BEMOTE Taylor & Francis
SENSIN @

.o gtaier i International Journal of Remote Sensing

O o—

B i ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tres20

Effect of varied unmanned aerial vehicle laser
scanning pulse density on accurately quantifying
forest structure

Matthew J. Sumnall, Timothy ). Albaugh, David R. Carter, Rachel L. Cook, W.
Cully Hession, Otavio C. Campoe, Rafael A. Rubilar, Randolph H. Wynne &
Valerie A. Thomas

To cite this article: Matthew J. Sumnall, Timothy J. Albaugh, David R. Carter, Rachel L. Cook, W.
Cully Hession, Otavio C. Campoe, Rafael A. Rubilar, Randolph H. Wynne & Valerie A. Thomas
(2022) Effect of varied unmanned aerial vehicle laser scanning pulse density on accurately
quantifying forest structure, International Journal of Remote Sensing, 43:2, 721-750, DOI:
10.1080/01431161.2021.2023229

To link to this article: https://doi.org/10.1080/01431161.2021.2023229

A
h View supplementary material &

ﬂ Published online: 31 Jan 2022.

N\
CJ/ Submit your article to this journal &

A
& View related articles &'

(!) View Crossmark data (&'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tres20


https://www.tandfonline.com/action/journalInformation?journalCode=tres20
https://www.tandfonline.com/loi/tres20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2021.2023229
https://doi.org/10.1080/01431161.2021.2023229
https://www.tandfonline.com/doi/suppl/10.1080/01431161.2021.2023229
https://www.tandfonline.com/doi/suppl/10.1080/01431161.2021.2023229
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2021.2023229
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2021.2023229
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2021.2023229&domain=pdf&date_stamp=2022-01-31
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2021.2023229&domain=pdf&date_stamp=2022-01-31

INTERNATIONAL JOURNAL OF REMOTE SENSING H
2022, VOL. 43, NO. 2, 721-750 Taylor & Francis

https:/doi.org/10.1080/01431161.2021.2023229 Taylor &Francis Group

W) Check for updates

Effect of varied unmanned aerial vehicle laser scanning pulse
density on accurately quantifying forest structure

Matthew J. Sumnall?, Timothy J. Albaugh?, David R. Carter® Rachel L. Cook®,
W. Cully Hession<, Otavio C. Campoe®, Rafael A. Rubilare, Randolph H. Wynne?
and Valerie A. Thomas?

aDepartment of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State
University, Blacksburg, VA, USA; Department of Forestry and Environmental Resources, North Carolina State
University, Raleigh, NC, USA; “Biological Systems Engineering Department, Virginia Polytechnic Institute and
State University, Blacksburg, VA, USA; “Departamento de Ciéncias Florestais, Universidade Federal de Lavras,
Lavras, MG, Brazil; °Departamento de Silvicultura, Universidad de Concepcion, Cooperativa de Productividad
Forestal, Facultad de Ciencias Forestales, Concepcién, Chile

ABSTRACT ARTICLE HISTORY

Airborne laser scanning (ALS) is increasingly used to estimate var- Received 4 September 2021
ious forest characteristics. Technological improvements in Accepted 22 December 2021
unmanned aerial vehicles (UAVs) and drone laser scanning (DLS)

K d
sensors have permitted the acquisition of high pulse density data- yores

LiDAR; precision forestry; LAl

sets. There is an assumption that higher pulse densities yield loblolly pine; silviculture;
greater accuracies in estimating forest characteristics. In this individual tree crown
study, we investigated the effect of pulse density (.25, .5, 1, 5, 10, delineation; remote sensing

50, 100 and 300 pulses m™2) on the ability to delineate individual
tree crowns (ITCs) and estimate ITC height and crown horizontal
diameter, in addition to plot-level leaf area index (LAI). The current
study took place in an experimentally varied Pinus taeda L. forest,
which included three stem densities: (i) 618; (ii) 1236; and (iii) 1853
trees per hectare (TPH). ITCs were classified directly from the DLS
point cloud for each of the pulse densities. The correct delineation
of ITCs relative to field tree-coordinates was relatively consistent
(+5%) for pulse densities of 5 to 300 pulses m™. ITC delineation
accuracy decreased with lower pulse densities. Planting stem den-
sity did impact ITC delineation accuracy. Higher pulse densities,
plots with 618 TPH correctly classified ~88% of ITCs, and plots
with the 1853 TPH correctly classified ~50% of ITCs. Estimates of
tree height were largely unaffected by changes in tree density. Root
mean square error (RMSE) for tree height varied from .5 to 2.5 m at
pulse densities of 300 to .25 pulses m™2, respectively. Estimates of
crown horizontal diameter varied with regard to both pulse and
stem density from 1.2 (300 ppm™2 and 1853 TPH) to 4.2m (.25
ppm~2 and 618 TPH). RMSE varied among stem densities from .6
to 1.2m as pulse density decreased. There was significant differ-
ence in ITC delineation accuracy, particularly when considering
stem density, and the estimates of tree height and crown horizontal
diameter among the DLS pulse densities used. The accuracy of
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predicted LAl was largely unaffected by changes in pulse density,
when pulse density was above .5 pulses m™. There was little or no
difference in estimates of LAl at these pulse densities. Our results
suggest that low-density DLS data may be capable of estimating
plot-level forest metrics reliably in some situations, however once
the analysis scale is reduced to the individual-tree-level, the influ-
ence of pulse density is more substantial. The results here provide
guidance to forest managers who must balance metric estimation
accuracy and price when planning new ALS or DLS acquisitions.

1. Introduction
1.1. Airborne laser scanning

Airborne laser scanning (ALS) remote sensing provides a rapid and effective means of acquir-
ing many forest metrics that are otherwise measured with great labor cost from the ground
(Hummel et al. 2011). Thus far, however, ALS is not readily adopted due to acquisition cost.
Many questions still remain regarding the specifications needed to create the most accurate
forest assessments for the least investment. A number of studies have attempted to assess this
issue with regard to conventional ALS acquisitions at the plot-level (Jakubowski, Guo and Kelly
2013a; Kamoske et al. 2019;; Silva et al. 2017; Shao et al. 2019). Jakubowski, Guo and Kelly
(2013a) found that metrics related to coverage (e.g. canopy cover) were more sensitive to low
pulse densities (<20 pulses m™2) when compared to metrics such as tree height, shrub height,
and statistical estimates of diameter at breast height and basal area, which were relatively
unaffected until pulse density was reduced to below 1 pulse m™ High pulse densities (>20
pulses m™) are thought to be more accurate (Shao et al. 2019). Likewise, Silva et al. (2017)
observed more accurate digital terrain models when pulse density was highest (where tested
densities ranged from 12 to .2 pulses m™2). Features of interest which are smaller than the plot-
level, e.g. the individual-tree-level, in particular, are subject to more uncertainty regarding
a minimum required pulse density for the specific detection of that feature (Kamoske et al.
2019). The assessment of features which are smaller than the plot-level therefore presents
a potential problem when considering the effects of pulse density.

Recent technological developments had enabled unmanned aerial vehicles (UAVs) as
a viable remote sensing platform which have the capability to capture very high-
resolution data (Wallace et al. 2012). The estimation of forest vegetation structure metrics
has been demonstrated using drone laser scanning (DLS) (Sankey et al. 2017) and
provides comparable products to ALS. DLS therefore can provide high point-density
datasets which can be subsampled to lower densities.

