated preferences for
landscape features (e.g., views of waterbodies, mountains, forests, etc.)
(e.g., Jiang & Yuan, 2017; Ramer et al., 2019). While surveys may be
seen as the de-facto method to learn about recreationists’ preferences,
the ubiquitous use of the internet and social media has provided social
and spatial scientists with a wealth of data from which inferences about
preferences can be gained. Many social media platforms, such as the
micro-blogging site Twitter and the photo-sharing site Flickr, make some
or all of the data generated through posts on their platforms publicly
available. Through the use of these data, researchers have been able to
gain new insights into visitation numbers to parks and public lands, the
geophysical characteristics (e.g., the presence of waterbodies, etc.) that
are associated with visits, activities and preferences, and even the
sentiment associated with different types of landscapes (Teles da Mota &
Pickering, 2020; Wilkins, Wood, & Smith, 2021). While the rapidly
growing body of research using social media is impressive, little work
has been done to compare the content of images on social media relative
to preferences elucidated via more traditional methods. Surveys are one
way to measure visitors’ stated preferences, while social media data are
collected passively and are more likely to represent revealed preferences
(Adamowicz, Louviere, & Williams, 1994). Although visitors might not
only take photos of features they prefer (i.e., visitors may take photos of
features they find interesting or unique, but not necessarily prefer),
social media images could still be an indicator of visitor preferences (e.
g., Hausmann et al., 2018; Vaisanen, Heikinheimo, Hiippala, & Toivo-
nen, 2021).

The purpose of this research is to compare the landscape features
identified through a computer vision algorithm used to analyze social
media photographs with preferences derived through a traditional on-
site intercept survey. Our goal is to determine if a computer vision al-
gorithm can generate valid inference about recreationists’ landscape
preferences. We address this goal by answering two research questions:

1. How do park visitors’ social media photographs of landscape features
compare to those that visitors say positively impacted their park
experiences?

2. Do landscape preferences vary between visitors who post photo-
graphs of their park visit on social media and those who do not?

Our first question aims to critically assess challenges associated with
using social media alone to generate inferences about landscape pref-
erences. The second question tests the representativeness of social media
users’ preferences relative to non-users. This is a commonly cited limi-
tation of social media (Wilkins et al., 2021), however no known studies
have looked at potential differences in those who share photographs
from experiences within parks and public lands and those who do not.

1.1. Literature review

Over the past decade, social media have proven to be a wellspring of
new data capable of characterizing the use of parks and other public
lands (e.g., Fisher et al., 2018; Ghermandi & Sinclair, 2019; Wood et al.,
2020). Social media generally refers to online content that is user-
generated and also hosted by a service (e.g., Twitter, Flickr, etc.) that
facilitates connections between individuals or groups (Obar & Wildman,
2015). Social media can include text, photographs, and metadata such as
the time a post was made or the location a photograph was taken. These
pieces of information can be useful to social and spatial scientists
interested in developing a better understanding of how parks and public
lands are being used. To date, the majority of research using social
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media to understand recreation within parks and public lands has
focused on evaluating the extent to which social media accurately
represent the amount of visitation to a particular site (Teles da Mota &
Pickering, 2020). Recent systematic reviews of this literature suggest
social media does provide a relatively good (mean r = 0.69) indicator of
the total volume of outdoor recreation occurring within parks and
protected areas (Wilkins et al., 2021).

Aside from the use of social media as an indicator of the volume of
use within parks and protected areas, it has also been used to charac-
terize the spatial distribution of use and visitation across parks (Donahue
et al., 2018; Hamstead et al., 2018; Heikinheimo et al., 2020; Kim, Kim,
Lee, Lee, & Andrada, 2019; Li, Li, Li, & Long, 2020; Sinclair, Mayer,
Woltering, & Ghermandi, 2020; Song, Richards, & Tan, 2020; Sonter,
Watson, Wood, Ricketts, & Yang, 2016; Ullah et al., 2020; Zhang &
Zhou, 2018) and within sub-regions of individual parks (Heikinheimo
et al., 2017). These data have also been used to identify hot spots of use
within individual parks or across broad geographic regions (Walden-
Schreiner, Leung, & Tateosian, 2018; Walden-Schreiner, Rossi, Barros,
Pickering, & Leung, 2018; Zhang, van Berkel, Howe, Miller, & Smith,
2021).

In addition to addressing questions of “how many” and “where”
visitors are going, social media have been used to characterize the
preferences of outdoor recreationists (Wilkins et al., 2021). This body of
work has largely used social media to quantify recreationists’ prefer-
ences for cultural ecosystem services. Distinct types of cultural
ecosystem services in parks (e.g., recreation, aesthetic, scientific/
educational, etc.) have most commonly been assessed through manual
coding and classification of shared text or photographs (Clemente et al.,
2019; Johnson, Campbell, Svendsen, & McMillen, 2019; Munoz, Haus-
ner, Runge, Brown, & Daigle, 2020; Retka et al., 2019; Van Berkel et al.,
2018; Vaz et al., 2019; Vieira, Bragagnolo, Correia, Malhado, & Ladle,
2018). One study compared manual content analysis of social media
photos in a national park to stated preferences for biodiversity from a
visitor survey and found preferences for large-bodied mammals were
over-represented in social media images, but small bodied mammals,
plants, and reptiles were under-represented in images compared to
survey-derived preferences (Hausmann et al., 2018). The time required
to manually code and classify textual or photographic content curtails
many of the advantages of using large, crowdsourced datasets. Addi-
tionally, manual coding introduces the possibility of researcher-
introduced bias into the analysis (Araujo, Lock, & van de Velde, 2020).

A small body of research has attempted to overcome the bottleneck
of manually coding social media images through the use of computer
vision algorithms. Gosal, Geijzendorffer, Vaclavik, Poulin, and Ziv
(2019) classified photographs uploaded to the Flickr social media plat-
form with the Google Cloud Vision algorithm. Their analysis used over
20,000 shared photographs taken within the Camargue region in
Southern France. The Google Cloud Vision algorithm returns a set of
descriptive terms corresponding to the content of individual photo-
graphs. Informed by extensive training datasets, the algorithm is able to
detect faces, objects, landmarks, and other content within the images
(Google, 2021). Gosal et al. (2019) used the terms returned from the
algorithm as inputs in latent semantic analysis to estimate meaning
similarities between the terms; meaning similarities were subsequently
used to identify discrete clusters of recreationists within the region.
Relatedly, Runge, Hausner, Daigle, and Monz (2020) used Google Cloud
Vision to process and classify over 800,000 Flickr photographs taken in
the Arctic to characterize how individuals were interacting with nature
in the region. The authors manually classified the descriptive terms
returned from Google Cloud Vision into one of two broad cultural
ecosystem services, abiotic nature and biotic nature. Those terms clas-
sified as biotic nature were subsequently classified into sub-categories
(e.g., wildlife, bird, plant, etc.). The authors used the classification of
the algorithm-defined terms to describe “how and where people interact
with nature.” Another recent study used Google Cloud Vision to un-
derstand and map aesthetic value of the landscape in a national park in



E.J. Wilkins et al.

northern England (Gosal & Ziv, 2020). In addition to research that has
used computer vision algorithms to classify recreationists and the de-
mand for cultural ecosystem services, recent work has used these algo-
rithms to classify protected areas (Ghermandi, Sinclair, Fichtman, &
Gish, 2020) and understand how the content of images differs between
national and international visitors (Vaisanen et al., 2021). Similar work
has been done in other geographic areas less-known for their quality of
outdoor recreation amenities or appeal to tourists. For example, Flickr
photographs and computer vision algorithms such as Google Cloud
Vision have been used to classify images in countries (Taecharungroj &
Mathayomchan, 2020a), large groups of cities (Taecharungroj &
Mathayomchan, 2020b), and individual cities (Richards & Tuncer,
2018).

The literature that has paired social media with computer vision
algorithms in an attempt to understand individuals’ preferences, activ-
ities, or values is admittedly sparse. The literature that does exist, as may
have been gleaned from the review above, has predominately focused on
geographic regions so large that ground-truthing or validating prefer-
ences inferred from photographic content has been overlooked. Moving
too quickly to analyze big data with advanced, and sometimes poorly
understood, algorithms may lead to an inaccurate or subjective under-
standing of human preferences or activities. More focused analysis on
smaller geographic regions where comparisons can be drawn against
‘tried and true’ methods of understanding preferences are warranted to
better understand the potential uses and limitations of social media
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image content and computer vision algorithms. In this investigation, we
critically evaluate how photo content derived from social media and a
computer vision algorithm compare to preferences derived from visitor
surveys in an urban-proximate park system.