1.2. Delineation of individual tree crowns

Individual tree crown (ITC) delineation is critical for assessing forest metrics since accurate
estimation of ITC metrics are necessary for estimating individual-tree attributes which could be
used to supply tree-level inputs to existing frameworks for growth and yield modeling, fire
behavior, and habitat classification (Kaartinen et al. 2012; Jeronimo et al. 2018), improving the
potential for decision making. For these ITC approaches, it is worth noting that ITCs located in
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the dominant or codominant canopy are always detected better than sub-canopy trees, and
the disparity grows with increasing stand height (Vauhkonen et al. 2012; Jakubowski et al.
2013b; Eysn et al. 2015). In particular, canopy structural arrangement has been found to play
a considerable role in the accuracy of ITC delineation methods, to a greater degree than
species or species compositions (Wang et al. 2016).

The delineation of ITCs is possible when using small-footprint (i.e. <1 m) ALS data. There are
several methods which function on an ALS-derived raster canopy height model (CHM - an
interpolated surface which contains estimates of height of vegetation (Brandtberg et al. 2003;
Popescu and Wynne 2004;; Eysn et al. 2015; Wang et al. 2016). Methods have been developed
to delineate ITCs directly from ALS point cloud returns which could potentially improve
delineations (Kaartinen et al. 2012; Ferraz et al. 2016; Wang et al. 2016). Li et al. (2012), for
example, demonstrated a method to classify ITCs within the point cloud by exploiting the
relative horizontal spacing between trees to group ALS returns, detecting up to 86% of trees.
As suggested in Yao et al. (2014), however, various parameters can influence the accuracy of
results, in particular the pulse density available.

Improving the accuracy of ITC delineations may be possible with new methodologies that
include higher pulse densities. Many of the available methods are applied to an ALS derived
CHM surface.

The presence of individual or clusters of trees have been inferred using multiple method
utilizing some variation on object recognition, local maxima finding or watershed algorithms
(Brandtberg et al. 2003; Popescu and Wynne 2004; Popescu, Wynne and Scrivani 2004;
Kaartinen et al. 2012; Jing et al. 2012; Eysn et al. 2015; Wang et al. 2016). The authors indicated
that there was a great deal of variation in the capabilities of each algorithm depending on
application context, and most importantly the performance was related to the quality and
spatial resolution of the input CHM, which was dependent on the available pulse density of the
ALS data. Few studies have evaluated these methods with regards to variable pulse densities
(e.g. Wang et al. 2016), which concluded that for methods of ITC delineation using ALS returns,
the density of the point cloud data has a significant influence on the detection rate. Therefore,
additional investigation was warranted to improve the methodology for estimating ITC and
assessing their accuracy.

1.3. Estimating tree height and crown width

Depending on which forest structural feature is being estimated, there are varying degrees of
accuracy in their measurement, in addition to what is considered acceptable accuracy for
management purposes. Vegetation height measurements have been reported to be accurate
even with vegetation of short stature (~1 m), at least in areas of relatively flat terrain (Lefsky
et al. 2002). For trees where the crown tapers to a point, such as in many conifer species, an ALS
dataset of a high pulse density (i.e. >10 ppm ™) is often necessary for the most accurate height
estimates (Jakubowski et al. 2013a). A number of studies have explored the accuracy of ALS for
ITC-evel height estimation, with root mean square errors (RMSEs) between 1.13 to 2.05m
(Sudrez et al. 2005; Kwak et al. 2007; Moe et al. 2020). Variation in accuracy among these
structural features may depend on the ecosystem and tree species being measured, in
addition to the complexity of the topography in the area (Silva et al. 2017) and the ALS
acquisition characteristics.
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Few studies have reported estimates of crown horizontal width from ALS derived ITCs.
Many of these approaches create ITC objects from a raster CHM derived from ALS, and apply
a segmentation approach for the delineation of the horizontal extent of an ITC, with RMSEs
between .93 to 2.08 m (Falkowski et al. 2006; Popescu and Zhao 2008; Kato et al. 2009). As
evidenced by previous research, crown horizontal width is capable of being quantified, yet,
potentially, with greater accuracy.

1.4. Estimation of leaf area index

Leaf area index (LAI) is defined as the total one-sided leaf surface area per ground surface area
(Chen and Black 1992). LAl is an important metric for forest mensuration as it is correlated with
the capacity of vegetation to intercept light and, subsequently, potential productivity (Cannell
1989; Linder 1987). A substantial number of ALS studies have attempted to use 3D structural
information to estimate LAI at the plot-level (Gitelson et al. 2002). Various light penetration
indices have been developed to estimate forest LAl based on ALS observation, calculated
either using return count or intensity (Barilotti, Turco and Alberti 2006; Hopkinson and
Chasmer 2009; Morsdorf et al. 2006; Solberg et al. 2009; Sumnall et al. 2021). Pulse densities
in these studies range from 5 to 30 pulses m~2 (Alonzo et al. 2015; Heiskanen et al. 2015;
Sumnall et al. 2021), where RMSE range from .01 to .69 m? m™2 over a range of environmental
contexts. By their nature, these approaches are dependent on the density and structure of
vegetation in situ and a pulse density high enough to return data from the lower vertical strata
of a forest plot is required to ensure accuracy. Lower pulse densities (between 2 and 10
pulses m™) can yield acceptable LAl accuracy in estimates for specific acquisition contexts
(Almeida et al. 2019). Based on these studies, training models for local acquisition specifica-
tions are often used. Such models are not typically directly transferable to other contexts (Latifi
and Koch 2012). In Sumnall et al. (2021), however, methods were developed using multiple
sites and ALS acquisitions for managed loblolly pine (Pinus taeda L.) dominated sites, and no
issues related to location were encountered. Fekety et al. (2018) demonstrated that models can
be transferred between ecologically similar forests and, thus, an evaluation of ALS-derived LAl
estimates across a range of pulse densities and stem densities could be conducted and
potentially guide future acquisitions.

1.5. Goal and objectives

The overall goal of this study was to evaluate the effects of a range of DLS pulse densities under
a variety of crown architectures (sizes and leaf densities) and stand conditions on the estima-
tions of various forest metrics. We utilized an 8-year old, experimentally varied loblolly pine
study site which possessed different genetic entries under various spacings and management
intensities for this analysis. Given these conditions, this site served as an ideal location to test
the effect of varied pulse densities in accurately quantifying structural attributes in a loblolly
pine plantation. The specific objectives were therefore to:

(1) Classify ITCs and estimate height and crown diameter, in addition to estimating LAl
at the plot-level from a normalized DLS point cloud using different pulse densities;

(2) Evaluate the accuracy of ITC delineations, ITC height and crown diameter estimates
and plot-level LAl for each of the pulse densities tested;



INTERNATIONAL JOURNAL OF REMOTE SENSING . 725

(3) Estimate the minimum pulse density required for ITC delineation and the estima-
tion of ITC height, ITC width, and plot-level LAI.

The datasets used in this research study are described in Sections 2.1.1 and 2.2, which
provide details on the field study sites and the DLS reference data, respectively.
Section 2.3.3 provides a description of the pulse densities evaluated. Sections 2.4.4-2.8
provides a description of the ITC delineation method, the LAl estimation method and
statistical analysis implemented. In Section 3, the results are presented, while Section 4
contains the discussion. Finally, conclusions are presented in Section 5.

2. Materials and methods
2.1. Study site and field sampling

The study site was located in Bladen Lakes, North Carolina, USA (34°49'49.63"N, 78°35'
18.52"W), and established in 2009 to investigate intensive management in optimizing
loblolly pine production. The split-split plot experimental design contains three replica-
tions of six genotypes (four clones, one control pollinated and one open-pollinated) of
loblolly pine, and two levels of silviculture, planted at three initial densities where all
densities had the same distance between rows (3.66 m), summarized in Table 1 (Yanez
et al. 2015; Yanez, Seiler and Fox 2017).