2. Methods
2.1. Study area

Boulder is a city in Colorado, USA that is about 40 km Northwest of
Denver. This city has a department called Boulder Open Space and
Mountain Parks (OSMP) that manages over 18,000 ha of parks and
protected areas within and around the city. These lands contain over
250 km of developed trails and receive over six million visits a year
(Leslie, 2018). Boulder is situated directly to the east of a mountain
range, so the OSMP lands include both mountainous areas and flatlands
with grass and prairies. Boulder OSMP managers have identified six
distinctive ‘landscape character areas’ within their jurisdiction (Fig. 1).
These areas include: (1) plains; (2) grasslands; (3) foothills; (4) peaks
and unique topography; (5) remote lands; and (6) water. For the pur-
poses of this study, we aggregated the plains landscape character area
and the grasslands landscape character areas into a plains and grasslands
landscape character area. We also aggregated the peaks and unique
topography landscape character area with the remote lands landscape
character area. These aggregations were made because of similarities in

SERENCE AN

Foothills

Grasslands

Peaks & Unique Topography
Plains

Remote Lands

Water

Fig. 1. Boulder Open Space and Mountain Parks lands, with the six different landscape character areas highlighted. White dots represent survey locations.
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the aesthetic characteristics and landscape features within the combined
areas. For example, both the plains and grasslands landscape character
areas consist of flatlands without much woody vegetation (Dorning, van
Berkel, Beck, Wilkins, Zhang, & Smith, 2019).

2.2. Data collection

2.2.1. Flickr data

We downloaded all Flickr images within Boulder OSMP boundaries
directly through the platform’s Application Programming Interface
(API) using Python (Flickr, n.d.). These data represent images uploaded
from 2004 to 2018 and were downloaded in April 2018. We ran all
photographs through the Google Cloud Vision algorithm using the API
(Google, 2021). For each photograph, the algorithm returns labels cor-
responding to the content of the image. The algorithm also provides a
confidence score for each label. Google Cloud Vision only includes labels
that have 50% confidence or higher. We used up to ten labels with the
highest confidence scores to represent each photo, limiting our analysis
to labels that had a confidence of 50% or higher. We downloaded the
labels using the Google Cloud Vision API through Python.

2.2.2. Survey data

To determine recreationists’ stated preferences for different land-
scape features, we collected data through an on-site survey. We provided
a list of features frequently pictured in social media photographs on
OSMP land and each respondent was asked to indicate how those fea-
tures affected their experiences. Respondents were given five potential
response options: major negative impact, slight negative impact, neutral/did
not see, slight positive impact, or major positive impact. The ten features we
asked visitors to rate were: (1) unique rock formations; (2) forested
areas; (3) open plains and grasslands; (4) water; (5) old or historic
buildings; (6) infrastructure; (7) development; (8) other people; (9)
plants and other vegetation; and (10) agricultural land. We also asked
about visitors’ demographic characteristics, if they were planning to
take photographs during their visit, if they would share them on social
media, and if so, what platform. The full survey instrument is available
as a supplementary file (Appendix A).

On-site questionnaires were distributed at 18 OSMP trailheads in
May and June 2018. Survey locations were selected using a stratified
sampling approach based on the six OSMP landscape character areas.
We identified survey locations for targeted sampling using a spatial
cluster analysis of geotagged Flickr posts and input from OSMP staff to
refine sampling sites based on accessibility and use. Our cluster analysis
approach identified the most prominent photographic clusters or scenic
locations within each landscape character area. For each cluster, we
identified the most popular trailhead providing access to the trails
included within the cluster. See the supplementary material (Appendix
B) for maps that display the spatial cluster analyses.

The 18 sampling locations were then randomly assigned to sampling
days and times. We ensured each landscape character area was sampled
at least twice on a weekday and at least once on a weekend (for a total of
three sampling days each in the foothills, grasslands, plains, and water
landscape character areas, and a total of four days each in the peaks and
unique topography and remote lands areas). The sampling times were
either in the morning (8 am to 2 pm) or afternoon (2 pm to 8 pm), and
we only surveyed people over the age of 18. The adult in each group
with a birthday closest to the day of the survey was selected to partici-
pate. A list of specific survey sites is available as a supplementary file
(Appendix C), and the full database with survey results is publicly
available (Wilkins & Smith, 2021).

2.3. Data analysis
We first acquired the frequency of each label returned from Google

Cloud Vision across all Flickr photographs within Boulder OSMP. For
any label that appeared 10 times or more, two authors independently
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coded these into the categories of landscape features asked about on the
visitor survey. For example, labels such as “plant,” “flora,” “flower,” and
“flowering plant” were all coded as “plants and other vegetation.” The
two authors had a 94% agreement (491/523) in coding Google Vision
labels into survey categories, and a third author served as a tiebreaker
for the 6% of disagreements. For a full list of how labels were coded, see
the supplementary material (Appendix D).

Each photograph was then categorized as representing one or more
of the landscape features asked about in the survey based on that pho-
tograph’s Google Vision labels. Each photograph could have multiple
features. To determine the validity of using labels from Google Vision to
automate the “viewing” of photographs for landscape features, one
author manually viewed 5% of all Flickr images in this study. We
categorized the Flickr images into the same ten landscape features asked
about in the survey to determine the percent agreement between
manually viewing photographs and using Google Vision labels to un-
derstand landscape features.

For the ten different landscape features, we then compared the
percentages of people who said each landscape feature positively
impacted their experience (via the on-site survey) to the percent of Flickr
photographs in that landscape character area which contained that
feature (via classified Google Vision labels). We ran Chi-Square tests of
homogeneity to determine if there were differences between survey
responses and Google Vision labels derived from the Flickr images. Chi-
Square tests of homogeneity are used to determine whether two (or
more) independent samples differ in their distributions on a single
variable of interest (Franke, Ho, & Christie, 2012). In this case, we are
looking at the presence or absence of each feature (e.g., forested areas)
in Flickr photos compared to the percentage of surveyed visitors who
said that same feature had a positive impact on their experience. We also
used the Phi coefficient to understand the effect size, if differences
existed. For this analysis, we used all Flickr photos in Boulder OSMP,
compared to survey data (only collected in May and June). The photo
content of May and June photos compared to all other months is shown
in the supplementary material (Appendix E). Although there were some
differences (e.g., more photos of plants and open plains and grasslands
during May and June), all differences were very small (effect size < 0.1).

We then split visitors into those who were planning to share a
photograph on social media from their current visit to OSMP, and those
who were not planning to take or share photographs on social media. We
ran Chi-Square tests of homogeneity between these two groups to
determine if there were any differences in the impact of different land-
scape features on experiences depending on whether or not people were
planning to take and share photographs on social media.

All analyses were conducted in R version 4.0.3 (R Core Team, 2020)
and the code is publicly available (Wilkins & Smith, 2021).

3. Results
3.1. Sociodemographic characteristics of survey respondents

The overall response rate for the survey was 84.3%, with 537 re-
spondents, and 100 refusals. Some questionnaires were not complete or
usable (n = 17), so the final count of 520 represents an effective response
rate of 81.6%. Of the questionnaires, 143 were from the plains and
grasslands landscape character areas, 138 were from the foothills, 171
were from the peaks and unique topography and remote lands, and 68
were from water areas. Demographics of the survey sample are
described in Table 1.

3.2. Landscape features identified by computer vision algorithm

In total, there were 9394 unique Flickr photographs from 885 users
within Boulder OSMP lands. The distribution by landscape character
area group is shown in Table 2. Across all landscape character areas,
“mode of transport” was the most common label returned by the Google
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Table 1
Demographics of the survey sample.
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Table 2
Flickr photograph characteristics by landscape character area.

Characteristic and Responses n %

Lives in Boulder

Yes 238 46.6
No 273 53.4
Age

18-29 111 22.0
30-44 157 31.2
45-65 185 36.7
65+ 51 10.1
Education

Less than a Bachelor’s 59 11.7
Bachelor’s 222 43.9
Master’s 141 27.9
Professional 27 5.3
Doctoral 57 11.3
Race/ethnicity

White/Caucasian 452 91.5
Asian 31 6.3
Hispanic or Latino 24 4.9
African American 8 1.6
Other 4 0.8
Gender

Male 259 51.2
Female 247 48.8
Other 0 0.0

Vision algorithm (Table 2). Most of the top ten labels were the same
across all landscape character areas. However, there were labels unique
to some areas, such as “prairie” and “field” being in the top ten labels in
the plains and grasslands areas, and “water” being in the top ten labels
for the “water” area. Some labels, such as mode of transport, sky, and
ecosystem, were not coded to represent any landscape feature (see Ap-
pendix D for how we coded Google Vision labels).

Overall, there was moderate agreement between manually coding a
sample of the photographs, compared to how Google Vision labeled the
photographs; the mean level of agreement across the ten landscape
features was 78.6% (Table 3). Some categories had high agreement
between manual codes and Google Vision labels, such as water (85.8%),
infrastructure (84.9%), and agricultural land (92.9%). The largest dis-
crepancies were in forested areas (63.2%) and plants/other vegetation
(58.8%), where many more photographs were coded into these cate-
gories when manually viewing photographs compared to using Google
Vision. This discrepancy indicates that forests and vegetation would be
underrepresented when using Google Vision to classify landscape fea-
tures within photographs.

We noticed that Google Vision had more trouble recognizing water
that was muddy or brown, forests and features that were covered in
snow, and development that was represented by lights (i.e., night scenes
with buildings lit up in the distance). Google Vision seemed less likely to
recognize there were people or forests in the image when individuals
were more distant. Additionally, Google Vision could not accurately
distinguish between a single tree and a forested area. We categorized
any photo with the Google Vision label “tree” as a forested area,
although when manually reviewing photos, sometimes this was not a
forested area (e.g., possibly a plains area with other vegetation).