There was a total of 108 experimental units with 63 trees in each (7 rows of 9 trees each).
All plots received chemical site preparation in November 2008. The silvicultural levels were:
(i) operational and (ii) intensive. Operational silviculture included a one-time herbaceous
weed control during the first growing season. Intensive silviculture treatments were
designed to achieve near maximum growth for the site-soil and climatic conditions, and
included herbaceous weed control in the first year, plus additional competing vegetation
control in years 1, 2, 5, and 7, and fertilization in years 1, 2, and 5. Trees were planted in
February 2009 and treatment effects provided a range of tree heights, distributions of
canopy elements, crown sizes, and crown closures. The use of the six different genotypes
of loblolly pine was intended to maximize within group homogeneity (i.e. one genotype
was deployed per split-split plot), and ensure there were crown structural differences
among groups via the deliberate selection of different crown ideotypes.

In January 2017, we measured 6,804 individual-tree stems. For each live tree, we
measured GPS location and survival using the Trimble R8 instrument at the time of
planting. The expected positional accuracy was expected to be less than 1 cm (Trimble
2003). For ~40% of stems (25 of 63) in the measurement plots (2,700 for all plots), we
measured tree top height and crown horizontal diameter in the field. Tree top height was
recorded using a Vertex hypsometer. The associated error of tree height via hypsometer

Table 1. Field plot attribute summary.

Plot size
Stem planting density Trees per hectare Within row spacing (m) (m?)
Low 618 4.42 1019
Medium 1,236 2.21 510

High 1,853 1.47 339
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was assumed to be .2-.3 m (as in Vasilescu 2013). Crown measurements were taken within
and across row, and the largest diameter was recorded, as defined by Schomaker et al.
(2007). This was accomplished using a measuring tape held at a point located under the
edge of the crown of the measurement tree in two perpendicular directions. The end of
the crown was defined as the perimeter that was visible from the ground directly beneath.
The error of measuring crown diameter on the ground, to the full extent of the individual
crowns, is estimated to be at .6—.9 m (Popescu, Wynne and Nelson 2003).

All field plot LAl measurements (n = 108) were made via nondestructive optical means using
a LI-COR LAI 2200 plant canopy analyzer (LI-COR 2012) in February 2017. A total of 10 readings
were recorded within each field plot via transects. Field measurements of LAl below the canopy
were taken throughout the day during clear sky conditions at 1.0 m above ground. A 10° view
cap was used. The calculations of LAl per plot were produced through the LI-COR FV-2200
(version 2.0) software, with no clumping corrections applied. In order to account for plot size, ring
five measurements were removed for the medium and high planting density plots (as described
in LI-COR 2012). The correction for light scattering (as presented in Kobayashi et al. 2013) was
implemented for all measurements. Plot-level readings were averaged after excluding records
with transmittance values >1. Simultaneous above- and below-canopy readings were recorded
and synchronized prior to LAI calculation (Welles and Norman 1991).

2.2. DLS data acquisition and pre-processing

Discrete return DLS data was acquired in August 2017 to coincide with peak-leaf area
conditions. The UAV platform was a Vapor-35 helicopter (AeroVironment, Simi Valley, CA,
USA) with a YellowScan Surveyor Core lidar unit (Monfeerier-sur-Lez, France). The DLS unit
consists of a Velodyne VLP-16 laser scanner (Velodyne, San Jose, CA, USA) and a GNSS-inertial
Trimble APPLANIX APX-15 (Trimble, Richmond Hill, ON, Canada). The DLS system recorded up
to two returns per laser pulse. Horizontal and vertical beam divergence was 3 and 1.5 mrad,
respectively (Velodyn 2019). Horizontal and vertical laser footprint size at a distance of 50 m
was reported as 26.4 and 17.0 mm, respectively. The wePilot1000 flight control system and the
weGCS ground control system software (weControl SA, Courtelary, Switzerland) were used for
flight planning. Data were recorded to the following specifications:

a laser pulse density (312 to 498 pulses m™2);
e <60° scan angle on either side of nadir;

e altitude of 60 m (relative to take-off location);
a 50% flight-line overlap.

Ground control was provided using a real-time kinematic geographic positioning system
(RTKGPS, Topcon GR-3). The manufacturer reported precision was <10 cm and positional
accuracy was <5 cm. The coordinate reference system was set to UTM zone 17N, and both
horizontal and vertical units were set to meters. UAV flight control and pre-processing were
handled by Applanix POSPac UAV/MMS and YellowScan CloudStation software.

A number of pre-processing steps were required before metrics could be derived from
the DLS data for analysis. All of these steps were performed using the LasTools software
(version 180812) (Isenburg 2019). Noise points were classified and removed if they were
over 2m away from any neighboring point. Above-ground heights were calculated by
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subtracting the heights of non-ground classified points from a surface determined by
a triangular irregular network created from points classified as ground. Those DLS returns
<.2m above-ground were considered to be from the ground, while returns above this
threshold were classified as vegetation (either understory or canopy).

Analysis of the DLS dataset was then completed using R software (version 4.0.3.)
(http://www.r-project.org/). The LiDR (version 3.1.1; Roussel et al. 2020) and datatable
(version 1.12.8; Dowle and Srinivasan 2019) packages were used to read and operate on
LAS format files. Geographic information system functions, such as clipping point cloud
data for field plot locations, were provided by the sp (version 1.4-2; Bivand et al. 2013),
rgeos (version .5-3; Bivand and Rundel 2021) and rgdal (version 1.5-8; Bivand et al. 2021)
packages. The dbscan package (version 1.1-5; Hahsler, Piekenbrock and Doran 2019) was
used for clustering points based on relative distance to their neighbors. The MASS
package (version 7.3-53; Venables and Ripley 2002) was used for 2D kernel density
analysis. The Raster package (version 3.4-5; Hijmans 2020) was used for raster manipula-
tion. The ForestTools package (version .2.1; Plowright and Roussel 2020) was used for
raster-based watershed segmentation. Linear mixed-effects models, and the assessment
of least-squares means utilized the following packages: Ime4 (version 1.1-27; Bates et al.
2014); ImerTest (version 3.1-3; Kuznetsova et al. 2017) and Ismeans (version 2.27-2; Lenth
2016). The multcomp package (version 1.4-17; Hothorn et al. 2008) was used to evaluate
binomial generalized linear mixed-effects models. Functions were also used from the car
package (version 3.0-10; Fox and Weisberg 2018).

The field plot location polygons were increased in size by 5 m via buffering operation, so as
to include the entirety of all crowns within each plot. A point-cloud subset was extracted for
each buffered field plot location.

2.3. Defining DLS pulse densities

The processed DLS point-cloud data that intersected with each field plot horizontal extent
were systematically reduced to assess the impacts of fewer pulse densities on the accuracy of
estimates of DLS-derived structural features. The DLS data provided a pulse density in excess of
300 pulses m ™~ for all field plots in the study site. A consistent maximum of approximately 300
pulses m~2 was available across all plots and thus serve as the highest pulse density used here.
In order to emulate different acquisition specifications, a number of lower pulse density values
were subsampled from the original data to those stated in Table 2. Subsampling was achieved
by first classifying individual DLS pulses using GPS time (recorded during the acquisition).
These pulses were then subsampled systematically via GPS time in order to ensure uniform
densities for each plot. The following processes were applied separately to each pulse density
dataset to derive estimates of structural features.