3.3. Data and method-dependent differences in preferred landscape
features

There were significant differences between the percent of survey
respondents who said each of the ten landscape features positively
impacted their experience and the percent of Flickr photographs that
depicted these same features (Table 4). Similar differences were found
for nearly all of the landscape character areas within Boulder OSMP
lands, where we observed significant differences in preferences

Landscape character Flickr Unique
area photographs users

Ten most frequent labels
from Google Vision

Plains and grasslands 1,754 234 mode of transport
(1,091)

sky (921)
ecosystem (9 0 7)
land lot (45 5)
prairie (4 25)

grass (41 0)
phenomenon (37 4)
geological phenomenon
(370)

field (36 6)

tree (36 0)

mode of transport
(1,629)

ecosystem (1,327)
sky (1,202)

tree (949)
geological phenomenon
826)

land lot (6 4 3)
phenomenon (6 0 3)
grass (57 4)
panorama (50 7)
photography (4 9 8)
mode of transport
(2,972)

geological phenomenon
(2,152)

tree (1,867)

sky (1,846)
ecosystem (1,790)
phenomenon (1,436)
panorama (7 9 0)
photography (7 5 2)
recreation (7 4 6)
plant (6 2 6)

mode of transport
567)

tree (50 2)
ecosystem (4 6 2)
sky (353)

grass (29 3)
phenomenon (2 8 6)
plant (27 1)
geological phenomenon
(263)

land lot (23 4)
water (2 2 8)

Foothills 2,543 444

Peaks & unique 4,026 463
topography and
remote lands

Water 1,071 137

comparing the ten surveyed landscape features, except for development
features in the water landscape character area. Overall, visitors were
more likely to say that landscape features had a positive impact on their
experiences on surveys, but the features were not as likely to be depicted
in an equivalent percentage of Flickr photographs. However, there is one
exception to this, in that few visitors said development features had a
positive impact on their experiences, while development features
showed up more often in Flickr photographs. Fig. 2 displays the differ-
ences between the percentages of survey respondents who said each
feature had a positive impact on their experience, compared to the
percentage of Flickr photographs depicting each feature.

Effect sizes (Phi) varied, but most indicate medium to large differ-
ences in the percentages of survey respondents who said each feature
had a positive impact on their experience, compared to the percentage of
Flickr photographs. The largest differences were from old or historic
buildings/structures, water, and plants and other vegetation being
depicted less in Flickr photos compared to visitors’ surveyed
preferences.
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Table 3

Agreement between landscape features identified by Google Vision (GV) relative
to features identified manually for a random sample of Flickr photographs taken
within the study area (n = 437).

Agreement GV said GV said Difference in % of
(%) no, but yes, but photos classified
human human
said yes said no
(%) (%)
Unique rock 71.6 16.0 12.4 3.6
formations underrepresented
(stone slab, by GV
outcrops)

Forested areas 63.2 30.0 6.9 23.1
underrepresented
by GV

Open plains and 74.6 13.7 11.7 2.0

grasslands underrepresented
by GV

Water (wetlands, 85.8 4.4 9.8 5.4

lakes, streams) overrepresented by
GV
0ld or historic 98.2 0.5 1.4 0.9
buildings/ overrepresented by
structures GV
Infrastructure 84.9 14.2 0.9 13.3
(fences, power underrepresented
lines, water by GV
tanks)

Development 74.8 11.9 13.3 1.4
(residential, overrepresented by
industrial, GV
commercial)

Other people 81.0 15.3 3.7 11.6
underrepresented
by GV

Plants and other 58.8 39.8 1.4 38.4

vegetation underrepresented
by GV

Agricultural 92.9 2.1 5.0 2.9

land underrepresented
by GV

3.4. Differences in landscape preferences between social media users and
other visitors

The majority of visitors (61%; 318/519) said they were going to take
photographs during their visit on the day they were intercepted. Of
those, 75% (236,/316) said they were planning to share the photographs
on social media. The most popular platforms to share photographs from
their visit were Instagram (n = 155) and Facebook (n = 140), with fewer
visitors sharing photographs on Twitter (n = 15), Flickr (n = 3), or other
platforms (n = 27). Visitors who were not from Boulder were more likely
to share a photograph from their visit on social media (63% sharing a
photograph) compared to those who were local residents (35% sharing a
photograph).

There were no substantial differences in landscape preferences be-
tween those who were planning to upload a photograph from their visit
to social media and those who were not going to post on social media
(Table 5). There were statistically significant differences in preferences
for unique rock formations, forested areas, development, and other
people; however, the effect sizes (Phi) of these differences were all small.
The visitors who were planning to upload photographs to social media
were slightly more likely to indicate these features had a positive impact
on their experiences.