2.4. Individual tree crown delineation

Initial ITC delineations were provided by implementing the methods outlined in Li et al. (2012).
The method uses the spacing between the tops of trees to identify and group points into
individual trees. Tree crowns were classified iteratively, starting from the tallest return. In order
to improve segmentation accuracy an adaptive spacing threshold (dt) was used, where: dt =
1.25 and 1 m was set as the horizontal search distance between returns when return heights
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Table 2. Summary of DLS pulse
densities produced.

Iteration Pulse density m
1 300

2 100

3 50

4 10

5 5

6 1

7 0.5

8 0.25

were =10 and <10 m, respectively (Li et al. 2012) regardless of pulse density. This height
threshold was selected as this was the 507 percentile of field measured individual tree heights,
rounded to the nearest integer. We assume that horizontal tree spacing at the upper level is
equal to or greater than 1.47 m (see Table 1) and that the taller trees likely have greater spacing
and hence larger crown sizes. Minimum spacing was set to 1 m horizontally. Shape index rules
were not implemented here. Heights below 1 m were considered too small and were
excluded.

2.5. Refining individual tree crown delineation algorithm

The ITC classifications were further refined in order to account for parts of neighboring
tree crowns erroneously being included. All returns below 1 m from the ground were
ignored for this part of the method. For each of the ITC classifications, a 3D density-based
spatial clustering of applications with noise (DBSCAN) approach was used. This technique
groups together points that were closely packed together and marks outlier points that lie
alone or in low-density regions. These clusters were defined by an allowed search radius
(i.e. epsilon neighborhood) around each point. DBSCAN was sequentially applied to the
classified returns of each unique ITC class to find out if it was composed of multiple non-
connected parts. The use of different pulse densities required the scaling of the DBSCAN
search radius. Eight sample datasets were extracted for each pulse density, for a single
consistent tree location. A search radius was determined manually for each sample
dataset. These settings were used to create a linear model. The DBSCAN search radius
was scaled by pulse density and was defined using the following linear model:

eps = —0.0014 x pulsegensiry + 1.0164 (1)

where eps was the size of the search radius of the epsilon neighborhood in meters and
pulsegensiy Was the pulse density per meter-squared existing within the current plot
subset. If multiple clusters were classified here, the cluster containing the return with
the largest height (assumed to be the tree top), was considered to be the ITC, and other
clusters were then reclassified as a temporary class.

A convex-hull was calculated around each of the ITC clusters and the horizontal area of
each ITC was calculated. If the hull area exceeded or equaled 5 m?, the horizontal kernel
density raster surface (with a bivariate normal kernel) of points was calculated for the
horizontal distribution of returns in that cluster. This method was intended to identify
clusters of tree crowns within one ITC classification (Figure 1(a)). The resultant 2D raster
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image created was 100 x 100 cells in size regardless of the horizontal extent of the
classified returns of a single ITC (Figure 1(b)). The kernel bandwidth was left as default,
as defined in Venables and Ripley (2002; eq. 5.5). Local maxima coordinates were located
on this raster image using a moving window size of approximately one-tenth of the total
size of the raster area (33 x 33). If multiple maxima were found, we applied a marker-
controlled watershed segmentation applied to the raster image in order to give the
general outlines of the occupied areas — we assumed this corresponded to the extent
of the crown cluster. The cluster containing the highest return height was assumed to
contain the tree top, and was termed the main cluster. A transect line was then created
from the maxima location in the main cluster to the location of each of the other maxima
(Figure 1(b)). The raster cells which intersected this line were then extracted and analyzed
(Figure 1(c)). We assumed that a separation between these potential crown objects would
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Figure 1. (@) An example cluster of two potential tree crowns classified as an individual tree crown
(ITC) object, where a much smaller crown neighborhood a larger one. (b) A 2D kernel density raster
produced from the returns classified as part of the current ITC. Local maxima are calculated and the
closest to the 2D location of the tree top is classified as the main crown. Transects are calculated from
the main to any neighboring maxima. (c) An example of raster cells intersecting the transect-line.
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be characterized by a general U-shape (i.e. large values at either end of the transect and
a single minimum somewhere between them). If this shape was observed, and if the
maximum density/cell value belonging to the non-center cluster had an equal to or
greater density/cell than the main cluster (with a local minimum in-between), the non-
main maxima was considered as separate. A watershed segmentation was them imple-
mented on the main and all separate maxima (Figure 2(a)), where the returns falling
outside of the segment belonging to the main cluster were given a temporary classifica-
tion according to which non-main segment they intersected with (Figure 2(b)).

In this process, a number of clusters of returns within the point cloud were reassigned with
a temporary class value. These temporary classifications were then either assigned to an
existing ITC cluster or were designated as a unique ITC classification. A temporary cluster was
merged to an existing ITC classification using two approaches: (1) if the horizontal extent of
either the ITC or the temporary class exceeded 50% overlap of horizontal area with each other
(determined with convex hull), then the two classes were merged; or (2) the cluster’s distance
to neighboring classes was assessed and merged if the proximity was lower than a threshold
value. When determining the ITC classification of a temporary cluster based on distance to
neighbor, the number of an ITC's or temporary class’ neighboring points within .5 m were
then assessed. The class with the largest number of returns in this range was then assigned to
the current temporary class. This process was repeated until changes to ITC delineation
classifications were no longer made. Any temporary classifications that still existed after this
process were then given a unique ITC classification. If an ITC object existed within a plot-level
extent with a height of <2m, it was considered understory and automatically excluded.
A sample classification is presented in Figure 3.

(a) Watershed segmentation
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Figure 2. (a) A watershed segmentation applied to the 2D kernel density raster produced from the
returns classified as part of the current ITC, with separate local maxima used as seed points. Returns
were reclassified according to which regions they intersected with. (b) The returns which are part of
the cluster of tree crowns were reclassified into two separate ITC objects.
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Figure 3. A sample classification for two neighboring field plot locations. Both plots had a stem
spacing of 4.42 x 3.66 m, but were of a different genotype.

2.6. Individual-tree metric calculation

Any delineated ITC objects (as defined in Sections 2.4.4 and 2.5) which were outside the
original field plot polygon extent were ignored. For the purpose of determining tree position,
we assumed that the tallest DLS return from within each of the ITC delineations were on or
near the location of the top of the tree, and directly above the tree stem, and that the stem was
straight. The horizontal coordinates of this top return were then stored. The field recorded
individual-tree GPS coordinates were therefore compared directly with the delineated ITC
objects center-top locations derived from the DLS with the following approach. A 1 m buffer
was applied to the planting location coordinates. This size was selected as it was smaller than
the smallest planting density spacing (i.e. 1.4 x 3.6 m). ITC top location points existing within
these extents were assessed. If there were multiple ITC top locations, the ITC top location
closest to the planting location center was retained. Each planting location therefore had
a paired ITC location for direct comparison. If a planting location was determined to be for
a dead tree, and no ITC delineations were found in the proximity, it was excluded. This process
was repeated for all eight pulse densities tested. The probability of an ITC being delineated in
the correct location, given a specific pulse density, was assessed (more details are given in
Section 2.8).

Each living tree was expected to have an associated ITC object. DLS-derived measurements
were then compared directly to field height measurements. The largest return height for each
ITC object was assumed to be the top height, for each of the pulse densities tested (Table 2).
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Estimates of ITC crown diameter were made by first calculating an alpha-hull around
the horizontal extent of the classified returns (>1 m height). This alpha-hull was then
converted into a polygon and the largest uninterrupted distance from one side to the
other was calculated. This distance served as the estimate of crown diameter and was
compared to the largest field-measured crown diameter for that stem. Consequently,
each tree was located with GPS coordinates and ITC coordinates and had corresponding
field-measured and DLS-estimated heights and crown diameters.

2.7. DLS LAI calculation

Finally, we estimated plot-level DLS-derived LAl and compared it to field-derived LAl
Specifically, the estimates here are ‘effective’ LAl (eLAl). This eLAl assumes a simple
random foliage distribution and also includes area covered by branches and stems
(Stenberg 1996). For each of the 108 plots, we calculated a light penetration index
based on vertical return count distribution using the above/below ratio index (ABRI);
which, to our knowledge, is the best performing index (Sumnall et al. 2021):

ZR>T

ABRI = SE

)

where R denotes an individual ALS return, and T represents a height threshold, of
which returns are excluded if under or over this height. Here, T was set to 1 m above
ground. As indicated in Zhao and Popescu (2009), the height threshold (7), at which
indices are calculated, has a large influence on elLAl estimates. This height threshold is
commonly set to be close to the field LAI2200 measurement height (Magnussen and
Boudewyn 1998; Zhao and Popescu 2009; Sumnall et al. 2016). Model coefficients for
estimating eLAl from ABRI were determined in Sumnall et al. (2021), where this approach
produced an R? of .88 (p <.001) when regressing ABRI values against field LAI2200
measurements. Scan angle was limited to <15° in order to remove the uncertainty
observed at large, off-nadir angles as in Liu et al. (2018).

2.8. Statistical analysis

Field- and DLS-derived values were directly compared at the individual-tree level (n = ~6804
individual-trees) for correctly located ITC locations and metrics concerning the matched
planting location. Height and crown diameter estimates were assessed at the individual-tree
level (n=~2700 individual-trees). Comparisons of eLAl were at the plot-level (n=108). All
statistical analyses were conducted in R (v3.4; R Core Team 2021), with a significance alpha
threshold of p < .05.

Student’s t-test, as implemented in R (v3.4; R Core Team 2021), was used to directly
compare the field and equivalent DLS derived values in order to determine if the means of
two datasets were significantly different from each other. Root mean square error (RMSE)
was used as a measure of the differences between values predicted from DLS and field
measurements and is expressed as:
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Sh (xi—yi)?

n

RMSE = (3)
where y are the predicted variables, x is the field measured variables, i is the individual-
tree (ITC detection, top-height, and crown width) or plot (eLAl) value and n is the number
of samples.
Standard error for a given metric was calculated as follows:

1 n
n—ZZe? @

t=i

s =

where eis the error, i is a given observation of t, and n is the number of sample points. RMSE
and standard error were computed at the site-level when comparing individual field and ITC
delineation success (~6804 potential stems) and the estimates of height and crown diameter
(~2700 potential stems). Estimates of eLAl were available at the field-plot level, where RMSE
and standard error were computed for the 108 samples.

2.8.1. Mixed effect modeling for individual trees

We examined the influence of pulse density and planting density on estimation accuracy. The
analysis of variance (ANOVA) for ITC delineation (0 = incorrect, 1 = correct, for all 6,804 poten-
tial stems) was assessed using the gimer function in the Ime4 package (Bates et al. 2015) and
included a binomial error distribution with a logit link. Pulse density (Pulse) and planting
density (Density) were fixed effects. Plot (Plot/D) nested within genotype (Geno) nested within
silviculture (Silv) was the random effect. Which can be expressed as:

Silv

Tree = Density x Pulse + <1 | P(ISS:FD) (5)

Post-hoc comparisons were made using the least squares means (LS means) function in
the Ismeans package (Lenth 2016). The interaction between stem planting density and
pulse density fixed effects was performed using the Anova function from the car package
in R (Fox and Weisberg, 2019), where Chi-square statistics are reported.

2.8.2. Mixed effect modeling for metrics at the plot-level

Plot-level values of RMSE were computed from the ITC metrics: height and crown diameter,
and their corresponding field values (n = 108). Plot-level RMSE was the dependent variable
for these analyses. As there was a single estimated value for eLAl per plot, the differences in
field- and DLS-derived values were calculated, hereafter referred to as el Al difference (n=
108). Mixed-effects type Il ANOVA, with Satterthwaite’s method, of tree height and crown
diameter RMSE and el Al difference were fit using the Imer function in the Ime4 package in
R v.3.5 (Bates et al. 2015). P-values were calculated using the Ismeans function (Ismeans
R package). Fixed and random effects were expressed as follows:

Silv
Heightgyse = Density x Pulse + <1 PIG;:|0D> (6)



734 M. J. SUMNALL ET AL.

Silv
C = Density x Pul 1| _Geno ;
rownguse = Density x Pulse + ( PIotID> )
Silv
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Where Heightgyse and Crowngyse is the RMSE of ITC height and crown diameter calcu-
lated at the plot-level, respectively, and eLAl difference is LAl The interaction between
fixed effects was evaluated using the anova function in R, where F statistics are reported.

3. Results
3.1. DLS metric estimation and pulse density

For all variable estimates, as pulse density decreased, mean DLS estimates of ITC counts, tree
height, and crown width also decreased, with the exception of plot-level eLAl which remained
relatively consistent (Table 3). With the exception of the plot-level eLAl estimates, all compar-
isons of DLS derived ITC metrics were significantly different from field values (p <.05). The
success of the ITC delineation was highest in the low-density planting plots, and lowest in the
high-density planting plots. As illustrated in Table 3, the estimates of mean tree height
decreased in value when pulse density decreased relatively consistently. Estimates when
compared with field values differed by .29 to 2.42m, .18 to 2.65m and —.02 to 2.44 m for
low, medium and high planting density plots, respectively for pulse densities of 300 and .25
ppm 2, respectively. DLS estimates of tree crown mean diameter for the high planting density
planting plots were consistently less than those of the low planting density plots.

3.2. Correspondence of field and estimated tree positions

The overall uncertainty (RMSE) and correct mean are relatively consistent (Table S1, £5% and
+3%, respectively) for pulse densities 300, 100, 50, 10 and 5 pulses m~2 at the individual tree
level. As pulse density drops below 1 pulse m™, uncertainty increases. Stem planting density
has a large impact on ITC delineation accuracy, as evident in Table S2 and in Figure 4 Within the
same stem planting density, the percentage of correctly delineated ITCs was relatively con-
sistent above a certain pulse density. For low-density planting, the largest percentage of stems
were delineated correctly among planting densities (an average of ~87% when pulse density
was =5 pulses m~2). Medium planting density performed slightly poorer than the low planting
density, with an average of ~70% of stems correctly delineated when pulse density was >1
pulses m~2 The ITC delineation process performed the worst in high planting density plots,
where an average of only ~50% of stems were correctly delineated when the pulse density was
>.5 pulses m™2. The amount of consistency of the RMSE for each of the stem densities differs.
Specifically, the RMSE noticeably increases (see Figure 4) when pulse density decreases below
5 pulses m™ for low planting density plots, whereas this decrease occurs at 1 pulse m™2 for
medium planting density plots and .5 pulses m~2 for high planting density plots. There were no
additional ITCs delineated within the field-plot extents which could not be paired with a field
GPS location or were not classified as understory (<2 m), implying that there was no obvious
commission error within the current study.
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Table 3. Mean estimates for all measurements taken, both field- and DLS-derived. ITC is individual tree
crown and its corresponding values are the number of trees located of a possible 63 at the plot-level.
Tree top height is the top height of the canopy in meters. Crown diameter is the largest horizontal
diameter of an individual tree crown in meters. eLAl is leaf area index (m? m ~2). Mean is calculated for
all 36, 63-tree plots in a given stem planting density. Field is referring to field-derived estimates. The
eight levels of pulse densities used are measured in pulses per square meter (pulses m ). Asterisks (*)
denote values DLS derived estimates are statistically different (p <.05) from the field value, as
determined by Student’s t-Test.