4. Discussion
4.1. The use of computer vision to quantify landscape preferences

Surveys have been widely used for decades to understand visitor
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preferences in parks and protected areas (Manning, 2011). However,
more research is starting to use social media to understand visitors’
preferences (Wilkins et al., 2021). When comparing landscape prefer-
ences derived from surveys to the content of social media photographs,
we found that most features appeared in a fewer percentage of Flickr
photographs compared to the percentage of surveyed visitors that said
the features positively impacted their experience. This is not surprising,
considering many different features had positive impacts on visitors’
experiences on Boulder OSMP parklands, and it is difficult to capture all
of the important features in a single photograph. Development features
were the only features that appeared in a larger percentage of photo-
graphs compared to survey-derived preferences. This is likely because
OSMP is an urban-proximate parks system, so features such as cars,
roads, and buildings were in the background of many photographs.

The large discrepancies we found between the content of Flickr
photographs and preferences elucidated through on-site surveys sug-
gests that caution needs to be taken before using social media and
computer vision to understand landscape preferences. Our work echoes
the findings of recent research that has compared the content of social
media images in protected areas to online surveys, finding notable dif-
ferences (Moreno-Llorca et al., 2020), and research that has compared
visitor activities from surveys to social media photographs, again finding
differences (Heikinheimo et al., 2017). Method-dependent findings are
not unheard of in previous research on landscape preferences (e.g.,
Komossa, Wartmann, Kienast, & Verburg, 2020). In instances where
different data sources and methods give incongruent results, the dis-
crepancies may be attributable to different types of data and analytical
methods capturing different user groups, different types of landscape
features, or real differences between stated and revealed preferences
(Adamowicz et al., 1994; Komossa et al., 2020; Wartmann, Acheson, &
Purves, 2018). For instance, we surveyed visitors at trailheads, indi-
cating most visitors in our survey sample were going for a walk, hike, or
run. Some visitors in the Flickr sample may have just stopped to take a
photo along a road or in a parking lot, representing a different type of
visitor. In the case of social media broadly, some activities or landscape
features may be important to visitors, but hard to capture in a photo-
graph. Additionally, some photographs may have represented features
visitors found unique or noteworthy, but not necessarily a preference.
On the survey, visitors were only asked to rate if a feature has a positive
or negative impact if they saw that feature on their current visit (i.e.,
they hypothetically could have taken a photo of that feature). Regard-
less, some visitors may have indicated that a feature would have a
positive impact on their experience, even if they did not see it during
that visit. Consequently, we suggest a diversity of data sources and
analytical methods should be used in complementary and comparative
ways. Our analysis here suggests both surveys and social media photo-
graphs can provide important insights about landscape preferences, but
neither in isolation is perfect.

We did, however, find that computer vision was useful to automate
the content analysis of a large number of photographs, and that using
Google Cloud Vision to automate photograph classification is fairly
consistent with manually coding images for some features (e.g., water,
infrastructure), but not as consistent for other features (e.g., plants,
forests). When differences in classification did exist, the automated
classification underrepresented landscape features compared to manual
content analysis. Runge et al.’s analysis of Flickr photographs taken
within the Arctic also found that Google Vision underrepresented biotic
nature features compared to manual coding, and that computer vision
was not great at identifying specific types of wildlife (2020). Even if
studies use manual coding, there is still bias and subjectivity into how
images are coded, and different researchers may not code the landscape
features depicted in photos in the same way. Manual coding may be
more appropriate for some features, while automated coding may be less
biased for other features. The ability of computer vision algorithms to
detect certain features depends on what images they are trained on, and
these algorithms are likely to improve in the future.



Table 4
Comparison of survey respondents who said each landscape feature had a positive impact on their experience, to the percent of Flickr photographs that depicted each feature. Landscape features in Flickr photographs were
identified from Google Vision; therefore, some categories might be underrepresented compared to manually classifying Flickr photographs.

Overall Plains and Grasslands Peaks, unique topography, and remote  Foothills Water
lands
% positive % of X? (Phi) % positive % of X2 (Phi) % positive % of X2 (Phi) % positive % of X? (Phi) % positive % of X? (Phi)
impact photo- impact photo- impact photo- impact photo- impact photo-
graphs graphs graphs graphs graphs

Unique rock formations 86.9 43.0 366.9 62.4 22.6 97.7 97.1 58.1 103.4 92.6 40.1 144.3 95.5 26.6 138.7
(stone slab, outcrops) (0.19) (0.23) (0.16) (0.23) (0.35)

Forested areas 93.4 40.0 555.8 83.2 21.8 238.0 98.2 46.8 172.6 94.0 38.5 161.7 100.0 47.6 69.2