Trees Mean field Mean DLS estimates (pulses m™)

Metric name ha value 300 100 50 10 5 1 0.5 0.25
ITC counts 618 53.14 53.14* 46.56* 42.53* 47.08* 46.61* 44.17* 39.17* 32.72*
1236 53.72 37.14* 33.94* 37.86* 38.86* 39.17* 38.03* 34.25* 27.72*
1854 53.69 25.64% 22.42* 2561% 27.03* 27.03* 28.56* 28.50% 23.33*
Tree top height (m) 618 10.98 10.69* 10.62* 10.57* 10.16* 10.10* 9.38* 9.02* 8.56*
1236 11.82 11.64* 11.58* 11.53* 11.09* 10.88* 10.13* 9.83* 9.17*
1854 11.92 11.94* 11.95* 11.85* 11.49* 11.23* 10.44* 9.96* 9.48*
Tree crown diameter 618 427 2.63*% 233* 226* 1.70* 1.81* 0.97* 0.57* 0.23*
(m) 1236 343 2.24*  198* 191* 141* 140* 0.72* 042* 0.16*
1854 3.09 233*  2.11*  2.04* 1.49% 1.44* 0.73* 038* 0.16*

Plot eLAl 618 3.05 2.85 2.85 2.85 2.83 2.86 2.87 2.90 293

1236 3.67 363 363 363 364 362 364 364 380

1854 3.64 3.51 3.51 3.52 3.49 3.51 348 3.56 3.39

The main effects (pulse density: Chi squared = 798.94; p-value < .01; spacing: Chi squared =
451.26; p < .01) and interaction of stem planting density and pulse density were significant (Chi
squared = 463.69; p < .05) in predicting ITC delineation. The probabilities in correctly delineat-
ing ITC crown with respect to pulse density and planting density is illustrated in Figure 5.

Across all planting densities, the general trend was to see decreasing RMSEs as pulse
density increased. RMSEs tended to stabilize as pulse densities exceeded 5 pulses m~ (Table
S1, Figure 5). Pulse densities of 300, 100 and 50 pulses m~2 had similar ITC delineation
probabilities (ranging 47 to 48%, p <.05). The pulse densities of 10 and 5 pulse m™ share
a similar probability value (50%), and the pulse densities of 1 and .5 pulses m™2 are likewise
similar (53%).

For the results of pulse densities under the medium planting density tree planting, 14 of the
28 pairwise comparisons of pulse density were significantly different (p < .05). RMSE decreased
until 5 pulses m™ and then all higher pulse densities had similar values (ranging from 70 to
72%) with the exception of comparisons to 300 pulses m™~2, which was similar to 1 pulse m™
(ranging from 69 to 71%).

In low planting density tree planting, 10 of the 28 pairwise comparisons of pulse density
were not significant (p < .05). RMSE decreased from .25 to 5 pulses m~2 and then RMSE values
were similar among pulse densities of 10 through 300 pulses m~2 (where values ranged from
87.6 to 88.5%).

For post hoc comparison of pulse densities irrespective of tree planting density, high
pulse densities (300, 100, 50, 10, and 5 pulses m™2) rarely differed significantly. The pulse
densities of .25, .5, 1 and 5 pulses m™2 had sequentially increasing value ranges for
detection probability. The remaining pulse densities (300 to 10 pulses m™2) shared
a similar value range (18.6 to 25.0%). At each individual pulse density, tree planting
density RMSEs for ITC detection were significantly different with RMSEs in the order of
higher density > medium density > low density (p <.01).
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Figure 4. RMSE (%) for correctly delineated individual tree crowns (ITCs) calculated at the plot-level,
i.E. DLS estimated tree tops within 1 m of a GPS planting location. Each line corresponds to a specific
planting density: Low (618 trees per hectare (TPH)), medium (1236 TPH) and high (1854 TPH),
respectively.

3.3. Estimation of tree top height

Across all planting densities, there was a general trend to have lower RMSE for top height
estimated (the difference between field- and DLS-derived ITC estimates) as pulse density
increased. RMSE and standard error stabilized at and above 50 pulses m~2 (Table S3). Top
height RMSE in the high, medium and low-density tree plantings showed a decrease in
RMSE from .5 to 50 pulses m~2 after which there was no significant change (Table S4).

There was a significant interaction between pulse density and planting density in
predicting tree top height RMSE (F = 7.79; p-value <.01). In general, estimation accuracy
for top height increased with decreasing tree planting density (Table S4 and Figure 6). For
pulse densities of 300 and 50 pulses m~2, the comparison between high and low, and high
and medium stem density was significantly different. The differences in RMSE among
stem densities at each of the eight pulse densities was small (.2 m; Figure 6) but
significant (p <.05). The estimates of RMSE for top height at a pulse density of .25 was
similar >2.55 m (+.2) for all three stem densities.
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Figure 5. Post-Hoc least-squares means interaction plot illustrating the differences in probabilities in
successful individual tree crown delineation for the three planting densities (Low =618 trees per
hectare (TPH), Medium = 1236 TPH, and High = 1854 TPH) and pulse densities (pulses m ~2).

3.4. Estimation of individual tree crown horizontal diameter

Crown diameter at the individual tree level was underestimated by DLS across all
planting densities (Figure 7). Overall, as pulse density decreased, there was
a corresponding increase in RMSE and standard error (Table S5). The largest overall
RMSE was observed for ITCs located in low-density planting plots. The smallest overall
RMSE for ITCs was observed in the high-density planting plots (Table S6). The RMSE
decreased for all planting densities as pulse density increased, with similar slopes
among planting densities but respective intercepts (Figure 8). The differences of
crown diameter among densities were slightly more pronounced as pulse density
decreased, however. The difference between crown diameter RMSE at a pulse density
of 300 pulses m™ was .65 m when comparing high to low density planting, whereas for
a pulse density of .25 pulses m™2, the RMSE was 1.24 m between high to low density
planting.

At the plot level, the interaction of pulse density and stem planting density was
significant in explaining field plot-level crown diameter RMSE (F =11.8; p-value <.01).
The effects of varied pulse densities were identical across all three planting densities with
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Figure 6. RMSE (m) for top height for all ITCs, and colored according to stem planting density: Low
(618 trees per hectare (TPH)), Medium (1236 TPH) and High (1854 TPH) planting densities,
respectively.

accuracy generally declining with decreasing pulse density. Crown diameter RMSE values
among the three planting densities and within each of the eight pulse densities were all
significantly different (p <.05 ; Figure 8).

3.5. Estimation of plot-level leaf area index

At the field plot level, the interaction of pulse density and stem planting density was
significant in predicting eLAl difference (F=2.1; p-value <.05). The difference between
DLS- and field-measured eLAl was relatively similar across all pulse densities (Table S7),
until pulse density dropped below 1 pulse m™.

RMSE values were relatively consistent for all three stem densities when pulse density
was or exceeded .5 pulses m™2 (Table S8 and Figure 9). Low planting density plots had
a consistently higher RMSE for all pulse densities among the three planting densities. The
eLAl RMSE values for .25 pulses m™2 under high planting density plots was greater than all
the other pulse density values. Medium planting density plots had the lowest overall
RMSE at each pulse density (except at .25 pulses m™?) among the planting density plots.
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Figure 7. Comparison of paired field and ITC diameters for metrics generated at a pulse density of 300
pulses m ~2 colored by stem planting density: Low (618 trees per hectare (TPH)), Medium (1236 TPH)
and High (1854 TPH) planting densities, respectively. The solid-gray denotes a 1:1 relationship.