(0.24) (0.36) (0.20) (0.25) (0.25)

Open plains and 92.4 26.9 985.5 97.1 40.5 166.8 88.2 15.0 591.5 94.9 32.8 215.6 88.1 35.1 74.9
grasslands (0.32) (0.30) (0.38) (0.28) (0.26)

Water (wetlands, lakes, 84.6 13.0 1780.7 95.0 13.1 561.2 81.3 12.3 596.1 76.1 8.1 578.4 88.2 27.2 111.8
streams) (0.42) (0.54) (0.38) (0.47) (0.31)

0ld or historic 45.2 1.6 2426.0 41.1 0.3 654.6 41.1 2.5 606.2 51.9 1.5 840.6 49.3 0.7 439.2
buildings/structures (0.50) (0.59) (0.38) (0.56) (0.62)

Infrastructure (fences, 12.0 2.9 116.7 14.6 5.1 20.0 11.7 2.5 46.5 8.3 2.0 21.9 14.9 31 24.3
power lines, water (0.11) (0.10) (0.11) (0.09) (0.15)
tanks)

Development 11.8 21.6 26.5 10.1 18.8 6.2 14.8 23.9 7.2 9.9 20.7 9.0 11.8 19.2 2.3 (n/
(residential, industrial, (0.05) (0.06) (0.04) (0.06) s)
commercial)

Other people 53.9 21.5 284.5 55.8 12.9 175.2 59.3 25.1 96.6 44.1 25.2 23.8 56.7 13.4 87.9

(0.17) (0.30) (0.15) (0.09) (0.28)

Plants and other 95.3 20.9 1431.4 95.0 16.1 467.6 94.0 20.9 469.2 97.8 20.4 419.0 94.0 29.9 116.2
vegetation (0.38) (0.50) (0.34) (0.40) (0.32)

Agricultural land 51.7 5.9 1315.6 79.7 13.1 374.5 37.0 1.4 734.8 32.8 8.0 91.4 68.7 5.7 293.4

(0.37) (0.45) (0.42) (0.19) (0.51)

Sample sizes (n) 497-511 9,394 124-140 1,754 162-171 4,026 131-136 2,543 66-68 1,071

Note. All Chi-Square tests are significant at « < 0.05 (except the differences for development features in the water landscape character) indicating significant differences between the proportion of survey respondents who
said each landscape feature had a positive impact on their experience and the percent of Flickr photographs that depicted each feature.
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Fig. 2. Differences between the percentages of survey respondents who said each feature had a positive impact on their experience and the percentages of Flickr
photographs that depicted each feature. Positive values represent more surveyed visitors saying the feature had a positive impact on their experience, while negative

values represent a greater representation in Flickr photographs.

Given that landscape preference research may increasingly be
turning to computer vision algorithms to understand individuals’ pref-
erences and their experiences within parks and public lands, more
research is needed to better understand what landscape features
different computer vision algorithms are good at identifying, and which
features might be better identified manually. A recent study found that
different computer vision algorithms produced different results, with
some algorithms being better for certain features. For example, the au-
thors found that Google Vision was preferable for identifying features
like wildlife and vegetation, while Clarifai was better at distinguishing
feelings and sentiment (Ghermandi, Depietri, & Sinclair, 2022). Future
research may consider using a scaling-factor to account for underrep-
resentation of landscape features that are poorly captured using certain
computer vision algorithms (e.g., we found the Google Vision algorithm
poorly captured plants and other vegetation), or using different algo-
rithms for different purposes. One recent study used different computer-
vision methods and algorithms to serve different and specific purposes,
for instance, classifying scenes or identifying objects (Viisanen et al.,
2021). This approach may be preferable to using only one method and
algorithm, but more research is needed to see how different algorithms
compare in their ability to accurately assess landscape features

(Ghermandi et al., 2022).

4.2. The representativeness of social media users to other visitors to parks
and public lands

Although a commonly stated limitation of data derived from social
media is that it may not be representative of all park visitors (Wilkins
et al., 2021), we did not find any substantial differences between the
landscape preferences of visitors who self-reported posting photographs
of their visit to OSMP lands on social media and those who said they
would not post photographs. Although we did find that visitors who said
they would post images to social media were slightly more positive
about seeing rock formations, forests, development, and other people,
the effect size of the differences were all small. This finding suggests
using social media data may be representative to answer certain types of
questions, but more research is needed to determine if this holds true in
other geographic locations and for other types of research questions (e.
g., understanding sentiment or behavior).
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Table 5
Differences in landscape feature preferences between those who plan to post
photographs of their visit on social media, and those who do not.