Under high planting density, only .5 and .25 pulses m~2 differed significantly, with the
.5 pulses m™ having a lower RMSE (Table S8). For medium-density tree planting, only 1
pulse m™? showed lower RMSE than other pulse densities. Finally, for low-density tree
plantings, there was no effect of pulse density on RMSE.

4. Discussion
4.1. Accuracy of individual tree crown delineation

The accuracy of the ITC delineation was strongly dependent on planting density. The
largest proportion (~88%) of delineated ITCs that corresponded to field GPS coordinates
were observed within plots that had the lowest stem planting density. ITC delineation was
~71% for medium planting density, and ~49% for high planting density (~49%) when
pulse density was >5 pulses m™2.

ITC RMSE within the three stem densities tested was relatively consistent (+3%) for
pulse densities =5 pulses m™2. This similarity in detection accuracy within a planting
density implies that the planting density was a more important consideration than pulse
density. Differences in RMSE among planting densities could be as high as ~40% between
low to high density planting. This finding is in agreement with those of Kaartinen et al.
(2012). Greater crown overlaps in high planting densities likely resulted in a reduction in
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Figure 8. RMSE (m) for crown diameter for all plots, separated into low (618 trees per hectare (TPH)),
Medium (1236 TPH) and High (1854 TPH) planting density plots, respectively.

physical features in the point cloud surface which complicated ITC delineation using the
current method. As with some other methods (e.g. spatial wavelet analysis and variable
window filters; Falkowski et al. 2008), some tree crowns in this study may have been too
close together or suppressed to be accurately delineated.

The underestimation of stems using ITC delineation methodologies is a common phenom-
enon. Our values fell within previously reported detection rates which range between 25 to
102%, 72% (>200 to <400 TPH), 86% (500 m? plots with 9 to 35 stems), and 70-90% (<500 TPH)
(Kaartinen et al. 2012; Jakubowski et al. 2013b; Li et al. 2012; Wang et al. 2016, respectively).

Across all planting densities, ITCs could generally be delineated consistently at pulse
densities above 5 pulse m™ for the site used in this study. However, when pulse densities
decreased below 5 pulse m™ the probability of correctly delineating ITCs decreased
significantly. The differences in the distributions of pulses at lower pulse densities may
have resulted in differences in ITC center positions and horizontal extents, or, more
specifically, the ITCs may have been omitted as pulse density decreased below 5 pulses m™2

As no commission error (false positives) was observed, we conclude that some ITC
objects occasionally represent a cluster of multiple tree crowns, resulting in omission error
(false negatives). A potential method that could be used to separate overlapping tree
crowns is the adaptive mean-shift algorithm (Ferraz et al. 2012) which demonstrated the
capability to classify the point-cloud into ITCs based on the distribution of all returns,
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Figure 9. RMSE of plot-level leaf area index (m* m ~2) for all plots separated into low (618 trees per
hectare (TPH)), Medium (1236 TPH) and High (1854 TPH) planting density plots, respectively.

rather than just the top surface returns. This approach could classify ITCs in both the over-
and understory, however, a bandwidth (or search area) must be set and an incorrect
bandwidth size can result in misclassification. Ferraz et al. (2016) utilized regionally
specific allometry to determine bandwidth. Alternatively, Yan et al. (2020) proposed
a method to automatically determine bandwidth from canopy height for a plantation
forest which resulted in correctly delineating between 80% and 95% of crowns. With the
availability of high pulse density datasets which conceivably allow more returns from
features below the canopy (Silva et al. 2017), in addition to the inclusion of high scan
angles which potentially allow returns from individual tree stems (Corte et al. 2020), parts
of the individual tree stems may be available in the point-cloud. Therefore, existing
methods developed for stem classification used in terrestrial laser scanning, such as
a Hough Transform circle search algorithm (de Conto et al. 2017), may be implemented
to detect clusters of trees. Accurate tree delineation is critical to further estimate tree top
height and crown diameter.
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4.2. Estimation of tree top height

In general, higher pulse densities increased accuracy of tree top height estimation under
all planting stem densities, but >50 pulses m™2 did not provide additional benefit.
Planting density showed small effects on top height RMSE (+£.2 m). Top height estimate
comparisons of the different planting densities within each pulse density indicated top
height estimates were consistent with one another across planting densities.

The results in the current research for ITC-derived height RMSE at high pulse densities
(.5m£.1 m) were slightly larger than the previously reported RMSEs of .31 m in pure and
mixed Eucalyptus spp. and maritime pine plantation forests in Portugal at 9.5 pulses m™2
(Ferraz et al. 2012). However, the crown shape/structure of Eucalyptus spp., which made
up the majority of the trees in that study, is substantially different than loblolly pine. When
examining ITC implementations in conifer-dominated forests, the comparison was more
favorable, where RMSEs ranged from .77 to 4.27 m (Falkowski et al. 2006; Lee and Lucas
2007; Jakubowski et al. 2013b).

Underestimation of top heights using LiDAR has been reported. Popescu and Zhao
(2008) reported an underestimation in top height for both coniferous and deciduous
forests, which required the use of a correction calculated through statistical analysis (in
the range of 1.22 to 2.04 m). Likewise, Leckie et al. (2003) reported a similar issue of
underestimating tree height, with an average error of 1.3 m, for Douglas-fir dominated
forests in British Columbia, Canada, and suggested an insufficient amount of energy
might have been returned from the very top of the tree from a laser pulse for detection.
For the current study, the uncertainty was more prevalent as pulse density decreased. As
pulse density decreased, mean height estimates decreased. This finding supports the
assumption that detection of tree top height was dependent on DLS pulses returning
energy from the top of the tree.

4.3. Estimation of individual tree crown horizontal diameter

As with other metrics, the accuracy of crown diameter estimates decreased with decreasing
pulse density. The highest accuracy was for 300 pulses m~2, however, DLS-derived crown
diameters were generally smaller than field-based estimates of crown diameters. The
reduction in estimated crown diameter size as pulse density decreased implies that lower
pulse densities were potentially missing parts of tree crowns due to reduced sampling.
When stratifying by stem density, the increase in RMSE as pulse density decreased was
almost constant between the three planting densities, just with a different intercept. At
lower pulse densities, the separation of RMSE values by planting density was greater. The
lowest error in crown diameter estimates was consistently observed for high planting
density plots while the largest error was observed for the low-density. It should be noted
that the field measured crown sizes were variable (with means between 3.1 and 4.3 m).
Observed error in the DLS-estimates tended to increase with increasing crown size. This
result was potentially related to greater variability existing among larger objects.
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As noted before, much of the literature which reports crown diameter typically uses
a CHM or other raster imagery for the delineation of ITC objects (Falkowski et al. 2006,
2008; Popescu and Zhao 2008). Previous studies reported RMSE values between 1.35 and
2.08 m. This was similar to our RMSE values, which ranged from 1.20 to 1.85m (300
pulses m™) to 1.37 to 2.22 m (50 pulses m™3).

Given the uncertainty observed in estimates of crown size, regardless of planting
density, we conclude that parts of the crown may be missed or incorrectly classified.
The merging and obscuring of crowns, for example, or a decreased probability of DLS
returning from the edges of crowns, could potentially explain these sources of under-
estimation. As noted in Yanez, Seiler and Fox (2017), these different genotypes exhibited
differences in crown structural characteristics, such as leaf area, which may have con-
tributed to additional uncertainty to correctly delineating all stems in an area. Similarly,
Jakubowski, Guo and Kelly (2013a) state that metrics related to coverage (e.g. canopy
cover) were sensitive to pulse densities, particularly as pulse density decreases below 20
pulses m~2. The field measurement protocol used here, i.e. within and between planting
rows, may not have had extended along the axis of the widest spacing in all cases, and
may represent an additional source of uncertainty. Goodwin, Coops and Culvenor (2006)
demonstrated there was a relationship between increases in distance from the sensor
(and, by extension, laser footprint size) and the accuracy of crown area estimates. The
authors hypothesized that less light energy is returned to the sensor resulting in
a reduction of the number of returns recorded. With the small footprint sizes (~20 cm),
and potentially small branch end objects in the context of the current study, a potential
explanation would be that these ends are either missed or an insufficient amount of
energy is returned from this part of the crown.

4.4. Estimation of plot-level effective leaf area index

The plot-level eLAl method used here appears relatively stable across pulse densities
greater than .5 pulses ~2. This finding additionally supports that eLAl estimates may be
stable among acquisition types as the eLAl estimation method was originally developed
for conventional ALS (Sumnall et al. 2021). Accuracy was lowest in low planting density
plots and, surprisingly, highest in the medium planting density plots. Estimates of eLAl
RMSE were relatively consistent across pulse densities >.5 pulses m™2 (+.2) and within
each planting densities (+.1). The largest RMSE was observed for high stem density and
a pulse density of .25 pulses m~2, which is a likely due to sampling error due to very few
returns. This could be erroneous or a problem caused by a reduction in plot size (as
suggested in Frazer et al. 2011). We conclude, however, that above the pulse density
equal to or above .5 pulses m™2, eLAl can be estimated accurately.

The RMSE eLAl values in the current study ranged from .64 to .84 at 300 pulses m™~ and
were somewhat higher than other reported values of .47 (Sumnall et al. 2021), .45 to .67
for loblolly pine plantations (Peduzzi et al. 2012) or .29 to .38 for mixed woodlands (Zhao
and Popescu 2009), or .32 to .36 for Picea abies (Solberg et al. 2009). Each of the examples
noted here was produced using ALS. This difference, we conclude, was related to the
difference in the method of acquisition or the influence of field plot size (Frazer et al.
2011). As noted previously, scan angles were constrained for eLAl estimates in order to
avoid the problems outlined in Liu et al. (2018). This restriction may have the unintended

2
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consequence of only sampling portions of field plots due to the UAV's flying altitude.
Incomplete plot coverage may be responsible for the increased uncertainty. This result
may have implications in using low altitude DLS for eLAl assessment.

4.5. Considerations and future work

We explored the use of DLS data to test a method of delineating ITCs directly from the
point cloud. The use of DLS allowed for the analysis of a very high pulse density (300
pulses m?). This was partially due to the use of all returns from scan angles 0 to 60°,
a range uncommon in ALS acquisitions. Previous research has demonstrated that regres-
sing a field plot-variable to an ALS derived point cloud summary metric was very sensitive
to the scan angles used (Liu et al. 2018). Conceivably only part of an ITC may be returned
from when scan angles are off-nadir within a single flight, where parts of the crown may
be occluded from the sensor. This may have been an issue near the outer extent of the
current study’s plots. Holmgren, Nilsson and Olsson (2003), when exploring the influence
of scan angle at the plot scale, observed that off-nadir angles yielded slightly more canopy
returns. Leite et al. (2020) found significant differences (p <.05) from airborne LiDAR to
field-measured tree heights at nadir scan angles (0-7°). Given that no statistical models
were used in the delineation of ITCs, instead the methods here were dependent on the
exterior returns of the point cloud and local relative 3D density, we would argue that this
issue does not apply in this context. The inclusion of high scan angles, may allow for an
increased number of crown exterior returns (Holmgren, Nilsson and Olsson 2003) and
returns from additional features such as the sides of the tree stems (Corte et al. 2020). For
the estimation of plot-level eLAl, however, the scan angle range was constrained.

Plot-level metrics can be calculated with relatively low pulse densities. As noted by
Kamoske et al. (2019), only very low pulse densities can impact the estimates of forest
structural characteristics at the plot-scale, although higher densities were considered more
reliable (>20 pulses m~2 Shao et al. 2019). The results at the individual tree-scale in the
current research may suggest that the size of the object being considered for analysis will
impact this assumption. There was evidence to suggest sensor-induced bias can also
influence estimate accuracy (Shao et al. 2019). Kamoske et al. (2019) noted that different
sensors can have different canopy penetration capabilities, where beam divergence and
pulse repetition frequency can determine the quality of the point cloud. Differences in
acquisition characteristics, particularly from different sensor designs, will yield different
distributions of returns in the point cloud for the same location (e.g. Kamoske et al. 2019;
Yu et al. 2020). Future work would therefore need to evaluate the impact of different
acquisition characteristics, for example from different sensors, on estimate accuracy.

The effect of laser footprint size on estimates such as height accuracy has received little
attention in the literature. Andersen, Reutebuch and McGaughey (2006) and Roussel et al.
(2017) found a similar effect of underestimating tree height, which increased as laser
footprint size increases. Different accuracies were also observed for height estimates
among different tree species (specifically: ponderosa pine and Douglas-fir) when con-
sidering footprint size It is possible the size and spatial-arrangement of the object being
scanned will influence estimate accuracy.
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Platform altitude, laser power and footprint size can potentially reduce the intensity of
laser beam incident on a given surface area, thus decreasing the probability of recording
a last return above the noise threshold (Goodwin, Coops and Culvenor 2006). Given
DLStechnology is relatively new, lack of standardization suggests that acquisition specific
considerations may be a source of uncertainty. Likewise, we used ground-based measure-
ments as our standard in this analysis. There was error associated with field measurements
from the ground not explored here.

We artificially decimated the DLS point cloud using GPS time to achieve the different
pulse densities. This could conceivably yield different results than actual unique acquisi-
tions with a different initial pulse density. Furthermore, the results from a systematic
decimation approach would differ from a random one, were non-uniform pulse densities
would be possible, and therefore yield different results.

It should be noted that the study site used here potentially differs to typical opera-
tional forest sites, in terms of size, homogeneity and spatial arrangement. Again, future
work would be necessary to evaluate these methods in different environmental
contexts.

Our results suggest that relatively low pulse density DLS data may be capable of
estimating individual canopy structural features and plot-level eLAl metrics reliably in
most situations. Increased pulse density appears to increase estimate accuracy of most
metrics, but only to a point. Tree size and their proximity to each other were also
determining factors of accuracy. The results here provide practical guidance for forest
managers who will make decisions concerning the tradeoff of data quality and coverage
against cost when planning new DLS or ALS acquisitions.

5. Conclusions

The tradeoff the exists between data quality, spatial coverage and cost when planning
new LiDAR acquisitions is a critical one for forest managers to consider. The results
demonstrate the potential of DLS to provide data at various levels of accuracy as
determined by varied pulse densities. For individual tree delineation, accuracy was
relatively consistent, and only decreased at low pulse densities (<5 pulses m™2). When
considering the ITC-scale, however, estimates appeared to be more sensitive to pulse
density, as higher pulse densities generally produced greater accuracy, but only up to
a point. Usually pulse densities >50 pulses m™2 did not result in much greater
accuracy but some features may not be captured at lower pulse densities (<10
pulses m™2). As one of the main limitations to accurate forest metric estimation is
ITC delineation, improved methods to separate clustered crowns would be beneficial.

Research highlights

LiDAR pulse density and stem planting density influence individual tree crown delineation;
Individual-tree-level estimates are more sensitive to pulse density than plot-level estimates;
Above a pulse density of 0.5 pulses m™2 LAl can be estimated with consistent accuracy;
Higher pulse densities provided higher accuracy for individual-tree estimates.
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