Will upload to Will NOT upload ~ X*(Phi) p-
social media: %  to social media: value
positive impact % positive
impact
Unique rock 91.7 82.8 8.7 0.003
formations (stone (0.13)
slab, outcrops)
Forested areas 96.5 90.8 6.7 0.010
(0.12)
Open plains and 91.9 92.8 0.1 (n/ 0.712
grasslands s)
Water (wetlands, 84.8 84.5 0.0 (n/ 0.924
lakes, streams) s)
0ld or historic 43.2 46.9 0.7 (n/ 0.415
buildings/ s)
structures
Infrastructure 11.6 12.3 0.1 (n/ 0.810
(fences, power s)
lines, water tanks)
Development 15.2 9.1 4.4 0.037
(residential, (0.09)
industrial,
commercial)
Other people 60.7 48.6 7.5 0.006
(0.12)
Plants and other 95.2 95.3 0.0 (n/ 0.978
vegetation s)
Agricultural land 49.3 53.6 0.9 (n/ 0.350
s)
Sample sizes (n) 222-234 262-278

4.3. Limitations

One limitation of this study is that we only analyzed photographs
from the Flickr photo-sharing platform. Photograph content posted on
other social media platforms might differ (Ghermandi et al., 2020;
Hausmann et al., 2018). We also analyzed all Flickr photographs within
Boulder OSMP, which indicates that the content of users who post many
photographs was likely overrepresented. We only surveyed one visitor
(an adult) in each group in Boulder OSMP, but Flickr could include
photos taken by people under 18, or from multiple people within a
group. Additionally, we only surveyed visitors in May and June, but
looked at photograph content from all seasons, and there are some small
differences in photo content taken during May and June compared to the
rest of the year. Finally, additional research could help better under-
stand how social media photograph content compares to surveys in
other contexts and locations (e.g., parks that are not urban-proximate).

4.4. Implications for planning and management

Aside from the methodologically oriented findings of this work, the
analysis does also provide some insights for Boulder OSMP managers.
We found a large majority of visitors to Boulder OSMP reported that
natural features such as unique rock formations, forested areas, open
plains and grasslands, water, and plants had a positive impact on their
experience. Seeing infrastructure and development was only positive for
a small portion of visitors (12% and 15%, respectively). This suggests
that visitors may seek out trails and places within OSMP that are
perceived as more natural and have less infrastructure and development
visible. These preferences could be considered if OSMP were to purchase
additional parklands in the future or add new trails. Additionally, we
found the majority of people said that seeing other people had a positive
impact on their experience. Although increasing use is often seen as a
negative influence on park visitors’ experiences (Manning, Valliere,
Minteer, Wang, & Jacobi, 2000), seeing some other people enhances the
experience of many OSMP visitors. Until there is further research on
using social media to infer visitors’ preferences, we would recommend
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that land managers and planners continue to use visitor surveys to glean
preferences rather than relying on social media data alone.

5. Conclusions

Social media has transformed how many individuals experience
parks and public lands. It has also reshaped how those experiences are
shared with friends, family, and (now) followers. The rapid ascent in the
popularity of social media has led social and spatial scientists to rethink
how they investigate individuals’ preferences within parks and other
public lands. The research using social media to understand the pref-
erences of outdoor recreationists and tourists is growing at an
outstanding pace (Wilkins et al., 2021). This brings up the question: can
the photographs that individuals share on social media be used to infer
preferences? And are the preferences and behaviors of those who use
social media representative of all visitors to parks and public lands?
These are important methodological questions that deserve substantial
attention before the field embraces findings from new and novel data
sources and analytical methods.

In this investigation, we found that while the Google Cloud Vision
algorithm was relatively good at classifying landscape features (mean
agreement of 78.6% relative to manual coding), there were consistent
and significant differences in the features identified by the algorithm
and those features that park users said improved their recreational ex-
periences. At the least, caution should be taken in interpreting landscape
preferences from computer vision algorithms and social media. This is
not to say that computer vision algorithms and social media cannot be
used as valuable tools to elucidate preferences, perceptions, and other
aspects of the outdoor recreation experience. These algorithms can be
useful at quantifying broad types of visitor experiences. For example,
previous work has found success in using computer vision to charac-
terize human-wildlife interactions (Runge et al., 2020). Trying to infer
preferences for specific types of landscape features may be too fine
grained of a research question for current computer vision algorithms.
This may change in the future as these algorithms are further developed
and refined. In short, our analysis highlights the need to be cautious
when using computer vision algorithms and social media data to draw
inferences about landscape preferences. Multiple data sources and
analytical methods are warranted to provide a check on the promises of
computer vision algorithms and social media and avoid the pitfalls that
can accompany their use.
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